audk/MdePkg/Library/BaseIoLibIntrinsic/BaseIoLibIntrinsicArmVirt.inf

Ignoring revisions in .git-blame-ignore-revs. Click here to bypass and see the normal blame view.

47 lines
1.2 KiB
INI
Raw Normal View History

MdePkg/BaseIoLibIntrinsic: make BaseIoLibIntrinsic safe for ArmVirt/KVM KVM on ARM refuses to decode load/store instructions used to perform I/O to emulated devices, and instead relies on the exception syndrome information to describe the operand register, access size, etc. This is only possible for instructions that have a single input/output register (as opposed to ones that increment the offset register, or load/store pair instructions, etc). Otherwise, QEMU crashes with the following error error: kvm run failed Function not implemented R00=01010101 R01=00000008 R02=00000048 R03=08000820 R04=00000120 R05=7faaa0e0 R06=7faaa0dc R07=7faaa0e8 R08=7faaa0ec R09=7faaa088 R10=000000ff R11=00000080 R12=ff000000 R13=7fccfe08 R14=7faa835f R15=7faa887c PSR=800001f3 N--- T svc32 QEMU: Terminated and KVM produces a warning such as the following in the kernel log kvm [17646]: load/store instruction decoding not implemented The IoLib implementation provided by MdePkg/Library/BaseIoLibIntrinsic is based on C code, and when LTO is in effect, the MMIO accesses could be merged with, e.g., manipulations of the loop counter, producing opcodes that KVM does not support for emulated MMIO. So let's add a special ArmVirt flavor of this library that implements that actual load/store operations in assembler, ensuring that the instructions involved can be emulated by KVM. Contributed-under: TianoCore Contribution Agreement 1.1 Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org> Reviewed-by: Leif Lindholm <leif.lindholm@linaro.org> Acked-by: Laszlo Ersek <lersek@redhat.com> Reviewed-by: Liming Gao <liming.gao@intel.com>
2018-06-07 12:44:12 +02:00
## @file
# Instance of I/O Library using KVM/ARM safe assembler routines
#
# Copyright (c) 2007 - 2021, Intel Corporation. All rights reserved.<BR>
MdePkg/BaseIoLibIntrinsic: make BaseIoLibIntrinsic safe for ArmVirt/KVM KVM on ARM refuses to decode load/store instructions used to perform I/O to emulated devices, and instead relies on the exception syndrome information to describe the operand register, access size, etc. This is only possible for instructions that have a single input/output register (as opposed to ones that increment the offset register, or load/store pair instructions, etc). Otherwise, QEMU crashes with the following error error: kvm run failed Function not implemented R00=01010101 R01=00000008 R02=00000048 R03=08000820 R04=00000120 R05=7faaa0e0 R06=7faaa0dc R07=7faaa0e8 R08=7faaa0ec R09=7faaa088 R10=000000ff R11=00000080 R12=ff000000 R13=7fccfe08 R14=7faa835f R15=7faa887c PSR=800001f3 N--- T svc32 QEMU: Terminated and KVM produces a warning such as the following in the kernel log kvm [17646]: load/store instruction decoding not implemented The IoLib implementation provided by MdePkg/Library/BaseIoLibIntrinsic is based on C code, and when LTO is in effect, the MMIO accesses could be merged with, e.g., manipulations of the loop counter, producing opcodes that KVM does not support for emulated MMIO. So let's add a special ArmVirt flavor of this library that implements that actual load/store operations in assembler, ensuring that the instructions involved can be emulated by KVM. Contributed-under: TianoCore Contribution Agreement 1.1 Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org> Reviewed-by: Leif Lindholm <leif.lindholm@linaro.org> Acked-by: Laszlo Ersek <lersek@redhat.com> Reviewed-by: Liming Gao <liming.gao@intel.com>
2018-06-07 12:44:12 +02:00
# Portions copyright (c) 2008 - 2009, Apple Inc. All rights reserved.<BR>
# Copyright (c) 2017, AMD Incorporated. All rights reserved.<BR>
# Copyright (c) 2018, Linaro, Ltd. All rights reserved.<BR>
#
# SPDX-License-Identifier: BSD-2-Clause-Patent
MdePkg/BaseIoLibIntrinsic: make BaseIoLibIntrinsic safe for ArmVirt/KVM KVM on ARM refuses to decode load/store instructions used to perform I/O to emulated devices, and instead relies on the exception syndrome information to describe the operand register, access size, etc. This is only possible for instructions that have a single input/output register (as opposed to ones that increment the offset register, or load/store pair instructions, etc). Otherwise, QEMU crashes with the following error error: kvm run failed Function not implemented R00=01010101 R01=00000008 R02=00000048 R03=08000820 R04=00000120 R05=7faaa0e0 R06=7faaa0dc R07=7faaa0e8 R08=7faaa0ec R09=7faaa088 R10=000000ff R11=00000080 R12=ff000000 R13=7fccfe08 R14=7faa835f R15=7faa887c PSR=800001f3 N--- T svc32 QEMU: Terminated and KVM produces a warning such as the following in the kernel log kvm [17646]: load/store instruction decoding not implemented The IoLib implementation provided by MdePkg/Library/BaseIoLibIntrinsic is based on C code, and when LTO is in effect, the MMIO accesses could be merged with, e.g., manipulations of the loop counter, producing opcodes that KVM does not support for emulated MMIO. So let's add a special ArmVirt flavor of this library that implements that actual load/store operations in assembler, ensuring that the instructions involved can be emulated by KVM. Contributed-under: TianoCore Contribution Agreement 1.1 Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org> Reviewed-by: Leif Lindholm <leif.lindholm@linaro.org> Acked-by: Laszlo Ersek <lersek@redhat.com> Reviewed-by: Liming Gao <liming.gao@intel.com>
2018-06-07 12:44:12 +02:00
#
##
[Defines]
INF_VERSION = 0x0001001A
BASE_NAME = BaseIoLibIntrinsicArmVirt
MODULE_UNI_FILE = BaseIoLibIntrinsicArmVirt.uni
FILE_GUID = 217102b4-b465-4a1d-a2de-93dd385ec480
MODULE_TYPE = BASE
VERSION_STRING = 1.0
LIBRARY_CLASS = IoLib
#
# VALID_ARCHITECTURES = ARM AARCH64
#
[Sources]
IoLibMmioBuffer.c
BaseIoLibIntrinsicInternal.h
IoHighLevel.c
[Sources.ARM]
IoLibArmVirt.c
Arm/ArmVirtMmio.S | GCC
[Sources.AARCH64]
IoLibArmVirt.c
AArch64/ArmVirtMmio.S | GCC
AArch64/ArmVirtMmio.asm | MSFT
[Packages]
MdePkg/MdePkg.dec
[LibraryClasses]
DebugLib
BaseLib
RegisterFilterLib