audk/EdkModulePkg/Core/DxeIplX64Peim/DxeLoadX64.c

994 lines
28 KiB
C
Raw Normal View History

/*++
Copyright (c) 2006, Intel Corporation
All rights reserved. This program and the accompanying materials
are licensed and made available under the terms and conditions of the BSD License
which accompanies this distribution. The full text of the license may be found at
http://opensource.org/licenses/bsd-license.php
THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS,
WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED.
Module Name:
DxeLoad.c
Abstract:
Last PEIM.
Responsibility of this module is to load the DXE Core from a Firmware Volume.
--*/
#include <DxeIpl.h>
#pragma warning( disable : 4305 )
BOOLEAN gInMemory = FALSE;
//
// Module Globals used in the DXE to PEI handoff
// These must be module globals, so the stack can be switched
//
static EFI_DXE_IPL_PPI mDxeIplPpi = {
DxeLoadCore
};
static EFI_PEI_FV_FILE_LOADER_PPI mLoadFilePpi = {
DxeIplLoadFile
};
static EFI_PEI_PPI_DESCRIPTOR mPpiLoadFile = {
(EFI_PEI_PPI_DESCRIPTOR_PPI | EFI_PEI_PPI_DESCRIPTOR_TERMINATE_LIST),
&gEfiPeiFvFileLoaderPpiGuid,
&mLoadFilePpi
};
static EFI_PEI_PPI_DESCRIPTOR mPpiList = {
(EFI_PEI_PPI_DESCRIPTOR_PPI | EFI_PEI_PPI_DESCRIPTOR_TERMINATE_LIST),
&gEfiDxeIplPpiGuid,
&mDxeIplPpi
};
static EFI_PEI_PPI_DESCRIPTOR mPpiPeiInMemory = {
(EFI_PEI_PPI_DESCRIPTOR_PPI | EFI_PEI_PPI_DESCRIPTOR_TERMINATE_LIST),
&gPeiInMemoryGuid,
NULL
};
static EFI_PEI_PPI_DESCRIPTOR mPpiSignal = {
(EFI_PEI_PPI_DESCRIPTOR_PPI | EFI_PEI_PPI_DESCRIPTOR_TERMINATE_LIST),
&gEfiEndOfPeiSignalPpiGuid,
NULL
};
GLOBAL_REMOVE_IF_UNREFERENCED DECOMPRESS_LIBRARY gEfiDecompress = {
UefiDecompressGetInfo,
UefiDecompress
};
GLOBAL_REMOVE_IF_UNREFERENCED DECOMPRESS_LIBRARY gTianoDecompress = {
TianoDecompressGetInfo,
TianoDecompress
};
GLOBAL_REMOVE_IF_UNREFERENCED DECOMPRESS_LIBRARY gCustomDecompress = {
CustomDecompressGetInfo,
CustomDecompress
};
STATIC
UINTN
GetOccupiedSize (
IN UINTN ActualSize,
IN UINTN Alignment
)
{
UINTN OccupiedSize;
OccupiedSize = ActualSize;
while ((OccupiedSize & (Alignment - 1)) != 0) {
OccupiedSize++;
}
return OccupiedSize;
}
EFI_STATUS
EFIAPI
PeimInitializeDxeIpl (
IN EFI_FFS_FILE_HEADER *FfsHeader,
IN EFI_PEI_SERVICES **PeiServices
)
/*++
Routine Description:
Initializes the Dxe Ipl PPI
Arguments:
FfsHeader - Pointer to FFS file header
PeiServices - General purpose services available to every PEIM.
Returns:
EFI_SUCCESS
--*/
{
EFI_STATUS Status;
EFI_PEI_PE_COFF_LOADER_PROTOCOL *PeiEfiPeiPeCoffLoader;
EFI_BOOT_MODE BootMode;
Status = PeiServicesGetBootMode (&BootMode);
ASSERT_EFI_ERROR (Status);
Status = PeiServicesLocatePpi (
&gPeiInMemoryGuid,
0,
NULL,
NULL
);
if (EFI_ERROR (Status) && (BootMode != BOOT_ON_S3_RESUME)) {
//
// The DxeIpl has not yet been shadowed
//
PeiEfiPeiPeCoffLoader = (EFI_PEI_PE_COFF_LOADER_PROTOCOL *)GetPeCoffLoaderProtocol ();
//
// Shadow DxeIpl and then re-run its entry point
//
Status = ShadowDxeIpl (FfsHeader, PeiEfiPeiPeCoffLoader);
if (EFI_ERROR (Status)) {
return Status;
}
} else {
if (BootMode != BOOT_ON_S3_RESUME) {
//
// The DxeIpl has been shadowed
//
gInMemory = TRUE;
//
// Install LoadFile PPI
//
Status = PeiServicesInstallPpi (&mPpiLoadFile);
if (EFI_ERROR (Status)) {
return Status;
}
}
//
// Install DxeIpl PPI
//
PeiServicesInstallPpi (&mPpiList);
if (EFI_ERROR (Status)) {
return Status;
}
}
return EFI_SUCCESS;
}
EFI_STATUS
EFIAPI
DxeLoadCore (
IN EFI_DXE_IPL_PPI *This,
IN EFI_PEI_SERVICES **PeiServices,
IN EFI_PEI_HOB_POINTERS HobList
)
/*++
Routine Description:
Main entry point to last PEIM
Arguments:
This - Entry point for DXE IPL PPI
PeiServices - General purpose services available to every PEIM.
HobList - Address to the Pei HOB list
Returns:
EFI_SUCCESS - DEX core was successfully loaded.
EFI_OUT_OF_RESOURCES - There are not enough resources to load DXE core.
--*/
{
EFI_STATUS Status;
EFI_PHYSICAL_ADDRESS TopOfStack;
EFI_PHYSICAL_ADDRESS BaseOfStack;
EFI_PHYSICAL_ADDRESS BspStore;
EFI_GUID DxeCoreFileName;
VOID *DxeCorePe32Data;
EFI_PHYSICAL_ADDRESS DxeCoreAddress;
UINT64 DxeCoreSize;
EFI_PHYSICAL_ADDRESS DxeCoreEntryPoint;
EFI_PEI_PE_COFF_LOADER_PROTOCOL *PeiEfiPeiPeCoffLoader;
EFI_BOOT_MODE BootMode;
EFI_PEI_RECOVERY_MODULE_PPI *PeiRecovery;
EFI_PEI_S3_RESUME_PPI *S3Resume;
EFI_PHYSICAL_ADDRESS PageTables;
TopOfStack = 0;
BaseOfStack = 0;
BspStore = 0;
Status = EFI_SUCCESS;
//
// if in S3 Resume, restore configure
//
Status = PeiServicesGetBootMode (&BootMode);
if (!EFI_ERROR (Status) && (BootMode == BOOT_ON_S3_RESUME)) {
Status = PeiServicesLocatePpi (
&gEfiPeiS3ResumePpiGuid,
0,
NULL,
(VOID **)&S3Resume
);
ASSERT_EFI_ERROR (Status);
Status = S3Resume->S3RestoreConfig (PeiServices);
ASSERT_EFI_ERROR (Status);
}
Status = EFI_SUCCESS;
//
// Install the PEI Protocols that are shared between PEI and DXE
//
PeiEfiPeiPeCoffLoader = (EFI_PEI_PE_COFF_LOADER_PROTOCOL *)GetPeCoffLoaderProtocol ();
ASSERT (PeiEfiPeiPeCoffLoader != NULL);
//
// Allocate 128KB for the Stack
//
PeiServicesAllocatePages (EfiBootServicesData, EFI_SIZE_TO_PAGES (STACK_SIZE), &BaseOfStack);
ASSERT (BaseOfStack != 0);
//
// Compute the top of the stack we were allocated. Pre-allocate a 32 bytes
// for safety (PpisNeededByDxe and DxeCore).
//
TopOfStack = BaseOfStack + EFI_SIZE_TO_PAGES (STACK_SIZE) * EFI_PAGE_SIZE - 32;
//
// Add architecture-specifc HOBs (including the BspStore HOB)
//
Status = CreateArchSpecificHobs (&BspStore);
ASSERT_EFI_ERROR (Status);
//
// See if we are in crisis recovery
//
Status = PeiServicesGetBootMode (&BootMode);
if (!EFI_ERROR (Status) && (BootMode == BOOT_IN_RECOVERY_MODE)) {
Status = PeiServicesLocatePpi (
&gEfiPeiRecoveryModulePpiGuid,
0,
NULL,
(VOID **)&PeiRecovery
);
ASSERT_EFI_ERROR (Status);
Status = PeiRecovery->LoadRecoveryCapsule (PeiServices, PeiRecovery);
if (EFI_ERROR (Status)) {
DEBUG ((EFI_D_ERROR, "Load Recovery Capsule Failed.(Status = %r)\n", Status));
CpuDeadLoop ();
}
}
//
// Find the DXE Core in a Firmware Volume
//
Status = PeiFindFile (
EFI_FV_FILETYPE_DXE_CORE,
EFI_SECTION_PE32,
&DxeCoreFileName,
&DxeCorePe32Data
);
ASSERT_EFI_ERROR (Status);
//
// Load the GDT of Go64. Since the GDT of 32-bit Tiano locates in the BS_DATA \
// memory, it may be corrupted when copying FV to high-end memory
LoadGo64Gdt();
//
// Limit to 36 bits of addressing for debug. Should get it from CPU
//
PageTables = CreateIdentityMappingPageTables (36);
//
// Load the DXE Core from a Firmware Volume
//
Status = PeiLoadPeImage (
PeiEfiPeiPeCoffLoader,
DxeCorePe32Data,
EfiBootServicesData,
&DxeCoreAddress,
&DxeCoreSize,
&DxeCoreEntryPoint
);
ASSERT_EFI_ERROR (Status);
//
// Transfer control to the DXE Core
// The handoff state is simply a pointer to the HOB list
//
Status = PeiServicesInstallPpi (&mPpiSignal);
ASSERT_EFI_ERROR (Status);
//
//
// Add HOB for the DXE Core
//
BuildModuleHob (
&DxeCoreFileName,
DxeCoreAddress,
DxeCoreSize,
DxeCoreEntryPoint
);
//
// Report Status Code EFI_SW_PEI_PC_HANDOFF_TO_NEXT
//
REPORT_STATUS_CODE (
EFI_PROGRESS_CODE,
EFI_SOFTWARE_PEI_MODULE | EFI_SW_PEI_CORE_PC_HANDOFF_TO_NEXT
);
DEBUG ((EFI_D_INFO, "DXE Core Entry\n"));
//
// Go to Long Mode. Interrupts will not get turned on until the CPU AP is loaded.
// Call x64 drivers passing in single argument, a pointer to the HOBs.
//
ActivateLongMode (
PageTables,
(EFI_PHYSICAL_ADDRESS)(UINTN)(HobList.Raw),
TopOfStack,
0x00000000,
DxeCoreEntryPoint
);
//
// If we get here, then the DXE Core returned. This is an error
// Dxe Core should not return.
//
ASSERT (FALSE);
CpuDeadLoop ();
return EFI_OUT_OF_RESOURCES;
}
EFI_STATUS
PeiFindFile (
IN UINT8 Type,
IN UINT16 SectionType,
OUT EFI_GUID *FileName,
OUT VOID **Pe32Data
)
/*++
Routine Description:
Finds a PE/COFF of a specific Type and SectionType in the Firmware Volumes
described in the HOB list. Able to search in a compression set in a FFS file.
But only one level of compression is supported, that is, not able to search
in a compression set that is within another compression set.
Arguments:
Type - The Type of file to retrieve
SectionType - The type of section to retrieve from a file
FileName - The name of the file found in the Firmware Volume
Pe32Data - Pointer to the beginning of the PE/COFF file found in the Firmware Volume
Returns:
EFI_SUCCESS - The file was found, and the name is returned in FileName, and a pointer to
the PE/COFF image is returned in Pe32Data
EFI_NOT_FOUND - The file was not found in the Firmware Volumes present in the HOB List
--*/
{
EFI_FIRMWARE_VOLUME_HEADER *FwVolHeader;
EFI_FFS_FILE_HEADER *FfsFileHeader;
VOID *SectionData;
EFI_STATUS Status;
EFI_PEI_HOB_POINTERS Hob;
FwVolHeader = NULL;
FfsFileHeader = NULL;
SectionData = NULL;
//
// Foreach Firmware Volume, look for a specified type
// of file and break out when one is found
//
Hob.Raw = GetHobList ();
while ((Hob.Raw = GetNextHob (EFI_HOB_TYPE_FV, Hob.Raw)) != NULL) {
FwVolHeader = (EFI_FIRMWARE_VOLUME_HEADER *) (UINTN) (Hob.FirmwareVolume->BaseAddress);
Status = PeiServicesFfsFindNextFile (
Type,
FwVolHeader,
&FfsFileHeader
);
if (!EFI_ERROR (Status)) {
Status = PeiProcessFile (
SectionType,
&FfsFileHeader,
Pe32Data
);
CopyMem (FileName, &FfsFileHeader->Name, sizeof (EFI_GUID));
return Status;
}
Hob.Raw = GET_NEXT_HOB (Hob);
}
return EFI_NOT_FOUND;
}
EFI_STATUS
PeiLoadPeImage (
IN EFI_PEI_PE_COFF_LOADER_PROTOCOL *PeiEfiPeiPeCoffLoader,
IN VOID *Pe32Data,
IN EFI_MEMORY_TYPE MemoryType,
OUT EFI_PHYSICAL_ADDRESS *ImageAddress,
OUT UINT64 *ImageSize,
OUT EFI_PHYSICAL_ADDRESS *EntryPoint
)
/*++
Routine Description:
Loads and relocates a PE/COFF image into memory.
Arguments:
PeiEfiPeiPeCoffLoader - Pointer to a PE COFF loader protocol
Pe32Data - The base address of the PE/COFF file that is to be loaded and relocated
ImageAddress - The base address of the relocated PE/COFF image
ImageSize - The size of the relocated PE/COFF image
EntryPoint - The entry point of the relocated PE/COFF image
Returns:
EFI_SUCCESS - The file was loaded and relocated
EFI_OUT_OF_RESOURCES - There was not enough memory to load and relocate the PE/COFF file
--*/
{
EFI_STATUS Status;
PE_COFF_LOADER_IMAGE_CONTEXT ImageContext;
EFI_PHYSICAL_ADDRESS MemoryBuffer;
ZeroMem (&ImageContext, sizeof (ImageContext));
ImageContext.Handle = Pe32Data;
Status = GetImageReadFunction (&ImageContext);
ASSERT_EFI_ERROR (Status);
Status = PeiEfiPeiPeCoffLoader->GetImageInfo (PeiEfiPeiPeCoffLoader, &ImageContext);
if (EFI_ERROR (Status)) {
return Status;
}
//
// Allocate Memory for the image
//
//
// Allocate Memory for the image
//
PeiServicesAllocatePages (MemoryType, EFI_SIZE_TO_PAGES ((UINT32) ImageContext.ImageSize), &MemoryBuffer);
ImageContext.ImageAddress = MemoryBuffer;
ASSERT (ImageContext.ImageAddress != 0);
//
// Load the image to our new buffer
//
Status = PeiEfiPeiPeCoffLoader->LoadImage (PeiEfiPeiPeCoffLoader, &ImageContext);
if (EFI_ERROR (Status)) {
return Status;
}
//
// Relocate the image in our new buffer
//
Status = PeiEfiPeiPeCoffLoader->RelocateImage (PeiEfiPeiPeCoffLoader, &ImageContext);
if (EFI_ERROR (Status)) {
return Status;
}
//
// Flush the instruction cache so the image data is written before we execute it
//
InvalidateInstructionCacheRange ((VOID *)(UINTN)ImageContext.ImageAddress, (UINTN)ImageContext.ImageSize);
*ImageAddress = ImageContext.ImageAddress;
*ImageSize = ImageContext.ImageSize;
*EntryPoint = ImageContext.EntryPoint;
return EFI_SUCCESS;
}
EFI_STATUS
ShadowDxeIpl (
IN EFI_FFS_FILE_HEADER *DxeIplFileHeader,
IN EFI_PEI_PE_COFF_LOADER_PROTOCOL *PeiEfiPeiPeCoffLoader
)
/*++
Routine Description:
Shadow the DXE IPL to a different memory location. This occurs after permanent
memory has been discovered.
Arguments:
DxeIplFileHeader - Pointer to the FFS file header of the DXE IPL driver
PeiEfiPeiPeCoffLoader - Pointer to a PE COFF loader protocol
Returns:
EFI_SUCCESS - DXE IPL was successfully shadowed to a different memory location.
EFI_ ERROR - The shadow was unsuccessful.
--*/
{
UINTN SectionLength;
UINTN OccupiedSectionLength;
EFI_PHYSICAL_ADDRESS DxeIplAddress;
UINT64 DxeIplSize;
EFI_PHYSICAL_ADDRESS DxeIplEntryPoint;
EFI_STATUS Status;
EFI_COMMON_SECTION_HEADER *Section;
Section = (EFI_COMMON_SECTION_HEADER *) (DxeIplFileHeader + 1);
while ((Section->Type != EFI_SECTION_PE32) && (Section->Type != EFI_SECTION_TE)) {
SectionLength = *(UINT32 *) (Section->Size) & 0x00ffffff;
OccupiedSectionLength = GetOccupiedSize (SectionLength, 4);
Section = (EFI_COMMON_SECTION_HEADER *) ((UINT8 *) Section + OccupiedSectionLength);
}
//
// Relocate DxeIpl into memory by using loadfile service
//
Status = PeiLoadPeImage (
PeiEfiPeiPeCoffLoader,
(VOID *) (Section + 1),
EfiBootServicesData,
&DxeIplAddress,
&DxeIplSize,
&DxeIplEntryPoint
);
if (Status == EFI_SUCCESS) {
//
// Install PeiInMemory to indicate the Dxeipl is shadowed
//
Status = PeiServicesInstallPpi (&mPpiPeiInMemory);
if (EFI_ERROR (Status)) {
return Status;
}
Status = ((EFI_PEIM_ENTRY_POINT) (UINTN) DxeIplEntryPoint) (DxeIplFileHeader, GetPeiServicesTablePointer());
}
return Status;
}
EFI_STATUS
EFIAPI
DxeIplLoadFile (
IN EFI_PEI_FV_FILE_LOADER_PPI *This,
IN EFI_FFS_FILE_HEADER *FfsHeader,
OUT EFI_PHYSICAL_ADDRESS *ImageAddress,
OUT UINT64 *ImageSize,
OUT EFI_PHYSICAL_ADDRESS *EntryPoint
)
/*++
Routine Description:
Given a pointer to an FFS file containing a PE32 image, get the
information on the PE32 image, and then "load" it so that it
can be executed.
Arguments:
This - pointer to our file loader protocol
FfsHeader - pointer to the FFS file header of the FFS file that
contains the PE32 image we want to load
ImageAddress - returned address where the PE32 image is loaded
ImageSize - returned size of the loaded PE32 image
EntryPoint - entry point to the loaded PE32 image
Returns:
EFI_SUCCESS - The FFS file was successfully loaded.
EFI_ERROR - Unable to load the FFS file.
--*/
{
EFI_PEI_PE_COFF_LOADER_PROTOCOL *PeiEfiPeiPeCoffLoader;
EFI_STATUS Status;
VOID *Pe32Data;
Pe32Data = NULL;
PeiEfiPeiPeCoffLoader = (EFI_PEI_PE_COFF_LOADER_PROTOCOL *)GetPeCoffLoaderProtocol ();
//
// Preprocess the FFS file to get a pointer to the PE32 information
// in the enclosed PE32 image.
//
Status = PeiProcessFile (
EFI_SECTION_PE32,
&FfsHeader,
&Pe32Data
);
if (EFI_ERROR (Status)) {
return Status;
}
//
// Load the PE image from the FFS file
//
Status = PeiLoadPeImage (
PeiEfiPeiPeCoffLoader,
Pe32Data,
EfiBootServicesData,
ImageAddress,
ImageSize,
EntryPoint
);
return Status;
}
EFI_STATUS
PeiProcessFile (
IN UINT16 SectionType,
IN OUT EFI_FFS_FILE_HEADER **RealFfsFileHeader,
OUT VOID **Pe32Data
)
/*++
Routine Description:
Arguments:
SectionType - The type of section in the FFS file to process.
FfsFileHeader - Pointer to the FFS file to process, looking for the
specified SectionType
Pe32Data - returned pointer to the start of the PE32 image found
in the FFS file.
Returns:
EFI_SUCCESS - found the PE32 section in the FFS file
--*/
{
EFI_STATUS Status;
VOID *SectionData;
DECOMPRESS_LIBRARY *DecompressLibrary;
UINT8 *DstBuffer;
UINT8 *ScratchBuffer;
UINT32 DstBufferSize;
UINT32 ScratchBufferSize;
EFI_COMMON_SECTION_HEADER *CmpSection;
UINTN CmpSectionLength;
UINTN OccupiedCmpSectionLength;
VOID *CmpFileData;
UINTN CmpFileSize;
EFI_COMMON_SECTION_HEADER *Section;
UINTN SectionLength;
UINTN OccupiedSectionLength;
UINT64 FileSize;
EFI_GUID_DEFINED_SECTION *GuidedSectionHeader;
UINT32 AuthenticationStatus;
EFI_PEI_SECTION_EXTRACTION_PPI *SectionExtract;
UINT32 BufferSize;
UINT8 *Buffer;
EFI_PEI_SECURITY_PPI *Security;
BOOLEAN StartCrisisRecovery;
EFI_GUID TempGuid;
EFI_FIRMWARE_VOLUME_HEADER *FvHeader;
EFI_COMPRESSION_SECTION *CompressionSection;
EFI_FFS_FILE_HEADER *FfsFileHeader;
FfsFileHeader = *RealFfsFileHeader;
Status = PeiServicesFfsFindSectionData (
EFI_SECTION_COMPRESSION,
FfsFileHeader,
&SectionData
);
//
// Upon finding a DXE Core file, see if there is first a compression section
//
if (!EFI_ERROR (Status)) {
//
// Yes, there is a compression section, so extract the contents
// Decompress the image here
//
Section = (EFI_COMMON_SECTION_HEADER *) (UINTN) (VOID *) ((UINT8 *) (FfsFileHeader) + (UINTN) sizeof (EFI_FFS_FILE_HEADER));
do {
SectionLength = *(UINT32 *) (Section->Size) & 0x00ffffff;
OccupiedSectionLength = GetOccupiedSize (SectionLength, 4);
//
// Was the DXE Core file encapsulated in a GUID'd section?
//
if (Section->Type == EFI_SECTION_GUID_DEFINED) {
//
// Locate the GUID'd Section Extractor
//
GuidedSectionHeader = (VOID *) (Section + 1);
//
// This following code constitutes the addition of the security model
// to the DXE IPL.
//
//
// Set a default authenticatino state
//
AuthenticationStatus = 0;
Status = PeiServicesLocatePpi (
&gEfiPeiSectionExtractionPpiGuid,
0,
NULL,
(VOID **)&SectionExtract
);
if (EFI_ERROR (Status)) {
return Status;
}
//
// Verify Authentication State
//
CopyMem (&TempGuid, Section + 1, sizeof (EFI_GUID));
Status = SectionExtract->PeiGetSection (
GetPeiServicesTablePointer(),
SectionExtract,
(EFI_SECTION_TYPE *) &SectionType,
&TempGuid,
0,
(VOID **) &Buffer,
&BufferSize,
&AuthenticationStatus
);
if (EFI_ERROR (Status)) {
return Status;
}
//
// If not ask the Security PPI, if exists, for disposition
//
//
Status = PeiServicesLocatePpi (
&gEfiPeiSecurityPpiGuid,
0,
NULL,
(VOID **)&Security
);
if (EFI_ERROR (Status)) {
return Status;
}
Status = Security->AuthenticationState (
GetPeiServicesTablePointer(),
(struct _EFI_PEI_SECURITY_PPI *) Security,
AuthenticationStatus,
FfsFileHeader,
&StartCrisisRecovery
);
if (EFI_ERROR (Status)) {
return Status;
}
//
// If there is a security violation, report to caller and have
// the upper-level logic possible engender a crisis recovery
//
if (StartCrisisRecovery) {
return EFI_SECURITY_VIOLATION;
}
}
if (Section->Type == EFI_SECTION_PE32) {
//
// This is what we want
//
*Pe32Data = (VOID *) (Section + 1);
return EFI_SUCCESS;
} else if (Section->Type == EFI_SECTION_COMPRESSION) {
//
// This is a compression set, expand it
//
CompressionSection = (EFI_COMPRESSION_SECTION *) Section;
switch (CompressionSection->CompressionType) {
case EFI_STANDARD_COMPRESSION:
if (FeaturePcdGet (PcdDxeIplSupportTianoDecompress)) {
DecompressLibrary = &gTianoDecompress;
} else {
ASSERT (FALSE);
return EFI_NOT_FOUND;
}
break;
case EFI_CUSTOMIZED_COMPRESSION:
//
// Load user customized compression protocol.
//
if (FeaturePcdGet (PcdDxeIplSupportCustomDecompress)) {
DecompressLibrary = &gCustomDecompress;
} else {
ASSERT (FALSE);
return EFI_NOT_FOUND;
}
break;
case EFI_NOT_COMPRESSED:
default:
//
// Need to support not compressed file
//
ASSERT_EFI_ERROR (Status);
return EFI_NOT_FOUND;
}
Status = DecompressLibrary->GetInfo (
(UINT8 *) ((EFI_COMPRESSION_SECTION *) Section + 1),
(UINT32) SectionLength - sizeof (EFI_COMPRESSION_SECTION),
&DstBufferSize,
&ScratchBufferSize
);
if (EFI_ERROR (Status)) {
//
// GetInfo failed
//
return EFI_NOT_FOUND;
}
//
// Allocate scratch buffer
//
ScratchBuffer = AllocatePages (EFI_SIZE_TO_PAGES (ScratchBufferSize));
if (ScratchBuffer == NULL) {
return EFI_OUT_OF_RESOURCES;
}
//
// Allocate destination buffer
//
DstBuffer = AllocatePages (EFI_SIZE_TO_PAGES (DstBufferSize));
if (DstBuffer == NULL) {
return EFI_OUT_OF_RESOURCES;
}
//
// Call decompress function
//
Status = DecompressLibrary->Decompress (
(CHAR8 *) ((EFI_COMPRESSION_SECTION *) Section + 1),
DstBuffer,
ScratchBuffer
);
CmpSection = (EFI_COMMON_SECTION_HEADER *) DstBuffer;
if (CmpSection->Type == EFI_SECTION_RAW) {
//
// Skip the section header and
// adjust the pointer alignment to 16
//
FvHeader = (EFI_FIRMWARE_VOLUME_HEADER *) (DstBuffer + 16);
if (FvHeader->Signature == EFI_FVH_SIGNATURE) {
FfsFileHeader = NULL;
BuildFvHob ((EFI_PHYSICAL_ADDRESS) (UINTN) FvHeader, FvHeader->FvLength);
Status = PeiServicesFfsFindNextFile (
EFI_FV_FILETYPE_DXE_CORE,
FvHeader,
&FfsFileHeader
);
if (EFI_ERROR (Status)) {
return EFI_NOT_FOUND;
}
//
// Reture the FfsHeader that contain Pe32Data.
//
*RealFfsFileHeader = FfsFileHeader;
return PeiProcessFile (SectionType, RealFfsFileHeader, Pe32Data);
}
}
//
// Decompress successfully.
// Loop the decompressed data searching for expected section.
//
CmpFileData = (VOID *) DstBuffer;
CmpFileSize = DstBufferSize;
do {
CmpSectionLength = *(UINT32 *) (CmpSection->Size) & 0x00ffffff;
if (CmpSection->Type == EFI_SECTION_PE32) {
//
// This is what we want
//
*Pe32Data = (VOID *) (CmpSection + 1);
return EFI_SUCCESS;
}
OccupiedCmpSectionLength = GetOccupiedSize (CmpSectionLength, 4);
CmpSection = (EFI_COMMON_SECTION_HEADER *) ((UINT8 *) CmpSection + OccupiedCmpSectionLength);
} while (CmpSection->Type != 0 && (UINTN) ((UINT8 *) CmpSection - (UINT8 *) CmpFileData) < CmpFileSize);
}
Section = (EFI_COMMON_SECTION_HEADER *) ((UINT8 *) Section + OccupiedSectionLength);
FileSize = FfsFileHeader->Size[0] & 0xFF;
FileSize += (FfsFileHeader->Size[1] << 8) & 0xFF00;
FileSize += (FfsFileHeader->Size[2] << 16) & 0xFF0000;
FileSize &= 0x00FFFFFF;
} while (Section->Type != 0 && (UINTN) ((UINT8 *) Section - (UINT8 *) FfsFileHeader) < FileSize);
//
// End of the decompression activity
//
} else {
Status = PeiServicesFfsFindSectionData (
EFI_SECTION_PE32,
FfsFileHeader,
&SectionData
);
if (EFI_ERROR (Status)) {
Status = PeiServicesFfsFindSectionData (
EFI_SECTION_TE,
FfsFileHeader,
&SectionData
);
if (EFI_ERROR (Status)) {
return Status;
}
}
}
*Pe32Data = SectionData;
return EFI_SUCCESS;
}