audk/OvmfPkg/EmuVariableFvbRuntimeDxe/Fvb.c

844 lines
26 KiB
C
Raw Normal View History

/** @file
Firmware Block Services to support emulating non-volatile variables
by pretending that a memory buffer is storage for the NV variables.
Copyright (c) 2006 - 2013, Intel Corporation. All rights reserved.<BR>
This program and the accompanying materials
are licensed and made available under the terms and conditions of the BSD License
which accompanies this distribution. The full text of the license may be found at
http://opensource.org/licenses/bsd-license.php
THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS,
WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED.
**/
#include "PiDxe.h"
#include <Guid/EventGroup.h>
#include <Guid/SystemNvDataGuid.h>
#include <Guid/VariableFormat.h>
#include <Protocol/FirmwareVolumeBlock.h>
#include <Protocol/DevicePath.h>
#include <Library/UefiLib.h>
#include <Library/UefiDriverEntryPoint.h>
#include <Library/BaseLib.h>
#include <Library/UefiRuntimeLib.h>
#include <Library/DebugLib.h>
#include <Library/BaseMemoryLib.h>
#include <Library/MemoryAllocationLib.h>
#include <Library/UefiBootServicesTableLib.h>
#include <Library/DevicePathLib.h>
#include <Library/PcdLib.h>
#include <Library/PlatformFvbLib.h>
#include "Fvb.h"
#define EFI_AUTHENTICATED_VARIABLE_GUID \
{ 0xaaf32c78, 0x947b, 0x439a, { 0xa1, 0x80, 0x2e, 0x14, 0x4e, 0xc3, 0x77, 0x92 } }
//
// Virtual Address Change Event
//
// This is needed for runtime variable access.
//
EFI_EVENT mEmuVarsFvbAddrChangeEvent = NULL;
//
// This is the single instance supported by this driver. It
// supports the FVB and Device Path protocols.
//
EFI_FW_VOL_BLOCK_DEVICE mEmuVarsFvb = {
FVB_DEVICE_SIGNATURE,
{ // DevicePath
{
{
HARDWARE_DEVICE_PATH,
HW_MEMMAP_DP,
{
sizeof (MEMMAP_DEVICE_PATH),
0
}
},
EfiMemoryMappedIO,
0,
0,
},
{
END_DEVICE_PATH_TYPE,
END_ENTIRE_DEVICE_PATH_SUBTYPE,
{
sizeof (EFI_DEVICE_PATH_PROTOCOL),
0
}
}
},
NULL, // BufferPtr
OvmfPkg/EmuVariableFvbRuntimeDxe: change block size to 4KB EmuVariableFvbRuntimeDxe currently produces a Firmware Volume Block protocol that is based on a block map of two blocks, each block having PcdFlashNvStorageFtwSpareSize for size. (The total size is 2 * PcdFlashNvStorageFtwSpareSize.) FaultTolerantWriteDxe in turn expects the block size to be a power of two. In the 4MB build of OVMF, PcdFlashNvStorageFtwSpareSize is 264KB, which is not a power of two. In order to equip EmuVariableFvbRuntimeDxe for this build, shrink the block size to 4KB (EFI_PAGE_SIZE), and grow the block count from 2 to EFI_SIZE_TO_PAGES(2 * PcdFlashNvStorageFtwSpareSize). The total size remains 2 * PcdFlashNvStorageFtwSpareSize --------------------------------- * EFI_PAGE_SIZE EFI_PAGE_SIZE Right now EmuVariableFvbRuntimeDxe open-codes the block count of 2 in various limit checks, so introduce a few new macros: - EMU_FVB_NUM_TOTAL_BLOCKS, for the LHS of the above product, - EMU_FVB_NUM_SPARE_BLOCKS for the half of that. Also rework the FVB protocol members to support an arbitrary count of blocks. Keep the invariant intact that the first half of the firmware volume hosts the variable store and the FTW working block, and that the second half maps the FTW spare area. Cc: Jordan Justen <jordan.l.justen@intel.com> Ref: https://bugzilla.tianocore.org/show_bug.cgi?id=527 Contributed-under: TianoCore Contribution Agreement 1.0 Signed-off-by: Laszlo Ersek <lersek@redhat.com> Regression-tested-by: Gary Lin <glin@suse.com> Reviewed-by: Jordan Justen <jordan.l.justen@intel.com>
2017-05-06 13:17:58 +02:00
EMU_FVB_BLOCK_SIZE, // BlockSize
EMU_FVB_SIZE, // Size
{ // FwVolBlockInstance
FvbProtocolGetAttributes,
FvbProtocolSetAttributes,
FvbProtocolGetPhysicalAddress,
FvbProtocolGetBlockSize,
FvbProtocolRead,
FvbProtocolWrite,
FvbProtocolEraseBlocks,
NULL
},
};
/**
Notification function of EVT_SIGNAL_VIRTUAL_ADDRESS_CHANGE.
This is a notification function registered on EVT_SIGNAL_VIRTUAL_ADDRESS_CHANGE event.
It converts pointer to new virtual address.
@param Event Event whose notification function is being invoked.
@param Context Pointer to the notification function's context.
**/
VOID
EFIAPI
FvbVirtualAddressChangeEvent (
IN EFI_EVENT Event,
IN VOID *Context
)
{
EfiConvertPointer (0x0, &mEmuVarsFvb.BufferPtr);
}
//
// FVB protocol APIs
//
/**
The GetPhysicalAddress() function retrieves the base address of
a memory-mapped firmware volume. This function should be called
only for memory-mapped firmware volumes.
@param This Indicates the EFI_FIRMWARE_VOLUME_BLOCK2_PROTOCOL instance.
@param Address Pointer to a caller-allocated
EFI_PHYSICAL_ADDRESS that, on successful
return from GetPhysicalAddress(), contains the
base address of the firmware volume.
@retval EFI_SUCCESS The firmware volume base address is returned.
@retval EFI_NOT_SUPPORTED The firmware volume is not memory mapped.
**/
EFI_STATUS
EFIAPI
FvbProtocolGetPhysicalAddress (
IN CONST EFI_FIRMWARE_VOLUME_BLOCK2_PROTOCOL *This,
OUT EFI_PHYSICAL_ADDRESS *Address
)
{
EFI_FW_VOL_BLOCK_DEVICE *FvbDevice;
FvbDevice = FVB_DEVICE_FROM_THIS (This);
*Address = (EFI_PHYSICAL_ADDRESS)(UINTN) FvbDevice->BufferPtr;
return EFI_SUCCESS;
}
/**
The GetBlockSize() function retrieves the size of the requested
block. It also returns the number of additional blocks with
the identical size. The GetBlockSize() function is used to
retrieve the block map (see EFI_FIRMWARE_VOLUME_HEADER).
@param This Indicates the EFI_FIRMWARE_VOLUME_BLOCK2_PROTOCOL instance.
@param Lba Indicates the block for which to return the size.
@param BlockSize Pointer to a caller-allocated UINTN in which
the size of the block is returned.
@param NumberOfBlocks Pointer to a caller-allocated UINTN in
which the number of consecutive blocks,
starting with Lba, is returned. All
blocks in this range have a size of
BlockSize.
@retval EFI_SUCCESS The firmware volume base address is returned.
@retval EFI_INVALID_PARAMETER The requested LBA is out of range.
**/
EFI_STATUS
EFIAPI
FvbProtocolGetBlockSize (
IN CONST EFI_FIRMWARE_VOLUME_BLOCK2_PROTOCOL *This,
IN EFI_LBA Lba,
OUT UINTN *BlockSize,
OUT UINTN *NumberOfBlocks
)
{
EFI_FW_VOL_BLOCK_DEVICE *FvbDevice;
OvmfPkg/EmuVariableFvbRuntimeDxe: change block size to 4KB EmuVariableFvbRuntimeDxe currently produces a Firmware Volume Block protocol that is based on a block map of two blocks, each block having PcdFlashNvStorageFtwSpareSize for size. (The total size is 2 * PcdFlashNvStorageFtwSpareSize.) FaultTolerantWriteDxe in turn expects the block size to be a power of two. In the 4MB build of OVMF, PcdFlashNvStorageFtwSpareSize is 264KB, which is not a power of two. In order to equip EmuVariableFvbRuntimeDxe for this build, shrink the block size to 4KB (EFI_PAGE_SIZE), and grow the block count from 2 to EFI_SIZE_TO_PAGES(2 * PcdFlashNvStorageFtwSpareSize). The total size remains 2 * PcdFlashNvStorageFtwSpareSize --------------------------------- * EFI_PAGE_SIZE EFI_PAGE_SIZE Right now EmuVariableFvbRuntimeDxe open-codes the block count of 2 in various limit checks, so introduce a few new macros: - EMU_FVB_NUM_TOTAL_BLOCKS, for the LHS of the above product, - EMU_FVB_NUM_SPARE_BLOCKS for the half of that. Also rework the FVB protocol members to support an arbitrary count of blocks. Keep the invariant intact that the first half of the firmware volume hosts the variable store and the FTW working block, and that the second half maps the FTW spare area. Cc: Jordan Justen <jordan.l.justen@intel.com> Ref: https://bugzilla.tianocore.org/show_bug.cgi?id=527 Contributed-under: TianoCore Contribution Agreement 1.0 Signed-off-by: Laszlo Ersek <lersek@redhat.com> Regression-tested-by: Gary Lin <glin@suse.com> Reviewed-by: Jordan Justen <jordan.l.justen@intel.com>
2017-05-06 13:17:58 +02:00
if (Lba >= EMU_FVB_NUM_TOTAL_BLOCKS) {
return EFI_INVALID_PARAMETER;
}
FvbDevice = FVB_DEVICE_FROM_THIS (This);
*BlockSize = FvbDevice->BlockSize;
OvmfPkg/EmuVariableFvbRuntimeDxe: change block size to 4KB EmuVariableFvbRuntimeDxe currently produces a Firmware Volume Block protocol that is based on a block map of two blocks, each block having PcdFlashNvStorageFtwSpareSize for size. (The total size is 2 * PcdFlashNvStorageFtwSpareSize.) FaultTolerantWriteDxe in turn expects the block size to be a power of two. In the 4MB build of OVMF, PcdFlashNvStorageFtwSpareSize is 264KB, which is not a power of two. In order to equip EmuVariableFvbRuntimeDxe for this build, shrink the block size to 4KB (EFI_PAGE_SIZE), and grow the block count from 2 to EFI_SIZE_TO_PAGES(2 * PcdFlashNvStorageFtwSpareSize). The total size remains 2 * PcdFlashNvStorageFtwSpareSize --------------------------------- * EFI_PAGE_SIZE EFI_PAGE_SIZE Right now EmuVariableFvbRuntimeDxe open-codes the block count of 2 in various limit checks, so introduce a few new macros: - EMU_FVB_NUM_TOTAL_BLOCKS, for the LHS of the above product, - EMU_FVB_NUM_SPARE_BLOCKS for the half of that. Also rework the FVB protocol members to support an arbitrary count of blocks. Keep the invariant intact that the first half of the firmware volume hosts the variable store and the FTW working block, and that the second half maps the FTW spare area. Cc: Jordan Justen <jordan.l.justen@intel.com> Ref: https://bugzilla.tianocore.org/show_bug.cgi?id=527 Contributed-under: TianoCore Contribution Agreement 1.0 Signed-off-by: Laszlo Ersek <lersek@redhat.com> Regression-tested-by: Gary Lin <glin@suse.com> Reviewed-by: Jordan Justen <jordan.l.justen@intel.com>
2017-05-06 13:17:58 +02:00
*NumberOfBlocks = (UINTN)(EMU_FVB_NUM_TOTAL_BLOCKS - Lba);
return EFI_SUCCESS;
}
/**
The GetAttributes() function retrieves the attributes and
current settings of the block. Status Codes Returned
@param This Indicates the EFI_FIRMWARE_VOLUME_BLOCK2_PROTOCOL instance.
@param Attributes Pointer to EFI_FVB_ATTRIBUTES_2 in which the
attributes and current settings are
returned. Type EFI_FVB_ATTRIBUTES_2 is defined
in EFI_FIRMWARE_VOLUME_HEADER.
@retval EFI_SUCCESS The firmware volume attributes were
returned.
**/
EFI_STATUS
EFIAPI
FvbProtocolGetAttributes (
IN CONST EFI_FIRMWARE_VOLUME_BLOCK2_PROTOCOL *This,
OUT EFI_FVB_ATTRIBUTES_2 *Attributes
)
{
*Attributes =
(EFI_FVB_ATTRIBUTES_2) (
EFI_FVB2_READ_ENABLED_CAP |
EFI_FVB2_READ_STATUS |
EFI_FVB2_WRITE_ENABLED_CAP |
EFI_FVB2_WRITE_STATUS |
EFI_FVB2_ERASE_POLARITY
);
return EFI_SUCCESS;
}
/**
The SetAttributes() function sets configurable firmware volume
attributes and returns the new settings of the firmware volume.
@param This Indicates the EFI_FIRMWARE_VOLUME_BLOCK2_PROTOCOL instance.
@param Attributes On input, Attributes is a pointer to
EFI_FVB_ATTRIBUTES_2 that contains the
desired firmware volume settings. On
successful return, it contains the new
settings of the firmware volume. Type
EFI_FVB_ATTRIBUTES_2 is defined in
EFI_FIRMWARE_VOLUME_HEADER.
@retval EFI_SUCCESS The firmware volume attributes were returned.
@retval EFI_INVALID_PARAMETER The attributes requested are in
conflict with the capabilities
as declared in the firmware
volume header.
**/
EFI_STATUS
EFIAPI
FvbProtocolSetAttributes (
IN CONST EFI_FIRMWARE_VOLUME_BLOCK2_PROTOCOL *This,
IN OUT EFI_FVB_ATTRIBUTES_2 *Attributes
)
{
return EFI_ACCESS_DENIED;
}
/**
Erases and initializes a firmware volume block.
The EraseBlocks() function erases one or more blocks as denoted
by the variable argument list. The entire parameter list of
blocks must be verified before erasing any blocks. If a block is
requested that does not exist within the associated firmware
volume (it has a larger index than the last block of the
firmware volume), the EraseBlocks() function must return the
status code EFI_INVALID_PARAMETER without modifying the contents
of the firmware volume. Implementations should be mindful that
the firmware volume might be in the WriteDisabled state. If it
is in this state, the EraseBlocks() function must return the
status code EFI_ACCESS_DENIED without modifying the contents of
the firmware volume. All calls to EraseBlocks() must be fully
flushed to the hardware before the EraseBlocks() service
returns.
@param This Indicates the EFI_FIRMWARE_VOLUME_BLOCK2_PROTOCOL
instance.
@param ... The variable argument list is a list of tuples.
Each tuple describes a range of LBAs to erase
and consists of the following:
- An EFI_LBA that indicates the starting LBA
- A UINTN that indicates the number of blocks to
erase
The list is terminated with an
EFI_LBA_LIST_TERMINATOR. For example, the
following indicates that two ranges of blocks
(5-7 and 10-11) are to be erased: EraseBlocks
(This, 5, 3, 10, 2, EFI_LBA_LIST_TERMINATOR);
@retval EFI_SUCCESS The erase request was successfully
completed.
@retval EFI_ACCESS_DENIED The firmware volume is in the
WriteDisabled state.
@retval EFI_DEVICE_ERROR The block device is not functioning
correctly and could not be written.
The firmware device may have been
partially erased.
@retval EFI_INVALID_PARAMETER One or more of the LBAs listed
in the variable argument list do
not exist in the firmware volume.
**/
EFI_STATUS
EFIAPI
FvbProtocolEraseBlocks (
IN CONST EFI_FIRMWARE_VOLUME_BLOCK2_PROTOCOL *This,
...
)
{
EFI_FW_VOL_BLOCK_DEVICE *FvbDevice;
OvmfPkg/EmuVariableFvbRuntimeDxe: change block size to 4KB EmuVariableFvbRuntimeDxe currently produces a Firmware Volume Block protocol that is based on a block map of two blocks, each block having PcdFlashNvStorageFtwSpareSize for size. (The total size is 2 * PcdFlashNvStorageFtwSpareSize.) FaultTolerantWriteDxe in turn expects the block size to be a power of two. In the 4MB build of OVMF, PcdFlashNvStorageFtwSpareSize is 264KB, which is not a power of two. In order to equip EmuVariableFvbRuntimeDxe for this build, shrink the block size to 4KB (EFI_PAGE_SIZE), and grow the block count from 2 to EFI_SIZE_TO_PAGES(2 * PcdFlashNvStorageFtwSpareSize). The total size remains 2 * PcdFlashNvStorageFtwSpareSize --------------------------------- * EFI_PAGE_SIZE EFI_PAGE_SIZE Right now EmuVariableFvbRuntimeDxe open-codes the block count of 2 in various limit checks, so introduce a few new macros: - EMU_FVB_NUM_TOTAL_BLOCKS, for the LHS of the above product, - EMU_FVB_NUM_SPARE_BLOCKS for the half of that. Also rework the FVB protocol members to support an arbitrary count of blocks. Keep the invariant intact that the first half of the firmware volume hosts the variable store and the FTW working block, and that the second half maps the FTW spare area. Cc: Jordan Justen <jordan.l.justen@intel.com> Ref: https://bugzilla.tianocore.org/show_bug.cgi?id=527 Contributed-under: TianoCore Contribution Agreement 1.0 Signed-off-by: Laszlo Ersek <lersek@redhat.com> Regression-tested-by: Gary Lin <glin@suse.com> Reviewed-by: Jordan Justen <jordan.l.justen@intel.com>
2017-05-06 13:17:58 +02:00
VA_LIST Args;
EFI_LBA StartingLba;
UINTN NumOfLba;
OvmfPkg/EmuVariableFvbRuntimeDxe: change block size to 4KB EmuVariableFvbRuntimeDxe currently produces a Firmware Volume Block protocol that is based on a block map of two blocks, each block having PcdFlashNvStorageFtwSpareSize for size. (The total size is 2 * PcdFlashNvStorageFtwSpareSize.) FaultTolerantWriteDxe in turn expects the block size to be a power of two. In the 4MB build of OVMF, PcdFlashNvStorageFtwSpareSize is 264KB, which is not a power of two. In order to equip EmuVariableFvbRuntimeDxe for this build, shrink the block size to 4KB (EFI_PAGE_SIZE), and grow the block count from 2 to EFI_SIZE_TO_PAGES(2 * PcdFlashNvStorageFtwSpareSize). The total size remains 2 * PcdFlashNvStorageFtwSpareSize --------------------------------- * EFI_PAGE_SIZE EFI_PAGE_SIZE Right now EmuVariableFvbRuntimeDxe open-codes the block count of 2 in various limit checks, so introduce a few new macros: - EMU_FVB_NUM_TOTAL_BLOCKS, for the LHS of the above product, - EMU_FVB_NUM_SPARE_BLOCKS for the half of that. Also rework the FVB protocol members to support an arbitrary count of blocks. Keep the invariant intact that the first half of the firmware volume hosts the variable store and the FTW working block, and that the second half maps the FTW spare area. Cc: Jordan Justen <jordan.l.justen@intel.com> Ref: https://bugzilla.tianocore.org/show_bug.cgi?id=527 Contributed-under: TianoCore Contribution Agreement 1.0 Signed-off-by: Laszlo Ersek <lersek@redhat.com> Regression-tested-by: Gary Lin <glin@suse.com> Reviewed-by: Jordan Justen <jordan.l.justen@intel.com>
2017-05-06 13:17:58 +02:00
UINT8 *ErasePtr;
UINTN EraseSize;
FvbDevice = FVB_DEVICE_FROM_THIS (This);
OvmfPkg/EmuVariableFvbRuntimeDxe: change block size to 4KB EmuVariableFvbRuntimeDxe currently produces a Firmware Volume Block protocol that is based on a block map of two blocks, each block having PcdFlashNvStorageFtwSpareSize for size. (The total size is 2 * PcdFlashNvStorageFtwSpareSize.) FaultTolerantWriteDxe in turn expects the block size to be a power of two. In the 4MB build of OVMF, PcdFlashNvStorageFtwSpareSize is 264KB, which is not a power of two. In order to equip EmuVariableFvbRuntimeDxe for this build, shrink the block size to 4KB (EFI_PAGE_SIZE), and grow the block count from 2 to EFI_SIZE_TO_PAGES(2 * PcdFlashNvStorageFtwSpareSize). The total size remains 2 * PcdFlashNvStorageFtwSpareSize --------------------------------- * EFI_PAGE_SIZE EFI_PAGE_SIZE Right now EmuVariableFvbRuntimeDxe open-codes the block count of 2 in various limit checks, so introduce a few new macros: - EMU_FVB_NUM_TOTAL_BLOCKS, for the LHS of the above product, - EMU_FVB_NUM_SPARE_BLOCKS for the half of that. Also rework the FVB protocol members to support an arbitrary count of blocks. Keep the invariant intact that the first half of the firmware volume hosts the variable store and the FTW working block, and that the second half maps the FTW spare area. Cc: Jordan Justen <jordan.l.justen@intel.com> Ref: https://bugzilla.tianocore.org/show_bug.cgi?id=527 Contributed-under: TianoCore Contribution Agreement 1.0 Signed-off-by: Laszlo Ersek <lersek@redhat.com> Regression-tested-by: Gary Lin <glin@suse.com> Reviewed-by: Jordan Justen <jordan.l.justen@intel.com>
2017-05-06 13:17:58 +02:00
//
// Check input parameters
//
VA_START (Args, This);
do {
OvmfPkg/EmuVariableFvbRuntimeDxe: change block size to 4KB EmuVariableFvbRuntimeDxe currently produces a Firmware Volume Block protocol that is based on a block map of two blocks, each block having PcdFlashNvStorageFtwSpareSize for size. (The total size is 2 * PcdFlashNvStorageFtwSpareSize.) FaultTolerantWriteDxe in turn expects the block size to be a power of two. In the 4MB build of OVMF, PcdFlashNvStorageFtwSpareSize is 264KB, which is not a power of two. In order to equip EmuVariableFvbRuntimeDxe for this build, shrink the block size to 4KB (EFI_PAGE_SIZE), and grow the block count from 2 to EFI_SIZE_TO_PAGES(2 * PcdFlashNvStorageFtwSpareSize). The total size remains 2 * PcdFlashNvStorageFtwSpareSize --------------------------------- * EFI_PAGE_SIZE EFI_PAGE_SIZE Right now EmuVariableFvbRuntimeDxe open-codes the block count of 2 in various limit checks, so introduce a few new macros: - EMU_FVB_NUM_TOTAL_BLOCKS, for the LHS of the above product, - EMU_FVB_NUM_SPARE_BLOCKS for the half of that. Also rework the FVB protocol members to support an arbitrary count of blocks. Keep the invariant intact that the first half of the firmware volume hosts the variable store and the FTW working block, and that the second half maps the FTW spare area. Cc: Jordan Justen <jordan.l.justen@intel.com> Ref: https://bugzilla.tianocore.org/show_bug.cgi?id=527 Contributed-under: TianoCore Contribution Agreement 1.0 Signed-off-by: Laszlo Ersek <lersek@redhat.com> Regression-tested-by: Gary Lin <glin@suse.com> Reviewed-by: Jordan Justen <jordan.l.justen@intel.com>
2017-05-06 13:17:58 +02:00
StartingLba = VA_ARG (Args, EFI_LBA);
if (StartingLba == EFI_LBA_LIST_TERMINATOR) {
break;
}
OvmfPkg/EmuVariableFvbRuntimeDxe: change block size to 4KB EmuVariableFvbRuntimeDxe currently produces a Firmware Volume Block protocol that is based on a block map of two blocks, each block having PcdFlashNvStorageFtwSpareSize for size. (The total size is 2 * PcdFlashNvStorageFtwSpareSize.) FaultTolerantWriteDxe in turn expects the block size to be a power of two. In the 4MB build of OVMF, PcdFlashNvStorageFtwSpareSize is 264KB, which is not a power of two. In order to equip EmuVariableFvbRuntimeDxe for this build, shrink the block size to 4KB (EFI_PAGE_SIZE), and grow the block count from 2 to EFI_SIZE_TO_PAGES(2 * PcdFlashNvStorageFtwSpareSize). The total size remains 2 * PcdFlashNvStorageFtwSpareSize --------------------------------- * EFI_PAGE_SIZE EFI_PAGE_SIZE Right now EmuVariableFvbRuntimeDxe open-codes the block count of 2 in various limit checks, so introduce a few new macros: - EMU_FVB_NUM_TOTAL_BLOCKS, for the LHS of the above product, - EMU_FVB_NUM_SPARE_BLOCKS for the half of that. Also rework the FVB protocol members to support an arbitrary count of blocks. Keep the invariant intact that the first half of the firmware volume hosts the variable store and the FTW working block, and that the second half maps the FTW spare area. Cc: Jordan Justen <jordan.l.justen@intel.com> Ref: https://bugzilla.tianocore.org/show_bug.cgi?id=527 Contributed-under: TianoCore Contribution Agreement 1.0 Signed-off-by: Laszlo Ersek <lersek@redhat.com> Regression-tested-by: Gary Lin <glin@suse.com> Reviewed-by: Jordan Justen <jordan.l.justen@intel.com>
2017-05-06 13:17:58 +02:00
NumOfLba = VA_ARG (Args, UINTN);
OvmfPkg/EmuVariableFvbRuntimeDxe: change block size to 4KB EmuVariableFvbRuntimeDxe currently produces a Firmware Volume Block protocol that is based on a block map of two blocks, each block having PcdFlashNvStorageFtwSpareSize for size. (The total size is 2 * PcdFlashNvStorageFtwSpareSize.) FaultTolerantWriteDxe in turn expects the block size to be a power of two. In the 4MB build of OVMF, PcdFlashNvStorageFtwSpareSize is 264KB, which is not a power of two. In order to equip EmuVariableFvbRuntimeDxe for this build, shrink the block size to 4KB (EFI_PAGE_SIZE), and grow the block count from 2 to EFI_SIZE_TO_PAGES(2 * PcdFlashNvStorageFtwSpareSize). The total size remains 2 * PcdFlashNvStorageFtwSpareSize --------------------------------- * EFI_PAGE_SIZE EFI_PAGE_SIZE Right now EmuVariableFvbRuntimeDxe open-codes the block count of 2 in various limit checks, so introduce a few new macros: - EMU_FVB_NUM_TOTAL_BLOCKS, for the LHS of the above product, - EMU_FVB_NUM_SPARE_BLOCKS for the half of that. Also rework the FVB protocol members to support an arbitrary count of blocks. Keep the invariant intact that the first half of the firmware volume hosts the variable store and the FTW working block, and that the second half maps the FTW spare area. Cc: Jordan Justen <jordan.l.justen@intel.com> Ref: https://bugzilla.tianocore.org/show_bug.cgi?id=527 Contributed-under: TianoCore Contribution Agreement 1.0 Signed-off-by: Laszlo Ersek <lersek@redhat.com> Regression-tested-by: Gary Lin <glin@suse.com> Reviewed-by: Jordan Justen <jordan.l.justen@intel.com>
2017-05-06 13:17:58 +02:00
if (StartingLba > EMU_FVB_NUM_TOTAL_BLOCKS ||
NumOfLba > EMU_FVB_NUM_TOTAL_BLOCKS - StartingLba) {
VA_END (Args);
return EFI_INVALID_PARAMETER;
}
} while (1);
OvmfPkg/EmuVariableFvbRuntimeDxe: change block size to 4KB EmuVariableFvbRuntimeDxe currently produces a Firmware Volume Block protocol that is based on a block map of two blocks, each block having PcdFlashNvStorageFtwSpareSize for size. (The total size is 2 * PcdFlashNvStorageFtwSpareSize.) FaultTolerantWriteDxe in turn expects the block size to be a power of two. In the 4MB build of OVMF, PcdFlashNvStorageFtwSpareSize is 264KB, which is not a power of two. In order to equip EmuVariableFvbRuntimeDxe for this build, shrink the block size to 4KB (EFI_PAGE_SIZE), and grow the block count from 2 to EFI_SIZE_TO_PAGES(2 * PcdFlashNvStorageFtwSpareSize). The total size remains 2 * PcdFlashNvStorageFtwSpareSize --------------------------------- * EFI_PAGE_SIZE EFI_PAGE_SIZE Right now EmuVariableFvbRuntimeDxe open-codes the block count of 2 in various limit checks, so introduce a few new macros: - EMU_FVB_NUM_TOTAL_BLOCKS, for the LHS of the above product, - EMU_FVB_NUM_SPARE_BLOCKS for the half of that. Also rework the FVB protocol members to support an arbitrary count of blocks. Keep the invariant intact that the first half of the firmware volume hosts the variable store and the FTW working block, and that the second half maps the FTW spare area. Cc: Jordan Justen <jordan.l.justen@intel.com> Ref: https://bugzilla.tianocore.org/show_bug.cgi?id=527 Contributed-under: TianoCore Contribution Agreement 1.0 Signed-off-by: Laszlo Ersek <lersek@redhat.com> Regression-tested-by: Gary Lin <glin@suse.com> Reviewed-by: Jordan Justen <jordan.l.justen@intel.com>
2017-05-06 13:17:58 +02:00
VA_END (Args);
OvmfPkg/EmuVariableFvbRuntimeDxe: change block size to 4KB EmuVariableFvbRuntimeDxe currently produces a Firmware Volume Block protocol that is based on a block map of two blocks, each block having PcdFlashNvStorageFtwSpareSize for size. (The total size is 2 * PcdFlashNvStorageFtwSpareSize.) FaultTolerantWriteDxe in turn expects the block size to be a power of two. In the 4MB build of OVMF, PcdFlashNvStorageFtwSpareSize is 264KB, which is not a power of two. In order to equip EmuVariableFvbRuntimeDxe for this build, shrink the block size to 4KB (EFI_PAGE_SIZE), and grow the block count from 2 to EFI_SIZE_TO_PAGES(2 * PcdFlashNvStorageFtwSpareSize). The total size remains 2 * PcdFlashNvStorageFtwSpareSize --------------------------------- * EFI_PAGE_SIZE EFI_PAGE_SIZE Right now EmuVariableFvbRuntimeDxe open-codes the block count of 2 in various limit checks, so introduce a few new macros: - EMU_FVB_NUM_TOTAL_BLOCKS, for the LHS of the above product, - EMU_FVB_NUM_SPARE_BLOCKS for the half of that. Also rework the FVB protocol members to support an arbitrary count of blocks. Keep the invariant intact that the first half of the firmware volume hosts the variable store and the FTW working block, and that the second half maps the FTW spare area. Cc: Jordan Justen <jordan.l.justen@intel.com> Ref: https://bugzilla.tianocore.org/show_bug.cgi?id=527 Contributed-under: TianoCore Contribution Agreement 1.0 Signed-off-by: Laszlo Ersek <lersek@redhat.com> Regression-tested-by: Gary Lin <glin@suse.com> Reviewed-by: Jordan Justen <jordan.l.justen@intel.com>
2017-05-06 13:17:58 +02:00
//
// Erase blocks
//
VA_START (Args, This);
do {
StartingLba = VA_ARG (Args, EFI_LBA);
if (StartingLba == EFI_LBA_LIST_TERMINATOR) {
break;
}
NumOfLba = VA_ARG (Args, UINTN);
OvmfPkg/EmuVariableFvbRuntimeDxe: change block size to 4KB EmuVariableFvbRuntimeDxe currently produces a Firmware Volume Block protocol that is based on a block map of two blocks, each block having PcdFlashNvStorageFtwSpareSize for size. (The total size is 2 * PcdFlashNvStorageFtwSpareSize.) FaultTolerantWriteDxe in turn expects the block size to be a power of two. In the 4MB build of OVMF, PcdFlashNvStorageFtwSpareSize is 264KB, which is not a power of two. In order to equip EmuVariableFvbRuntimeDxe for this build, shrink the block size to 4KB (EFI_PAGE_SIZE), and grow the block count from 2 to EFI_SIZE_TO_PAGES(2 * PcdFlashNvStorageFtwSpareSize). The total size remains 2 * PcdFlashNvStorageFtwSpareSize --------------------------------- * EFI_PAGE_SIZE EFI_PAGE_SIZE Right now EmuVariableFvbRuntimeDxe open-codes the block count of 2 in various limit checks, so introduce a few new macros: - EMU_FVB_NUM_TOTAL_BLOCKS, for the LHS of the above product, - EMU_FVB_NUM_SPARE_BLOCKS for the half of that. Also rework the FVB protocol members to support an arbitrary count of blocks. Keep the invariant intact that the first half of the firmware volume hosts the variable store and the FTW working block, and that the second half maps the FTW spare area. Cc: Jordan Justen <jordan.l.justen@intel.com> Ref: https://bugzilla.tianocore.org/show_bug.cgi?id=527 Contributed-under: TianoCore Contribution Agreement 1.0 Signed-off-by: Laszlo Ersek <lersek@redhat.com> Regression-tested-by: Gary Lin <glin@suse.com> Reviewed-by: Jordan Justen <jordan.l.justen@intel.com>
2017-05-06 13:17:58 +02:00
ErasePtr = FvbDevice->BufferPtr;
ErasePtr += (UINTN)StartingLba * FvbDevice->BlockSize;
EraseSize = NumOfLba * FvbDevice->BlockSize;
OvmfPkg/EmuVariableFvbRuntimeDxe: change block size to 4KB EmuVariableFvbRuntimeDxe currently produces a Firmware Volume Block protocol that is based on a block map of two blocks, each block having PcdFlashNvStorageFtwSpareSize for size. (The total size is 2 * PcdFlashNvStorageFtwSpareSize.) FaultTolerantWriteDxe in turn expects the block size to be a power of two. In the 4MB build of OVMF, PcdFlashNvStorageFtwSpareSize is 264KB, which is not a power of two. In order to equip EmuVariableFvbRuntimeDxe for this build, shrink the block size to 4KB (EFI_PAGE_SIZE), and grow the block count from 2 to EFI_SIZE_TO_PAGES(2 * PcdFlashNvStorageFtwSpareSize). The total size remains 2 * PcdFlashNvStorageFtwSpareSize --------------------------------- * EFI_PAGE_SIZE EFI_PAGE_SIZE Right now EmuVariableFvbRuntimeDxe open-codes the block count of 2 in various limit checks, so introduce a few new macros: - EMU_FVB_NUM_TOTAL_BLOCKS, for the LHS of the above product, - EMU_FVB_NUM_SPARE_BLOCKS for the half of that. Also rework the FVB protocol members to support an arbitrary count of blocks. Keep the invariant intact that the first half of the firmware volume hosts the variable store and the FTW working block, and that the second half maps the FTW spare area. Cc: Jordan Justen <jordan.l.justen@intel.com> Ref: https://bugzilla.tianocore.org/show_bug.cgi?id=527 Contributed-under: TianoCore Contribution Agreement 1.0 Signed-off-by: Laszlo Ersek <lersek@redhat.com> Regression-tested-by: Gary Lin <glin@suse.com> Reviewed-by: Jordan Justen <jordan.l.justen@intel.com>
2017-05-06 13:17:58 +02:00
SetMem (ErasePtr, EraseSize, ERASED_UINT8);
} while (1);
VA_END (Args);
OvmfPkg/EmuVariableFvbRuntimeDxe: change block size to 4KB EmuVariableFvbRuntimeDxe currently produces a Firmware Volume Block protocol that is based on a block map of two blocks, each block having PcdFlashNvStorageFtwSpareSize for size. (The total size is 2 * PcdFlashNvStorageFtwSpareSize.) FaultTolerantWriteDxe in turn expects the block size to be a power of two. In the 4MB build of OVMF, PcdFlashNvStorageFtwSpareSize is 264KB, which is not a power of two. In order to equip EmuVariableFvbRuntimeDxe for this build, shrink the block size to 4KB (EFI_PAGE_SIZE), and grow the block count from 2 to EFI_SIZE_TO_PAGES(2 * PcdFlashNvStorageFtwSpareSize). The total size remains 2 * PcdFlashNvStorageFtwSpareSize --------------------------------- * EFI_PAGE_SIZE EFI_PAGE_SIZE Right now EmuVariableFvbRuntimeDxe open-codes the block count of 2 in various limit checks, so introduce a few new macros: - EMU_FVB_NUM_TOTAL_BLOCKS, for the LHS of the above product, - EMU_FVB_NUM_SPARE_BLOCKS for the half of that. Also rework the FVB protocol members to support an arbitrary count of blocks. Keep the invariant intact that the first half of the firmware volume hosts the variable store and the FTW working block, and that the second half maps the FTW spare area. Cc: Jordan Justen <jordan.l.justen@intel.com> Ref: https://bugzilla.tianocore.org/show_bug.cgi?id=527 Contributed-under: TianoCore Contribution Agreement 1.0 Signed-off-by: Laszlo Ersek <lersek@redhat.com> Regression-tested-by: Gary Lin <glin@suse.com> Reviewed-by: Jordan Justen <jordan.l.justen@intel.com>
2017-05-06 13:17:58 +02:00
//
// Call platform hook
//
VA_START (Args, This);
PlatformFvbBlocksErased (This, Args);
VA_END (Args);
return EFI_SUCCESS;
}
/**
Writes the specified number of bytes from the input buffer to the block.
The Write() function writes the specified number of bytes from
the provided buffer to the specified block and offset. If the
firmware volume is sticky write, the caller must ensure that
all the bits of the specified range to write are in the
EFI_FVB_ERASE_POLARITY state before calling the Write()
function, or else the result will be unpredictable. This
unpredictability arises because, for a sticky-write firmware
volume, a write may negate a bit in the EFI_FVB_ERASE_POLARITY
state but cannot flip it back again. In general, before
calling the Write() function, the caller should call the
EraseBlocks() function first to erase the specified block to
write. A block erase cycle will transition bits from the
(NOT)EFI_FVB_ERASE_POLARITY state back to the
EFI_FVB_ERASE_POLARITY state. Implementations should be
mindful that the firmware volume might be in the WriteDisabled
state. If it is in this state, the Write() function must
return the status code EFI_ACCESS_DENIED without modifying the
contents of the firmware volume. The Write() function must
also prevent spanning block boundaries. If a write is
requested that spans a block boundary, the write must store up
to the boundary but not beyond. The output parameter NumBytes
must be set to correctly indicate the number of bytes actually
written. The caller must be aware that a write may be
partially completed. All writes, partial or otherwise, must be
fully flushed to the hardware before the Write() service
returns.
@param This Indicates the EFI_FIRMWARE_VOLUME_BLOCK2_PROTOCOL instance.
@param Lba The starting logical block index to write to.
@param Offset Offset into the block at which to begin writing.
@param NumBytes Pointer to a UINTN. At entry, *NumBytes
contains the total size of the buffer. At
exit, *NumBytes contains the total number of
bytes actually written.
@param Buffer Pointer to a caller-allocated buffer that
contains the source for the write.
@retval EFI_SUCCESS The firmware volume was written successfully.
@retval EFI_BAD_BUFFER_SIZE The write was attempted across an
LBA boundary. On output, NumBytes
contains the total number of bytes
actually written.
@retval EFI_ACCESS_DENIED The firmware volume is in the
WriteDisabled state.
@retval EFI_DEVICE_ERROR The block device is malfunctioning
and could not be written.
**/
EFI_STATUS
EFIAPI
FvbProtocolWrite (
IN CONST EFI_FIRMWARE_VOLUME_BLOCK2_PROTOCOL *This,
IN EFI_LBA Lba,
IN UINTN Offset,
IN OUT UINTN *NumBytes,
IN UINT8 *Buffer
)
{
EFI_FW_VOL_BLOCK_DEVICE *FvbDevice;
UINT8 *FvbDataPtr;
OvmfPkg/EmuVariableFvbRuntimeDxe: change block size to 4KB EmuVariableFvbRuntimeDxe currently produces a Firmware Volume Block protocol that is based on a block map of two blocks, each block having PcdFlashNvStorageFtwSpareSize for size. (The total size is 2 * PcdFlashNvStorageFtwSpareSize.) FaultTolerantWriteDxe in turn expects the block size to be a power of two. In the 4MB build of OVMF, PcdFlashNvStorageFtwSpareSize is 264KB, which is not a power of two. In order to equip EmuVariableFvbRuntimeDxe for this build, shrink the block size to 4KB (EFI_PAGE_SIZE), and grow the block count from 2 to EFI_SIZE_TO_PAGES(2 * PcdFlashNvStorageFtwSpareSize). The total size remains 2 * PcdFlashNvStorageFtwSpareSize --------------------------------- * EFI_PAGE_SIZE EFI_PAGE_SIZE Right now EmuVariableFvbRuntimeDxe open-codes the block count of 2 in various limit checks, so introduce a few new macros: - EMU_FVB_NUM_TOTAL_BLOCKS, for the LHS of the above product, - EMU_FVB_NUM_SPARE_BLOCKS for the half of that. Also rework the FVB protocol members to support an arbitrary count of blocks. Keep the invariant intact that the first half of the firmware volume hosts the variable store and the FTW working block, and that the second half maps the FTW spare area. Cc: Jordan Justen <jordan.l.justen@intel.com> Ref: https://bugzilla.tianocore.org/show_bug.cgi?id=527 Contributed-under: TianoCore Contribution Agreement 1.0 Signed-off-by: Laszlo Ersek <lersek@redhat.com> Regression-tested-by: Gary Lin <glin@suse.com> Reviewed-by: Jordan Justen <jordan.l.justen@intel.com>
2017-05-06 13:17:58 +02:00
EFI_STATUS Status;
FvbDevice = FVB_DEVICE_FROM_THIS (This);
OvmfPkg/EmuVariableFvbRuntimeDxe: change block size to 4KB EmuVariableFvbRuntimeDxe currently produces a Firmware Volume Block protocol that is based on a block map of two blocks, each block having PcdFlashNvStorageFtwSpareSize for size. (The total size is 2 * PcdFlashNvStorageFtwSpareSize.) FaultTolerantWriteDxe in turn expects the block size to be a power of two. In the 4MB build of OVMF, PcdFlashNvStorageFtwSpareSize is 264KB, which is not a power of two. In order to equip EmuVariableFvbRuntimeDxe for this build, shrink the block size to 4KB (EFI_PAGE_SIZE), and grow the block count from 2 to EFI_SIZE_TO_PAGES(2 * PcdFlashNvStorageFtwSpareSize). The total size remains 2 * PcdFlashNvStorageFtwSpareSize --------------------------------- * EFI_PAGE_SIZE EFI_PAGE_SIZE Right now EmuVariableFvbRuntimeDxe open-codes the block count of 2 in various limit checks, so introduce a few new macros: - EMU_FVB_NUM_TOTAL_BLOCKS, for the LHS of the above product, - EMU_FVB_NUM_SPARE_BLOCKS for the half of that. Also rework the FVB protocol members to support an arbitrary count of blocks. Keep the invariant intact that the first half of the firmware volume hosts the variable store and the FTW working block, and that the second half maps the FTW spare area. Cc: Jordan Justen <jordan.l.justen@intel.com> Ref: https://bugzilla.tianocore.org/show_bug.cgi?id=527 Contributed-under: TianoCore Contribution Agreement 1.0 Signed-off-by: Laszlo Ersek <lersek@redhat.com> Regression-tested-by: Gary Lin <glin@suse.com> Reviewed-by: Jordan Justen <jordan.l.justen@intel.com>
2017-05-06 13:17:58 +02:00
if (Lba >= EMU_FVB_NUM_TOTAL_BLOCKS ||
Offset > FvbDevice->BlockSize) {
return EFI_INVALID_PARAMETER;
}
OvmfPkg/EmuVariableFvbRuntimeDxe: change block size to 4KB EmuVariableFvbRuntimeDxe currently produces a Firmware Volume Block protocol that is based on a block map of two blocks, each block having PcdFlashNvStorageFtwSpareSize for size. (The total size is 2 * PcdFlashNvStorageFtwSpareSize.) FaultTolerantWriteDxe in turn expects the block size to be a power of two. In the 4MB build of OVMF, PcdFlashNvStorageFtwSpareSize is 264KB, which is not a power of two. In order to equip EmuVariableFvbRuntimeDxe for this build, shrink the block size to 4KB (EFI_PAGE_SIZE), and grow the block count from 2 to EFI_SIZE_TO_PAGES(2 * PcdFlashNvStorageFtwSpareSize). The total size remains 2 * PcdFlashNvStorageFtwSpareSize --------------------------------- * EFI_PAGE_SIZE EFI_PAGE_SIZE Right now EmuVariableFvbRuntimeDxe open-codes the block count of 2 in various limit checks, so introduce a few new macros: - EMU_FVB_NUM_TOTAL_BLOCKS, for the LHS of the above product, - EMU_FVB_NUM_SPARE_BLOCKS for the half of that. Also rework the FVB protocol members to support an arbitrary count of blocks. Keep the invariant intact that the first half of the firmware volume hosts the variable store and the FTW working block, and that the second half maps the FTW spare area. Cc: Jordan Justen <jordan.l.justen@intel.com> Ref: https://bugzilla.tianocore.org/show_bug.cgi?id=527 Contributed-under: TianoCore Contribution Agreement 1.0 Signed-off-by: Laszlo Ersek <lersek@redhat.com> Regression-tested-by: Gary Lin <glin@suse.com> Reviewed-by: Jordan Justen <jordan.l.justen@intel.com>
2017-05-06 13:17:58 +02:00
Status = EFI_SUCCESS;
if (*NumBytes > FvbDevice->BlockSize - Offset) {
*NumBytes = FvbDevice->BlockSize - Offset;
OvmfPkg/EmuVariableFvbRuntimeDxe: change block size to 4KB EmuVariableFvbRuntimeDxe currently produces a Firmware Volume Block protocol that is based on a block map of two blocks, each block having PcdFlashNvStorageFtwSpareSize for size. (The total size is 2 * PcdFlashNvStorageFtwSpareSize.) FaultTolerantWriteDxe in turn expects the block size to be a power of two. In the 4MB build of OVMF, PcdFlashNvStorageFtwSpareSize is 264KB, which is not a power of two. In order to equip EmuVariableFvbRuntimeDxe for this build, shrink the block size to 4KB (EFI_PAGE_SIZE), and grow the block count from 2 to EFI_SIZE_TO_PAGES(2 * PcdFlashNvStorageFtwSpareSize). The total size remains 2 * PcdFlashNvStorageFtwSpareSize --------------------------------- * EFI_PAGE_SIZE EFI_PAGE_SIZE Right now EmuVariableFvbRuntimeDxe open-codes the block count of 2 in various limit checks, so introduce a few new macros: - EMU_FVB_NUM_TOTAL_BLOCKS, for the LHS of the above product, - EMU_FVB_NUM_SPARE_BLOCKS for the half of that. Also rework the FVB protocol members to support an arbitrary count of blocks. Keep the invariant intact that the first half of the firmware volume hosts the variable store and the FTW working block, and that the second half maps the FTW spare area. Cc: Jordan Justen <jordan.l.justen@intel.com> Ref: https://bugzilla.tianocore.org/show_bug.cgi?id=527 Contributed-under: TianoCore Contribution Agreement 1.0 Signed-off-by: Laszlo Ersek <lersek@redhat.com> Regression-tested-by: Gary Lin <glin@suse.com> Reviewed-by: Jordan Justen <jordan.l.justen@intel.com>
2017-05-06 13:17:58 +02:00
Status = EFI_BAD_BUFFER_SIZE;
}
OvmfPkg/EmuVariableFvbRuntimeDxe: change block size to 4KB EmuVariableFvbRuntimeDxe currently produces a Firmware Volume Block protocol that is based on a block map of two blocks, each block having PcdFlashNvStorageFtwSpareSize for size. (The total size is 2 * PcdFlashNvStorageFtwSpareSize.) FaultTolerantWriteDxe in turn expects the block size to be a power of two. In the 4MB build of OVMF, PcdFlashNvStorageFtwSpareSize is 264KB, which is not a power of two. In order to equip EmuVariableFvbRuntimeDxe for this build, shrink the block size to 4KB (EFI_PAGE_SIZE), and grow the block count from 2 to EFI_SIZE_TO_PAGES(2 * PcdFlashNvStorageFtwSpareSize). The total size remains 2 * PcdFlashNvStorageFtwSpareSize --------------------------------- * EFI_PAGE_SIZE EFI_PAGE_SIZE Right now EmuVariableFvbRuntimeDxe open-codes the block count of 2 in various limit checks, so introduce a few new macros: - EMU_FVB_NUM_TOTAL_BLOCKS, for the LHS of the above product, - EMU_FVB_NUM_SPARE_BLOCKS for the half of that. Also rework the FVB protocol members to support an arbitrary count of blocks. Keep the invariant intact that the first half of the firmware volume hosts the variable store and the FTW working block, and that the second half maps the FTW spare area. Cc: Jordan Justen <jordan.l.justen@intel.com> Ref: https://bugzilla.tianocore.org/show_bug.cgi?id=527 Contributed-under: TianoCore Contribution Agreement 1.0 Signed-off-by: Laszlo Ersek <lersek@redhat.com> Regression-tested-by: Gary Lin <glin@suse.com> Reviewed-by: Jordan Justen <jordan.l.justen@intel.com>
2017-05-06 13:17:58 +02:00
FvbDataPtr = FvbDevice->BufferPtr;
FvbDataPtr += (UINTN)Lba * FvbDevice->BlockSize;
FvbDataPtr += Offset;
OvmfPkg/EmuVariableFvbRuntimeDxe: change block size to 4KB EmuVariableFvbRuntimeDxe currently produces a Firmware Volume Block protocol that is based on a block map of two blocks, each block having PcdFlashNvStorageFtwSpareSize for size. (The total size is 2 * PcdFlashNvStorageFtwSpareSize.) FaultTolerantWriteDxe in turn expects the block size to be a power of two. In the 4MB build of OVMF, PcdFlashNvStorageFtwSpareSize is 264KB, which is not a power of two. In order to equip EmuVariableFvbRuntimeDxe for this build, shrink the block size to 4KB (EFI_PAGE_SIZE), and grow the block count from 2 to EFI_SIZE_TO_PAGES(2 * PcdFlashNvStorageFtwSpareSize). The total size remains 2 * PcdFlashNvStorageFtwSpareSize --------------------------------- * EFI_PAGE_SIZE EFI_PAGE_SIZE Right now EmuVariableFvbRuntimeDxe open-codes the block count of 2 in various limit checks, so introduce a few new macros: - EMU_FVB_NUM_TOTAL_BLOCKS, for the LHS of the above product, - EMU_FVB_NUM_SPARE_BLOCKS for the half of that. Also rework the FVB protocol members to support an arbitrary count of blocks. Keep the invariant intact that the first half of the firmware volume hosts the variable store and the FTW working block, and that the second half maps the FTW spare area. Cc: Jordan Justen <jordan.l.justen@intel.com> Ref: https://bugzilla.tianocore.org/show_bug.cgi?id=527 Contributed-under: TianoCore Contribution Agreement 1.0 Signed-off-by: Laszlo Ersek <lersek@redhat.com> Regression-tested-by: Gary Lin <glin@suse.com> Reviewed-by: Jordan Justen <jordan.l.justen@intel.com>
2017-05-06 13:17:58 +02:00
CopyMem (FvbDataPtr, Buffer, *NumBytes);
PlatformFvbDataWritten (This, Lba, Offset, *NumBytes, Buffer);
return Status;
}
/**
Reads the specified number of bytes into a buffer from the specified block.
The Read() function reads the requested number of bytes from the
requested block and stores them in the provided buffer.
Implementations should be mindful that the firmware volume
might be in the ReadDisabled state. If it is in this state,
the Read() function must return the status code
EFI_ACCESS_DENIED without modifying the contents of the
buffer. The Read() function must also prevent spanning block
boundaries. If a read is requested that would span a block
boundary, the read must read up to the boundary but not
beyond. The output parameter NumBytes must be set to correctly
indicate the number of bytes actually read. The caller must be
aware that a read may be partially completed.
@param This Indicates the EFI_FIRMWARE_VOLUME_BLOCK2_PROTOCOL instance.
@param Lba The starting logical block index
from which to read.
@param Offset Offset into the block at which to begin reading.
@param NumBytes Pointer to a UINTN. At entry, *NumBytes
contains the total size of the buffer. At
exit, *NumBytes contains the total number of
bytes read.
@param Buffer Pointer to a caller-allocated buffer that will
be used to hold the data that is read.
@retval EFI_SUCCESS The firmware volume was read successfully
and contents are in Buffer.
@retval EFI_BAD_BUFFER_SIZE Read attempted across an LBA
boundary. On output, NumBytes
contains the total number of bytes
returned in Buffer.
@retval EFI_ACCESS_DENIED The firmware volume is in the
ReadDisabled state.
@retval EFI_DEVICE_ERROR The block device is not
functioning correctly and could
not be read.
**/
EFI_STATUS
EFIAPI
FvbProtocolRead (
IN CONST EFI_FIRMWARE_VOLUME_BLOCK2_PROTOCOL *This,
IN EFI_LBA Lba,
IN UINTN Offset,
IN OUT UINTN *NumBytes,
IN OUT UINT8 *Buffer
)
{
EFI_FW_VOL_BLOCK_DEVICE *FvbDevice;
UINT8 *FvbDataPtr;
OvmfPkg/EmuVariableFvbRuntimeDxe: change block size to 4KB EmuVariableFvbRuntimeDxe currently produces a Firmware Volume Block protocol that is based on a block map of two blocks, each block having PcdFlashNvStorageFtwSpareSize for size. (The total size is 2 * PcdFlashNvStorageFtwSpareSize.) FaultTolerantWriteDxe in turn expects the block size to be a power of two. In the 4MB build of OVMF, PcdFlashNvStorageFtwSpareSize is 264KB, which is not a power of two. In order to equip EmuVariableFvbRuntimeDxe for this build, shrink the block size to 4KB (EFI_PAGE_SIZE), and grow the block count from 2 to EFI_SIZE_TO_PAGES(2 * PcdFlashNvStorageFtwSpareSize). The total size remains 2 * PcdFlashNvStorageFtwSpareSize --------------------------------- * EFI_PAGE_SIZE EFI_PAGE_SIZE Right now EmuVariableFvbRuntimeDxe open-codes the block count of 2 in various limit checks, so introduce a few new macros: - EMU_FVB_NUM_TOTAL_BLOCKS, for the LHS of the above product, - EMU_FVB_NUM_SPARE_BLOCKS for the half of that. Also rework the FVB protocol members to support an arbitrary count of blocks. Keep the invariant intact that the first half of the firmware volume hosts the variable store and the FTW working block, and that the second half maps the FTW spare area. Cc: Jordan Justen <jordan.l.justen@intel.com> Ref: https://bugzilla.tianocore.org/show_bug.cgi?id=527 Contributed-under: TianoCore Contribution Agreement 1.0 Signed-off-by: Laszlo Ersek <lersek@redhat.com> Regression-tested-by: Gary Lin <glin@suse.com> Reviewed-by: Jordan Justen <jordan.l.justen@intel.com>
2017-05-06 13:17:58 +02:00
EFI_STATUS Status;
FvbDevice = FVB_DEVICE_FROM_THIS (This);
OvmfPkg/EmuVariableFvbRuntimeDxe: change block size to 4KB EmuVariableFvbRuntimeDxe currently produces a Firmware Volume Block protocol that is based on a block map of two blocks, each block having PcdFlashNvStorageFtwSpareSize for size. (The total size is 2 * PcdFlashNvStorageFtwSpareSize.) FaultTolerantWriteDxe in turn expects the block size to be a power of two. In the 4MB build of OVMF, PcdFlashNvStorageFtwSpareSize is 264KB, which is not a power of two. In order to equip EmuVariableFvbRuntimeDxe for this build, shrink the block size to 4KB (EFI_PAGE_SIZE), and grow the block count from 2 to EFI_SIZE_TO_PAGES(2 * PcdFlashNvStorageFtwSpareSize). The total size remains 2 * PcdFlashNvStorageFtwSpareSize --------------------------------- * EFI_PAGE_SIZE EFI_PAGE_SIZE Right now EmuVariableFvbRuntimeDxe open-codes the block count of 2 in various limit checks, so introduce a few new macros: - EMU_FVB_NUM_TOTAL_BLOCKS, for the LHS of the above product, - EMU_FVB_NUM_SPARE_BLOCKS for the half of that. Also rework the FVB protocol members to support an arbitrary count of blocks. Keep the invariant intact that the first half of the firmware volume hosts the variable store and the FTW working block, and that the second half maps the FTW spare area. Cc: Jordan Justen <jordan.l.justen@intel.com> Ref: https://bugzilla.tianocore.org/show_bug.cgi?id=527 Contributed-under: TianoCore Contribution Agreement 1.0 Signed-off-by: Laszlo Ersek <lersek@redhat.com> Regression-tested-by: Gary Lin <glin@suse.com> Reviewed-by: Jordan Justen <jordan.l.justen@intel.com>
2017-05-06 13:17:58 +02:00
if (Lba >= EMU_FVB_NUM_TOTAL_BLOCKS ||
Offset > FvbDevice->BlockSize) {
return EFI_INVALID_PARAMETER;
}
OvmfPkg/EmuVariableFvbRuntimeDxe: change block size to 4KB EmuVariableFvbRuntimeDxe currently produces a Firmware Volume Block protocol that is based on a block map of two blocks, each block having PcdFlashNvStorageFtwSpareSize for size. (The total size is 2 * PcdFlashNvStorageFtwSpareSize.) FaultTolerantWriteDxe in turn expects the block size to be a power of two. In the 4MB build of OVMF, PcdFlashNvStorageFtwSpareSize is 264KB, which is not a power of two. In order to equip EmuVariableFvbRuntimeDxe for this build, shrink the block size to 4KB (EFI_PAGE_SIZE), and grow the block count from 2 to EFI_SIZE_TO_PAGES(2 * PcdFlashNvStorageFtwSpareSize). The total size remains 2 * PcdFlashNvStorageFtwSpareSize --------------------------------- * EFI_PAGE_SIZE EFI_PAGE_SIZE Right now EmuVariableFvbRuntimeDxe open-codes the block count of 2 in various limit checks, so introduce a few new macros: - EMU_FVB_NUM_TOTAL_BLOCKS, for the LHS of the above product, - EMU_FVB_NUM_SPARE_BLOCKS for the half of that. Also rework the FVB protocol members to support an arbitrary count of blocks. Keep the invariant intact that the first half of the firmware volume hosts the variable store and the FTW working block, and that the second half maps the FTW spare area. Cc: Jordan Justen <jordan.l.justen@intel.com> Ref: https://bugzilla.tianocore.org/show_bug.cgi?id=527 Contributed-under: TianoCore Contribution Agreement 1.0 Signed-off-by: Laszlo Ersek <lersek@redhat.com> Regression-tested-by: Gary Lin <glin@suse.com> Reviewed-by: Jordan Justen <jordan.l.justen@intel.com>
2017-05-06 13:17:58 +02:00
Status = EFI_SUCCESS;
if (*NumBytes > FvbDevice->BlockSize - Offset) {
*NumBytes = FvbDevice->BlockSize - Offset;
OvmfPkg/EmuVariableFvbRuntimeDxe: change block size to 4KB EmuVariableFvbRuntimeDxe currently produces a Firmware Volume Block protocol that is based on a block map of two blocks, each block having PcdFlashNvStorageFtwSpareSize for size. (The total size is 2 * PcdFlashNvStorageFtwSpareSize.) FaultTolerantWriteDxe in turn expects the block size to be a power of two. In the 4MB build of OVMF, PcdFlashNvStorageFtwSpareSize is 264KB, which is not a power of two. In order to equip EmuVariableFvbRuntimeDxe for this build, shrink the block size to 4KB (EFI_PAGE_SIZE), and grow the block count from 2 to EFI_SIZE_TO_PAGES(2 * PcdFlashNvStorageFtwSpareSize). The total size remains 2 * PcdFlashNvStorageFtwSpareSize --------------------------------- * EFI_PAGE_SIZE EFI_PAGE_SIZE Right now EmuVariableFvbRuntimeDxe open-codes the block count of 2 in various limit checks, so introduce a few new macros: - EMU_FVB_NUM_TOTAL_BLOCKS, for the LHS of the above product, - EMU_FVB_NUM_SPARE_BLOCKS for the half of that. Also rework the FVB protocol members to support an arbitrary count of blocks. Keep the invariant intact that the first half of the firmware volume hosts the variable store and the FTW working block, and that the second half maps the FTW spare area. Cc: Jordan Justen <jordan.l.justen@intel.com> Ref: https://bugzilla.tianocore.org/show_bug.cgi?id=527 Contributed-under: TianoCore Contribution Agreement 1.0 Signed-off-by: Laszlo Ersek <lersek@redhat.com> Regression-tested-by: Gary Lin <glin@suse.com> Reviewed-by: Jordan Justen <jordan.l.justen@intel.com>
2017-05-06 13:17:58 +02:00
Status = EFI_BAD_BUFFER_SIZE;
}
OvmfPkg/EmuVariableFvbRuntimeDxe: change block size to 4KB EmuVariableFvbRuntimeDxe currently produces a Firmware Volume Block protocol that is based on a block map of two blocks, each block having PcdFlashNvStorageFtwSpareSize for size. (The total size is 2 * PcdFlashNvStorageFtwSpareSize.) FaultTolerantWriteDxe in turn expects the block size to be a power of two. In the 4MB build of OVMF, PcdFlashNvStorageFtwSpareSize is 264KB, which is not a power of two. In order to equip EmuVariableFvbRuntimeDxe for this build, shrink the block size to 4KB (EFI_PAGE_SIZE), and grow the block count from 2 to EFI_SIZE_TO_PAGES(2 * PcdFlashNvStorageFtwSpareSize). The total size remains 2 * PcdFlashNvStorageFtwSpareSize --------------------------------- * EFI_PAGE_SIZE EFI_PAGE_SIZE Right now EmuVariableFvbRuntimeDxe open-codes the block count of 2 in various limit checks, so introduce a few new macros: - EMU_FVB_NUM_TOTAL_BLOCKS, for the LHS of the above product, - EMU_FVB_NUM_SPARE_BLOCKS for the half of that. Also rework the FVB protocol members to support an arbitrary count of blocks. Keep the invariant intact that the first half of the firmware volume hosts the variable store and the FTW working block, and that the second half maps the FTW spare area. Cc: Jordan Justen <jordan.l.justen@intel.com> Ref: https://bugzilla.tianocore.org/show_bug.cgi?id=527 Contributed-under: TianoCore Contribution Agreement 1.0 Signed-off-by: Laszlo Ersek <lersek@redhat.com> Regression-tested-by: Gary Lin <glin@suse.com> Reviewed-by: Jordan Justen <jordan.l.justen@intel.com>
2017-05-06 13:17:58 +02:00
FvbDataPtr = FvbDevice->BufferPtr;
FvbDataPtr += (UINTN)Lba * FvbDevice->BlockSize;
FvbDataPtr += Offset;
OvmfPkg/EmuVariableFvbRuntimeDxe: change block size to 4KB EmuVariableFvbRuntimeDxe currently produces a Firmware Volume Block protocol that is based on a block map of two blocks, each block having PcdFlashNvStorageFtwSpareSize for size. (The total size is 2 * PcdFlashNvStorageFtwSpareSize.) FaultTolerantWriteDxe in turn expects the block size to be a power of two. In the 4MB build of OVMF, PcdFlashNvStorageFtwSpareSize is 264KB, which is not a power of two. In order to equip EmuVariableFvbRuntimeDxe for this build, shrink the block size to 4KB (EFI_PAGE_SIZE), and grow the block count from 2 to EFI_SIZE_TO_PAGES(2 * PcdFlashNvStorageFtwSpareSize). The total size remains 2 * PcdFlashNvStorageFtwSpareSize --------------------------------- * EFI_PAGE_SIZE EFI_PAGE_SIZE Right now EmuVariableFvbRuntimeDxe open-codes the block count of 2 in various limit checks, so introduce a few new macros: - EMU_FVB_NUM_TOTAL_BLOCKS, for the LHS of the above product, - EMU_FVB_NUM_SPARE_BLOCKS for the half of that. Also rework the FVB protocol members to support an arbitrary count of blocks. Keep the invariant intact that the first half of the firmware volume hosts the variable store and the FTW working block, and that the second half maps the FTW spare area. Cc: Jordan Justen <jordan.l.justen@intel.com> Ref: https://bugzilla.tianocore.org/show_bug.cgi?id=527 Contributed-under: TianoCore Contribution Agreement 1.0 Signed-off-by: Laszlo Ersek <lersek@redhat.com> Regression-tested-by: Gary Lin <glin@suse.com> Reviewed-by: Jordan Justen <jordan.l.justen@intel.com>
2017-05-06 13:17:58 +02:00
CopyMem (Buffer, FvbDataPtr, *NumBytes);
PlatformFvbDataRead (This, Lba, Offset, *NumBytes, Buffer);
return Status;
}
/**
Check the integrity of firmware volume header.
@param[in] FwVolHeader - A pointer to a firmware volume header
@retval EFI_SUCCESS - The firmware volume is consistent
@retval EFI_NOT_FOUND - The firmware volume has been corrupted.
**/
EFI_STATUS
ValidateFvHeader (
IN EFI_FIRMWARE_VOLUME_HEADER *FwVolHeader
)
{
UINT16 Checksum;
//
// Verify the header revision, header signature, length
// Length of FvBlock cannot be 2**64-1
// HeaderLength cannot be an odd number
//
if ((FwVolHeader->Revision != EFI_FVH_REVISION) ||
(FwVolHeader->Signature != EFI_FVH_SIGNATURE) ||
(FwVolHeader->FvLength != EMU_FVB_SIZE) ||
(FwVolHeader->HeaderLength != EMU_FV_HEADER_LENGTH)
) {
DEBUG ((EFI_D_INFO, "EMU Variable FVB: Basic FV headers were invalid\n"));
return EFI_NOT_FOUND;
}
//
// Verify the header checksum
//
Checksum = CalculateSum16((VOID*) FwVolHeader, FwVolHeader->HeaderLength);
if (Checksum != 0) {
DEBUG ((EFI_D_INFO, "EMU Variable FVB: FV checksum was invalid\n"));
return EFI_NOT_FOUND;
}
return EFI_SUCCESS;
}
/**
Initializes the FV Header and Variable Store Header
to support variable operations.
@param[in] Ptr - Location to initialize the headers
**/
VOID
InitializeFvAndVariableStoreHeaders (
IN VOID *Ptr
)
{
//
// Templates for authenticated variable FV header
//
STATIC FVB_FV_HDR_AND_VARS_TEMPLATE FvAndAuthenticatedVarTemplate = {
{ // EFI_FIRMWARE_VOLUME_HEADER FvHdr;
// UINT8 ZeroVector[16];
{ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 },
// EFI_GUID FileSystemGuid;
EFI_SYSTEM_NV_DATA_FV_GUID,
// UINT64 FvLength;
EMU_FVB_SIZE,
// UINT32 Signature;
EFI_FVH_SIGNATURE,
// EFI_FVB_ATTRIBUTES_2 Attributes;
0x4feff,
// UINT16 HeaderLength;
EMU_FV_HEADER_LENGTH,
// UINT16 Checksum;
0,
// UINT16 ExtHeaderOffset;
0,
// UINT8 Reserved[1];
{0},
// UINT8 Revision;
EFI_FVH_REVISION,
// EFI_FV_BLOCK_MAP_ENTRY BlockMap[1];
{
{
OvmfPkg/EmuVariableFvbRuntimeDxe: change block size to 4KB EmuVariableFvbRuntimeDxe currently produces a Firmware Volume Block protocol that is based on a block map of two blocks, each block having PcdFlashNvStorageFtwSpareSize for size. (The total size is 2 * PcdFlashNvStorageFtwSpareSize.) FaultTolerantWriteDxe in turn expects the block size to be a power of two. In the 4MB build of OVMF, PcdFlashNvStorageFtwSpareSize is 264KB, which is not a power of two. In order to equip EmuVariableFvbRuntimeDxe for this build, shrink the block size to 4KB (EFI_PAGE_SIZE), and grow the block count from 2 to EFI_SIZE_TO_PAGES(2 * PcdFlashNvStorageFtwSpareSize). The total size remains 2 * PcdFlashNvStorageFtwSpareSize --------------------------------- * EFI_PAGE_SIZE EFI_PAGE_SIZE Right now EmuVariableFvbRuntimeDxe open-codes the block count of 2 in various limit checks, so introduce a few new macros: - EMU_FVB_NUM_TOTAL_BLOCKS, for the LHS of the above product, - EMU_FVB_NUM_SPARE_BLOCKS for the half of that. Also rework the FVB protocol members to support an arbitrary count of blocks. Keep the invariant intact that the first half of the firmware volume hosts the variable store and the FTW working block, and that the second half maps the FTW spare area. Cc: Jordan Justen <jordan.l.justen@intel.com> Ref: https://bugzilla.tianocore.org/show_bug.cgi?id=527 Contributed-under: TianoCore Contribution Agreement 1.0 Signed-off-by: Laszlo Ersek <lersek@redhat.com> Regression-tested-by: Gary Lin <glin@suse.com> Reviewed-by: Jordan Justen <jordan.l.justen@intel.com>
2017-05-06 13:17:58 +02:00
EMU_FVB_NUM_TOTAL_BLOCKS, // UINT32 NumBlocks;
EMU_FVB_BLOCK_SIZE // UINT32 Length;
}
}
},
// EFI_FV_BLOCK_MAP_ENTRY EndBlockMap;
{ 0, 0 }, // End of block map
{ // VARIABLE_STORE_HEADER VarHdr;
// EFI_GUID Signature; // need authenticated variables for secure boot
EFI_AUTHENTICATED_VARIABLE_GUID,
// UINT32 Size;
(
FixedPcdGet32 (PcdFlashNvStorageVariableSize) -
OFFSET_OF (FVB_FV_HDR_AND_VARS_TEMPLATE, VarHdr)
),
// UINT8 Format;
VARIABLE_STORE_FORMATTED,
// UINT8 State;
VARIABLE_STORE_HEALTHY,
// UINT16 Reserved;
0,
// UINT32 Reserved1;
0
}
};
EFI_FIRMWARE_VOLUME_HEADER *Fv;
//
// Copy the template structure into the location
//
OvmfPkg/EmuVariableFvbRuntimeDxe: always format an auth varstore header In this patch, we extend commit d92eaabefbe0 ("OvmfPkg: simplify VARIABLE_STORE_HEADER generation", 2016-02-05) to EmuVariableFvbRuntimeDxe. This is the difference between FvAndVarTemplate and FvAndAuthenticatedVarTemplate: > --- non-auth 2017-05-05 22:32:06.001512283 +0200 > +++ auth 2017-05-05 22:32:18.841364882 +0200 > @@ -1,7 +1,7 @@ > // > - // Templates for standard (non-authenticated) variable FV header > + // Templates for authenticated variable FV header > // > - STATIC FVB_FV_HDR_AND_VARS_TEMPLATE FvAndVarTemplate = { > + STATIC FVB_FV_HDR_AND_VARS_TEMPLATE FvAndAuthenticatedVarTemplate = { > { // EFI_FIRMWARE_VOLUME_HEADER FvHdr; > // UINT8 ZeroVector[16]; > { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }, > @@ -34,7 +34,7 @@ > EFI_FVH_REVISION, > > // EFI_FV_BLOCK_MAP_ENTRY BlockMap[1]; > - { > + { > { > 2, // UINT32 NumBlocks; > EMU_FVB_BLOCK_SIZE // UINT32 Length; > @@ -44,8 +44,8 @@ > // EFI_FV_BLOCK_MAP_ENTRY EndBlockMap; > { 0, 0 }, // End of block map > { // VARIABLE_STORE_HEADER VarHdr; > - // EFI_GUID Signature; > - EFI_VARIABLE_GUID, > + // EFI_GUID Signature; // need authenticated variables for secure boot > + EFI_AUTHENTICATED_VARIABLE_GUID, > > // UINT32 Size; > ( After this change, using "-bios", the variable driver logs: - with the SB feature enabled: > Variable driver will work with auth variable format! > Variable driver will work with auth variable support! - with the SB feature disabled: > Variable driver will work with auth variable format! > Variable driver will continue to work without auth variable support! Cc: Jordan Justen <jordan.l.justen@intel.com> Contributed-under: TianoCore Contribution Agreement 1.0 Signed-off-by: Laszlo Ersek <lersek@redhat.com> Reviewed-by: Jordan Justen <jordan.l.justen@intel.com>
2017-03-12 20:51:08 +01:00
CopyMem (
Ptr,
&FvAndAuthenticatedVarTemplate,
sizeof FvAndAuthenticatedVarTemplate
);
//
// Update the checksum for the FV header
//
Fv = (EFI_FIRMWARE_VOLUME_HEADER*) Ptr;
Fv->Checksum = CalculateCheckSum16 (Ptr, Fv->HeaderLength);
}
/**
Main entry point.
@param[in] ImageHandle The firmware allocated handle for the EFI image.
@param[in] SystemTable A pointer to the EFI System Table.
@retval EFI_SUCCESS Successfully initialized.
**/
EFI_STATUS
EFIAPI
FvbInitialize (
IN EFI_HANDLE ImageHandle,
IN EFI_SYSTEM_TABLE *SystemTable
)
{
EFI_STATUS Status;
VOID *Ptr;
VOID *SubPtr;
BOOLEAN Initialize;
EFI_HANDLE Handle;
EFI_PHYSICAL_ADDRESS Address;
RETURN_STATUS PcdStatus;
DEBUG ((EFI_D_INFO, "EMU Variable FVB Started\n"));
//
// Verify that the PCD's are set correctly.
//
OvmfPkg/EmuVariableFvbRuntimeDxe: change block size to 4KB EmuVariableFvbRuntimeDxe currently produces a Firmware Volume Block protocol that is based on a block map of two blocks, each block having PcdFlashNvStorageFtwSpareSize for size. (The total size is 2 * PcdFlashNvStorageFtwSpareSize.) FaultTolerantWriteDxe in turn expects the block size to be a power of two. In the 4MB build of OVMF, PcdFlashNvStorageFtwSpareSize is 264KB, which is not a power of two. In order to equip EmuVariableFvbRuntimeDxe for this build, shrink the block size to 4KB (EFI_PAGE_SIZE), and grow the block count from 2 to EFI_SIZE_TO_PAGES(2 * PcdFlashNvStorageFtwSpareSize). The total size remains 2 * PcdFlashNvStorageFtwSpareSize --------------------------------- * EFI_PAGE_SIZE EFI_PAGE_SIZE Right now EmuVariableFvbRuntimeDxe open-codes the block count of 2 in various limit checks, so introduce a few new macros: - EMU_FVB_NUM_TOTAL_BLOCKS, for the LHS of the above product, - EMU_FVB_NUM_SPARE_BLOCKS for the half of that. Also rework the FVB protocol members to support an arbitrary count of blocks. Keep the invariant intact that the first half of the firmware volume hosts the variable store and the FTW working block, and that the second half maps the FTW spare area. Cc: Jordan Justen <jordan.l.justen@intel.com> Ref: https://bugzilla.tianocore.org/show_bug.cgi?id=527 Contributed-under: TianoCore Contribution Agreement 1.0 Signed-off-by: Laszlo Ersek <lersek@redhat.com> Regression-tested-by: Gary Lin <glin@suse.com> Reviewed-by: Jordan Justen <jordan.l.justen@intel.com>
2017-05-06 13:17:58 +02:00
ASSERT (FixedPcdGet32 (PcdFlashNvStorageFtwSpareSize) %
EMU_FVB_BLOCK_SIZE == 0);
if (
(PcdGet32 (PcdFlashNvStorageVariableSize) +
PcdGet32 (PcdFlashNvStorageFtwWorkingSize)
) >
OvmfPkg/EmuVariableFvbRuntimeDxe: change block size to 4KB EmuVariableFvbRuntimeDxe currently produces a Firmware Volume Block protocol that is based on a block map of two blocks, each block having PcdFlashNvStorageFtwSpareSize for size. (The total size is 2 * PcdFlashNvStorageFtwSpareSize.) FaultTolerantWriteDxe in turn expects the block size to be a power of two. In the 4MB build of OVMF, PcdFlashNvStorageFtwSpareSize is 264KB, which is not a power of two. In order to equip EmuVariableFvbRuntimeDxe for this build, shrink the block size to 4KB (EFI_PAGE_SIZE), and grow the block count from 2 to EFI_SIZE_TO_PAGES(2 * PcdFlashNvStorageFtwSpareSize). The total size remains 2 * PcdFlashNvStorageFtwSpareSize --------------------------------- * EFI_PAGE_SIZE EFI_PAGE_SIZE Right now EmuVariableFvbRuntimeDxe open-codes the block count of 2 in various limit checks, so introduce a few new macros: - EMU_FVB_NUM_TOTAL_BLOCKS, for the LHS of the above product, - EMU_FVB_NUM_SPARE_BLOCKS for the half of that. Also rework the FVB protocol members to support an arbitrary count of blocks. Keep the invariant intact that the first half of the firmware volume hosts the variable store and the FTW working block, and that the second half maps the FTW spare area. Cc: Jordan Justen <jordan.l.justen@intel.com> Ref: https://bugzilla.tianocore.org/show_bug.cgi?id=527 Contributed-under: TianoCore Contribution Agreement 1.0 Signed-off-by: Laszlo Ersek <lersek@redhat.com> Regression-tested-by: Gary Lin <glin@suse.com> Reviewed-by: Jordan Justen <jordan.l.justen@intel.com>
2017-05-06 13:17:58 +02:00
EMU_FVB_NUM_SPARE_BLOCKS * EMU_FVB_BLOCK_SIZE
) {
DEBUG ((EFI_D_ERROR, "EMU Variable invalid PCD sizes\n"));
return EFI_INVALID_PARAMETER;
}
if (PcdGet64 (PcdFlashNvStorageVariableBase64) != 0) {
DEBUG ((EFI_D_INFO, "Disabling EMU Variable FVB since "
"flash variables appear to be supported.\n"));
return EFI_ABORTED;
}
//
// By default we will initialize the FV contents. But, if
// PcdEmuVariableNvStoreReserved is non-zero, then we will
// use this location for our buffer.
//
// If this location does not have a proper FV header, then
// we will initialize it.
//
Initialize = TRUE;
if (PcdGet64 (PcdEmuVariableNvStoreReserved) != 0) {
Ptr = (VOID*)(UINTN) PcdGet64 (PcdEmuVariableNvStoreReserved);
DEBUG ((
EFI_D_INFO,
"EMU Variable FVB: Using pre-reserved block at %p\n",
Ptr
));
Status = ValidateFvHeader (Ptr);
if (!EFI_ERROR (Status)) {
DEBUG ((EFI_D_INFO, "EMU Variable FVB: Found valid pre-existing FV\n"));
Initialize = FALSE;
}
} else {
OvmfPkg/EmuVariableFvbRuntimeDxe: change block size to 4KB EmuVariableFvbRuntimeDxe currently produces a Firmware Volume Block protocol that is based on a block map of two blocks, each block having PcdFlashNvStorageFtwSpareSize for size. (The total size is 2 * PcdFlashNvStorageFtwSpareSize.) FaultTolerantWriteDxe in turn expects the block size to be a power of two. In the 4MB build of OVMF, PcdFlashNvStorageFtwSpareSize is 264KB, which is not a power of two. In order to equip EmuVariableFvbRuntimeDxe for this build, shrink the block size to 4KB (EFI_PAGE_SIZE), and grow the block count from 2 to EFI_SIZE_TO_PAGES(2 * PcdFlashNvStorageFtwSpareSize). The total size remains 2 * PcdFlashNvStorageFtwSpareSize --------------------------------- * EFI_PAGE_SIZE EFI_PAGE_SIZE Right now EmuVariableFvbRuntimeDxe open-codes the block count of 2 in various limit checks, so introduce a few new macros: - EMU_FVB_NUM_TOTAL_BLOCKS, for the LHS of the above product, - EMU_FVB_NUM_SPARE_BLOCKS for the half of that. Also rework the FVB protocol members to support an arbitrary count of blocks. Keep the invariant intact that the first half of the firmware volume hosts the variable store and the FTW working block, and that the second half maps the FTW spare area. Cc: Jordan Justen <jordan.l.justen@intel.com> Ref: https://bugzilla.tianocore.org/show_bug.cgi?id=527 Contributed-under: TianoCore Contribution Agreement 1.0 Signed-off-by: Laszlo Ersek <lersek@redhat.com> Regression-tested-by: Gary Lin <glin@suse.com> Reviewed-by: Jordan Justen <jordan.l.justen@intel.com>
2017-05-06 13:17:58 +02:00
Ptr = AllocateRuntimePages (EFI_SIZE_TO_PAGES (EMU_FVB_SIZE));
}
mEmuVarsFvb.BufferPtr = Ptr;
//
// Initialize the main FV header and variable store header
//
if (Initialize) {
SetMem (Ptr, EMU_FVB_SIZE, ERASED_UINT8);
InitializeFvAndVariableStoreHeaders (Ptr);
}
PcdStatus = PcdSet64S (PcdFlashNvStorageVariableBase64, (UINT32)(UINTN) Ptr);
ASSERT_RETURN_ERROR (PcdStatus);
//
// Initialize the Fault Tolerant Write data area
//
SubPtr = (VOID*) ((UINT8*) Ptr + PcdGet32 (PcdFlashNvStorageVariableSize));
PcdStatus = PcdSet32S (PcdFlashNvStorageFtwWorkingBase,
(UINT32)(UINTN) SubPtr);
ASSERT_RETURN_ERROR (PcdStatus);
//
// Initialize the Fault Tolerant Write spare block
//
OvmfPkg/EmuVariableFvbRuntimeDxe: change block size to 4KB EmuVariableFvbRuntimeDxe currently produces a Firmware Volume Block protocol that is based on a block map of two blocks, each block having PcdFlashNvStorageFtwSpareSize for size. (The total size is 2 * PcdFlashNvStorageFtwSpareSize.) FaultTolerantWriteDxe in turn expects the block size to be a power of two. In the 4MB build of OVMF, PcdFlashNvStorageFtwSpareSize is 264KB, which is not a power of two. In order to equip EmuVariableFvbRuntimeDxe for this build, shrink the block size to 4KB (EFI_PAGE_SIZE), and grow the block count from 2 to EFI_SIZE_TO_PAGES(2 * PcdFlashNvStorageFtwSpareSize). The total size remains 2 * PcdFlashNvStorageFtwSpareSize --------------------------------- * EFI_PAGE_SIZE EFI_PAGE_SIZE Right now EmuVariableFvbRuntimeDxe open-codes the block count of 2 in various limit checks, so introduce a few new macros: - EMU_FVB_NUM_TOTAL_BLOCKS, for the LHS of the above product, - EMU_FVB_NUM_SPARE_BLOCKS for the half of that. Also rework the FVB protocol members to support an arbitrary count of blocks. Keep the invariant intact that the first half of the firmware volume hosts the variable store and the FTW working block, and that the second half maps the FTW spare area. Cc: Jordan Justen <jordan.l.justen@intel.com> Ref: https://bugzilla.tianocore.org/show_bug.cgi?id=527 Contributed-under: TianoCore Contribution Agreement 1.0 Signed-off-by: Laszlo Ersek <lersek@redhat.com> Regression-tested-by: Gary Lin <glin@suse.com> Reviewed-by: Jordan Justen <jordan.l.justen@intel.com>
2017-05-06 13:17:58 +02:00
SubPtr = (VOID*) ((UINT8*) Ptr +
EMU_FVB_NUM_SPARE_BLOCKS * EMU_FVB_BLOCK_SIZE);
PcdStatus = PcdSet32S (PcdFlashNvStorageFtwSpareBase,
(UINT32)(UINTN) SubPtr);
ASSERT_RETURN_ERROR (PcdStatus);
//
// Setup FVB device path
//
Address = (EFI_PHYSICAL_ADDRESS)(UINTN) Ptr;
mEmuVarsFvb.DevicePath.MemMapDevPath.StartingAddress = Address;
mEmuVarsFvb.DevicePath.MemMapDevPath.EndingAddress = Address + EMU_FVB_SIZE - 1;
//
// Install the protocols
//
DEBUG ((EFI_D_INFO, "Installing FVB for EMU Variable support\n"));
Handle = 0;
Status = gBS->InstallMultipleProtocolInterfaces (
&Handle,
&gEfiFirmwareVolumeBlock2ProtocolGuid,
&mEmuVarsFvb.FwVolBlockInstance,
&gEfiDevicePathProtocolGuid,
&mEmuVarsFvb.DevicePath,
NULL
);
ASSERT_EFI_ERROR (Status);
//
// Register for the virtual address change event
//
Status = gBS->CreateEventEx (
EVT_NOTIFY_SIGNAL,
TPL_NOTIFY,
FvbVirtualAddressChangeEvent,
NULL,
&gEfiEventVirtualAddressChangeGuid,
&mEmuVarsFvbAddrChangeEvent
);
ASSERT_EFI_ERROR (Status);
return EFI_SUCCESS;
}