2011-09-27 18:35:16 +02:00
|
|
|
/** @file
|
|
|
|
Generic ARM implementation of TimerLib.h
|
|
|
|
|
2014-06-03 18:39:23 +02:00
|
|
|
Copyright (c) 2011-2014, ARM Limited. All rights reserved.
|
|
|
|
|
2011-09-27 18:35:16 +02:00
|
|
|
This program and the accompanying materials
|
|
|
|
are licensed and made available under the terms and conditions of the BSD License
|
|
|
|
which accompanies this distribution. The full text of the license may be found at
|
|
|
|
http://opensource.org/licenses/bsd-license.php
|
|
|
|
|
|
|
|
THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS,
|
|
|
|
WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED.
|
|
|
|
|
|
|
|
**/
|
|
|
|
|
|
|
|
|
|
|
|
#include <Base.h>
|
2013-11-28 22:37:36 +01:00
|
|
|
#include <Library/ArmLib.h>
|
2011-09-27 18:35:16 +02:00
|
|
|
#include <Library/BaseLib.h>
|
|
|
|
#include <Library/TimerLib.h>
|
|
|
|
#include <Library/DebugLib.h>
|
|
|
|
#include <Library/PcdLib.h>
|
2013-07-18 20:07:46 +02:00
|
|
|
#include <Library/ArmArchTimerLib.h>
|
2011-09-27 18:35:16 +02:00
|
|
|
|
|
|
|
#define TICKS_PER_MICRO_SEC (PcdGet32 (PcdArmArchTimerFreqInHz)/1000000U)
|
|
|
|
|
|
|
|
RETURN_STATUS
|
|
|
|
EFIAPI
|
2012-02-27 11:23:08 +01:00
|
|
|
TimerConstructor (
|
2011-09-27 18:35:16 +02:00
|
|
|
VOID
|
|
|
|
)
|
|
|
|
{
|
|
|
|
// Check if the ARM Generic Timer Extension is implemented
|
|
|
|
if (ArmIsArchTimerImplemented ()) {
|
|
|
|
|
|
|
|
UINTN TimerFreq;
|
|
|
|
|
|
|
|
// Check if Architectural Timer frequency is valid number (should not be 0)
|
|
|
|
ASSERT (PcdGet32 (PcdArmArchTimerFreqInHz));
|
|
|
|
|
|
|
|
// Check if ticks/uS is not 0. The Architectural timer runs at constant
|
|
|
|
// frequency irrespective of CPU frequency. According to General Timer Ref
|
|
|
|
// manual lower bound of the frequency is in the range of 1-10MHz
|
|
|
|
ASSERT (TICKS_PER_MICRO_SEC);
|
|
|
|
|
2013-07-18 20:07:46 +02:00
|
|
|
#ifdef MDE_CPU_ARM
|
|
|
|
// Only set the frequency for ARMv7. We expect the secure firmware to have already do it
|
2011-09-27 18:35:16 +02:00
|
|
|
// If the security extensions are not implemented set Timer Frequency
|
2014-06-03 18:39:23 +02:00
|
|
|
if ((ArmReadIdPfr1 () & ARM_PFR1_SEC) == 0x0) {
|
2011-09-27 18:35:16 +02:00
|
|
|
ArmArchTimerSetTimerFreq (PcdGet32 (PcdArmArchTimerFreqInHz));
|
|
|
|
}
|
2013-07-18 20:07:46 +02:00
|
|
|
#endif
|
2011-09-27 18:35:16 +02:00
|
|
|
|
|
|
|
// Architectural Timer Frequency must be set in the Secure privileged(if secure extensions are supported) mode.
|
|
|
|
// If the reset value (0) is returned just ASSERT.
|
|
|
|
TimerFreq = ArmArchTimerGetTimerFreq ();
|
2013-07-18 20:07:46 +02:00
|
|
|
ASSERT (TimerFreq != 0);
|
2011-09-27 18:35:16 +02:00
|
|
|
|
|
|
|
} else {
|
2012-07-04 22:23:21 +02:00
|
|
|
DEBUG ((EFI_D_ERROR, "ARM Architectural Timer is not available in the CPU, hence this library can not be used.\n"));
|
2011-09-27 18:35:16 +02:00
|
|
|
ASSERT (0);
|
|
|
|
}
|
|
|
|
|
|
|
|
return RETURN_SUCCESS;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
/**
|
|
|
|
Stalls the CPU for the number of microseconds specified by MicroSeconds.
|
|
|
|
|
|
|
|
@param MicroSeconds The minimum number of microseconds to delay.
|
|
|
|
|
|
|
|
@return The value of MicroSeconds inputted.
|
|
|
|
|
|
|
|
**/
|
|
|
|
UINTN
|
|
|
|
EFIAPI
|
|
|
|
MicroSecondDelay (
|
|
|
|
IN UINTN MicroSeconds
|
|
|
|
)
|
|
|
|
{
|
|
|
|
UINT64 TimerTicks64;
|
|
|
|
UINT64 SystemCounterVal;
|
|
|
|
|
2014-08-27 12:12:00 +02:00
|
|
|
// Calculate counter ticks that can represent requested delay:
|
|
|
|
// = MicroSeconds x TICKS_PER_MICRO_SEC
|
|
|
|
// = MicroSeconds x Frequency.10^-6
|
|
|
|
TimerTicks64 = (MicroSeconds * PcdGet32 (PcdArmArchTimerFreqInHz)) / 1000000U;
|
2011-09-27 18:35:16 +02:00
|
|
|
|
|
|
|
// Read System Counter value
|
|
|
|
SystemCounterVal = ArmArchTimerGetSystemCount ();
|
|
|
|
|
|
|
|
TimerTicks64 += SystemCounterVal;
|
|
|
|
|
|
|
|
// Wait until delay count is expired.
|
|
|
|
while (SystemCounterVal < TimerTicks64) {
|
|
|
|
SystemCounterVal = ArmArchTimerGetSystemCount ();
|
|
|
|
}
|
|
|
|
|
|
|
|
return MicroSeconds;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
/**
|
|
|
|
Stalls the CPU for at least the given number of nanoseconds.
|
|
|
|
|
|
|
|
Stalls the CPU for the number of nanoseconds specified by NanoSeconds.
|
|
|
|
|
|
|
|
When the timer frequency is 1MHz, each tick corresponds to 1 microsecond.
|
|
|
|
Therefore, the nanosecond delay will be rounded up to the nearest 1 microsecond.
|
|
|
|
|
|
|
|
@param NanoSeconds The minimum number of nanoseconds to delay.
|
|
|
|
|
2012-07-04 22:23:21 +02:00
|
|
|
@return The value of NanoSeconds inputed.
|
2011-09-27 18:35:16 +02:00
|
|
|
|
|
|
|
**/
|
|
|
|
UINTN
|
|
|
|
EFIAPI
|
|
|
|
NanoSecondDelay (
|
|
|
|
IN UINTN NanoSeconds
|
|
|
|
)
|
|
|
|
{
|
|
|
|
UINTN MicroSeconds;
|
|
|
|
|
|
|
|
// Round up to 1us Tick Number
|
|
|
|
MicroSeconds = NanoSeconds / 1000;
|
|
|
|
MicroSeconds += ((NanoSeconds % 1000) == 0) ? 0 : 1;
|
|
|
|
|
|
|
|
MicroSecondDelay (MicroSeconds);
|
|
|
|
|
|
|
|
return NanoSeconds;
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
Retrieves the current value of a 64-bit free running performance counter.
|
|
|
|
|
|
|
|
The counter can either count up by 1 or count down by 1. If the physical
|
|
|
|
performance counter counts by a larger increment, then the counter values
|
|
|
|
must be translated. The properties of the counter can be retrieved from
|
|
|
|
GetPerformanceCounterProperties().
|
|
|
|
|
|
|
|
@return The current value of the free running performance counter.
|
|
|
|
|
|
|
|
**/
|
|
|
|
UINT64
|
|
|
|
EFIAPI
|
|
|
|
GetPerformanceCounter (
|
|
|
|
VOID
|
|
|
|
)
|
|
|
|
{
|
|
|
|
// Just return the value of system count
|
|
|
|
return ArmArchTimerGetSystemCount ();
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
Retrieves the 64-bit frequency in Hz and the range of performance counter
|
|
|
|
values.
|
|
|
|
|
|
|
|
If StartValue is not NULL, then the value that the performance counter starts
|
|
|
|
with immediately after is it rolls over is returned in StartValue. If
|
|
|
|
EndValue is not NULL, then the value that the performance counter end with
|
|
|
|
immediately before it rolls over is returned in EndValue. The 64-bit
|
|
|
|
frequency of the performance counter in Hz is always returned. If StartValue
|
|
|
|
is less than EndValue, then the performance counter counts up. If StartValue
|
|
|
|
is greater than EndValue, then the performance counter counts down. For
|
|
|
|
example, a 64-bit free running counter that counts up would have a StartValue
|
|
|
|
of 0 and an EndValue of 0xFFFFFFFFFFFFFFFF. A 24-bit free running counter
|
|
|
|
that counts down would have a StartValue of 0xFFFFFF and an EndValue of 0.
|
|
|
|
|
|
|
|
@param StartValue The value the performance counter starts with when it
|
|
|
|
rolls over.
|
|
|
|
@param EndValue The value that the performance counter ends with before
|
|
|
|
it rolls over.
|
|
|
|
|
|
|
|
@return The frequency in Hz.
|
|
|
|
|
|
|
|
**/
|
|
|
|
UINT64
|
|
|
|
EFIAPI
|
|
|
|
GetPerformanceCounterProperties (
|
|
|
|
OUT UINT64 *StartValue, OPTIONAL
|
|
|
|
OUT UINT64 *EndValue OPTIONAL
|
|
|
|
)
|
|
|
|
{
|
|
|
|
if (StartValue != NULL) {
|
|
|
|
// Timer starts with the reload value
|
|
|
|
*StartValue = (UINT64)0ULL ;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (EndValue != NULL) {
|
|
|
|
// Timer counts down to 0x0
|
2011-10-04 15:58:28 +02:00
|
|
|
*EndValue = 0xFFFFFFFFFFFFFFFFUL;
|
2011-09-27 18:35:16 +02:00
|
|
|
}
|
|
|
|
|
|
|
|
return (UINT64)ArmArchTimerGetTimerFreq ();
|
|
|
|
}
|