audk/ArmPkg/Library/BdsLib/BdsLinuxLoader.c

338 lines
11 KiB
C
Raw Normal View History

/** @file
*
* Copyright (c) 2011, ARM Limited. All rights reserved.
*
* This program and the accompanying materials
* are licensed and made available under the terms and conditions of the BSD License
* which accompanies this distribution. The full text of the license may be found at
* http://opensource.org/licenses/bsd-license.php
*
* THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS,
* WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED.
*
**/
#include "BdsInternal.h"
#include "BdsLinuxLoader.h"
#include <Library/PcdLib.h>
#include <Library/ArmLib.h>
#include <Library/HobLib.h>
STATIC
EFI_STATUS
GetARMLinuxMachineType (
IN BOOLEAN FdtSupported,
OUT UINT32 *MachineType
) {
if (FdtSupported)
{
// FDT requires that the machine type is set to the maximum 32-bit number.
*MachineType = 0xFFFFFFFF;
}
else
{
// Non-FDT requires a specific machine type.
// This OS Boot loader supports just one machine type,
// but that could change in the future.
*MachineType = PcdGet32(PcdArmMachineType);
}
return EFI_SUCCESS;
}
STATIC
VOID
SetupCoreTag( IN UINT32 PageSize )
{
Params->header.size = tag_size(atag_core);
Params->header.type = ATAG_CORE;
Params->body.core_tag.flags = 1; /* ensure read-only */
Params->body.core_tag.pagesize = PageSize; /* systems PageSize (4k) */
Params->body.core_tag.rootdev = 0; /* zero root device (typically overridden from kernel command line )*/
Params = next_tag_address(Params); /* move pointer to next tag */
}
STATIC
VOID
SetupMemTag( IN UINTN StartAddress, IN UINT32 Size )
{
Params->header.size = tag_size(atag_mem);
Params->header.type = ATAG_MEM;
Params->body.mem_tag.start = StartAddress; /* Start of memory chunk for AtagMem */
Params->body.mem_tag.size = Size; /* Size of memory chunk for AtagMem */
Params = next_tag_address(Params); /* move pointer to next tag */
}
STATIC
VOID
SetupCmdlineTag( IN CONST CHAR8 *CmdLine )
{
UINT32 LineLength;
// Increment the line length by 1 to account for the null string terminator character
LineLength = AsciiStrLen(CmdLine) + 1;
/* Check for NULL strings.
* Do not insert a tag for an empty CommandLine, don't even modify the tag address pointer.
* Remember, you have at least one null string terminator character.
*/
if( LineLength > 1 )
{
Params->header.size = ((UINT32)sizeof(struct atag_header) + LineLength + (UINT32)3) >> 2;
Params->header.type = ATAG_CMDLINE;
/* place CommandLine into tag */
AsciiStrCpy(Params->body.cmdline_tag.cmdline, CmdLine);
Params = next_tag_address(Params); /* move pointer to next tag */
}
}
STATIC
VOID
SetupEndTag( VOID )
{
// Empty tag ends list; this has zero length and no body
Params->header.type = ATAG_NONE;
Params->header.size = 0;
/* We can not calculate the next address by using the standard macro:
* Params = next_tag_address(Params);
* because it relies on the header.size, which here it is 0 (zero).
* The easiest way is to add the sizeof(Params->header).
*/
Params = (struct atag *)((UINT32)Params + sizeof(Params->header));
}
STATIC
EFI_STATUS
PrepareAtagList(
IN OUT struct atag **AtagStartAddress,
IN CONST CHAR8* CommandLineString,
OUT UINT32 *AtagSize
) {
LIST_ENTRY *ResourceLink;
LIST_ENTRY ResourceList;
BDS_SYSTEM_MEMORY_RESOURCE *Resource;
// If no address supplied then this function will decide where to put it
if( *AtagStartAddress == 0 )
{
/* WARNING: At the time of writing (2010-July-30) the linux kernel expects
* the atag list it in the first 1MB of memory and preferably at address 0x100.
* This has a very high risk of overwriting UEFI code, but as
* the linux kernel does not expect any runtime services from uefi
* and there is no afterlife section following the linux kernel termination,
* it does not matter if we stamp over that memory area.
*
* The proposed workaround is to create the atag list somewhere in boot services memory
* and then transfer it to address 0x100 (or to runtime services memory) immediately
* before starting the kernel.
* An additional benefit of this is that when we copy the ATAG list to it's final place,
* we can trim down the memory allocation size. Before we create the list we don't know
* how much space it is going to take, so we are over-allocating space.
*/
*AtagStartAddress = (struct atag *) AllocatePool(ATAG_MAX_SIZE);
}
// Ensure the pointer is not NULL.
ASSERT( *AtagStartAddress != (struct atag *)NULL );
// Ready to setup the atag list
Params = *AtagStartAddress;
// Standard core tag 4k PageSize
SetupCoreTag( (UINT32)SIZE_4KB );
// Physical memory setup
GetSystemMemoryResources(&ResourceList);
ResourceLink = ResourceList.ForwardLink;
while (ResourceLink != NULL && ResourceLink != &ResourceList) {
Resource = (BDS_SYSTEM_MEMORY_RESOURCE*)ResourceList.ForwardLink;
SetupMemTag( (UINT32)Resource->PhysicalStart, (UINT32)Resource->ResourceLength );
ResourceLink = ResourceLink->ForwardLink;
}
// CommandLine setting root device
SetupCmdlineTag( CommandLineString );
// end of tags
SetupEndTag();
// Calculate atag list size
*AtagSize = (UINT32)Params - (UINT32)*AtagStartAddress + 1;
return EFI_SUCCESS;
}
STATIC
EFI_STATUS
PreparePlatformHardware( VOID )
{
//Note: Interrupts will be disabled by the GIC driver when ExitBootServices() will be called.
// clean, invalidate, disable data cache
ArmCleanInvalidateDataCache();
ArmDisableDataCache();
// Invalidate and disable the Instruction cache
ArmInvalidateInstructionCache ();
ArmDisableInstructionCache ();
// turn off MMU
ArmInvalidateTlb();
ArmDisableMmu();
return EFI_SUCCESS;
}
/*************************************************
* R0, R1, R2 correspond to registers R0, R1, R2
*************************************************/
//STATIC
EFI_STATUS
StartLinuxKernel( IN VOID* KernelAddress, IN UINTN R0, IN UINTN R1, IN UINTN R2 )
{
VOID (*Kernel)(UINT32 Zero, UINT32 Arch, UINTN AtagListParams);
// set the kernel address
Kernel = (VOID (*)(UINT32, UINT32, UINTN)) KernelAddress;
// Outside BootServices, so can't use Print();
DEBUG((EFI_D_ERROR, "\nStarting the kernel:\n\n"));
// jump to kernel with register set
Kernel( R0, R1, R2 );
// Kernel should never exit
// After Life services are not provided
ASSERT( FALSE );
return EFI_SUCCESS;
}
EFI_STATUS BdsBootLinux(
IN CONST CHAR16* LinuxKernel,
IN CONST CHAR8* ATag,
IN CONST CHAR16* Fdt
) {
BDS_FILE LinuxKernelFile;
BDS_FILE FdtFile;
EFI_STATUS Status;
VOID* LinuxImage;
UINT32 KernelParamsSize;
VOID* KernelParamsAddress = NULL;
UINTN KernelParamsNewAddress;
UINTN *AtagAddress;
UINT32 MachineType;
BOOLEAN FdtSupported = FALSE;
EFI_HOB_RESOURCE_DESCRIPTOR *ResHob;
// Load the Linux kernel from a device path
Status = BdsLoadFilePath(LinuxKernel, &LinuxKernelFile);
if (EFI_ERROR(Status)) {
DEBUG ((EFI_D_ERROR, "ERROR: Do not find Linux kernel %s\n",LinuxKernel));
return Status;
}
// Copy the Linux Kernel from the raw file to Runtime memory
Status = BdsCopyRawFileToRuntimeMemory(&LinuxKernelFile,&LinuxImage,NULL);
if (EFI_ERROR(Status)) {
goto Exit;
}
// Load the FDT binary from a device path
Status = BdsLoadFilePath(Fdt, &FdtFile);
if (!EFI_ERROR(Status)) {
// Copy the FDT binary from the raw file to Runtime memory
Status = BdsCopyRawFileToRuntimeMemory(&FdtFile,&KernelParamsAddress,&KernelParamsSize);
if (EFI_ERROR(Status)) {
goto Exit;
} else {
FdtSupported = TRUE;
}
}
/**********************************************************
* Setup the platform type
**********************************************************/
Status = GetARMLinuxMachineType(FdtSupported, &MachineType);
if(EFI_ERROR(Status))
{
Print(L"ERROR : Can not prepare ARM Linux machine type. Status=0x%X\n", Status);
goto Exit;
}
if (!FdtSupported) {
/**********************************************************
* Setup the ATAG list
**********************************************************/
// By setting address=0 we leave the memory allocation to the function
AtagAddress = 0;
Status = PrepareAtagList( (struct atag **)&AtagAddress, ATag, &KernelParamsSize );
KernelParamsAddress = (VOID*)AtagAddress;
if(EFI_ERROR(Status))
{
Print(L"ERROR : Can not prepare ATAG list. Status=0x%X\n", Status);
goto Exit;
}
}
/**********************************************************
* Switch off interrupts, caches, mmu, etc
**********************************************************/
Status = PreparePlatformHardware();
if(EFI_ERROR(Status))
{
Print(L"ERROR : Can not prepare platform hardware. Status=0x%X\n", Status);
goto Exit;
}
// Initialize the ATag destination
KernelParamsNewAddress = 0x100;
// Update the ATag destination by finding the start address of the first System Memory Resource Descriptor Hob
ResHob = (EFI_HOB_RESOURCE_DESCRIPTOR *)GetFirstHob (EFI_HOB_TYPE_RESOURCE_DESCRIPTOR);
while (ResHob != NULL) {
if (ResHob->ResourceType == EFI_RESOURCE_SYSTEM_MEMORY) {
KernelParamsNewAddress = (UINTN)ResHob->PhysicalStart + 0x100;
break;
}
ResHob = (EFI_HOB_RESOURCE_DESCRIPTOR *)GetNextHob (EFI_HOB_TYPE_RESOURCE_DESCRIPTOR, (VOID *)((UINTN)ResHob + ResHob->Header.HobLength));
}
// Shut down UEFI boot services. ExitBootServices() will notify every driver that created an event on
// ExitBootServices event. Example the Interrupt DXE driver will disable the interrupts on this event.
Status = ShutdownUefiBootServices();
if(EFI_ERROR(Status))
{
Print(L"ERROR : Can not shutdown UEFI boot services. Status=0x%X\n", Status);
goto Exit;
}
// Move the kernel parameters to any address inside the first 1MB.
// This is necessary because the ARM Linux kernel requires
// the FTD / ATAG List to reside entirely inside the first 1MB of
// physical memory.
CopyMem((VOID*)KernelParamsNewAddress, KernelParamsAddress, KernelParamsSize);
//**********************************************************
// * Start the Linux Kernel
// **********************************************************
// Lift off ...
Status = StartLinuxKernel(LinuxImage, (UINTN)0, (UINTN)MachineType, KernelParamsNewAddress );
// Only be here if we fail to start Linux
DEBUG((EFI_D_ERROR, "ERROR : Can not start the kernel. Status=0x%X\n", Status));
Exit:
// Free Runtimee Memory (kernel and FDT)
return Status;
}