audk/MdeModulePkg/Universal/Network/IScsiDxe/IScsiMisc.c

970 lines
20 KiB
C
Raw Normal View History

/*++
Copyright (c) 2004 - 2007, Intel Corporation
All rights reserved. This program and the accompanying materials
are licensed and made available under the terms and conditions of the BSD License
which accompanies this distribution. The full text of the license may be found at
http://opensource.org/licenses/bsd-license.php
THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS,
WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED.
Module Name:
IScsiMisc.c
Abstract:
Miscellaneous routines for iSCSI driver.
--*/
#include "IScsiImpl.h"
STATIC CONST CHAR8 IScsiHexString[] = "0123456789ABCDEFabcdef";
static
BOOLEAN
IsHexDigit (
OUT UINT8 *Digit,
IN CHAR16 Char
)
/*++
Routine Description:
Determines if a Unicode character is a hexadecimal digit.
The test is case insensitive.
Arguments:
Digit - Pointer to byte that receives the value of the hex character.
Char - Unicode character to test.
Returns:
TRUE - If the character is a hexadecimal digit.
FALSE - Otherwise.
--*/
{
if ((Char >= L'0') && (Char <= L'9')) {
*Digit = (UINT8) (Char - L'0');
return TRUE;
}
if ((Char >= L'A') && (Char <= L'F')) {
*Digit = (UINT8) (Char - L'A' + 0x0A);
return TRUE;
}
if ((Char >= L'a') && (Char <= L'f')) {
*Digit = (UINT8) (Char - L'a' + 0x0A);
return TRUE;
}
return FALSE;
}
static
VOID
StrTrim (
IN OUT CHAR16 *str,
IN CHAR16 CharC
)
/*++
Routine Description:
Removes (trims) specified leading and trailing characters from a string.
Arguments:
str - Pointer to the null-terminated string to be trimmed. On return,
str will hold the trimmed string.
CharC - Character will be trimmed from str.
Returns:
--*/
{
CHAR16 *p1;
CHAR16 *p2;
if (*str == 0) {
return;
}
//
// Trim off the leading and trailing characters c
//
for (p1 = str; *p1 && *p1 == CharC; p1++) {
;
}
p2 = str;
if (p2 == p1) {
while (*p1) {
p2++;
p1++;
}
} else {
while (*p1) {
*p2 = *p1;
p1++;
p2++;
}
*p2 = 0;
}
for (p1 = str + StrLen(str) - 1; p1 >= str && *p1 == CharC; p1--) {
;
}
if (p1 != str + StrLen(str) - 1) {
*(p1 + 1) = 0;
}
}
UINT8
IScsiGetSubnetMaskPrefixLength (
IN EFI_IPv4_ADDRESS *SubnetMask
)
/*++
Routine Description:
Calculate the prefix length of the IPv4 subnet mask.
Arguments:
SubnetMask - The IPv4 subnet mask.
Returns:
The prefix length of the subnet mask.
--*/
{
UINT8 Len;
UINT32 ReverseMask;
//
// The SubnetMask is in network byte order.
//
ReverseMask = (SubnetMask->Addr[0] << 24) | (SubnetMask->Addr[1] << 16) | (SubnetMask->Addr[2] << 8) | (SubnetMask->Addr[3]);
//
// Reverse it.
//
ReverseMask = ~ReverseMask;
if (ReverseMask & (ReverseMask + 1)) {
return 0;
}
Len = 0;
while (ReverseMask != 0) {
ReverseMask = ReverseMask >> 1;
Len++;
}
return (UINT8) (32 - Len);
}
EFI_STATUS
IScsiAsciiStrToLun (
IN CHAR8 *Str,
OUT UINT8 *Lun
)
/*++
Routine Description:
Convert the hexadecimal encoded LUN string into the 64-bit LUN.
Arguments:
Str - The hexadecimal encoded LUN string.
Lun - Storage to return the 64-bit LUN.
Returns:
EFI_SUCCESS - The 64-bit LUN is stored in Lun.
EFI_INVALID_PARAMETER - The string is malformatted.
--*/
{
UINT32 Index;
CHAR8 *LunUnitStr[4];
CHAR8 Digit;
UINTN Temp;
ZeroMem (Lun, 8);
ZeroMem (LunUnitStr, sizeof (LunUnitStr));
Index = 0;
LunUnitStr[0] = Str;
if (!IsHexDigit ((UINT8 *) &Digit, *Str)) {
return EFI_INVALID_PARAMETER;
}
while (*Str != '\0') {
//
// Legal representations of LUN:
// 4752-3A4F-6b7e-2F99,
// 6734-9-156f-127,
// 4186-9
//
if (*Str == '-') {
*Str = '\0';
Index++;
if (*(Str + 1) != '\0') {
if (!IsHexDigit ((UINT8 *) &Digit, *(Str + 1))) {
return EFI_INVALID_PARAMETER;
}
LunUnitStr[Index] = Str + 1;
}
} else if (!IsHexDigit ((UINT8 *) &Digit, *Str)) {
return EFI_INVALID_PARAMETER;
}
Str++;
}
for (Index = 0; (Index < 4) && (LunUnitStr[Index] != NULL); Index++) {
if (AsciiStrLen (LunUnitStr[Index]) > 4) {
return EFI_INVALID_PARAMETER;
}
Temp = AsciiStrHexToUintn (LunUnitStr[Index]);
*((UINT16 *) &Lun[Index * 2]) = HTONS (Temp);
}
return EFI_SUCCESS;
}
VOID
IScsiLunToUnicodeStr (
IN UINT8 *Lun,
OUT CHAR16 *Str
)
/*++
Routine Description:
Convert the 64-bit LUN into the hexadecimal encoded LUN string.
Arguments:
Lun - The 64-bit LUN.
Str - The storage to return the hexadecimal encoded LUN string.
Returns:
None.
--*/
{
UINTN Index;
CHAR16 *TempStr;
TempStr = Str;
for (Index = 0; Index < 4; Index++) {
if ((Lun[2 * Index] | Lun[2 * Index + 1]) == 0) {
StrCpy (TempStr, L"0-");
} else {
TempStr[0] = (CHAR16) IScsiHexString[Lun[2 * Index] >> 4];
TempStr[1] = (CHAR16) IScsiHexString[Lun[2 * Index] & 0xf];
TempStr[2] = (CHAR16) IScsiHexString[Lun[2 * Index + 1] >> 4];
TempStr[3] = (CHAR16) IScsiHexString[Lun[2 * Index + 1] & 0xf];
TempStr[4] = L'-';
TempStr[5] = 0;
StrTrim (TempStr, L'0');
}
TempStr += StrLen (TempStr);
}
Str[StrLen (Str) - 1] = 0;
for (Index = StrLen (Str) - 1; Index > 1; Index = Index - 2) {
if ((Str[Index] == L'0') && (Str[Index - 1] == L'-')) {
Str[Index - 1] = 0;
} else {
break;
}
}
}
CHAR16 *
IScsiAsciiStrToUnicodeStr (
IN CHAR8 *Source,
OUT CHAR16 *Destination
)
/*++
Routine Description:
Convert the ASCII string into a UNICODE string.
Arguments:
Source - The ASCII string.
Destination - The storage to return the UNICODE string.
Returns:
Pointer to the UNICODE string.
--*/
{
ASSERT (Destination != NULL);
ASSERT (Source != NULL);
while (*Source != '\0') {
*(Destination++) = (CHAR16) *(Source++);
}
*Destination = '\0';
return Destination;
}
CHAR8 *
IScsiUnicodeStrToAsciiStr (
IN CHAR16 *Source,
OUT CHAR8 *Destination
)
/*++
Routine Description:
Convert the UNICODE string into an ASCII string.
Arguments:
Source - The UNICODE string.
Destination - The storage to return the ASCII string.
Returns:
Pointer to the ASCII string.
--*/
{
ASSERT (Destination != NULL);
ASSERT (Source != NULL);
while (*Source != '\0') {
//
// If any Unicode characters in Source contain
// non-zero value in the upper 8 bits, then ASSERT().
//
ASSERT (*Source < 0x100);
*(Destination++) = (CHAR8) *(Source++);
}
*Destination = '\0';
return Destination;
}
EFI_STATUS
IScsiAsciiStrToIp (
IN CHAR8 *Str,
OUT EFI_IPv4_ADDRESS *Ip
)
/*++
Routine Description:
Convert the decimal dotted IPv4 address into the binary IPv4 address.
Arguments:
Str - The UNICODE string.
Ip - The storage to return the ASCII string.
Returns:
EFI_SUCCESS - The binary IP address is returned in Ip.
EFI_INVALID_PARAMETER - The IP string is malformatted.
--*/
{
UINTN Index;
UINTN Number;
Index = 0;
while (*Str) {
if (Index > 3) {
return EFI_INVALID_PARAMETER;
}
Number = 0;
while (NET_IS_DIGIT (*Str)) {
Number = Number * 10 + (*Str - '0');
Str++;
}
if (Number > 0xFF) {
return EFI_INVALID_PARAMETER;
}
Ip->Addr[Index] = (UINT8) Number;
if ((*Str != '\0') && (*Str != '.')) {
//
// The current character should be either the NULL terminator or
// the dot delimiter.
//
return EFI_INVALID_PARAMETER;
}
if (*Str == '.') {
//
// Skip the delimiter.
//
Str++;
}
Index++;
}
if (Index != 4) {
return EFI_INVALID_PARAMETER;
}
return EFI_SUCCESS;
}
VOID
IScsiMacAddrToStr (
IN EFI_MAC_ADDRESS *Mac,
IN UINT32 Len,
OUT CHAR16 *Str
)
/*++
Routine Description:
Convert the mac address into a hexadecimal encoded "-" seperated string.
Arguments:
Mac - The mac address.
Len - Length in bytes of the mac address.
Str - The storage to return the mac string.
Returns:
None.
--*/
{
UINT32 Index;
for (Index = 0; Index < Len; Index++) {
Str[3 * Index] = NibbleToHexChar ((UINT8) (Mac->Addr[Index] >> 4));
Str[3 * Index + 1] = NibbleToHexChar (Mac->Addr[Index]);
Str[3 * Index + 2] = L'-';
}
Str[3 * Index - 1] = L'\0';
}
EFI_STATUS
IScsiBinToHex (
IN UINT8 *BinBuffer,
IN UINT32 BinLength,
IN OUT CHAR8 *HexStr,
IN OUT UINT32 *HexLength
)
/*++
Routine Description:
Convert the binary encoded buffer into a hexadecimal encoded string.
Arguments:
BinBuffer - The buffer containing the binary data.
BinLength - Length of the binary buffer.
HexStr - Pointer to the string.
HexLength - The length of the string.
Returns:
EFI_SUCCESS - The binary data is converted to the hexadecimal string
and the length of the string is updated.
EFI_BUFFER_TOO_SMALL - The string is too small.
--*/
{
UINTN Index;
if ((HexStr == NULL) || (BinBuffer == NULL) || (BinLength == 0)) {
return EFI_INVALID_PARAMETER;
}
if (((*HexLength) - 3) < BinLength * 2) {
*HexLength = BinLength * 2 + 3;
return EFI_BUFFER_TOO_SMALL;
}
*HexLength = BinLength * 2 + 3;
//
// Prefix for Hex String
//
HexStr[0] = '0';
HexStr[1] = 'x';
for (Index = 0; Index < BinLength; Index++) {
HexStr[Index * 2 + 2] = IScsiHexString[BinBuffer[Index] >> 4];
HexStr[Index * 2 + 3] = IScsiHexString[BinBuffer[Index] & 0xf];
}
HexStr[Index * 2 + 2] = '\0';
return EFI_SUCCESS;
}
EFI_STATUS
IScsiHexToBin (
IN OUT UINT8 *BinBuffer,
IN OUT UINT32 *BinLength,
IN CHAR8 *HexStr
)
/*++
Routine Description:
Convert the hexadecimal string into a binary encoded buffer.
Arguments:
BinBuffer - The binary buffer.
BinLength - Length of the binary buffer.
HexStr - The hexadecimal string.
Returns:
EFI_SUCCESS - The hexadecimal string is converted into a binary
encoded buffer.
EFI_BUFFER_TOO_SMALL - The binary buffer is too small to hold the converted data.s
--*/
{
UINTN Index;
UINT32 HexCount;
CHAR8 *HexBuf;
UINT8 Digit;
UINT8 Byte;
Digit = 0;
//
// Find out how many hex characters the string has.
//
HexBuf = HexStr;
if ((HexBuf[0] == '0') && ((HexBuf[1] == 'x') || (HexBuf[1] == 'X'))) {
HexBuf += 2;
}
for (Index = 0, HexCount = 0; IsHexDigit (&Digit, HexBuf[Index]); Index++, HexCount++)
;
if (HexCount == 0) {
*BinLength = 0;
return EFI_SUCCESS;
}
//
// Test if buffer is passed enough.
//
if (((HexCount + 1) / 2) > *BinLength) {
*BinLength = (HexCount + 1) / 2;
return EFI_BUFFER_TOO_SMALL;
}
*BinLength = (HexCount + 1) / 2;
for (Index = 0; Index < HexCount; Index++) {
IsHexDigit (&Digit, HexBuf[HexCount - 1 - Index]);
if ((Index & 1) == 0) {
Byte = Digit;
} else {
Byte = BinBuffer[*BinLength - 1 - Index / 2];
Byte &= 0x0F;
Byte = (UINT8) (Byte | (Digit << 4));
}
BinBuffer[*BinLength - 1 - Index / 2] = Byte;
}
return EFI_SUCCESS;
}
VOID
IScsiGenRandom (
IN OUT UINT8 *Rand,
IN UINTN RandLength
)
/*++
Routine Description:
Generate random numbers.
Arguments:
Rand - The buffer to contain random numbers.
RandLength - The length of the Rand buffer.
Returns:
None.
--*/
{
UINT32 Random;
while (RandLength > 0) {
Random = NET_RANDOM (NetRandomInitSeed ());
*Rand++ = (UINT8) (Random);
RandLength--;
}
}
ISCSI_DRIVER_DATA *
IScsiCreateDriverData (
IN EFI_HANDLE Image,
IN EFI_HANDLE Controller
)
/*++
Routine Description:
Create the iSCSI driver data..
Arguments:
Image - The handle of the driver image.
Controller - The handle of the controller.
Returns:
The iSCSI driver data created.
--*/
{
ISCSI_DRIVER_DATA *Private;
EFI_STATUS Status;
Private = AllocateZeroPool (sizeof (ISCSI_DRIVER_DATA));
if (Private == NULL) {
return NULL;
}
Private->Signature = ISCSI_DRIVER_DATA_SIGNATURE;
Private->Image = Image;
Private->Controller = Controller;
//
// Create an event to be signal when the BS to RT transition is triggerd so
// as to abort the iSCSI session.
//
Status = gBS->CreateEvent (
EFI_EVENT_SIGNAL_EXIT_BOOT_SERVICES,
TPL_CALLBACK,
IScsiOnExitBootService,
Private,
&Private->ExitBootServiceEvent
);
if (EFI_ERROR (Status)) {
gBS->FreePool (Private);
return NULL;
}
CopyMem(&Private->IScsiExtScsiPassThru, &gIScsiExtScsiPassThruProtocolTemplate, sizeof(EFI_EXT_SCSI_PASS_THRU_PROTOCOL));
//
// 0 is designated to the TargetId, so use another value for the AdapterId.
//
Private->ExtScsiPassThruMode.AdapterId = 2;
Private->ExtScsiPassThruMode.Attributes = EFI_EXT_SCSI_PASS_THRU_ATTRIBUTES_PHYSICAL | EFI_EXT_SCSI_PASS_THRU_ATTRIBUTES_LOGICAL;
Private->ExtScsiPassThruMode.IoAlign = 4;
Private->IScsiExtScsiPassThru.Mode = &Private->ExtScsiPassThruMode;
//
// Install the Ext SCSI PASS THRU protocol.
//
Status = gBS->InstallProtocolInterface (
&Private->ExtScsiPassThruHandle,
&gEfiExtScsiPassThruProtocolGuid,
EFI_NATIVE_INTERFACE,
&Private->IScsiExtScsiPassThru
);
if (EFI_ERROR (Status)) {
gBS->CloseEvent (Private->ExitBootServiceEvent);
gBS->FreePool (Private);
return NULL;
}
IScsiSessionInit (&Private->Session, FALSE);
return Private;
}
VOID
IScsiCleanDriverData (
IN ISCSI_DRIVER_DATA *Private
)
/*++
Routine Description:
Clean the iSCSI driver data.
Arguments:
Private - The iSCSI driver data.
Returns:
None.
--*/
{
if (Private->DevicePath != NULL) {
gBS->UninstallProtocolInterface (
Private->ExtScsiPassThruHandle,
&gEfiDevicePathProtocolGuid,
Private->DevicePath
);
gBS->FreePool (Private->DevicePath);
}
if (Private->ExtScsiPassThruHandle != NULL) {
gBS->UninstallProtocolInterface (
Private->ExtScsiPassThruHandle,
&gEfiExtScsiPassThruProtocolGuid,
&Private->IScsiExtScsiPassThru
);
}
gBS->CloseEvent (Private->ExitBootServiceEvent);
gBS->FreePool (Private);
}
EFI_STATUS
IScsiGetConfigData (
IN ISCSI_DRIVER_DATA *Private
)
/*++
Routine Description:
Get the various configuration data of this iSCSI instance.
Arguments:
Private - The iSCSI driver data.
Returns:
EFI_SUCCESS - The configuration of this instance is got.
EFI_NOT_FOUND - This iSCSI instance is not configured yet.
--*/
{
EFI_STATUS Status;
ISCSI_SESSION *Session;
UINTN BufferSize;
EFI_SIMPLE_NETWORK_PROTOCOL *Snp;
EFI_SIMPLE_NETWORK_MODE *Mode;
CHAR16 MacString[65];
//
// get the iSCSI Initiator Name
//
Session = &Private->Session;
Session->InitiatorNameLength = ISCSI_NAME_MAX_SIZE;
Status = gIScsiInitiatorName.Get (
&gIScsiInitiatorName,
&Session->InitiatorNameLength,
Session->InitiatorName
);
if (EFI_ERROR (Status)) {
return Status;
}
Status = gBS->HandleProtocol (
Private->Controller,
&gEfiSimpleNetworkProtocolGuid,
(VOID **)&Snp
);
if (EFI_ERROR (Status)) {
return Status;
}
Mode = Snp->Mode;
//
// Get the mac string, it's the name of various variable
//
IScsiMacAddrToStr (&Mode->PermanentAddress, Mode->HwAddressSize, MacString);
//
// Get the normal configuration.
//
BufferSize = sizeof (Session->ConfigData.NvData);
Status = gRT->GetVariable (
MacString,
&gEfiIScsiInitiatorNameProtocolGuid,
NULL,
&BufferSize,
&Session->ConfigData.NvData
);
if (EFI_ERROR (Status)) {
return Status;
}
if (!Session->ConfigData.NvData.Enabled) {
return EFI_ABORTED;
}
//
// Get the CHAP Auth information.
//
BufferSize = sizeof (Session->AuthData.AuthConfig);
Status = gRT->GetVariable (
MacString,
&mIScsiCHAPAuthInfoGuid,
NULL,
&BufferSize,
&Session->AuthData.AuthConfig
);
if (!EFI_ERROR (Status) && Session->ConfigData.NvData.InitiatorInfoFromDhcp) {
//
// Start dhcp.
//
Status = IScsiDoDhcp (Private->Image, Private->Controller, &Session->ConfigData);
}
return Status;
}
EFI_DEVICE_PATH_PROTOCOL *
IScsiGetTcpConnDevicePath (
IN ISCSI_DRIVER_DATA *Private
)
/*++
Routine Description:
Get the device path of the iSCSI tcp connection and update it.
Arguments:
Private - The iSCSI driver data.
Returns:
The updated device path.
--*/
{
ISCSI_SESSION *Session;
ISCSI_CONNECTION *Conn;
TCP4_IO *Tcp4Io;
EFI_DEVICE_PATH_PROTOCOL *DevicePath;
EFI_STATUS Status;
EFI_DEV_PATH *DPathNode;
Session = &Private->Session;
if (Session->State != SESSION_STATE_LOGGED_IN) {
return NULL;
}
Conn = NET_LIST_USER_STRUCT_S (
Session->Conns.ForwardLink,
ISCSI_CONNECTION,
Link,
ISCSI_CONNECTION_SIGNATURE
);
Tcp4Io = &Conn->Tcp4Io;
Status = gBS->HandleProtocol (
Tcp4Io->Handle,
&gEfiDevicePathProtocolGuid,
(VOID **)&DevicePath
);
if (EFI_ERROR (Status)) {
return NULL;
}
//
// Duplicate it.
//
DevicePath = DuplicateDevicePath (DevicePath);
DPathNode = (EFI_DEV_PATH *) DevicePath;
while (!IsDevicePathEnd (&DPathNode->DevPath)) {
if ((DevicePathType (&DPathNode->DevPath) == MESSAGING_DEVICE_PATH) &&
(DevicePathSubType (&DPathNode->DevPath) == MSG_IPv4_DP)
) {
DPathNode->Ipv4.LocalPort = 0;
DPathNode->Ipv4.StaticIpAddress = (BOOLEAN) (!Session->ConfigData.NvData.InitiatorInfoFromDhcp);
break;
}
DPathNode = (EFI_DEV_PATH *) NextDevicePathNode (&DPathNode->DevPath);
}
return DevicePath;
}
VOID
EFIAPI
IScsiOnExitBootService (
IN EFI_EVENT Event,
IN VOID *Context
)
/*++
Routine Description:
Abort the session when the transition from BS to RT is initiated.
Arguments:
Event - The event signaled.
Context - The iSCSI driver data.
Returns:
None.
--*/
{
ISCSI_DRIVER_DATA *Private;
Private = (ISCSI_DRIVER_DATA *) Context;
gBS->CloseEvent (Private->ExitBootServiceEvent);
IScsiSessionAbort (&Private->Session);
}