audk/MdeModulePkg/Library/DxeIpIoLib/DxeIpIoLib.c

1330 lines
30 KiB
C
Raw Normal View History

/** @file
Copyright (c) 2005 - 2007, Intel Corporation
All rights reserved. This program and the accompanying materials
are licensed and made available under the terms and conditions of the BSD License
which accompanies this distribution. The full text of the license may be found at
http://opensource.org/licenses/bsd-license.php
THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS,
WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED.
Module Name:
IpIo.c
Abstract:
The implementation of the IpIo layer.
**/
#include <PiDxe.h>
#include <Protocol/Udp4.h>
#include <Library/IpIoLib.h>
#include <Library/BaseLib.h>
#include <Library/DebugLib.h>
#include <Library/UefiBootServicesTableLib.h>
#include <Library/MemoryAllocationLib.h>
#define NET_PROTO_HDR(Buf, Type) ((Type *) ((Buf)->BlockOp[0].Head))
#define ICMP_ERRLEN(IpHdr) \
(sizeof(IP4_ICMP_HEAD) + EFI_IP4_HEADER_LEN(IpHdr) + 8)
NET_LIST_ENTRY mActiveIpIoList = {
&mActiveIpIoList,
&mActiveIpIoList
};
EFI_IP4_CONFIG_DATA mIpIoDefaultIpConfigData = {
EFI_IP_PROTO_UDP,
FALSE,
TRUE,
FALSE,
FALSE,
FALSE,
{0, 0, 0, 0},
{0, 0, 0, 0},
0,
255,
FALSE,
FALSE,
0,
0
};
STATIC
VOID
EFIAPI
IpIoTransmitHandler (
IN EFI_EVENT Event,
IN VOID *Context
);
/**
This function create an ip child ,open the IP protocol, return the opened
Ip protocol to Interface.
@param ControllerHandle The controller handle.
@param ImageHandle The image handle.
@param ChildHandle Pointer to the buffer to save the ip child handle.
@param Interface Pointer used to get the ip protocol interface.
@retval EFI_SUCCESS The ip child is created and the ip protocol
interface is retrieved.
@retval other The required operation failed.
**/
STATIC
EFI_STATUS
IpIoCreateIpChildOpenProtocol (
IN EFI_HANDLE ControllerHandle,
IN EFI_HANDLE ImageHandle,
IN EFI_HANDLE *ChildHandle,
OUT VOID **Interface
)
{
EFI_STATUS Status;
//
// Create an ip child.
//
Status = NetLibCreateServiceChild (
ControllerHandle,
ImageHandle,
&gEfiIp4ServiceBindingProtocolGuid,
ChildHandle
);
if (EFI_ERROR (Status)) {
return Status;
}
//
// Open the ip protocol installed on the *ChildHandle.
//
Status = gBS->OpenProtocol (
*ChildHandle,
&gEfiIp4ProtocolGuid,
Interface,
ImageHandle,
ControllerHandle,
EFI_OPEN_PROTOCOL_BY_DRIVER
);
if (EFI_ERROR (Status)) {
//
// On failure, destroy the ip child.
//
NetLibDestroyServiceChild (
ControllerHandle,
ImageHandle,
&gEfiIp4ServiceBindingProtocolGuid,
*ChildHandle
);
}
return Status;
}
/**
This function close the previously openned ip protocol and destroy the ip child.
@param ControllerHandle The controller handle.
@param ImageHandle the image handle.
@param ChildHandle The child handle of the ip child.
@retval EFI_SUCCESS The ip protocol is closed and the relevant ip child
is destroyed.
@retval other The required operation failed.
**/
STATIC
EFI_STATUS
IpIoCloseProtocolDestroyIpChild (
IN EFI_HANDLE ControllerHandle,
IN EFI_HANDLE ImageHandle,
IN EFI_HANDLE ChildHandle
)
{
EFI_STATUS Status;
//
// Close the previously openned ip protocol.
//
gBS->CloseProtocol (
ChildHandle,
&gEfiIp4ProtocolGuid,
ImageHandle,
ControllerHandle
);
//
// Destroy the ip child.
//
Status = NetLibDestroyServiceChild (
ControllerHandle,
ImageHandle,
&gEfiIp4ServiceBindingProtocolGuid,
ChildHandle
);
return Status;
}
/**
Handle ICMP packets.
@param IpIo Pointer to the IP_IO instance.
@param Pkt Pointer to the ICMP packet.
@param Session Pointer to the net session of this ICMP packet.
@retval EFI_SUCCESS The ICMP packet is handled successfully.
@retval EFI_ABORTED This type of ICMP packet is not supported.
**/
STATIC
EFI_STATUS
IpIoIcmpHandler (
IN IP_IO *IpIo,
IN NET_BUF *Pkt,
IN EFI_NET_SESSION_DATA *Session
)
{
IP4_ICMP_ERROR_HEAD *IcmpHdr;
EFI_IP4_HEADER *IpHdr;
ICMP_ERROR IcmpErr;
UINT8 *PayLoadHdr;
UINT8 Type;
UINT8 Code;
UINT32 TrimBytes;
IcmpHdr = NET_PROTO_HDR (Pkt, IP4_ICMP_ERROR_HEAD);
IpHdr = (EFI_IP4_HEADER *) (&IcmpHdr->IpHead);
//
// Check the ICMP packet length.
//
if (Pkt->TotalSize < ICMP_ERRLEN (IpHdr)) {
return EFI_ABORTED;
}
Type = IcmpHdr->Head.Type;
Code = IcmpHdr->Head.Code;
//
// Analyze the ICMP Error in this ICMP pkt
//
switch (Type) {
case ICMP_TYPE_UNREACH:
switch (Code) {
case ICMP_CODE_UNREACH_NET:
case ICMP_CODE_UNREACH_HOST:
case ICMP_CODE_UNREACH_PROTOCOL:
case ICMP_CODE_UNREACH_PORT:
case ICMP_CODE_UNREACH_SRCFAIL:
IcmpErr = (ICMP_ERROR) (ICMP_ERR_UNREACH_NET + Code);
break;
case ICMP_CODE_UNREACH_NEEDFRAG:
IcmpErr = ICMP_ERR_MSGSIZE;
break;
case ICMP_CODE_UNREACH_NET_UNKNOWN:
case ICMP_CODE_UNREACH_NET_PROHIB:
case ICMP_CODE_UNREACH_TOSNET:
IcmpErr = ICMP_ERR_UNREACH_NET;
break;
case ICMP_CODE_UNREACH_HOST_UNKNOWN:
case ICMP_CODE_UNREACH_ISOLATED:
case ICMP_CODE_UNREACH_HOST_PROHIB:
case ICMP_CODE_UNREACH_TOSHOST:
IcmpErr = ICMP_ERR_UNREACH_HOST;
break;
default:
return EFI_ABORTED;
break;
}
break;
case ICMP_TYPE_TIMXCEED:
if (Code > 1) {
return EFI_ABORTED;
}
IcmpErr = (ICMP_ERROR) (Code + ICMP_ERR_TIMXCEED_INTRANS);
break;
case ICMP_TYPE_PARAMPROB:
if (Code > 1) {
return EFI_ABORTED;
}
IcmpErr = ICMP_ERR_PARAMPROB;
break;
case ICMP_TYPE_SOURCEQUENCH:
if (Code != 0) {
return EFI_ABORTED;
}
IcmpErr = ICMP_ERR_QUENCH;
break;
default:
return EFI_ABORTED;
break;
}
//
// Notify user the ICMP pkt only containing payload except
// IP and ICMP header
//
PayLoadHdr = (UINT8 *) ((UINT8 *) IpHdr + EFI_IP4_HEADER_LEN (IpHdr));
TrimBytes = (UINT32) (PayLoadHdr - (UINT8 *) IcmpHdr);
NetbufTrim (Pkt, TrimBytes, TRUE);
IpIo->PktRcvdNotify (EFI_ICMP_ERROR, IcmpErr, Session, Pkt, IpIo->RcvdContext);
return EFI_SUCCESS;
}
/**
Ext free function for net buffer. This function is
called when the net buffer is freed. It is used to
signal the recycle event to notify IP to recycle the
data buffer.
@param Event The event to be signaled.
@return None.
**/
STATIC
VOID
IpIoExtFree (
IN VOID *Event
)
{
gBS->SignalEvent ((EFI_EVENT) Event);
}
/**
Create a send entry to wrap a packet before sending
out it through IP.
@param IpIo Pointer to the IP_IO instance.
@param Pkt Pointer to the packet.
@param Sender Pointer to the IP sender.
@param NotifyData Pointer to the notify data.
@param Dest Pointer to the destination IP address.
@param Override Pointer to the overriden IP_IO data.
@return Pointer to the data structure created to wrap the packet. If NULL,
@return resource limit occurred.
**/
STATIC
IP_IO_SEND_ENTRY *
IpIoCreateSndEntry (
IN IP_IO *IpIo,
IN NET_BUF *Pkt,
IN EFI_IP4_PROTOCOL *Sender,
IN VOID *Context OPTIONAL,
IN VOID *NotifyData OPTIONAL,
IN IP4_ADDR Dest,
IN IP_IO_OVERRIDE *Override
)
{
IP_IO_SEND_ENTRY *SndEntry;
EFI_IP4_COMPLETION_TOKEN *SndToken;
EFI_IP4_TRANSMIT_DATA *TxData;
EFI_STATUS Status;
EFI_IP4_OVERRIDE_DATA *OverrideData;
volatile UINT32 Index;
//
// Allocate resource for SndEntry
//
SndEntry = NetAllocatePool (sizeof (IP_IO_SEND_ENTRY));
if (NULL == SndEntry) {
return NULL;
}
//
// Allocate resource for SndToken
//
SndToken = NetAllocatePool (sizeof (EFI_IP4_COMPLETION_TOKEN));
if (NULL == SndToken) {
goto ReleaseSndEntry;
}
Status = gBS->CreateEvent (
EVT_NOTIFY_SIGNAL,
NET_TPL_EVENT,
IpIoTransmitHandler,
SndEntry,
&(SndToken->Event)
);
if (EFI_ERROR (Status)) {
goto ReleaseSndToken;
}
//
// Allocate resource for TxData
//
TxData = NetAllocatePool (
sizeof (EFI_IP4_TRANSMIT_DATA) +
sizeof (EFI_IP4_FRAGMENT_DATA) * (Pkt->BlockOpNum - 1)
);
if (NULL == TxData) {
goto ReleaseEvent;
}
//
// Allocate resource for OverrideData if needed
//
OverrideData = NULL;
if (NULL != Override) {
OverrideData = NetAllocatePool (sizeof (EFI_IP4_OVERRIDE_DATA));
if (NULL == OverrideData) {
goto ReleaseResource;
}
//
// Set the fields of OverrideData
//
*OverrideData = * (EFI_IP4_OVERRIDE_DATA *) Override;
}
//
// Set the fields of TxData
//
EFI_IP4 (TxData->DestinationAddress) = Dest;
TxData->OverrideData = OverrideData;
TxData->OptionsLength = 0;
TxData->OptionsBuffer = NULL;
TxData->TotalDataLength = Pkt->TotalSize;
TxData->FragmentCount = Pkt->BlockOpNum;
for (Index = 0; Index < Pkt->BlockOpNum; Index++) {
TxData->FragmentTable[Index].FragmentBuffer = Pkt->BlockOp[Index].Head;
TxData->FragmentTable[Index].FragmentLength = Pkt->BlockOp[Index].Size;
}
//
// Set the fields of SndToken
//
SndToken->Packet.TxData = TxData;
//
// Set the fields of SndEntry
//
SndEntry->IpIo = IpIo;
SndEntry->Ip = Sender;
SndEntry->Context = Context;
SndEntry->NotifyData = NotifyData;
SndEntry->Pkt = Pkt;
NET_GET_REF (Pkt);
SndEntry->SndToken = SndToken;
NetListInsertTail (&IpIo->PendingSndList, &SndEntry->Entry);
return SndEntry;
ReleaseResource:
NetFreePool (TxData);
ReleaseEvent:
gBS->CloseEvent (SndToken->Event);
ReleaseSndToken:
NetFreePool (SndToken);
ReleaseSndEntry:
NetFreePool (SndEntry);
return NULL;
}
/**
Destroy the SndEntry.
@param SndEntry Pointer to the send entry to be destroyed.
@return None.
**/
STATIC
VOID
IpIoDestroySndEntry (
IN IP_IO_SEND_ENTRY *SndEntry
)
{
EFI_IP4_TRANSMIT_DATA *TxData;
TxData = SndEntry->SndToken->Packet.TxData;
if (NULL != TxData->OverrideData) {
NetFreePool (TxData->OverrideData);
}
NetFreePool (TxData);
NetbufFree (SndEntry->Pkt);
gBS->CloseEvent (SndEntry->SndToken->Event);
NetFreePool (SndEntry->SndToken);
NetListRemoveEntry (&SndEntry->Entry);
NetFreePool (SndEntry);
}
/**
Notify function for IP transmit token.
@param Event The event signaled.
@param Context The context passed in by the event notifier.
@return None.
**/
STATIC
VOID
EFIAPI
IpIoTransmitHandler (
IN EFI_EVENT Event,
IN VOID *Context
)
{
IP_IO *IpIo;
IP_IO_SEND_ENTRY *SndEntry;
SndEntry = (IP_IO_SEND_ENTRY *) Context;
IpIo = SndEntry->IpIo;
if (IpIo->PktSentNotify && SndEntry->NotifyData) {
IpIo->PktSentNotify (
SndEntry->SndToken->Status,
SndEntry->Context,
SndEntry->Ip,
SndEntry->NotifyData
);
}
IpIoDestroySndEntry (SndEntry);
}
/**
The dummy handler for the dummy IP receive token.
@param Evt The event signaled.
@param Context The context passed in by the event notifier.
@return None.
**/
STATIC
VOID
EFIAPI
IpIoDummyHandler (
IN EFI_EVENT Event,
IN VOID *Context
)
{
IP_IO_IP_INFO *IpInfo;
EFI_IP4_COMPLETION_TOKEN *DummyToken;
ASSERT (Event && Context);
IpInfo = (IP_IO_IP_INFO *) Context;
DummyToken = &(IpInfo->DummyRcvToken);
if (EFI_SUCCESS == DummyToken->Status) {
ASSERT (DummyToken->Packet.RxData);
gBS->SignalEvent (DummyToken->Packet.RxData->RecycleSignal);
}
IpInfo->Ip->Receive (IpInfo->Ip, DummyToken);
}
/**
Notify function for the IP receive token, used to process
the received IP packets.
@param Event The event signaled.
@param Context The context passed in by the event notifier.
@return None.
**/
STATIC
VOID
EFIAPI
IpIoListenHandler (
IN EFI_EVENT Event,
IN VOID *Context
)
{
IP_IO *IpIo;
EFI_STATUS Status;
EFI_IP4_RECEIVE_DATA *RxData;
EFI_IP4_PROTOCOL *Ip;
EFI_NET_SESSION_DATA Session;
NET_BUF *Pkt;
IpIo = (IP_IO *) Context;
Ip = IpIo->Ip;
Status = IpIo->RcvToken.Status;
RxData = IpIo->RcvToken.Packet.RxData;
if (((EFI_SUCCESS != Status) && (EFI_ICMP_ERROR != Status)) || (NULL == RxData)) {
//
// Only process the normal packets and the icmp error packets, if RxData is NULL
// with Status == EFI_SUCCESS or EFI_ICMP_ERROR, just resume the receive although
// this should be a bug of the low layer (IP).
//
goto Resume;
}
if (NULL == IpIo->PktRcvdNotify) {
goto CleanUp;
}
if ((EFI_IP4 (RxData->Header->SourceAddress) != 0) &&
!Ip4IsUnicast (EFI_NTOHL (RxData->Header->SourceAddress), 0)) {
//
// The source address is not zero and it's not a unicast IP address, discard it.
//
goto CleanUp;
}
//
// Create a netbuffer representing packet
//
Pkt = NetbufFromExt (
(NET_FRAGMENT *) RxData->FragmentTable,
RxData->FragmentCount,
0,
0,
IpIoExtFree,
RxData->RecycleSignal
);
if (NULL == Pkt) {
goto CleanUp;
}
//
// Create a net session
//
Session.Source = EFI_IP4 (RxData->Header->SourceAddress);
Session.Dest = EFI_IP4 (RxData->Header->DestinationAddress);
Session.IpHdr = RxData->Header;
if (EFI_SUCCESS == Status) {
IpIo->PktRcvdNotify (EFI_SUCCESS, (ICMP_ERROR) 0, &Session, Pkt, IpIo->RcvdContext);
} else {
//
// Status is EFI_ICMP_ERROR
//
Status = IpIoIcmpHandler (IpIo, Pkt, &Session);
if (EFI_ERROR (Status)) {
NetbufFree (Pkt);
}
}
goto Resume;
CleanUp:
gBS->SignalEvent (RxData->RecycleSignal);
Resume:
Ip->Receive (Ip, &(IpIo->RcvToken));
}
/**
Create a new IP_IO instance.
@param Image The image handle of an IP_IO consumer protocol.
@param Controller The controller handle of an IP_IO consumer protocol
installed on.
@return Pointer to a newly created IP_IO instance.
**/
IP_IO *
IpIoCreate (
IN EFI_HANDLE Image,
IN EFI_HANDLE Controller
)
{
EFI_STATUS Status;
IP_IO *IpIo;
IpIo = NetAllocateZeroPool (sizeof (IP_IO));
if (NULL == IpIo) {
return NULL;
}
NetListInit (&(IpIo->PendingSndList));
NetListInit (&(IpIo->IpList));
IpIo->Controller = Controller;
IpIo->Image = Image;
Status = gBS->CreateEvent (
EVT_NOTIFY_SIGNAL,
NET_TPL_EVENT,
IpIoListenHandler,
IpIo,
&(IpIo->RcvToken.Event)
);
if (EFI_ERROR (Status)) {
goto ReleaseIpIo;
}
//
// Create an IP child and open IP protocol
//
Status = IpIoCreateIpChildOpenProtocol (
Controller,
Image,
&IpIo->ChildHandle,
(VOID **)&(IpIo->Ip)
);
if (EFI_ERROR (Status)) {
goto ReleaseIpIo;
}
return IpIo;
ReleaseIpIo:
if (NULL != IpIo->RcvToken.Event) {
gBS->CloseEvent (IpIo->RcvToken.Event);
}
NetFreePool (IpIo);
return NULL;
}
/**
Open an IP_IO instance for use.
@param IpIo Pointer to an IP_IO instance that needs to open.
@param OpenData The configuration data for the IP_IO instance.
@retval EFI_SUCCESS The IP_IO instance opened with OpenData
successfully.
@retval other Error condition occurred.
**/
EFI_STATUS
IpIoOpen (
IN IP_IO *IpIo,
IN IP_IO_OPEN_DATA *OpenData
)
{
EFI_STATUS Status;
EFI_IP4_PROTOCOL *Ip;
EFI_IPv4_ADDRESS ZeroIp;
if (IpIo->IsConfigured) {
return EFI_ACCESS_DENIED;
}
Ip = IpIo->Ip;
//
// configure ip
//
Status = Ip->Configure (Ip, &OpenData->IpConfigData);
if (EFI_ERROR (Status)) {
return Status;
}
//
// bugbug: to delete the default route entry in this Ip, if it is:
// (0.0.0.0, 0.0.0.0, 0.0.0.0). Delete this statement if Ip modified
// its code
//
EFI_IP4 (ZeroIp) = 0;
Status = Ip->Routes (Ip, TRUE, &ZeroIp, &ZeroIp, &ZeroIp);
if (EFI_ERROR (Status) && (EFI_NOT_FOUND != Status)) {
return Status;
}
IpIo->PktRcvdNotify = OpenData->PktRcvdNotify;
IpIo->PktSentNotify = OpenData->PktSentNotify;
IpIo->RcvdContext = OpenData->RcvdContext;
IpIo->SndContext = OpenData->SndContext;
IpIo->Protocol = OpenData->IpConfigData.DefaultProtocol;
//
// start to listen incoming packet
//
Status = Ip->Receive (Ip, &(IpIo->RcvToken));
if (EFI_ERROR (Status)) {
Ip->Configure (Ip, NULL);
goto ErrorExit;
}
IpIo->IsConfigured = TRUE;
NetListInsertTail (&mActiveIpIoList, &IpIo->Entry);
ErrorExit:
return Status;
}
/**
Stop an IP_IO instance.
@param IpIo Pointer to the IP_IO instance that needs to stop.
@retval EFI_SUCCESS The IP_IO instance stopped successfully.
@retval other Error condition occurred.
**/
EFI_STATUS
IpIoStop (
IN IP_IO *IpIo
)
{
EFI_STATUS Status;
EFI_IP4_PROTOCOL *Ip;
IP_IO_IP_INFO *IpInfo;
if (!IpIo->IsConfigured) {
return EFI_SUCCESS;
}
//
// Remove the IpIo from the active IpIo list.
//
NetListRemoveEntry (&IpIo->Entry);
Ip = IpIo->Ip;
//
// Configure NULL Ip
//
Status = Ip->Configure (Ip, NULL);
if (EFI_ERROR (Status)) {
return Status;
}
IpIo->IsConfigured = FALSE;
//
// Detroy the Ip List used by IpIo
//
while (!NetListIsEmpty (&(IpIo->IpList))) {
IpInfo = NET_LIST_HEAD (&(IpIo->IpList), IP_IO_IP_INFO, Entry);
IpIoRemoveIp (IpIo, IpInfo);
}
//
// All pending snd tokens should be flushed by reseting the IP instances.
//
ASSERT (NetListIsEmpty (&IpIo->PendingSndList));
//
// Close the receive event.
//
gBS->CloseEvent (IpIo->RcvToken.Event);
return EFI_SUCCESS;
}
/**
Destroy an IP_IO instance.
@param IpIo Pointer to the IP_IO instance that needs to
destroy.
@retval EFI_SUCCESS The IP_IO instance destroyed successfully.
@retval other Error condition occurred.
**/
EFI_STATUS
IpIoDestroy (
IN IP_IO *IpIo
)
{
//
// Stop the IpIo.
//
IpIoStop (IpIo);
//
// Close the IP protocol and destroy the child.
//
IpIoCloseProtocolDestroyIpChild (IpIo->Controller, IpIo->Image, IpIo->ChildHandle);
NetFreePool (IpIo);
return EFI_SUCCESS;
}
/**
Send out an IP packet.
@param IpIo Pointer to an IP_IO instance used for sending IP
packet.
@param Pkt Pointer to the IP packet to be sent.
@param Sender The IP protocol instance used for sending.
@param NotifyData
@param Dest The destination IP address to send this packet to.
@param OverrideData The data to override some configuration of the IP
instance used for sending.
@retval EFI_SUCCESS The operation is completed successfully.
@retval EFI_NOT_STARTED The IpIo is not configured.
@retval EFI_OUT_OF_RESOURCES Failed due to resource limit.
**/
EFI_STATUS
IpIoSend (
IN IP_IO *IpIo,
IN NET_BUF *Pkt,
IN IP_IO_IP_INFO *Sender,
IN VOID *Context OPTIONAL,
IN VOID *NotifyData OPTIONAL,
IN IP4_ADDR Dest,
IN IP_IO_OVERRIDE *OverrideData
)
{
EFI_STATUS Status;
EFI_IP4_PROTOCOL *Ip;
IP_IO_SEND_ENTRY *SndEntry;
if (!IpIo->IsConfigured) {
return EFI_NOT_STARTED;
}
Ip = (NULL == Sender) ? IpIo->Ip : Sender->Ip;
//
// create a new SndEntry
//
SndEntry = IpIoCreateSndEntry (IpIo, Pkt, Ip, Context, NotifyData, Dest, OverrideData);
if (NULL == SndEntry) {
return EFI_OUT_OF_RESOURCES;
}
//
// Send this Packet
//
Status = Ip->Transmit (Ip, SndEntry->SndToken);
if (EFI_ERROR (Status)) {
IpIoDestroySndEntry (SndEntry);
}
return Status;
}
/**
Cancel the IP transmit token which wraps this Packet.
@param IpIo Pointer to the IP_IO instance.
@param Packet Pointer to the packet to cancel.
@return N/A.
**/
VOID
IpIoCancelTxToken (
IN IP_IO *IpIo,
IN VOID *Packet
)
{
NET_LIST_ENTRY *Node;
IP_IO_SEND_ENTRY *SndEntry;
EFI_IP4_PROTOCOL *Ip;
ASSERT (IpIo && Packet);
NET_LIST_FOR_EACH (Node, &IpIo->PendingSndList) {
SndEntry = NET_LIST_USER_STRUCT (Node, IP_IO_SEND_ENTRY, Entry);
if (SndEntry->Pkt == Packet) {
Ip = SndEntry->Ip;
Ip->Cancel (Ip, SndEntry->SndToken);
//
// Abort the user token.
//
SndEntry->SndToken->Status = EFI_ABORTED;
IpIoTransmitHandler (NULL, SndEntry);
break;
}
}
}
/**
Add a new IP instance for sending data.
@param IpIo Pointer to a IP_IO instance to add a new IP
instance for sending purpose.
@return Pointer to the created IP_IO_IP_INFO structure, NULL is failed.
**/
IP_IO_IP_INFO *
IpIoAddIp (
IN IP_IO *IpIo
)
{
EFI_STATUS Status;
IP_IO_IP_INFO *IpInfo;
ASSERT (IpIo);
IpInfo = NetAllocatePool (sizeof (IP_IO_IP_INFO));
if (IpInfo == NULL) {
return IpInfo;
}
//
// Init this IpInfo, set the Addr and SubnetMask to 0 before we configure the IP
// instance.
//
NetListInit (&IpInfo->Entry);
IpInfo->ChildHandle = NULL;
IpInfo->Addr = 0;
IpInfo->SubnetMask = 0;
IpInfo->RefCnt = 1;
//
// Create the IP instance and open the Ip4 protocol.
//
Status = IpIoCreateIpChildOpenProtocol (
IpIo->Controller,
IpIo->Image,
&IpInfo->ChildHandle,
(VOID **) &IpInfo->Ip
);
if (EFI_ERROR (Status)) {
goto ReleaseIpInfo;
}
//
// Create the event for the DummyRcvToken.
//
Status = gBS->CreateEvent (
EVT_NOTIFY_SIGNAL,
NET_TPL_EVENT,
IpIoDummyHandler,
IpInfo,
&IpInfo->DummyRcvToken.Event
);
if (EFI_ERROR (Status)) {
goto ReleaseIpChild;
}
//
// Link this IpInfo into the IpIo.
//
NetListInsertTail (&IpIo->IpList, &IpInfo->Entry);
return IpInfo;
ReleaseIpChild:
IpIoCloseProtocolDestroyIpChild (
IpIo->Controller,
IpIo->Image,
IpInfo->ChildHandle
);
ReleaseIpInfo:
NetFreePool (IpInfo);
return NULL;
}
/**
Configure the IP instance of this IpInfo and start the receiving if Ip4ConfigData
is not NULL.
@param IpInfo Pointer to the IP_IO_IP_INFO instance.
@param Ip4ConfigData The IP4 configure data used to configure the ip
instance, if NULL the ip instance is reseted. If
UseDefaultAddress is set to TRUE, and the configure
operation succeeds, the default address information
is written back in this Ip4ConfigData.
@retval EFI_STATUS The status returned by IP4->Configure or
IP4->Receive.
**/
EFI_STATUS
IpIoConfigIp (
IN IP_IO_IP_INFO *IpInfo,
IN OUT EFI_IP4_CONFIG_DATA *Ip4ConfigData OPTIONAL
)
{
EFI_STATUS Status;
EFI_IP4_PROTOCOL *Ip;
EFI_IP4_MODE_DATA Ip4ModeData;
ASSERT (IpInfo);
if (IpInfo->RefCnt > 1) {
//
// This IP instance is shared, don't reconfigure it until it has only one
// consumer. Currently, only the tcp children cloned from their passive parent
// will share the same IP. So this cases only happens while Ip4ConfigData is NULL,
// let the last consumer clean the IP instance.
//
return EFI_SUCCESS;
}
Ip = IpInfo->Ip;
Status = Ip->Configure (Ip, Ip4ConfigData);
if (EFI_ERROR (Status)) {
goto OnExit;
}
if (Ip4ConfigData != NULL) {
if (Ip4ConfigData->UseDefaultAddress) {
Ip->GetModeData (Ip, &Ip4ModeData, NULL, NULL);
Ip4ConfigData->StationAddress = Ip4ModeData.ConfigData.StationAddress;
Ip4ConfigData->SubnetMask = Ip4ModeData.ConfigData.SubnetMask;
}
IpInfo->Addr = EFI_IP4 (Ip4ConfigData->StationAddress);
IpInfo->SubnetMask = EFI_IP4 (Ip4ConfigData->SubnetMask);
Status = Ip->Receive (Ip, &IpInfo->DummyRcvToken);
if (EFI_ERROR (Status)) {
Ip->Configure (Ip, NULL);
}
} else {
//
// The IP instance is reseted, set the stored Addr and SubnetMask to zero.
//
IpInfo->Addr = 0;
IpInfo->SubnetMask =0;
}
OnExit:
return Status;
}
/**
Destroy an IP instance maintained in IpIo->IpList for
sending purpose.
@param IpIo Pointer to the IP_IO instance.
@param IpInfo Pointer to the IpInfo to be removed.
@return None.
**/
VOID
IpIoRemoveIp (
IN IP_IO *IpIo,
IN IP_IO_IP_INFO *IpInfo
)
{
ASSERT (IpInfo->RefCnt > 0);
NET_PUT_REF (IpInfo);
if (IpInfo->RefCnt > 0) {
return;
}
NetListRemoveEntry (&IpInfo->Entry);
IpInfo->Ip->Configure (IpInfo->Ip, NULL);
IpIoCloseProtocolDestroyIpChild (IpIo->Controller, IpIo->Image, IpInfo->ChildHandle);
gBS->CloseEvent (IpInfo->DummyRcvToken.Event);
NetFreePool (IpInfo);
}
/**
Find the first IP protocol maintained in IpIo whose local
address is the same with Src.
@param IpIo Pointer to the pointer of the IP_IO instance.
@param Src The local IP address.
@return Pointer to the IP protocol can be used for sending purpose and its local
@return address is the same with Src.
**/
IP_IO_IP_INFO *
IpIoFindSender (
IN OUT IP_IO **IpIo,
IN IP4_ADDR Src
)
{
NET_LIST_ENTRY *IpIoEntry;
IP_IO *IpIoPtr;
NET_LIST_ENTRY *IpInfoEntry;
IP_IO_IP_INFO *IpInfo;
NET_LIST_FOR_EACH (IpIoEntry, &mActiveIpIoList) {
IpIoPtr = NET_LIST_USER_STRUCT (IpIoEntry, IP_IO, Entry);
if ((*IpIo != NULL) && (*IpIo != IpIoPtr)) {
continue;
}
NET_LIST_FOR_EACH (IpInfoEntry, &IpIoPtr->IpList) {
IpInfo = NET_LIST_USER_STRUCT (IpInfoEntry, IP_IO_IP_INFO, Entry);
if (IpInfo->Addr == Src) {
*IpIo = IpIoPtr;
return IpInfo;
}
}
}
//
// No match.
//
return NULL;
}
/**
Get the ICMP error map information, the ErrorStatus will be returned.
The IsHard and Notify are optional. If they are not NULL, this rouine will
fill them.
We move IcmpErrMap[] to local variable to enable EBC build.
@param IcmpError IcmpError Type
@param IsHard Whether it is a hard error
@param Notify Whether it need to notify SockError
@return ICMP Error Status
**/
EFI_STATUS
IpIoGetIcmpErrStatus (
IN ICMP_ERROR IcmpError,
OUT BOOLEAN *IsHard, OPTIONAL
OUT BOOLEAN *Notify OPTIONAL
)
{
ICMP_ERROR_INFO IcmpErrMap[10];
IcmpErrMap[0].Error = EFI_NETWORK_UNREACHABLE;
IcmpErrMap[0].IsHard = FALSE;
IcmpErrMap[0].Notify = TRUE;
IcmpErrMap[1].Error = EFI_HOST_UNREACHABLE;
IcmpErrMap[1].IsHard = FALSE;
IcmpErrMap[1].Notify = TRUE;
IcmpErrMap[2].Error = EFI_PROTOCOL_UNREACHABLE;
IcmpErrMap[2].IsHard = TRUE;
IcmpErrMap[2].Notify = TRUE;
IcmpErrMap[3].Error = EFI_PORT_UNREACHABLE;
IcmpErrMap[3].IsHard = TRUE;
IcmpErrMap[3].Notify = TRUE;
IcmpErrMap[4].Error = EFI_ICMP_ERROR;
IcmpErrMap[4].IsHard = TRUE;
IcmpErrMap[4].Notify = TRUE;
IcmpErrMap[5].Error = EFI_ICMP_ERROR;
IcmpErrMap[5].IsHard = FALSE;
IcmpErrMap[5].Notify = TRUE;
IcmpErrMap[6].Error = EFI_HOST_UNREACHABLE;
IcmpErrMap[6].IsHard = FALSE;
IcmpErrMap[6].Notify = TRUE;
IcmpErrMap[7].Error = EFI_HOST_UNREACHABLE;
IcmpErrMap[7].IsHard = FALSE;
IcmpErrMap[7].Notify = TRUE;
IcmpErrMap[8].Error = EFI_ICMP_ERROR;
IcmpErrMap[8].IsHard = FALSE;
IcmpErrMap[8].Notify = FALSE;
IcmpErrMap[9].Error = EFI_ICMP_ERROR;
IcmpErrMap[9].IsHard = FALSE;
IcmpErrMap[9].Notify = TRUE;
ASSERT ((IcmpError >= ICMP_ERR_UNREACH_NET) && (IcmpError <= ICMP_ERR_PARAMPROB));
if (IsHard != NULL) {
*IsHard = IcmpErrMap[IcmpError].IsHard;
}
if (Notify != NULL) {
*Notify = IcmpErrMap[IcmpError].Notify;
}
return IcmpErrMap[IcmpError].Error;
}