audk/MdeModulePkg/Library/PeiCrc32GuidedSectionExtrac.../PeiCrc32GuidedSectionExtrac...

313 lines
10 KiB
C
Raw Normal View History

Contributed-under: TianoCore Contribution Agreement 1.0 Signed-off-by: Michael Kinney <michael.d.kinney@intel.com> Reviewed-by: Feng Tian <feng.tian@intel.com> Add support for RSA 2048 SHA 256 signing and verification encoded in a PI FFS GUIDED Encapsulation Section. The primary use case of this feature is in support of signing and verification of encapsulated FVs for Recovery and Capsule Update, but can potentially be used for signing and verification of any content that can be stored in a PI conformant FFS file. Signing operations are performed from python scripts that wrap OpenSsl command line utilities. Verification operations are performed using the OpenSsl libraries in the CryptoPkg. The guided encapsulation sections uses the UEFI 2.4 Specification defined GUID called EFI_CERT_TYPE_RSA2048_SHA256_GUID. The data layout for the encapsulation section starts with the UEFI 2.4 Specification defined structure called EFI_CERT_BLOCK_RSA_2048_SHA256 followed immediately by the data. The signing tool included in these patches performs encode/decode operations using this data layout. HashType is set to the UEFI 2.4 Specification defined GUID called EFI_HASH_ALGORITHM_SHA256_GUID. MdePkg/Include/Guid/WinCertificate.h ================================= // // WIN_CERTIFICATE_UEFI_GUID.CertType // #define EFI_CERT_TYPE_RSA2048_SHA256_GUID \ {0xa7717414, 0xc616, 0x4977, {0x94, 0x20, 0x84, 0x47, 0x12, 0xa7, 0x35, 0xbf } } /// /// WIN_CERTIFICATE_UEFI_GUID.CertData /// typedef struct { EFI_GUID HashType; UINT8 PublicKey[256]; UINT8 Signature[256]; } EFI_CERT_BLOCK_RSA_2048_SHA256; MdePkg/Include/Protocol/Hash.h ================================= #define EFI_HASH_ALGORITHM_SHA256_GUID \ { \ 0x51aa59de, 0xfdf2, 0x4ea3, {0xbc, 0x63, 0x87, 0x5f, 0xb7, 0x84, 0x2e, 0xe9 } \ } The verification operations require the use of public key(s). A new PCD called gEfiSecurityPkgTokenSpaceGuid.PcdRsa2048Sha256PublicKeyBuffer is added to the SecurityPkg that supports one or more SHA 256 hashes of the public keys. A SHA 256 hash is performed to minimize the FLASH overhead of storing the public keys. When a verification operation is performed, a SHA 256 hash is performed on EFI_CERT_BLOCK_RSA_2048_SHA256.PublicKey and a check is made to see if that hash matches any of the hashes in the new PCD. It is recommended that this PCD always be configured in the DSC file as storage type of [PcdsDynamixExVpd], so the public keys are stored in a protected read-only region. While working on this feature, I noticed that the CRC32 signing and verification feature was incomplete. It only supported CRC32 based verification in the DXE Phase, so the attached patches also provide support for CRC32 based verification in the PEI Phase. I also noticed that the most common method for incorporating guided section extraction libraries was to directly link them to the DXE Core, which is not very flexible. The attached patches also add a generic section extraction PEIM and a generic section extraction DXE driver that can each be linked against one or more section extraction libraries. This provides a platform developer with the option of providing section extraction services with the DXE Core or providing section extraction services with these generic PEIM/DXE Drivers. Patch Summary ============== 1) BaseTools - Rsa2049Sha256Sign python script that can perform test signing or custom signing of PI FFS file GUIDed sections a. Wrapper for a set of OpenSsl command line utility operations b. OpenSsl command line tool must be installed in location that is in standard OS path or in path specified by OS environment variable called OPENSSL_PATH c. Provides standard EDK II command line arguments for a tool that encodes/decodes guided encapsulation section Rsa2048Sha256Sign - Copyright (c) 2013 - 2014, Intel Corporation. All rights reserved. usage: Rsa2048Sha256Sign -e|-d [options] <input_file> positional arguments: input_file specify the input filename optional arguments: -e encode file -d decode file -o filename, --output filename specify the output filename --private-key PRIVATEKEYFILE specify the private key filename. If not specified, a test signing key is used. -v, --verbose increase output messages -q, --quiet reduce output messages --debug [0-9] set debug level --version display the program version and exit -h, --help display this help text 2) BaseTools - Rsa2049Sha256GenerateKeys python script that can generate new private/public key and PCD value that is SHA 256 hash of public key using OpenSsl command line utilities. a. Wrapper for a set of OpenSsl command line utility operations b. OpenSsl command line tool must be installed in location that is in standard path or in path specified by OS environment variable called OPENSSL_PATH Rsa2048Sha256GenerateKeys - Copyright (c) 2013 - 2014, Intel Corporation. All rights reserved. usage: Rsa2048Sha256GenerateKeys [options] optional arguments: -o [filename [filename ...]], --output [filename [filename ...]] specify the output private key filename in PEM format -i [filename [filename ...]], --input [filename [filename ...]] specify the input private key filename in PEM format --public-key-hash PUBLICKEYHASHFILE specify the public key hash filename that is SHA 256 hash of 2048 bit RSA public key in binary format --public-key-hash-c PUBLICKEYHASHCFILE specify the public key hash filename that is SHA 256 hash of 2048 bit RSA public key in C structure format -v, --verbose increase output messages -q, --quiet reduce output messages --debug [0-9] set debug level --version display the program version and exit -h, --help display this help text 3) BaseTools\Conf\tools_def.template a. Define GUID/Tool to perform RSA 2048 SHA 256 test signing and instructions on how to use alternate private/public key b. GUID is EFI_CERT_TYPE_RSA2048_SHA256_GUID c. Tool is Rsa2049Sha256Sign 4) MdeModulePkg\Library\PeiCrc32GuidedSectionExtractionLib a. Add peer for DxeCrc32GuidedSectionExtractionLib so both PEI and DXE phases can perform basic integrity checks of PEI and DXE components 5) MdeModulePkg\Universal\SectionExtractionPei a. Generic PEIM that can link against one or more NULL section extraction library instances to provided one or more GUIDED Section Extraction PPIs 6) MdeModulePkg\Universal\SectionExtractionDxe a. Generic DXE Driver that can link against one or more NULL section extraction library instances to provide one or more GUIDED Section Extraction Protocols. 7) SecurityPkg\Library\PeiRsa2048Sha256GuidedSectionExtractLib a. NULL library instances that performs PEI phase RSA 2048 SHA 256 signature verification using OpenSsl libraries from CryptoPkg. b. Based on algorithms from SecurityPkg Authenticated Variable services c. Uses public key from gEfiSecurityPkgTokenSpaceGuid.PcdRsa2048Sha256PublicKeyBuffer. 8) SecurityPkg\Library\DxeRsa2048Sha256GuidedSectionExtractLib a. NULL library instances that performs DXE phase RSA 2048 SHA 256 signature verification using OpenSsl libraries from CryptoPkg. b. Based on algorithms from SecurityPkg Authenticated Variable services c. Uses public key from gEfiSecurityPkgTokenSpaceGuid.PcdRsa2048Sha256PublicKeyBuffer. git-svn-id: https://svn.code.sf.net/p/edk2/code/trunk/edk2@15799 6f19259b-4bc3-4df7-8a09-765794883524
2014-08-14 08:29:07 +02:00
/** @file
This library registers CRC32 guided section handler
to parse CRC32 encapsulation section and extract raw data.
Copyright (c) 2007 - 2014, Intel Corporation. All rights reserved.<BR>
This program and the accompanying materials
are licensed and made available under the terms and conditions of the BSD License
which accompanies this distribution. The full text of the license may be found at
http://opensource.org/licenses/bsd-license.php
THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS,
WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED.
**/
#include <PiPei.h>
#include <Guid/Crc32GuidedSectionExtraction.h>
#include <Library/ExtractGuidedSectionLib.h>
#include <Library/DebugLib.h>
#include <Library/BaseMemoryLib.h>
///
/// CRC32 Guided Section header
///
typedef struct {
EFI_GUID_DEFINED_SECTION GuidedSectionHeader; ///< EFI guided section header
UINT32 CRC32Checksum; ///< 32bit CRC check sum
} CRC32_SECTION_HEADER;
typedef struct {
EFI_GUID_DEFINED_SECTION2 GuidedSectionHeader; ///< EFI guided section header
UINT32 CRC32Checksum; ///< 32bit CRC check sum
} CRC32_SECTION2_HEADER;
/**
This internal function reverses bits for 32bit data.
@param Value The data to be reversed.
@return Data reversed.
**/
UINT32
PeiCrc32GuidedSectionExtractLibReverseBits (
UINT32 Value
)
{
UINTN Index;
UINT32 NewValue;
NewValue = 0;
for (Index = 0; Index < 32; Index++) {
if ((Value & (1 << Index)) != 0) {
NewValue = NewValue | (1 << (31 - Index));
}
}
return NewValue;
}
/**
Calculate CRC32 for target data.
@param Data The target data.
@param DataSize The target data size.
@param CrcOut The CRC32 for target data.
@retval EFI_SUCCESS The CRC32 for target data is calculated successfully.
@retval EFI_INVALID_PARAMETER Some parameter is not valid, so the CRC32 is not
calculated.
**/
EFI_STATUS
EFIAPI
PeiCrc32GuidedSectionExtractLibCalculateCrc32 (
IN VOID *Data,
IN UINTN DataSize,
OUT UINT32 *CrcOut
)
{
UINT32 CrcTable[256];
UINTN TableEntry;
UINTN Index;
UINT32 Value;
UINT32 Crc;
UINT8 *Ptr;
if (Data == NULL || DataSize == 0 || CrcOut == NULL) {
return EFI_INVALID_PARAMETER;
}
//
// Initialize CRC32 table.
//
for (TableEntry = 0; TableEntry < 256; TableEntry++) {
Value = PeiCrc32GuidedSectionExtractLibReverseBits ((UINT32) TableEntry);
for (Index = 0; Index < 8; Index++) {
if ((Value & 0x80000000) != 0) {
Value = (Value << 1) ^ 0x04c11db7;
} else {
Value = Value << 1;
}
}
CrcTable[TableEntry] = PeiCrc32GuidedSectionExtractLibReverseBits (Value);
}
//
// Compute CRC
//
Crc = 0xffffffff;
for (Index = 0, Ptr = Data; Index < DataSize; Index++, Ptr++) {
Crc = (Crc >> 8) ^ CrcTable[(UINT8) Crc ^ *Ptr];
}
*CrcOut = Crc ^ 0xffffffff;
return EFI_SUCCESS;
}
/**
GetInfo gets raw data size and attribute of the input guided section.
It first checks whether the input guid section is supported.
If not, EFI_INVALID_PARAMETER will return.
@param InputSection Buffer containing the input GUIDed section to be processed.
@param OutputBufferSize The size of OutputBuffer.
@param ScratchBufferSize The size of ScratchBuffer.
@param SectionAttribute The attribute of the input guided section.
@retval EFI_SUCCESS The size of destination buffer, the size of scratch buffer and
the attribute of the input section are successull retrieved.
@retval EFI_INVALID_PARAMETER The GUID in InputSection does not match this instance guid.
**/
EFI_STATUS
EFIAPI
Crc32GuidedSectionGetInfo (
IN CONST VOID *InputSection,
OUT UINT32 *OutputBufferSize,
OUT UINT32 *ScratchBufferSize,
OUT UINT16 *SectionAttribute
)
{
if (IS_SECTION2 (InputSection)) {
//
// Check whether the input guid section is recognized.
//
if (!CompareGuid (
&gEfiCrc32GuidedSectionExtractionGuid,
&(((EFI_GUID_DEFINED_SECTION2 *) InputSection)->SectionDefinitionGuid))) {
return EFI_INVALID_PARAMETER;
}
//
// Retrieve the size and attribute of the input section data.
//
*SectionAttribute = ((EFI_GUID_DEFINED_SECTION2 *) InputSection)->Attributes;
*ScratchBufferSize = 0;
*OutputBufferSize = SECTION2_SIZE (InputSection) - ((EFI_GUID_DEFINED_SECTION2 *) InputSection)->DataOffset;
} else {
//
// Check whether the input guid section is recognized.
//
if (!CompareGuid (
&gEfiCrc32GuidedSectionExtractionGuid,
&(((EFI_GUID_DEFINED_SECTION *) InputSection)->SectionDefinitionGuid))) {
return EFI_INVALID_PARAMETER;
}
//
// Retrieve the size and attribute of the input section data.
//
*SectionAttribute = ((EFI_GUID_DEFINED_SECTION *) InputSection)->Attributes;
*ScratchBufferSize = 0;
*OutputBufferSize = SECTION_SIZE (InputSection) - ((EFI_GUID_DEFINED_SECTION *) InputSection)->DataOffset;
}
return EFI_SUCCESS;
}
/**
Extraction handler tries to extract raw data from the input guided section.
It also does authentication check for 32bit CRC value in the input guided section.
It first checks whether the input guid section is supported.
If not, EFI_INVALID_PARAMETER will return.
@param InputSection Buffer containing the input GUIDed section to be processed.
@param OutputBuffer Buffer to contain the output raw data allocated by the caller.
@param ScratchBuffer A pointer to a caller-allocated buffer for function internal use.
@param AuthenticationStatus A pointer to a caller-allocated UINT32 that indicates the
authentication status of the output buffer.
@retval EFI_SUCCESS Section Data and Auth Status is extracted successfully.
@retval EFI_INVALID_PARAMETER The GUID in InputSection does not match this instance guid.
**/
EFI_STATUS
EFIAPI
Crc32GuidedSectionHandler (
IN CONST VOID *InputSection,
OUT VOID **OutputBuffer,
IN VOID *ScratchBuffer, OPTIONAL
OUT UINT32 *AuthenticationStatus
)
{
EFI_STATUS Status;
UINT32 SectionCrc32Checksum;
UINT32 Crc32Checksum;
UINT32 OutputBufferSize;
if (IS_SECTION2 (InputSection)) {
//
// Check whether the input guid section is recognized.
//
if (!CompareGuid (
&gEfiCrc32GuidedSectionExtractionGuid,
&(((EFI_GUID_DEFINED_SECTION2 *) InputSection)->SectionDefinitionGuid))) {
return EFI_INVALID_PARAMETER;
}
//
// Get section Crc32 checksum.
//
SectionCrc32Checksum = ((CRC32_SECTION2_HEADER *) InputSection)->CRC32Checksum;
*OutputBuffer = (UINT8 *) InputSection + ((EFI_GUID_DEFINED_SECTION2 *) InputSection)->DataOffset;
OutputBufferSize = SECTION2_SIZE (InputSection) - ((EFI_GUID_DEFINED_SECTION2 *) InputSection)->DataOffset;
//
// Implicitly CRC32 GUIDed section should have STATUS_VALID bit set
//
ASSERT (((EFI_GUID_DEFINED_SECTION2 *) InputSection)->Attributes & EFI_GUIDED_SECTION_AUTH_STATUS_VALID);
*AuthenticationStatus = EFI_AUTH_STATUS_IMAGE_SIGNED;
} else {
//
// Check whether the input guid section is recognized.
//
if (!CompareGuid (
&gEfiCrc32GuidedSectionExtractionGuid,
&(((EFI_GUID_DEFINED_SECTION *) InputSection)->SectionDefinitionGuid))) {
return EFI_INVALID_PARAMETER;
}
//
// Get section Crc32 checksum.
//
SectionCrc32Checksum = ((CRC32_SECTION_HEADER *) InputSection)->CRC32Checksum;
*OutputBuffer = (UINT8 *) InputSection + ((EFI_GUID_DEFINED_SECTION *) InputSection)->DataOffset;
OutputBufferSize = SECTION_SIZE (InputSection) - ((EFI_GUID_DEFINED_SECTION *) InputSection)->DataOffset;
//
// Implicitly CRC32 GUIDed section should have STATUS_VALID bit set
//
ASSERT (((EFI_GUID_DEFINED_SECTION *) InputSection)->Attributes & EFI_GUIDED_SECTION_AUTH_STATUS_VALID);
*AuthenticationStatus = EFI_AUTH_STATUS_IMAGE_SIGNED;
}
//
// Init Checksum value to Zero.
//
Crc32Checksum = 0;
//
// Calculate CRC32 Checksum of Image
//
Status = PeiCrc32GuidedSectionExtractLibCalculateCrc32 (*OutputBuffer, OutputBufferSize, &Crc32Checksum);
if (Status == EFI_SUCCESS) {
if (Crc32Checksum != SectionCrc32Checksum) {
//
// If Crc32 checksum is not matched, AUTH tested failed bit is set.
//
*AuthenticationStatus |= EFI_AUTH_STATUS_TEST_FAILED;
}
} else {
//
// If Crc32 checksum is not calculated, AUTH not tested bit is set.
//
*AuthenticationStatus |= EFI_AUTH_STATUS_NOT_TESTED;
}
//
// Temp solution until PeiCore checks AUTH Status.
//
if ((*AuthenticationStatus & (EFI_AUTH_STATUS_TEST_FAILED | EFI_AUTH_STATUS_NOT_TESTED)) != 0) {
return EFI_ACCESS_DENIED;
}
return EFI_SUCCESS;
}
/**
Register the handler to extract CRC32 guided section.
@param FileHandle The handle of FFS header the loaded driver.
@param PeiServices The pointer to the PEI services.
@retval EFI_SUCCESS Register successfully.
@retval EFI_OUT_OF_RESOURCES Not enough memory to register this handler.
**/
EFI_STATUS
EFIAPI
PeiCrc32GuidedSectionExtractLibConstructor (
IN EFI_PEI_FILE_HANDLE FileHandle,
IN CONST EFI_PEI_SERVICES **PeiServices
)
{
return ExtractGuidedSectionRegisterHandlers (
&gEfiCrc32GuidedSectionExtractionGuid,
Crc32GuidedSectionGetInfo,
Crc32GuidedSectionHandler
);
}