audk/MdeModulePkg/Bus/Sd/EmmcDxe/EmmcDxe.c

Ignoring revisions in .git-blame-ignore-revs. Click here to bypass and see the normal blame view.

1242 lines
47 KiB
C
Raw Normal View History

/** @file
The EmmcDxe driver is used to manage the EMMC device.
It produces BlockIo, BlockIo2 and StorageSecurity protocols to allow upper layer
access the EMMC device.
Copyright (c) 2015 - 2018, Intel Corporation. All rights reserved.<BR>
SPDX-License-Identifier: BSD-2-Clause-Patent
**/
#include "EmmcDxe.h"
//
// EmmcDxe Driver Binding Protocol Instance
//
EFI_DRIVER_BINDING_PROTOCOL gEmmcDxeDriverBinding = {
EmmcDxeDriverBindingSupported,
EmmcDxeDriverBindingStart,
EmmcDxeDriverBindingStop,
0x10,
NULL,
NULL
};
//
// Template for Emmc Partitions.
//
EMMC_PARTITION mEmmcPartitionTemplate = {
EMMC_PARTITION_SIGNATURE, // Signature
FALSE, // Enable
EmmcPartitionUnknown, // PartitionType
NULL, // Handle
NULL, // DevicePath
{ // BlockIo
EFI_BLOCK_IO_PROTOCOL_REVISION,
NULL,
EmmcReset,
EmmcReadBlocks,
EmmcWriteBlocks,
EmmcFlushBlocks
},
{ // BlockIo2
NULL,
EmmcResetEx,
EmmcReadBlocksEx,
EmmcWriteBlocksEx,
EmmcFlushBlocksEx
},
{ // BlockMedia
0, // MediaId
FALSE, // RemovableMedia
TRUE, // MediaPresent
FALSE, // LogicPartition
FALSE, // ReadOnly
FALSE, // WritingCache
0x200, // BlockSize
0, // IoAlign
0 // LastBlock
},
{ // StorageSecurity
EmmcSecurityProtocolIn,
EmmcSecurityProtocolOut
},
{ // EraseBlock
EFI_ERASE_BLOCK_PROTOCOL_REVISION,
1,
EmmcEraseBlocks
},
{ // DiskInfo
EFI_DISK_INFO_SD_MMC_INTERFACE_GUID,
EmmcDiskInfoInquiry,
EmmcDiskInfoIdentify,
EmmcDiskInfoSenseData,
EmmcDiskInfoWhichIde
},
{
NULL,
NULL
},
NULL // Device
};
/**
Decode and print EMMC CSD Register content.
@param[in] Csd Pointer to EMMC_CSD data structure.
@retval EFI_SUCCESS The function completed successfully
**/
EFI_STATUS
DumpCsd (
IN EMMC_CSD *Csd
)
{
DEBUG ((DEBUG_INFO, "== Dump Emmc Csd Register==\n"));
DEBUG ((DEBUG_INFO, " CSD structure 0x%x\n", Csd->CsdStructure));
DEBUG ((DEBUG_INFO, " System specification version 0x%x\n", Csd->SpecVers));
DEBUG ((DEBUG_INFO, " Data read access-time 1 0x%x\n", Csd->Taac));
DEBUG ((DEBUG_INFO, " Data read access-time 2 0x%x\n", Csd->Nsac));
DEBUG ((DEBUG_INFO, " Max. bus clock frequency 0x%x\n", Csd->TranSpeed));
DEBUG ((DEBUG_INFO, " Device command classes 0x%x\n", Csd->Ccc));
DEBUG ((DEBUG_INFO, " Max. read data block length 0x%x\n", Csd->ReadBlLen));
DEBUG ((DEBUG_INFO, " Partial blocks for read allowed 0x%x\n", Csd->ReadBlPartial));
DEBUG ((DEBUG_INFO, " Write block misalignment 0x%x\n", Csd->WriteBlkMisalign));
DEBUG ((DEBUG_INFO, " Read block misalignment 0x%x\n", Csd->ReadBlkMisalign));
DEBUG ((DEBUG_INFO, " DSR implemented 0x%x\n", Csd->DsrImp));
DEBUG ((DEBUG_INFO, " Device size 0x%x\n", Csd->CSizeLow | (Csd->CSizeHigh << 2)));
DEBUG ((DEBUG_INFO, " Max. read current @ VDD min 0x%x\n", Csd->VddRCurrMin));
DEBUG ((DEBUG_INFO, " Max. read current @ VDD max 0x%x\n", Csd->VddRCurrMax));
DEBUG ((DEBUG_INFO, " Max. write current @ VDD min 0x%x\n", Csd->VddWCurrMin));
DEBUG ((DEBUG_INFO, " Max. write current @ VDD max 0x%x\n", Csd->VddWCurrMax));
DEBUG ((DEBUG_INFO, " Device size multiplier 0x%x\n", Csd->CSizeMult));
DEBUG ((DEBUG_INFO, " Erase group size 0x%x\n", Csd->EraseGrpSize));
DEBUG ((DEBUG_INFO, " Erase group size multiplier 0x%x\n", Csd->EraseGrpMult));
DEBUG ((DEBUG_INFO, " Write protect group size 0x%x\n", Csd->WpGrpSize));
DEBUG ((DEBUG_INFO, " Write protect group enable 0x%x\n", Csd->WpGrpEnable));
DEBUG ((DEBUG_INFO, " Manufacturer default ECC 0x%x\n", Csd->DefaultEcc));
DEBUG ((DEBUG_INFO, " Write speed factor 0x%x\n", Csd->R2WFactor));
DEBUG ((DEBUG_INFO, " Max. write data block length 0x%x\n", Csd->WriteBlLen));
DEBUG ((DEBUG_INFO, " Partial blocks for write allowed 0x%x\n", Csd->WriteBlPartial));
DEBUG ((DEBUG_INFO, " Content protection application 0x%x\n", Csd->ContentProtApp));
DEBUG ((DEBUG_INFO, " File format group 0x%x\n", Csd->FileFormatGrp));
DEBUG ((DEBUG_INFO, " Copy flag (OTP) 0x%x\n", Csd->Copy));
DEBUG ((DEBUG_INFO, " Permanent write protection 0x%x\n", Csd->PermWriteProtect));
DEBUG ((DEBUG_INFO, " Temporary write protection 0x%x\n", Csd->TmpWriteProtect));
DEBUG ((DEBUG_INFO, " File format 0x%x\n", Csd->FileFormat));
DEBUG ((DEBUG_INFO, " ECC code 0x%x\n", Csd->Ecc));
return EFI_SUCCESS;
}
/**
Decode and print EMMC EXT_CSD Register content.
@param[in] ExtCsd Pointer to the EMMC_EXT_CSD data structure.
@retval EFI_SUCCESS The function completed successfully
**/
EFI_STATUS
DumpExtCsd (
IN EMMC_EXT_CSD *ExtCsd
)
{
DEBUG ((DEBUG_INFO, "==Dump Emmc ExtCsd Register==\n"));
DEBUG ((DEBUG_INFO, " Supported Command Sets 0x%x\n", ExtCsd->CmdSet));
DEBUG ((DEBUG_INFO, " HPI features 0x%x\n", ExtCsd->HpiFeatures));
DEBUG ((DEBUG_INFO, " Background operations support 0x%x\n", ExtCsd->BkOpsSupport));
DEBUG ((DEBUG_INFO, " Background operations status 0x%x\n", ExtCsd->BkopsStatus));
DEBUG ((DEBUG_INFO, " Number of correctly programmed sectors 0x%x\n", *((UINT32 *)&ExtCsd->CorrectlyPrgSectorsNum[0])));
DEBUG ((DEBUG_INFO, " Initialization time after partitioning 0x%x\n", ExtCsd->IniTimeoutAp));
DEBUG ((DEBUG_INFO, " TRIM Multiplier 0x%x\n", ExtCsd->TrimMult));
DEBUG ((DEBUG_INFO, " Secure Feature support 0x%x\n", ExtCsd->SecFeatureSupport));
DEBUG ((DEBUG_INFO, " Secure Erase Multiplier 0x%x\n", ExtCsd->SecEraseMult));
DEBUG ((DEBUG_INFO, " Secure TRIM Multiplier 0x%x\n", ExtCsd->SecTrimMult));
DEBUG ((DEBUG_INFO, " Boot information 0x%x\n", ExtCsd->BootInfo));
DEBUG ((DEBUG_INFO, " Boot partition size 0x%x\n", ExtCsd->BootSizeMult));
DEBUG ((DEBUG_INFO, " Access size 0x%x\n", ExtCsd->AccSize));
DEBUG ((DEBUG_INFO, " High-capacity erase unit size 0x%x\n", ExtCsd->HcEraseGrpSize));
DEBUG ((DEBUG_INFO, " High-capacity erase timeout 0x%x\n", ExtCsd->EraseTimeoutMult));
DEBUG ((DEBUG_INFO, " Reliable write sector count 0x%x\n", ExtCsd->RelWrSecC));
DEBUG ((DEBUG_INFO, " High-capacity write protect group size 0x%x\n", ExtCsd->HcWpGrpSize));
DEBUG ((DEBUG_INFO, " Sleep/awake timeout 0x%x\n", ExtCsd->SATimeout));
DEBUG ((DEBUG_INFO, " Sector Count 0x%x\n", *((UINT32 *)&ExtCsd->SecCount[0])));
DEBUG ((DEBUG_INFO, " Partition switching timing 0x%x\n", ExtCsd->PartitionSwitchTime));
DEBUG ((DEBUG_INFO, " Out-of-interrupt busy timing 0x%x\n", ExtCsd->OutOfInterruptTime));
DEBUG ((DEBUG_INFO, " I/O Driver Strength 0x%x\n", ExtCsd->DriverStrength));
DEBUG ((DEBUG_INFO, " Device type 0x%x\n", ExtCsd->DeviceType));
DEBUG ((DEBUG_INFO, " CSD STRUCTURE 0x%x\n", ExtCsd->CsdStructure));
DEBUG ((DEBUG_INFO, " Extended CSD revision 0x%x\n", ExtCsd->ExtCsdRev));
DEBUG ((DEBUG_INFO, " Command set 0x%x\n", ExtCsd->CmdSet));
DEBUG ((DEBUG_INFO, " Command set revision 0x%x\n", ExtCsd->CmdSetRev));
DEBUG ((DEBUG_INFO, " Power class 0x%x\n", ExtCsd->PowerClass));
DEBUG ((DEBUG_INFO, " High-speed interface timing 0x%x\n", ExtCsd->HsTiming));
DEBUG ((DEBUG_INFO, " Bus width mode 0x%x\n", ExtCsd->BusWidth));
DEBUG ((DEBUG_INFO, " Erased memory content 0x%x\n", ExtCsd->ErasedMemCont));
DEBUG ((DEBUG_INFO, " Partition configuration 0x%x\n", ExtCsd->PartitionConfig));
DEBUG ((DEBUG_INFO, " Boot config protection 0x%x\n", ExtCsd->BootConfigProt));
DEBUG ((DEBUG_INFO, " Boot bus Conditions 0x%x\n", ExtCsd->BootBusConditions));
DEBUG ((DEBUG_INFO, " High-density erase group definition 0x%x\n", ExtCsd->EraseGroupDef));
DEBUG ((DEBUG_INFO, " Boot write protection status register 0x%x\n", ExtCsd->BootWpStatus));
DEBUG ((DEBUG_INFO, " Boot area write protection register 0x%x\n", ExtCsd->BootWp));
DEBUG ((DEBUG_INFO, " User area write protection register 0x%x\n", ExtCsd->UserWp));
DEBUG ((DEBUG_INFO, " FW configuration 0x%x\n", ExtCsd->FwConfig));
DEBUG ((DEBUG_INFO, " RPMB Size 0x%x\n", ExtCsd->RpmbSizeMult));
DEBUG ((DEBUG_INFO, " H/W reset function 0x%x\n", ExtCsd->RstFunction));
DEBUG ((DEBUG_INFO, " Partitioning Support 0x%x\n", ExtCsd->PartitioningSupport));
DEBUG ((
DEBUG_INFO,
" Max Enhanced Area Size 0x%02x%02x%02x\n", \
ExtCsd->MaxEnhSizeMult[2],
ExtCsd->MaxEnhSizeMult[1],
ExtCsd->MaxEnhSizeMult[0]
));
DEBUG ((DEBUG_INFO, " Partitions attribute 0x%x\n", ExtCsd->PartitionsAttribute));
DEBUG ((DEBUG_INFO, " Partitioning Setting 0x%x\n", ExtCsd->PartitionSettingCompleted));
DEBUG ((
DEBUG_INFO,
" General Purpose Partition 1 Size 0x%02x%02x%02x\n", \
ExtCsd->GpSizeMult[2],
ExtCsd->GpSizeMult[1],
ExtCsd->GpSizeMult[0]
));
DEBUG ((
DEBUG_INFO,
" General Purpose Partition 2 Size 0x%02x%02x%02x\n", \
ExtCsd->GpSizeMult[5],
ExtCsd->GpSizeMult[4],
ExtCsd->GpSizeMult[3]
));
DEBUG ((
DEBUG_INFO,
" General Purpose Partition 3 Size 0x%02x%02x%02x\n", \
ExtCsd->GpSizeMult[8],
ExtCsd->GpSizeMult[7],
ExtCsd->GpSizeMult[6]
));
DEBUG ((
DEBUG_INFO,
" General Purpose Partition 4 Size 0x%02x%02x%02x\n", \
ExtCsd->GpSizeMult[11],
ExtCsd->GpSizeMult[10],
ExtCsd->GpSizeMult[9]
));
DEBUG ((
DEBUG_INFO,
" Enhanced User Data Area Size 0x%02x%02x%02x\n", \
ExtCsd->EnhSizeMult[2],
ExtCsd->EnhSizeMult[1],
ExtCsd->EnhSizeMult[0]
));
DEBUG ((DEBUG_INFO, " Enhanced User Data Start Address 0x%x\n", *((UINT32 *)&ExtCsd->EnhStartAddr[0])));
DEBUG ((DEBUG_INFO, " Bad Block Management mode 0x%x\n", ExtCsd->SecBadBlkMgmnt));
DEBUG ((DEBUG_INFO, " Native sector size 0x%x\n", ExtCsd->NativeSectorSize));
DEBUG ((DEBUG_INFO, " Sector size emulation 0x%x\n", ExtCsd->UseNativeSector));
DEBUG ((DEBUG_INFO, " Sector size 0x%x\n", ExtCsd->DataSectorSize));
return EFI_SUCCESS;
}
/**
Get EMMC device model name.
@param[in, out] Device The pointer to the EMMC_DEVICE data structure.
@param[in] Cid Pointer to EMMC_CID data structure.
@retval EFI_SUCCESS The function completed successfully
**/
EFI_STATUS
GetEmmcModelName (
IN OUT EMMC_DEVICE *Device,
IN EMMC_CID *Cid
)
{
CHAR8 String[EMMC_MODEL_NAME_MAX_LEN];
ZeroMem (String, sizeof (String));
CopyMem (String, &Cid->OemId, sizeof (Cid->OemId));
String[sizeof (Cid->OemId)] = ' ';
CopyMem (String + sizeof (Cid->OemId) + 1, Cid->ProductName, sizeof (Cid->ProductName));
String[sizeof (Cid->OemId) + sizeof (Cid->ProductName)] = ' ';
CopyMem (String + sizeof (Cid->OemId) + sizeof (Cid->ProductName) + 1, Cid->ProductSerialNumber, sizeof (Cid->ProductSerialNumber));
AsciiStrToUnicodeStrS (String, Device->ModelName, sizeof (Device->ModelName) / sizeof (Device->ModelName[0]));
return EFI_SUCCESS;
}
/**
Discover all partitions in the EMMC device.
@param[in] Device The pointer to the EMMC_DEVICE data structure.
@retval EFI_SUCCESS All the partitions in the device are successfully enumerated.
@return Others Some error occurs when enumerating the partitions.
**/
EFI_STATUS
DiscoverAllPartitions (
IN EMMC_DEVICE *Device
)
{
EFI_STATUS Status;
EMMC_PARTITION *Partition;
EMMC_CSD *Csd;
EMMC_CID *Cid;
EMMC_EXT_CSD *ExtCsd;
UINT8 Slot;
UINT64 Capacity;
UINT32 DevStatus;
UINT8 Index;
UINT32 SecCount;
UINT32 GpSizeMult;
Slot = Device->Slot;
Status = EmmcSendStatus (Device, Slot + 1, &DevStatus);
if (EFI_ERROR (Status)) {
return Status;
}
//
// Deselect the device to force it enter stby mode before getting CSD
// register content.
// Note here we don't judge return status as some EMMC devices return
// error but the state has been stby.
//
EmmcSelect (Device, 0);
Status = EmmcSendStatus (Device, Slot + 1, &DevStatus);
if (EFI_ERROR (Status)) {
return Status;
}
Csd = &Device->Csd;
Status = EmmcGetCsd (Device, Slot + 1, Csd);
if (EFI_ERROR (Status)) {
return Status;
}
DumpCsd (Csd);
if ((Csd->CSizeLow | Csd->CSizeHigh << 2) == 0xFFF) {
Device->SectorAddressing = TRUE;
} else {
Device->SectorAddressing = FALSE;
}
Cid = &Device->Cid;
Status = EmmcGetCid (Device, Slot + 1, Cid);
if (EFI_ERROR (Status)) {
return Status;
}
Status = EmmcSelect (Device, Slot + 1);
if (EFI_ERROR (Status)) {
return Status;
}
ExtCsd = &Device->ExtCsd;
Status = EmmcGetExtCsd (Device, ExtCsd);
if (EFI_ERROR (Status)) {
return Status;
}
DumpExtCsd (ExtCsd);
if (ExtCsd->ExtCsdRev < 5) {
DEBUG ((DEBUG_ERROR, "The EMMC device version is too low, we don't support!!!\n"));
return EFI_UNSUPPORTED;
}
if ((ExtCsd->PartitioningSupport & BIT0) != BIT0) {
DEBUG ((DEBUG_ERROR, "The EMMC device doesn't support Partition Feature!!!\n"));
return EFI_UNSUPPORTED;
}
for (Index = 0; Index < EMMC_MAX_PARTITIONS; Index++) {
Partition = &Device->Partition[Index];
CopyMem (Partition, &mEmmcPartitionTemplate, sizeof (EMMC_PARTITION));
Partition->Device = Device;
InitializeListHead (&Partition->Queue);
Partition->BlockIo.Media = &Partition->BlockMedia;
Partition->BlockIo2.Media = &Partition->BlockMedia;
Partition->PartitionType = Index;
Partition->BlockMedia.IoAlign = Device->Private->PassThru->IoAlign;
Partition->BlockMedia.BlockSize = 0x200;
Partition->BlockMedia.LastBlock = 0x00;
Partition->BlockMedia.RemovableMedia = FALSE;
Partition->BlockMedia.MediaPresent = TRUE;
Partition->BlockMedia.LogicalPartition = FALSE;
switch (Index) {
case EmmcPartitionUserData:
SecCount = *(UINT32 *)&ExtCsd->SecCount;
Capacity = MultU64x32 ((UINT64)SecCount, 0x200);
break;
case EmmcPartitionBoot1:
case EmmcPartitionBoot2:
Capacity = ExtCsd->BootSizeMult * SIZE_128KB;
break;
case EmmcPartitionRPMB:
Capacity = ExtCsd->RpmbSizeMult * SIZE_128KB;
break;
case EmmcPartitionGP1:
GpSizeMult = (UINT32)(ExtCsd->GpSizeMult[0] | (ExtCsd->GpSizeMult[1] << 8) | (ExtCsd->GpSizeMult[2] << 16));
Capacity = MultU64x32 (MultU64x32 (MultU64x32 ((UINT64)GpSizeMult, ExtCsd->HcWpGrpSize), ExtCsd->HcEraseGrpSize), SIZE_512KB);
break;
case EmmcPartitionGP2:
GpSizeMult = (UINT32)(ExtCsd->GpSizeMult[3] | (ExtCsd->GpSizeMult[4] << 8) | (ExtCsd->GpSizeMult[5] << 16));
Capacity = MultU64x32 (MultU64x32 (MultU64x32 ((UINT64)GpSizeMult, ExtCsd->HcWpGrpSize), ExtCsd->HcEraseGrpSize), SIZE_512KB);
break;
case EmmcPartitionGP3:
GpSizeMult = (UINT32)(ExtCsd->GpSizeMult[6] | (ExtCsd->GpSizeMult[7] << 8) | (ExtCsd->GpSizeMult[8] << 16));
Capacity = MultU64x32 (MultU64x32 (MultU64x32 ((UINT64)GpSizeMult, ExtCsd->HcWpGrpSize), ExtCsd->HcEraseGrpSize), SIZE_512KB);
break;
case EmmcPartitionGP4:
GpSizeMult = (UINT32)(ExtCsd->GpSizeMult[9] | (ExtCsd->GpSizeMult[10] << 8) | (ExtCsd->GpSizeMult[11] << 16));
Capacity = MultU64x32 (MultU64x32 (MultU64x32 ((UINT64)GpSizeMult, ExtCsd->HcWpGrpSize), ExtCsd->HcEraseGrpSize), SIZE_512KB);
break;
default:
ASSERT (FALSE);
return EFI_INVALID_PARAMETER;
}
if (Capacity != 0) {
Partition->Enable = TRUE;
Partition->BlockMedia.LastBlock = DivU64x32 (Capacity, Partition->BlockMedia.BlockSize) - 1;
}
if ((ExtCsd->EraseGroupDef & BIT0) == 0) {
if (Csd->WriteBlLen < 9) {
Partition->EraseBlock.EraseLengthGranularity = 1;
} else {
Partition->EraseBlock.EraseLengthGranularity = (Csd->EraseGrpMult + 1) * (Csd->EraseGrpSize + 1) * (1 << (Csd->WriteBlLen - 9));
}
} else {
Partition->EraseBlock.EraseLengthGranularity = 1024 * ExtCsd->HcEraseGrpSize;
}
}
return EFI_SUCCESS;
}
/**
Install BlkIo, BlkIo2 and Ssp protocols for the specified partition in the EMMC device.
@param[in] Device The pointer to the EMMC_DEVICE data structure.
@param[in] Index The index of the partition.
@retval EFI_SUCCESS The protocols are installed successfully.
@retval Others Some error occurs when installing the protocols.
**/
EFI_STATUS
InstallProtocolOnPartition (
IN EMMC_DEVICE *Device,
IN UINT8 Index
)
{
EFI_STATUS Status;
EMMC_PARTITION *Partition;
CONTROLLER_DEVICE_PATH ControlNode;
EFI_DEVICE_PATH_PROTOCOL *ParentDevicePath;
EFI_DEVICE_PATH_PROTOCOL *DevicePath;
EFI_DEVICE_PATH_PROTOCOL *RemainingDevicePath;
EFI_HANDLE DeviceHandle;
//
// Build device path
//
ParentDevicePath = Device->DevicePath;
ControlNode.Header.Type = HARDWARE_DEVICE_PATH;
ControlNode.Header.SubType = HW_CONTROLLER_DP;
SetDevicePathNodeLength (&ControlNode.Header, sizeof (CONTROLLER_DEVICE_PATH));
ControlNode.ControllerNumber = Index;
DevicePath = AppendDevicePathNode (ParentDevicePath, (EFI_DEVICE_PATH_PROTOCOL *)&ControlNode);
if (DevicePath == NULL) {
Status = EFI_OUT_OF_RESOURCES;
goto Error;
}
DeviceHandle = NULL;
RemainingDevicePath = DevicePath;
Status = gBS->LocateDevicePath (&gEfiDevicePathProtocolGuid, &RemainingDevicePath, &DeviceHandle);
if (!EFI_ERROR (Status) && (DeviceHandle != NULL) && IsDevicePathEnd (RemainingDevicePath)) {
Status = EFI_ALREADY_STARTED;
goto Error;
}
Partition = &Device->Partition[Index];
Partition->DevicePath = DevicePath;
if (Partition->Enable) {
//
// Install BlkIo/BlkIo2/Ssp for the specified partition
//
if (Partition->PartitionType != EmmcPartitionRPMB) {
Status = gBS->InstallMultipleProtocolInterfaces (
&Partition->Handle,
&gEfiDevicePathProtocolGuid,
Partition->DevicePath,
&gEfiBlockIoProtocolGuid,
&Partition->BlockIo,
&gEfiBlockIo2ProtocolGuid,
&Partition->BlockIo2,
&gEfiEraseBlockProtocolGuid,
&Partition->EraseBlock,
&gEfiDiskInfoProtocolGuid,
&Partition->DiskInfo,
NULL
);
if (EFI_ERROR (Status)) {
goto Error;
}
if (((Partition->PartitionType == EmmcPartitionUserData) ||
(Partition->PartitionType == EmmcPartitionBoot1) ||
(Partition->PartitionType == EmmcPartitionBoot2)) &&
((Device->Csd.Ccc & BIT10) != 0))
{
Status = gBS->InstallProtocolInterface (
&Partition->Handle,
&gEfiStorageSecurityCommandProtocolGuid,
EFI_NATIVE_INTERFACE,
&Partition->StorageSecurity
);
if (EFI_ERROR (Status)) {
gBS->UninstallMultipleProtocolInterfaces (
Partition->Handle,
&gEfiDevicePathProtocolGuid,
Partition->DevicePath,
&gEfiBlockIoProtocolGuid,
&Partition->BlockIo,
&gEfiBlockIo2ProtocolGuid,
&Partition->BlockIo2,
&gEfiEraseBlockProtocolGuid,
&Partition->EraseBlock,
&gEfiDiskInfoProtocolGuid,
&Partition->DiskInfo,
NULL
);
goto Error;
}
}
gBS->OpenProtocol (
Device->Private->Controller,
&gEfiSdMmcPassThruProtocolGuid,
(VOID **)&(Device->Private->PassThru),
Device->Private->DriverBindingHandle,
Partition->Handle,
EFI_OPEN_PROTOCOL_BY_CHILD_CONTROLLER
);
}
} else {
Status = EFI_INVALID_PARAMETER;
}
Error:
if (EFI_ERROR (Status) && (DevicePath != NULL)) {
FreePool (DevicePath);
}
return Status;
}
/**
Scan EMMC Bus to discover the device.
@param[in] Private The EMMC driver private data structure.
@param[in] Slot The slot number to check device present.
@param[in] RemainingDevicePath The pointer to the remaining device path.
@retval EFI_SUCCESS Successfully to discover the device and attach
SdMmcIoProtocol to it.
@retval EFI_OUT_OF_RESOURCES The request could not be completed due to a lack
of resources.
@retval EFI_ALREADY_STARTED The device was discovered before.
@retval Others Fail to discover the device.
**/
EFI_STATUS
EFIAPI
DiscoverEmmcDevice (
IN EMMC_DRIVER_PRIVATE_DATA *Private,
IN UINT8 Slot,
IN EFI_DEVICE_PATH_PROTOCOL *RemainingDevicePath
)
{
EFI_STATUS Status;
EMMC_DEVICE *Device;
EFI_DEVICE_PATH_PROTOCOL *DevicePath;
EFI_DEVICE_PATH_PROTOCOL *NewDevicePath;
EFI_DEVICE_PATH_PROTOCOL *RemainingEmmcDevPath;
EFI_DEV_PATH *Node;
EFI_HANDLE DeviceHandle;
EFI_SD_MMC_PASS_THRU_PROTOCOL *PassThru;
UINT8 Index;
Device = NULL;
DevicePath = NULL;
NewDevicePath = NULL;
RemainingDevicePath = NULL;
PassThru = Private->PassThru;
Device = &Private->Device[Slot];
//
// Build Device Path to check if the EMMC device present at the slot.
//
Status = PassThru->BuildDevicePath (
PassThru,
Slot,
&DevicePath
);
if (EFI_ERROR (Status)) {
return Status;
}
if (DevicePath->SubType != MSG_EMMC_DP) {
Status = EFI_UNSUPPORTED;
goto Error;
}
NewDevicePath = AppendDevicePathNode (
Private->ParentDevicePath,
DevicePath
);
if (NewDevicePath == NULL) {
Status = EFI_OUT_OF_RESOURCES;
goto Error;
}
DeviceHandle = NULL;
RemainingEmmcDevPath = NewDevicePath;
Status = gBS->LocateDevicePath (&gEfiDevicePathProtocolGuid, &RemainingEmmcDevPath, &DeviceHandle);
//
// The device path to the EMMC device doesn't exist. It means the corresponding device private data hasn't been initialized.
//
if (EFI_ERROR (Status) || (DeviceHandle == NULL) || !IsDevicePathEnd (RemainingEmmcDevPath)) {
Device->DevicePath = NewDevicePath;
Device->Slot = Slot;
Device->Private = Private;
//
// Expose user area in the Sd memory card to upper layer.
//
Status = DiscoverAllPartitions (Device);
if (EFI_ERROR (Status)) {
FreePool (NewDevicePath);
goto Error;
}
Status = gBS->InstallProtocolInterface (
&Device->Handle,
&gEfiDevicePathProtocolGuid,
EFI_NATIVE_INTERFACE,
Device->DevicePath
);
if (EFI_ERROR (Status)) {
FreePool (NewDevicePath);
goto Error;
}
Device->ControllerNameTable = NULL;
GetEmmcModelName (Device, &Device->Cid);
AddUnicodeString2 (
"eng",
gEmmcDxeComponentName.SupportedLanguages,
&Device->ControllerNameTable,
Device->ModelName,
TRUE
);
AddUnicodeString2 (
"en",
gEmmcDxeComponentName2.SupportedLanguages,
&Device->ControllerNameTable,
Device->ModelName,
FALSE
);
}
if (RemainingDevicePath == NULL) {
//
// Expose all partitions in the Emmc device to upper layer.
//
for (Index = 0; Index < EMMC_MAX_PARTITIONS; Index++) {
InstallProtocolOnPartition (Device, Index);
}
} else if (!IsDevicePathEnd (RemainingDevicePath)) {
//
// Enumerate the specified partition
//
Node = (EFI_DEV_PATH *)RemainingDevicePath;
if ((DevicePathType (&Node->DevPath) != HARDWARE_DEVICE_PATH) ||
(DevicePathSubType (&Node->DevPath) != HW_CONTROLLER_DP) ||
(DevicePathNodeLength (&Node->DevPath) != sizeof (CONTROLLER_DEVICE_PATH)))
{
Status = EFI_INVALID_PARAMETER;
goto Error;
}
Index = (UINT8)Node->Controller.ControllerNumber;
if (Index >= EMMC_MAX_PARTITIONS) {
Status = EFI_INVALID_PARAMETER;
goto Error;
}
Status = InstallProtocolOnPartition (Device, Index);
}
Error:
FreePool (DevicePath);
return Status;
}
/**
Tests to see if this driver supports a given controller. If a child device is provided,
it further tests to see if this driver supports creating a handle for the specified child device.
This function checks to see if the driver specified by This supports the device specified by
ControllerHandle. Drivers will typically use the device path attached to
ControllerHandle and/or the services from the bus I/O abstraction attached to
ControllerHandle to determine if the driver supports ControllerHandle. This function
may be called many times during platform initialization. In order to reduce boot times, the tests
performed by this function must be very small, and take as little time as possible to execute. This
function must not change the state of any hardware devices, and this function must be aware that the
device specified by ControllerHandle may already be managed by the same driver or a
different driver. This function must match its calls to AllocatePages() with FreePages(),
AllocatePool() with FreePool(), and OpenProtocol() with CloseProtocol().
Since ControllerHandle may have been previously started by the same driver, if a protocol is
already in the opened state, then it must not be closed with CloseProtocol(). This is required
to guarantee the state of ControllerHandle is not modified by this function.
@param[in] This A pointer to the EFI_DRIVER_BINDING_PROTOCOL instance.
@param[in] ControllerHandle The handle of the controller to test. This handle
must support a protocol interface that supplies
an I/O abstraction to the driver.
@param[in] RemainingDevicePath A pointer to the remaining portion of a device path. This
parameter is ignored by device drivers, and is optional for bus
drivers. For bus drivers, if this parameter is not NULL, then
the bus driver must determine if the bus controller specified
by ControllerHandle and the child controller specified
by RemainingDevicePath are both supported by this
bus driver.
@retval EFI_SUCCESS The device specified by ControllerHandle and
RemainingDevicePath is supported by the driver specified by This.
@retval EFI_ALREADY_STARTED The device specified by ControllerHandle and
RemainingDevicePath is already being managed by the driver
specified by This.
@retval EFI_ACCESS_DENIED The device specified by ControllerHandle and
RemainingDevicePath is already being managed by a different
driver or an application that requires exclusive access.
Currently not implemented.
@retval EFI_UNSUPPORTED The device specified by ControllerHandle and
RemainingDevicePath is not supported by the driver specified by This.
**/
EFI_STATUS
EFIAPI
EmmcDxeDriverBindingSupported (
IN EFI_DRIVER_BINDING_PROTOCOL *This,
IN EFI_HANDLE Controller,
IN EFI_DEVICE_PATH_PROTOCOL *RemainingDevicePath
)
{
EFI_STATUS Status;
EFI_DEVICE_PATH_PROTOCOL *ParentDevicePath;
EFI_SD_MMC_PASS_THRU_PROTOCOL *PassThru;
UINT8 Slot;
//
// Test EFI_SD_MMC_PASS_THRU_PROTOCOL on the controller handle.
//
Status = gBS->OpenProtocol (
Controller,
&gEfiSdMmcPassThruProtocolGuid,
(VOID **)&PassThru,
This->DriverBindingHandle,
Controller,
EFI_OPEN_PROTOCOL_BY_DRIVER
);
if (Status == EFI_ALREADY_STARTED) {
return EFI_SUCCESS;
}
if (EFI_ERROR (Status)) {
return Status;
}
//
// Test RemainingDevicePath is valid or not.
//
if ((RemainingDevicePath != NULL) && !IsDevicePathEnd (RemainingDevicePath)) {
Status = PassThru->GetSlotNumber (PassThru, RemainingDevicePath, &Slot);
if (EFI_ERROR (Status)) {
//
// Close the I/O Abstraction(s) used to perform the supported test
//
gBS->CloseProtocol (
Controller,
&gEfiSdMmcPassThruProtocolGuid,
This->DriverBindingHandle,
Controller
);
return Status;
}
}
//
// Close the I/O Abstraction(s) used to perform the supported test
//
gBS->CloseProtocol (
Controller,
&gEfiSdMmcPassThruProtocolGuid,
This->DriverBindingHandle,
Controller
);
//
// Open the EFI Device Path protocol needed to perform the supported test
//
Status = gBS->OpenProtocol (
Controller,
&gEfiDevicePathProtocolGuid,
(VOID **)&ParentDevicePath,
This->DriverBindingHandle,
Controller,
EFI_OPEN_PROTOCOL_GET_PROTOCOL
);
return Status;
}
/**
Starts a device controller or a bus controller.
The Start() function is designed to be invoked from the EFI boot service ConnectController().
As a result, much of the error checking on the parameters to Start() has been moved into this
common boot service. It is legal to call Start() from other locations,
but the following calling restrictions must be followed or the system behavior will not be deterministic.
1. ControllerHandle must be a valid EFI_HANDLE.
2. If RemainingDevicePath is not NULL, then it must be a pointer to a naturally aligned
EFI_DEVICE_PATH_PROTOCOL.
3. Prior to calling Start(), the Supported() function for the driver specified by This must
have been called with the same calling parameters, and Supported() must have returned EFI_SUCCESS.
@param[in] This A pointer to the EFI_DRIVER_BINDING_PROTOCOL instance.
@param[in] ControllerHandle The handle of the controller to start. This handle
must support a protocol interface that supplies
an I/O abstraction to the driver.
@param[in] RemainingDevicePath A pointer to the remaining portion of a device path. This
parameter is ignored by device drivers, and is optional for bus
drivers. For a bus driver, if this parameter is NULL, then handles
for all the children of Controller are created by this driver.
If this parameter is not NULL and the first Device Path Node is
not the End of Device Path Node, then only the handle for the
child device specified by the first Device Path Node of
RemainingDevicePath is created by this driver.
If the first Device Path Node of RemainingDevicePath is
the End of Device Path Node, no child handle is created by this
driver.
@retval EFI_SUCCESS The device was started.
@retval EFI_DEVICE_ERROR The device could not be started due to a device error.Currently not implemented.
@retval EFI_OUT_OF_RESOURCES The request could not be completed due to a lack of resources.
@retval Others The driver failed to start the device.
**/
EFI_STATUS
EFIAPI
EmmcDxeDriverBindingStart (
IN EFI_DRIVER_BINDING_PROTOCOL *This,
IN EFI_HANDLE Controller,
IN EFI_DEVICE_PATH_PROTOCOL *RemainingDevicePath
)
{
EFI_STATUS Status;
EFI_SD_MMC_PASS_THRU_PROTOCOL *PassThru;
EFI_DEVICE_PATH_PROTOCOL *ParentDevicePath;
EMMC_DRIVER_PRIVATE_DATA *Private;
UINT8 Slot;
Private = NULL;
PassThru = NULL;
Status = gBS->OpenProtocol (
Controller,
&gEfiSdMmcPassThruProtocolGuid,
(VOID **)&PassThru,
This->DriverBindingHandle,
Controller,
EFI_OPEN_PROTOCOL_BY_DRIVER
);
if ((EFI_ERROR (Status)) && (Status != EFI_ALREADY_STARTED)) {
return Status;
}
//
// Check EFI_ALREADY_STARTED to reuse the original EMMC_DRIVER_PRIVATE_DATA.
//
if (Status != EFI_ALREADY_STARTED) {
Private = AllocateZeroPool (sizeof (EMMC_DRIVER_PRIVATE_DATA));
if (Private == NULL) {
Status = EFI_OUT_OF_RESOURCES;
goto Error;
}
Status = gBS->OpenProtocol (
Controller,
&gEfiDevicePathProtocolGuid,
(VOID **)&ParentDevicePath,
This->DriverBindingHandle,
Controller,
EFI_OPEN_PROTOCOL_GET_PROTOCOL
);
ASSERT_EFI_ERROR (Status);
Private->PassThru = PassThru;
Private->Controller = Controller;
Private->ParentDevicePath = ParentDevicePath;
Private->DriverBindingHandle = This->DriverBindingHandle;
Status = gBS->InstallProtocolInterface (
&Controller,
&gEfiCallerIdGuid,
EFI_NATIVE_INTERFACE,
Private
);
if (EFI_ERROR (Status)) {
goto Error;
}
} else {
Status = gBS->OpenProtocol (
Controller,
&gEfiCallerIdGuid,
(VOID **)&Private,
This->DriverBindingHandle,
Controller,
EFI_OPEN_PROTOCOL_GET_PROTOCOL
);
if (EFI_ERROR (Status)) {
goto Error;
}
}
if (RemainingDevicePath == NULL) {
Slot = 0xFF;
while (TRUE) {
Status = PassThru->GetNextSlot (PassThru, &Slot);
if (EFI_ERROR (Status)) {
//
// Cannot find more legal slots.
//
Status = EFI_SUCCESS;
break;
}
Status = DiscoverEmmcDevice (Private, Slot, NULL);
if (EFI_ERROR (Status) && (Status != EFI_ALREADY_STARTED)) {
break;
}
}
} else if (!IsDevicePathEnd (RemainingDevicePath)) {
Status = PassThru->GetSlotNumber (PassThru, RemainingDevicePath, &Slot);
if (!EFI_ERROR (Status)) {
Status = DiscoverEmmcDevice (Private, Slot, NextDevicePathNode (RemainingDevicePath));
}
}
Error:
if (EFI_ERROR (Status) && (Status != EFI_ALREADY_STARTED)) {
gBS->CloseProtocol (
Controller,
&gEfiSdMmcPassThruProtocolGuid,
This->DriverBindingHandle,
Controller
);
if (Private != NULL) {
gBS->UninstallMultipleProtocolInterfaces (
Controller,
&gEfiCallerIdGuid,
Private,
NULL
);
FreePool (Private);
}
}
return Status;
}
/**
Stops a device controller or a bus controller.
The Stop() function is designed to be invoked from the EFI boot service DisconnectController().
As a result, much of the error checking on the parameters to Stop() has been moved
into this common boot service. It is legal to call Stop() from other locations,
but the following calling restrictions must be followed or the system behavior will not be deterministic.
1. ControllerHandle must be a valid EFI_HANDLE that was used on a previous call to this
same driver's Start() function.
2. The first NumberOfChildren handles of ChildHandleBuffer must all be a valid
EFI_HANDLE. In addition, all of these handles must have been created in this driver's
Start() function, and the Start() function must have called OpenProtocol() on
ControllerHandle with an Attribute of EFI_OPEN_PROTOCOL_BY_CHILD_CONTROLLER.
@param[in] This A pointer to the EFI_DRIVER_BINDING_PROTOCOL instance.
@param[in] ControllerHandle A handle to the device being stopped. The handle must
support a bus specific I/O protocol for the driver
to use to stop the device.
@param[in] NumberOfChildren The number of child device handles in ChildHandleBuffer.
@param[in] ChildHandleBuffer An array of child handles to be freed. May be NULL
if NumberOfChildren is 0.
@retval EFI_SUCCESS The device was stopped.
@retval EFI_DEVICE_ERROR The device could not be stopped due to a device error.
**/
EFI_STATUS
EFIAPI
EmmcDxeDriverBindingStop (
IN EFI_DRIVER_BINDING_PROTOCOL *This,
IN EFI_HANDLE Controller,
IN UINTN NumberOfChildren,
IN EFI_HANDLE *ChildHandleBuffer
)
{
EFI_STATUS Status;
BOOLEAN AllChildrenStopped;
UINTN Index;
EFI_DEVICE_PATH_PROTOCOL *DevicePath;
EMMC_DRIVER_PRIVATE_DATA *Private;
EMMC_DEVICE *Device;
EMMC_PARTITION *Partition;
EFI_BLOCK_IO_PROTOCOL *BlockIo;
EFI_BLOCK_IO2_PROTOCOL *BlockIo2;
EFI_STORAGE_SECURITY_COMMAND_PROTOCOL *StorageSecurity;
LIST_ENTRY *Link;
LIST_ENTRY *NextLink;
EMMC_REQUEST *Request;
BlockIo = NULL;
BlockIo2 = NULL;
if (NumberOfChildren == 0) {
Status = gBS->OpenProtocol (
Controller,
&gEfiCallerIdGuid,
(VOID **)&Private,
This->DriverBindingHandle,
Controller,
EFI_OPEN_PROTOCOL_GET_PROTOCOL
);
if (EFI_ERROR (Status)) {
return EFI_DEVICE_ERROR;
}
for (Index = 0; Index < EMMC_MAX_DEVICES; Index++) {
Device = &Private->Device[Index];
Status = gBS->OpenProtocol (
Device->Handle,
&gEfiDevicePathProtocolGuid,
(VOID **)&DevicePath,
This->DriverBindingHandle,
Controller,
EFI_OPEN_PROTOCOL_GET_PROTOCOL
);
if (EFI_ERROR (Status)) {
continue;
}
ASSERT (DevicePath == Device->DevicePath);
gBS->UninstallProtocolInterface (
Device->Handle,
&gEfiDevicePathProtocolGuid,
DevicePath
);
FreePool (Device->DevicePath);
}
gBS->UninstallProtocolInterface (
Controller,
&gEfiCallerIdGuid,
Private
);
gBS->CloseProtocol (
Controller,
&gEfiSdMmcPassThruProtocolGuid,
This->DriverBindingHandle,
Controller
);
FreePool (Private);
return EFI_SUCCESS;
}
AllChildrenStopped = TRUE;
for (Index = 0; Index < NumberOfChildren; Index++) {
Status = gBS->OpenProtocol (
ChildHandleBuffer[Index],
&gEfiBlockIoProtocolGuid,
(VOID **)&BlockIo,
This->DriverBindingHandle,
Controller,
EFI_OPEN_PROTOCOL_GET_PROTOCOL
);
if (EFI_ERROR (Status)) {
Status = gBS->OpenProtocol (
ChildHandleBuffer[Index],
&gEfiBlockIo2ProtocolGuid,
(VOID **)&BlockIo2,
This->DriverBindingHandle,
Controller,
EFI_OPEN_PROTOCOL_GET_PROTOCOL
);
if (EFI_ERROR (Status)) {
AllChildrenStopped = FALSE;
continue;
}
}
if (BlockIo != NULL) {
Partition = EMMC_PARTITION_DATA_FROM_BLKIO (BlockIo);
} else {
ASSERT (BlockIo2 != NULL);
Partition = EMMC_PARTITION_DATA_FROM_BLKIO2 (BlockIo2);
}
for (Link = GetFirstNode (&Partition->Queue);
!IsNull (&Partition->Queue, Link);
Link = NextLink)
{
NextLink = GetNextNode (&Partition->Queue, Link);
RemoveEntryList (Link);
Request = EMMC_REQUEST_FROM_LINK (Link);
gBS->CloseEvent (Request->Event);
Request->Token->TransactionStatus = EFI_ABORTED;
if (Request->IsEnd) {
gBS->SignalEvent (Request->Token->Event);
}
FreePool (Request);
}
//
// Close the child handle
//
Status = gBS->CloseProtocol (
Controller,
&gEfiSdMmcPassThruProtocolGuid,
This->DriverBindingHandle,
ChildHandleBuffer[Index]
);
Status = gBS->UninstallMultipleProtocolInterfaces (
ChildHandleBuffer[Index],
&gEfiDevicePathProtocolGuid,
Partition->DevicePath,
&gEfiBlockIoProtocolGuid,
&Partition->BlockIo,
&gEfiBlockIo2ProtocolGuid,
&Partition->BlockIo2,
&gEfiEraseBlockProtocolGuid,
&Partition->EraseBlock,
&gEfiDiskInfoProtocolGuid,
&Partition->DiskInfo,
NULL
);
if (EFI_ERROR (Status)) {
AllChildrenStopped = FALSE;
gBS->OpenProtocol (
Controller,
&gEfiSdMmcPassThruProtocolGuid,
(VOID **)&Partition->Device->Private->PassThru,
This->DriverBindingHandle,
ChildHandleBuffer[Index],
EFI_OPEN_PROTOCOL_BY_CHILD_CONTROLLER
);
continue;
}
//
// If Storage Security Command Protocol is installed, then uninstall this protocol.
//
Status = gBS->OpenProtocol (
ChildHandleBuffer[Index],
&gEfiStorageSecurityCommandProtocolGuid,
(VOID **)&StorageSecurity,
This->DriverBindingHandle,
Controller,
EFI_OPEN_PROTOCOL_GET_PROTOCOL
);
if (!EFI_ERROR (Status)) {
Status = gBS->UninstallProtocolInterface (
ChildHandleBuffer[Index],
&gEfiStorageSecurityCommandProtocolGuid,
&Partition->StorageSecurity
);
if (EFI_ERROR (Status)) {
gBS->OpenProtocol (
Controller,
&gEfiSdMmcPassThruProtocolGuid,
(VOID **)&Partition->Device->Private->PassThru,
This->DriverBindingHandle,
ChildHandleBuffer[Index],
EFI_OPEN_PROTOCOL_BY_CHILD_CONTROLLER
);
AllChildrenStopped = FALSE;
continue;
}
}
FreePool (Partition->DevicePath);
}
if (!AllChildrenStopped) {
return EFI_DEVICE_ERROR;
}
return EFI_SUCCESS;
}
/**
The user Entry Point for module EmmcDxe. The user code starts with this function.
@param[in] ImageHandle The firmware allocated handle for the EFI image.
@param[in] SystemTable A pointer to the EFI System Table.
@retval EFI_SUCCESS The entry point is executed successfully.
@retval other Some errors occur when executing this entry point.
**/
EFI_STATUS
EFIAPI
InitializeEmmcDxe (
IN EFI_HANDLE ImageHandle,
IN EFI_SYSTEM_TABLE *SystemTable
)
{
EFI_STATUS Status;
//
// Install driver model protocol(s).
//
Status = EfiLibInstallDriverBindingComponentName2 (
ImageHandle,
SystemTable,
&gEmmcDxeDriverBinding,
ImageHandle,
&gEmmcDxeComponentName,
&gEmmcDxeComponentName2
);
ASSERT_EFI_ERROR (Status);
return Status;
}