audk/EmbeddedPkg/Drivers/DwEmmcDxe/DwEmmcDxe.c

653 lines
16 KiB
C
Raw Normal View History

/** @file
This file implement the MMC Host Protocol for the DesignWare eMMC.
Copyright (c) 2014-2017, Linaro Limited. All rights reserved.
This program and the accompanying materials
are licensed and made available under the terms and conditions of the BSD License
which accompanies this distribution. The full text of the license may be found at
http://opensource.org/licenses/bsd-license.php
THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS,
WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED.
**/
#include <Library/BaseMemoryLib.h>
#include <Library/CacheMaintenanceLib.h>
#include <Library/DebugLib.h>
#include <Library/DevicePathLib.h>
#include <Library/IoLib.h>
#include <Library/MemoryAllocationLib.h>
#include <Library/PcdLib.h>
#include <Library/TimerLib.h>
#include <Library/UefiBootServicesTableLib.h>
#include <Library/UefiLib.h>
#include <Protocol/MmcHost.h>
#include "DwEmmc.h"
#define DWEMMC_DESC_PAGE 1
#define DWEMMC_BLOCK_SIZE 512
#define DWEMMC_DMA_BUF_SIZE (512 * 8)
#define DWEMMC_MAX_DESC_PAGES 512
typedef struct {
UINT32 Des0;
UINT32 Des1;
UINT32 Des2;
UINT32 Des3;
} DWEMMC_IDMAC_DESCRIPTOR;
EFI_MMC_HOST_PROTOCOL *gpMmcHost;
DWEMMC_IDMAC_DESCRIPTOR *gpIdmacDesc;
EFI_GUID mDwEmmcDevicePathGuid = EFI_CALLER_ID_GUID;
STATIC UINT32 mDwEmmcCommand;
STATIC UINT32 mDwEmmcArgument;
EFI_STATUS
DwEmmcReadBlockData (
IN EFI_MMC_HOST_PROTOCOL *This,
IN EFI_LBA Lba,
IN UINTN Length,
IN UINT32* Buffer
);
BOOLEAN
DwEmmcIsPowerOn (
VOID
)
{
return TRUE;
}
EFI_STATUS
DwEmmcInitialize (
VOID
)
{
DEBUG ((DEBUG_BLKIO, "DwEmmcInitialize()"));
return EFI_SUCCESS;
}
BOOLEAN
DwEmmcIsCardPresent (
IN EFI_MMC_HOST_PROTOCOL *This
)
{
return TRUE;
}
BOOLEAN
DwEmmcIsReadOnly (
IN EFI_MMC_HOST_PROTOCOL *This
)
{
return FALSE;
}
BOOLEAN
DwEmmcIsDmaSupported (
IN EFI_MMC_HOST_PROTOCOL *This
)
{
return TRUE;
}
EFI_STATUS
DwEmmcBuildDevicePath (
IN EFI_MMC_HOST_PROTOCOL *This,
IN EFI_DEVICE_PATH_PROTOCOL **DevicePath
)
{
EFI_DEVICE_PATH_PROTOCOL *NewDevicePathNode;
NewDevicePathNode = CreateDeviceNode (HARDWARE_DEVICE_PATH, HW_VENDOR_DP, sizeof (VENDOR_DEVICE_PATH));
CopyGuid (& ((VENDOR_DEVICE_PATH*)NewDevicePathNode)->Guid, &mDwEmmcDevicePathGuid);
*DevicePath = NewDevicePathNode;
return EFI_SUCCESS;
}
EFI_STATUS
DwEmmcUpdateClock (
VOID
)
{
UINT32 Data;
/* CMD_UPDATE_CLK */
Data = BIT_CMD_WAIT_PRVDATA_COMPLETE | BIT_CMD_UPDATE_CLOCK_ONLY |
BIT_CMD_START;
MmioWrite32 (DWEMMC_CMD, Data);
while (1) {
Data = MmioRead32 (DWEMMC_CMD);
if (!(Data & CMD_START_BIT)) {
break;
}
Data = MmioRead32 (DWEMMC_RINTSTS);
if (Data & DWEMMC_INT_HLE) {
Print (L"failed to update mmc clock frequency\n");
return EFI_DEVICE_ERROR;
}
}
return EFI_SUCCESS;
}
EFI_STATUS
DwEmmcSetClock (
IN UINTN ClockFreq
)
{
UINT32 Divider, Rate, Data;
EFI_STATUS Status;
BOOLEAN Found = FALSE;
for (Divider = 1; Divider < 256; Divider++) {
Rate = PcdGet32 (PcdDwEmmcDxeClockFrequencyInHz);
if ((Rate / (2 * Divider)) <= ClockFreq) {
Found = TRUE;
break;
}
}
if (Found == FALSE) {
return EFI_NOT_FOUND;
}
// Wait until MMC is idle
do {
Data = MmioRead32 (DWEMMC_STATUS);
} while (Data & DWEMMC_STS_DATA_BUSY);
// Disable MMC clock first
MmioWrite32 (DWEMMC_CLKENA, 0);
Status = DwEmmcUpdateClock ();
ASSERT (!EFI_ERROR (Status));
MmioWrite32 (DWEMMC_CLKDIV, Divider);
Status = DwEmmcUpdateClock ();
ASSERT (!EFI_ERROR (Status));
// Enable MMC clock
MmioWrite32 (DWEMMC_CLKENA, 1);
MmioWrite32 (DWEMMC_CLKSRC, 0);
Status = DwEmmcUpdateClock ();
ASSERT (!EFI_ERROR (Status));
return EFI_SUCCESS;
}
EFI_STATUS
DwEmmcNotifyState (
IN EFI_MMC_HOST_PROTOCOL *This,
IN MMC_STATE State
)
{
UINT32 Data;
EFI_STATUS Status;
switch (State) {
case MmcInvalidState:
return EFI_INVALID_PARAMETER;
case MmcHwInitializationState:
MmioWrite32 (DWEMMC_PWREN, 1);
// If device already turn on then restart it
Data = DWEMMC_CTRL_RESET_ALL;
MmioWrite32 (DWEMMC_CTRL, Data);
do {
// Wait until reset operation finished
Data = MmioRead32 (DWEMMC_CTRL);
} while (Data & DWEMMC_CTRL_RESET_ALL);
// Setup clock that could not be higher than 400KHz.
Status = DwEmmcSetClock (400000);
ASSERT (!EFI_ERROR (Status));
// Wait clock stable
MicroSecondDelay (100);
MmioWrite32 (DWEMMC_RINTSTS, ~0);
MmioWrite32 (DWEMMC_INTMASK, 0);
MmioWrite32 (DWEMMC_TMOUT, ~0);
MmioWrite32 (DWEMMC_IDINTEN, 0);
MmioWrite32 (DWEMMC_BMOD, DWEMMC_IDMAC_SWRESET);
MmioWrite32 (DWEMMC_BLKSIZ, DWEMMC_BLOCK_SIZE);
do {
Data = MmioRead32 (DWEMMC_BMOD);
} while (Data & DWEMMC_IDMAC_SWRESET);
break;
case MmcIdleState:
break;
case MmcReadyState:
break;
case MmcIdentificationState:
break;
case MmcStandByState:
break;
case MmcTransferState:
break;
case MmcSendingDataState:
break;
case MmcReceiveDataState:
break;
case MmcProgrammingState:
break;
case MmcDisconnectState:
break;
default:
return EFI_INVALID_PARAMETER;
}
return EFI_SUCCESS;
}
// Need to prepare DMA buffer first before sending commands to MMC card
BOOLEAN
IsPendingReadCommand (
IN MMC_CMD MmcCmd
)
{
UINTN Mask;
Mask = BIT_CMD_DATA_EXPECTED | BIT_CMD_READ;
if ((MmcCmd & Mask) == Mask) {
return TRUE;
}
return FALSE;
}
BOOLEAN
IsPendingWriteCommand (
IN MMC_CMD MmcCmd
)
{
UINTN Mask;
Mask = BIT_CMD_DATA_EXPECTED | BIT_CMD_WRITE;
if ((MmcCmd & Mask) == Mask) {
return TRUE;
}
return FALSE;
}
EFI_STATUS
SendCommand (
IN MMC_CMD MmcCmd,
IN UINT32 Argument
)
{
UINT32 Data, ErrMask;
// Wait until MMC is idle
do {
Data = MmioRead32 (DWEMMC_STATUS);
} while (Data & DWEMMC_STS_DATA_BUSY);
MmioWrite32 (DWEMMC_RINTSTS, ~0);
MmioWrite32 (DWEMMC_CMDARG, Argument);
MmioWrite32 (DWEMMC_CMD, MmcCmd);
ErrMask = DWEMMC_INT_EBE | DWEMMC_INT_HLE | DWEMMC_INT_RTO |
DWEMMC_INT_RCRC | DWEMMC_INT_RE;
ErrMask |= DWEMMC_INT_DCRC | DWEMMC_INT_DRT | DWEMMC_INT_SBE;
do {
MicroSecondDelay(500);
Data = MmioRead32 (DWEMMC_RINTSTS);
if (Data & ErrMask) {
return EFI_DEVICE_ERROR;
}
if (Data & DWEMMC_INT_DTO) { // Transfer Done
break;
}
} while (!(Data & DWEMMC_INT_CMD_DONE));
return EFI_SUCCESS;
}
EFI_STATUS
DwEmmcSendCommand (
IN EFI_MMC_HOST_PROTOCOL *This,
IN MMC_CMD MmcCmd,
IN UINT32 Argument
)
{
UINT32 Cmd = 0;
EFI_STATUS Status = EFI_SUCCESS;
switch (MMC_GET_INDX(MmcCmd)) {
case MMC_INDX(0):
Cmd = BIT_CMD_SEND_INIT;
break;
case MMC_INDX(1):
Cmd = BIT_CMD_RESPONSE_EXPECT;
break;
case MMC_INDX(2):
Cmd = BIT_CMD_RESPONSE_EXPECT | BIT_CMD_LONG_RESPONSE |
BIT_CMD_CHECK_RESPONSE_CRC | BIT_CMD_SEND_INIT;
break;
case MMC_INDX(3):
Cmd = BIT_CMD_RESPONSE_EXPECT | BIT_CMD_CHECK_RESPONSE_CRC |
BIT_CMD_SEND_INIT;
break;
case MMC_INDX(7):
if (Argument)
Cmd = BIT_CMD_RESPONSE_EXPECT | BIT_CMD_CHECK_RESPONSE_CRC;
else
Cmd = 0;
break;
case MMC_INDX(8):
Cmd = BIT_CMD_RESPONSE_EXPECT | BIT_CMD_CHECK_RESPONSE_CRC |
BIT_CMD_DATA_EXPECTED | BIT_CMD_READ |
BIT_CMD_WAIT_PRVDATA_COMPLETE;
break;
case MMC_INDX(9):
Cmd = BIT_CMD_RESPONSE_EXPECT | BIT_CMD_CHECK_RESPONSE_CRC |
BIT_CMD_LONG_RESPONSE;
break;
case MMC_INDX(12):
Cmd = BIT_CMD_RESPONSE_EXPECT | BIT_CMD_CHECK_RESPONSE_CRC |
BIT_CMD_STOP_ABORT_CMD;
break;
case MMC_INDX(13):
Cmd = BIT_CMD_RESPONSE_EXPECT | BIT_CMD_CHECK_RESPONSE_CRC |
BIT_CMD_WAIT_PRVDATA_COMPLETE;
break;
case MMC_INDX(16):
Cmd = BIT_CMD_RESPONSE_EXPECT | BIT_CMD_CHECK_RESPONSE_CRC |
BIT_CMD_DATA_EXPECTED | BIT_CMD_READ |
BIT_CMD_WAIT_PRVDATA_COMPLETE;
break;
case MMC_INDX(17):
case MMC_INDX(18):
Cmd = BIT_CMD_RESPONSE_EXPECT | BIT_CMD_CHECK_RESPONSE_CRC |
BIT_CMD_DATA_EXPECTED | BIT_CMD_READ |
BIT_CMD_WAIT_PRVDATA_COMPLETE;
break;
case MMC_INDX(24):
case MMC_INDX(25):
Cmd = BIT_CMD_RESPONSE_EXPECT | BIT_CMD_CHECK_RESPONSE_CRC |
BIT_CMD_DATA_EXPECTED | BIT_CMD_WRITE |
BIT_CMD_WAIT_PRVDATA_COMPLETE;
break;
case MMC_INDX(30):
Cmd = BIT_CMD_RESPONSE_EXPECT | BIT_CMD_CHECK_RESPONSE_CRC |
BIT_CMD_DATA_EXPECTED;
break;
default:
Cmd = BIT_CMD_RESPONSE_EXPECT | BIT_CMD_CHECK_RESPONSE_CRC;
break;
}
Cmd |= MMC_GET_INDX(MmcCmd) | BIT_CMD_USE_HOLD_REG | BIT_CMD_START;
if (IsPendingReadCommand (Cmd) || IsPendingWriteCommand (Cmd)) {
mDwEmmcCommand = Cmd;
mDwEmmcArgument = Argument;
} else {
Status = SendCommand (Cmd, Argument);
}
return Status;
}
EFI_STATUS
DwEmmcReceiveResponse (
IN EFI_MMC_HOST_PROTOCOL *This,
IN MMC_RESPONSE_TYPE Type,
IN UINT32* Buffer
)
{
if (Buffer == NULL) {
return EFI_INVALID_PARAMETER;
}
if ( (Type == MMC_RESPONSE_TYPE_R1)
|| (Type == MMC_RESPONSE_TYPE_R1b)
|| (Type == MMC_RESPONSE_TYPE_R3)
|| (Type == MMC_RESPONSE_TYPE_R6)
|| (Type == MMC_RESPONSE_TYPE_R7))
{
Buffer[0] = MmioRead32 (DWEMMC_RESP0);
} else if (Type == MMC_RESPONSE_TYPE_R2) {
Buffer[0] = MmioRead32 (DWEMMC_RESP0);
Buffer[1] = MmioRead32 (DWEMMC_RESP1);
Buffer[2] = MmioRead32 (DWEMMC_RESP2);
Buffer[3] = MmioRead32 (DWEMMC_RESP3);
}
return EFI_SUCCESS;
}
EFI_STATUS
PrepareDmaData (
IN DWEMMC_IDMAC_DESCRIPTOR* IdmacDesc,
IN UINTN Length,
IN UINT32* Buffer
)
{
UINTN Cnt, Blks, Idx, LastIdx;
Cnt = (Length + DWEMMC_DMA_BUF_SIZE - 1) / DWEMMC_DMA_BUF_SIZE;
Blks = (Length + DWEMMC_BLOCK_SIZE - 1) / DWEMMC_BLOCK_SIZE;
Length = DWEMMC_BLOCK_SIZE * Blks;
for (Idx = 0; Idx < Cnt; Idx++) {
(IdmacDesc + Idx)->Des0 = DWEMMC_IDMAC_DES0_OWN | DWEMMC_IDMAC_DES0_CH |
DWEMMC_IDMAC_DES0_DIC;
(IdmacDesc + Idx)->Des1 = DWEMMC_IDMAC_DES1_BS1(DWEMMC_DMA_BUF_SIZE);
/* Buffer Address */
(IdmacDesc + Idx)->Des2 = (UINT32)((UINTN)Buffer + DWEMMC_DMA_BUF_SIZE * Idx);
/* Next Descriptor Address */
(IdmacDesc + Idx)->Des3 = (UINT32)((UINTN)IdmacDesc +
(sizeof(DWEMMC_IDMAC_DESCRIPTOR) * (Idx + 1)));
}
/* First Descriptor */
IdmacDesc->Des0 |= DWEMMC_IDMAC_DES0_FS;
/* Last Descriptor */
LastIdx = Cnt - 1;
(IdmacDesc + LastIdx)->Des0 |= DWEMMC_IDMAC_DES0_LD;
(IdmacDesc + LastIdx)->Des0 &= ~(DWEMMC_IDMAC_DES0_DIC | DWEMMC_IDMAC_DES0_CH);
(IdmacDesc + LastIdx)->Des1 = DWEMMC_IDMAC_DES1_BS1(Length -
(LastIdx * DWEMMC_DMA_BUF_SIZE));
/* Set the Next field of Last Descriptor */
(IdmacDesc + LastIdx)->Des3 = 0;
MmioWrite32 (DWEMMC_DBADDR, (UINT32)((UINTN)IdmacDesc));
return EFI_SUCCESS;
}
VOID
StartDma (
UINTN Length
)
{
UINT32 Data;
Data = MmioRead32 (DWEMMC_CTRL);
Data |= DWEMMC_CTRL_INT_EN | DWEMMC_CTRL_DMA_EN | DWEMMC_CTRL_IDMAC_EN;
MmioWrite32 (DWEMMC_CTRL, Data);
Data = MmioRead32 (DWEMMC_BMOD);
Data |= DWEMMC_IDMAC_ENABLE | DWEMMC_IDMAC_FB;
MmioWrite32 (DWEMMC_BMOD, Data);
MmioWrite32 (DWEMMC_BLKSIZ, DWEMMC_BLOCK_SIZE);
MmioWrite32 (DWEMMC_BYTCNT, Length);
}
EFI_STATUS
DwEmmcReadBlockData (
IN EFI_MMC_HOST_PROTOCOL *This,
IN EFI_LBA Lba,
IN UINTN Length,
IN UINT32* Buffer
)
{
EFI_STATUS Status;
UINT32 DescPages, CountPerPage, Count;
EFI_TPL Tpl;
Tpl = gBS->RaiseTPL (TPL_NOTIFY);
CountPerPage = EFI_PAGE_SIZE / 16;
Count = (Length + DWEMMC_DMA_BUF_SIZE - 1) / DWEMMC_DMA_BUF_SIZE;
DescPages = (Count + CountPerPage - 1) / CountPerPage;
InvalidateDataCacheRange (Buffer, Length);
Status = PrepareDmaData (gpIdmacDesc, Length, Buffer);
if (EFI_ERROR (Status)) {
goto out;
}
WriteBackDataCacheRange (gpIdmacDesc, DescPages * EFI_PAGE_SIZE);
StartDma (Length);
Status = SendCommand (mDwEmmcCommand, mDwEmmcArgument);
if (EFI_ERROR (Status)) {
DEBUG ((DEBUG_ERROR, "Failed to read data, mDwEmmcCommand:%x, mDwEmmcArgument:%x, Status:%r\n", mDwEmmcCommand, mDwEmmcArgument, Status));
goto out;
}
out:
// Restore Tpl
gBS->RestoreTPL (Tpl);
return Status;
}
EFI_STATUS
DwEmmcWriteBlockData (
IN EFI_MMC_HOST_PROTOCOL *This,
IN EFI_LBA Lba,
IN UINTN Length,
IN UINT32* Buffer
)
{
EFI_STATUS Status;
UINT32 DescPages, CountPerPage, Count;
EFI_TPL Tpl;
Tpl = gBS->RaiseTPL (TPL_NOTIFY);
CountPerPage = EFI_PAGE_SIZE / 16;
Count = (Length + DWEMMC_DMA_BUF_SIZE - 1) / DWEMMC_DMA_BUF_SIZE;
DescPages = (Count + CountPerPage - 1) / CountPerPage;
WriteBackDataCacheRange (Buffer, Length);
Status = PrepareDmaData (gpIdmacDesc, Length, Buffer);
if (EFI_ERROR (Status)) {
goto out;
}
WriteBackDataCacheRange (gpIdmacDesc, DescPages * EFI_PAGE_SIZE);
StartDma (Length);
Status = SendCommand (mDwEmmcCommand, mDwEmmcArgument);
if (EFI_ERROR (Status)) {
DEBUG ((DEBUG_ERROR, "Failed to write data, mDwEmmcCommand:%x, mDwEmmcArgument:%x, Status:%r\n", mDwEmmcCommand, mDwEmmcArgument, Status));
goto out;
}
out:
// Restore Tpl
gBS->RestoreTPL (Tpl);
return Status;
}
EFI_STATUS
DwEmmcSetIos (
IN EFI_MMC_HOST_PROTOCOL *This,
IN UINT32 BusClockFreq,
IN UINT32 BusWidth,
IN UINT32 TimingMode
)
{
EFI_STATUS Status = EFI_SUCCESS;
UINT32 Data;
if ((PcdGet32 (PcdDwEmmcDxeMaxClockFreqInHz) != 0) &&
(BusClockFreq > PcdGet32 (PcdDwEmmcDxeMaxClockFreqInHz))) {
return EFI_UNSUPPORTED;
}
if (TimingMode != EMMCBACKWARD) {
Data = MmioRead32 (DWEMMC_UHSREG);
switch (TimingMode) {
case EMMCHS52DDR1V2:
case EMMCHS52DDR1V8:
Data |= 1 << 16;
break;
case EMMCHS52:
case EMMCHS26:
Data &= ~(1 << 16);
break;
default:
return EFI_UNSUPPORTED;
}
MmioWrite32 (DWEMMC_UHSREG, Data);
}
switch (BusWidth) {
case 1:
MmioWrite32 (DWEMMC_CTYPE, 0);
break;
case 4:
MmioWrite32 (DWEMMC_CTYPE, 1);
break;
case 8:
MmioWrite32 (DWEMMC_CTYPE, 1 << 16);
break;
default:
return EFI_UNSUPPORTED;
}
if (BusClockFreq) {
Status = DwEmmcSetClock (BusClockFreq);
}
return Status;
}
BOOLEAN
DwEmmcIsMultiBlock (
IN EFI_MMC_HOST_PROTOCOL *This
)
{
return TRUE;
}
EFI_MMC_HOST_PROTOCOL gMciHost = {
MMC_HOST_PROTOCOL_REVISION,
DwEmmcIsCardPresent,
DwEmmcIsReadOnly,
DwEmmcBuildDevicePath,
DwEmmcNotifyState,
DwEmmcSendCommand,
DwEmmcReceiveResponse,
DwEmmcReadBlockData,
DwEmmcWriteBlockData,
DwEmmcSetIos,
DwEmmcIsMultiBlock
};
EFI_STATUS
DwEmmcDxeInitialize (
IN EFI_HANDLE ImageHandle,
IN EFI_SYSTEM_TABLE *SystemTable
)
{
EFI_STATUS Status;
EFI_HANDLE Handle;
Handle = NULL;
gpIdmacDesc = (DWEMMC_IDMAC_DESCRIPTOR *)AllocatePages (DWEMMC_MAX_DESC_PAGES);
if (gpIdmacDesc == NULL) {
return EFI_BUFFER_TOO_SMALL;
}
DEBUG ((DEBUG_BLKIO, "DwEmmcDxeInitialize()\n"));
//Publish Component Name, BlockIO protocol interfaces
Status = gBS->InstallMultipleProtocolInterfaces (
&Handle,
&gEfiMmcHostProtocolGuid, &gMciHost,
NULL
);
ASSERT_EFI_ERROR (Status);
return EFI_SUCCESS;
}