audk/MdeModulePkg/Core/Dxe/Gcd/Gcd.c

Ignoring revisions in .git-blame-ignore-revs. Click here to bypass and see the normal blame view.

2876 lines
91 KiB
C
Raw Normal View History

/** @file
The file contains the GCD related services in the EFI Boot Services Table.
The GCD services are used to manage the memory and I/O regions that
are accessible to the CPU that is executing the DXE core.
Copyright (c) 2006 - 2018, Intel Corporation. All rights reserved.<BR>
SPDX-License-Identifier: BSD-2-Clause-Patent
**/
#include <Pi/PrePiDxeCis.h>
#include <Pi/PrePiHob.h>
#include "DxeMain.h"
#include "Gcd.h"
MdeModulePkg/Core: allow HeapGuard even before CpuArchProtocol installed Due to the fact that HeapGuard needs CpuArchProtocol to update page attributes, the feature is normally enabled after CpuArchProtocol is installed. Since there're some drivers are loaded before CpuArchProtocl, they cannot make use HeapGuard feature to detect potential issues. This patch fixes above situation by updating the DXE core to skip the NULL check against global gCpu in the IsMemoryTypeToGuard(), and adding NULL check against gCpu in SetGuardPage() and UnsetGuardPage() to make sure that they can be called but do nothing. This will allow HeapGuard to record all guarded memory without setting the related Guard pages to not- present. Once the CpuArchProtocol is installed, a protocol notify will be called to complete the work of setting Guard pages to not-present. Please note that above changes will cause a #PF in GCD code during cleanup of map entries, which is initiated by CpuDxe driver to update real mtrr and paging attributes back to GCD. During that time, CpuDxe doesn't allow GCD to update memory attributes and then any Guard page cannot be unset. As a result, this will prevent Guarded memory from freeing during memory map cleanup. The solution is to avoid allocating guarded memory as memory map entries in GCD code. It's done by setting global mOnGuarding to TRUE before memory allocation and setting it back to FALSE afterwards in GCD function CoreAllocateGcdMapEntry(). Cc: Star Zeng <star.zeng@intel.com> Cc: Eric Dong <eric.dong@intel.com> Cc: Jiewen Yao <jiewen.yao@intel.com> Contributed-under: TianoCore Contribution Agreement 1.1 Signed-off-by: Jian J Wang <jian.j.wang@intel.com> Reviewed-by: Ruiyu Ni <ruiyu.ni@intel.com>
2018-03-14 09:28:34 +01:00
#include "Mem/HeapGuard.h"
#define MINIMUM_INITIAL_MEMORY_SIZE 0x10000
#define MEMORY_ATTRIBUTE_MASK (EFI_RESOURCE_ATTRIBUTE_PRESENT | \
EFI_RESOURCE_ATTRIBUTE_INITIALIZED | \
EFI_RESOURCE_ATTRIBUTE_TESTED | \
EFI_RESOURCE_ATTRIBUTE_READ_PROTECTED | \
EFI_RESOURCE_ATTRIBUTE_WRITE_PROTECTED | \
EFI_RESOURCE_ATTRIBUTE_EXECUTION_PROTECTED | \
EFI_RESOURCE_ATTRIBUTE_READ_ONLY_PROTECTED | \
EFI_RESOURCE_ATTRIBUTE_16_BIT_IO | \
EFI_RESOURCE_ATTRIBUTE_32_BIT_IO | \
EFI_RESOURCE_ATTRIBUTE_64_BIT_IO | \
EFI_RESOURCE_ATTRIBUTE_PERSISTENT )
#define TESTED_MEMORY_ATTRIBUTES (EFI_RESOURCE_ATTRIBUTE_PRESENT | \
EFI_RESOURCE_ATTRIBUTE_INITIALIZED | \
EFI_RESOURCE_ATTRIBUTE_TESTED )
#define INITIALIZED_MEMORY_ATTRIBUTES (EFI_RESOURCE_ATTRIBUTE_PRESENT |\
EFI_RESOURCE_ATTRIBUTE_INITIALIZED )
#define PRESENT_MEMORY_ATTRIBUTES (EFI_RESOURCE_ATTRIBUTE_PRESENT)
//
// Module Variables
//
EFI_LOCK mGcdMemorySpaceLock = EFI_INITIALIZE_LOCK_VARIABLE (TPL_NOTIFY);
EFI_LOCK mGcdIoSpaceLock = EFI_INITIALIZE_LOCK_VARIABLE (TPL_NOTIFY);
LIST_ENTRY mGcdMemorySpaceMap = INITIALIZE_LIST_HEAD_VARIABLE (mGcdMemorySpaceMap);
LIST_ENTRY mGcdIoSpaceMap = INITIALIZE_LIST_HEAD_VARIABLE (mGcdIoSpaceMap);
EFI_GCD_MAP_ENTRY mGcdMemorySpaceMapEntryTemplate = {
EFI_GCD_MAP_SIGNATURE,
{
NULL,
NULL
},
0,
0,
0,
0,
EfiGcdMemoryTypeNonExistent,
(EFI_GCD_IO_TYPE)0,
NULL,
NULL
};
EFI_GCD_MAP_ENTRY mGcdIoSpaceMapEntryTemplate = {
EFI_GCD_MAP_SIGNATURE,
{
NULL,
NULL
},
0,
0,
0,
0,
(EFI_GCD_MEMORY_TYPE)0,
EfiGcdIoTypeNonExistent,
NULL,
NULL
};
GCD_ATTRIBUTE_CONVERSION_ENTRY mAttributeConversionTable[] = {
{ EFI_RESOURCE_ATTRIBUTE_UNCACHEABLE, EFI_MEMORY_UC, TRUE },
{ EFI_RESOURCE_ATTRIBUTE_UNCACHED_EXPORTED, EFI_MEMORY_UCE, TRUE },
{ EFI_RESOURCE_ATTRIBUTE_WRITE_COMBINEABLE, EFI_MEMORY_WC, TRUE },
{ EFI_RESOURCE_ATTRIBUTE_WRITE_THROUGH_CACHEABLE, EFI_MEMORY_WT, TRUE },
{ EFI_RESOURCE_ATTRIBUTE_WRITE_BACK_CACHEABLE, EFI_MEMORY_WB, TRUE },
{ EFI_RESOURCE_ATTRIBUTE_READ_PROTECTABLE, EFI_MEMORY_RP, TRUE },
{ EFI_RESOURCE_ATTRIBUTE_WRITE_PROTECTABLE, EFI_MEMORY_WP, TRUE },
{ EFI_RESOURCE_ATTRIBUTE_EXECUTION_PROTECTABLE, EFI_MEMORY_XP, TRUE },
{ EFI_RESOURCE_ATTRIBUTE_READ_ONLY_PROTECTABLE, EFI_MEMORY_RO, TRUE },
{ EFI_RESOURCE_ATTRIBUTE_PRESENT, EFI_MEMORY_PRESENT, FALSE },
{ EFI_RESOURCE_ATTRIBUTE_INITIALIZED, EFI_MEMORY_INITIALIZED, FALSE },
{ EFI_RESOURCE_ATTRIBUTE_TESTED, EFI_MEMORY_TESTED, FALSE },
{ EFI_RESOURCE_ATTRIBUTE_PERSISTABLE, EFI_MEMORY_NV, TRUE },
{ EFI_RESOURCE_ATTRIBUTE_MORE_RELIABLE, EFI_MEMORY_MORE_RELIABLE, TRUE },
{ 0, 0, FALSE }
};
///
/// Lookup table used to print GCD Memory Space Map
///
GLOBAL_REMOVE_IF_UNREFERENCED CONST CHAR8 *mGcdMemoryTypeNames[] = {
"NonExist ", // EfiGcdMemoryTypeNonExistent
"Reserved ", // EfiGcdMemoryTypeReserved
"SystemMem", // EfiGcdMemoryTypeSystemMemory
"MMIO ", // EfiGcdMemoryTypeMemoryMappedIo
"PersisMem", // EfiGcdMemoryTypePersistent
"MoreRelia", // EfiGcdMemoryTypeMoreReliable
"Unaccepte", // EFI_GCD_MEMORY_TYPE_UNACCEPTED
"Unknown " // EfiGcdMemoryTypeMaximum
};
///
/// Lookup table used to print GCD I/O Space Map
///
GLOBAL_REMOVE_IF_UNREFERENCED CONST CHAR8 *mGcdIoTypeNames[] = {
"NonExist", // EfiGcdIoTypeNonExistent
"Reserved", // EfiGcdIoTypeReserved
"I/O ", // EfiGcdIoTypeIo
"Unknown " // EfiGcdIoTypeMaximum
};
///
/// Lookup table used to print GCD Allocation Types
///
GLOBAL_REMOVE_IF_UNREFERENCED CONST CHAR8 *mGcdAllocationTypeNames[] = {
"AnySearchBottomUp ", // EfiGcdAllocateAnySearchBottomUp
"MaxAddressSearchBottomUp ", // EfiGcdAllocateMaxAddressSearchBottomUp
"AtAddress ", // EfiGcdAllocateAddress
"AnySearchTopDown ", // EfiGcdAllocateAnySearchTopDown
"MaxAddressSearchTopDown ", // EfiGcdAllocateMaxAddressSearchTopDown
"Unknown " // EfiGcdMaxAllocateType
};
/**
Dump the entire contents if the GCD Memory Space Map using DEBUG() macros when
PcdDebugPrintErrorLevel has the DEBUG_GCD bit set.
@param InitialMap TRUE if the initial GCD Memory Map is being dumped. Otherwise, FALSE.
**/
VOID
EFIAPI
CoreDumpGcdMemorySpaceMap (
BOOLEAN InitialMap
)
{
DEBUG_CODE_BEGIN ();
EFI_STATUS Status;
UINTN NumberOfDescriptors;
EFI_GCD_MEMORY_SPACE_DESCRIPTOR *MemorySpaceMap;
UINTN Index;
Status = CoreGetMemorySpaceMap (&NumberOfDescriptors, &MemorySpaceMap);
ASSERT (Status == EFI_SUCCESS && MemorySpaceMap != NULL);
if (InitialMap) {
DEBUG ((DEBUG_GCD, "GCD:Initial GCD Memory Space Map\n"));
}
DEBUG ((DEBUG_GCD, "GCDMemType Range Capabilities Attributes \n"));
DEBUG ((DEBUG_GCD, "========== ================================= ================ ================\n"));
for (Index = 0; Index < NumberOfDescriptors; Index++) {
DEBUG ((
DEBUG_GCD,
"%a %016lx-%016lx %016lx %016lx%c\n",
mGcdMemoryTypeNames[MIN (MemorySpaceMap[Index].GcdMemoryType, EfiGcdMemoryTypeMaximum)],
MemorySpaceMap[Index].BaseAddress,
MemorySpaceMap[Index].BaseAddress + MemorySpaceMap[Index].Length - 1,
MemorySpaceMap[Index].Capabilities,
MemorySpaceMap[Index].Attributes,
MemorySpaceMap[Index].ImageHandle == NULL ? ' ' : '*'
));
}
DEBUG ((DEBUG_GCD, "\n"));
FreePool (MemorySpaceMap);
DEBUG_CODE_END ();
}
/**
Dump the entire contents if the GCD I/O Space Map using DEBUG() macros when
PcdDebugPrintErrorLevel has the DEBUG_GCD bit set.
@param InitialMap TRUE if the initial GCD I/O Map is being dumped. Otherwise, FALSE.
**/
VOID
EFIAPI
CoreDumpGcdIoSpaceMap (
BOOLEAN InitialMap
)
{
DEBUG_CODE_BEGIN ();
EFI_STATUS Status;
UINTN NumberOfDescriptors;
EFI_GCD_IO_SPACE_DESCRIPTOR *IoSpaceMap;
UINTN Index;
Status = CoreGetIoSpaceMap (&NumberOfDescriptors, &IoSpaceMap);
ASSERT (Status == EFI_SUCCESS && IoSpaceMap != NULL);
if (InitialMap) {
DEBUG ((DEBUG_GCD, "GCD:Initial GCD I/O Space Map\n"));
}
DEBUG ((DEBUG_GCD, "GCDIoType Range \n"));
DEBUG ((DEBUG_GCD, "========== =================================\n"));
for (Index = 0; Index < NumberOfDescriptors; Index++) {
DEBUG ((
DEBUG_GCD,
"%a %016lx-%016lx%c\n",
mGcdIoTypeNames[MIN (IoSpaceMap[Index].GcdIoType, EfiGcdIoTypeMaximum)],
IoSpaceMap[Index].BaseAddress,
IoSpaceMap[Index].BaseAddress + IoSpaceMap[Index].Length - 1,
IoSpaceMap[Index].ImageHandle == NULL ? ' ' : '*'
));
}
DEBUG ((DEBUG_GCD, "\n"));
FreePool (IoSpaceMap);
DEBUG_CODE_END ();
}
/**
Validate resource descriptor HOB's attributes.
If Attributes includes some memory resource's settings, it should include
the corresponding capabilites also.
@param Attributes Resource descriptor HOB attributes.
**/
VOID
CoreValidateResourceDescriptorHobAttributes (
IN UINT64 Attributes
)
{
ASSERT (
((Attributes & EFI_RESOURCE_ATTRIBUTE_READ_PROTECTED) == 0) ||
((Attributes & EFI_RESOURCE_ATTRIBUTE_READ_PROTECTABLE) != 0)
);
ASSERT (
((Attributes & EFI_RESOURCE_ATTRIBUTE_WRITE_PROTECTED) == 0) ||
((Attributes & EFI_RESOURCE_ATTRIBUTE_WRITE_PROTECTABLE) != 0)
);
ASSERT (
((Attributes & EFI_RESOURCE_ATTRIBUTE_EXECUTION_PROTECTED) == 0) ||
((Attributes & EFI_RESOURCE_ATTRIBUTE_EXECUTION_PROTECTABLE) != 0)
);
ASSERT (
((Attributes & EFI_RESOURCE_ATTRIBUTE_READ_ONLY_PROTECTED) == 0) ||
((Attributes & EFI_RESOURCE_ATTRIBUTE_READ_ONLY_PROTECTABLE) != 0)
);
ASSERT (
((Attributes & EFI_RESOURCE_ATTRIBUTE_PERSISTENT) == 0) ||
((Attributes & EFI_RESOURCE_ATTRIBUTE_PERSISTABLE) != 0)
);
}
/**
Acquire memory lock on mGcdMemorySpaceLock.
**/
VOID
CoreAcquireGcdMemoryLock (
VOID
)
{
CoreAcquireLock (&mGcdMemorySpaceLock);
}
/**
Release memory lock on mGcdMemorySpaceLock.
**/
VOID
CoreReleaseGcdMemoryLock (
VOID
)
{
CoreReleaseLock (&mGcdMemorySpaceLock);
}
/**
Acquire memory lock on mGcdIoSpaceLock.
**/
VOID
CoreAcquireGcdIoLock (
VOID
)
{
CoreAcquireLock (&mGcdIoSpaceLock);
}
/**
Release memory lock on mGcdIoSpaceLock.
**/
VOID
CoreReleaseGcdIoLock (
VOID
)
{
CoreReleaseLock (&mGcdIoSpaceLock);
}
//
// GCD Initialization Worker Functions
//
/**
Aligns a value to the specified boundary.
@param Value 64 bit value to align
@param Alignment Log base 2 of the boundary to align Value to
@param RoundUp TRUE if Value is to be rounded up to the nearest
aligned boundary. FALSE is Value is to be
rounded down to the nearest aligned boundary.
@return A 64 bit value is the aligned to the value nearest Value with an alignment by Alignment.
**/
UINT64
AlignValue (
IN UINT64 Value,
IN UINTN Alignment,
IN BOOLEAN RoundUp
)
{
UINT64 AlignmentMask;
AlignmentMask = LShiftU64 (1, Alignment) - 1;
if (RoundUp) {
Value += AlignmentMask;
}
return Value & (~AlignmentMask);
}
/**
Aligns address to the page boundary.
@param Value 64 bit address to align
@return A 64 bit value is the aligned to the value nearest Value with an alignment by Alignment.
**/
UINT64
PageAlignAddress (
IN UINT64 Value
)
{
return AlignValue (Value, EFI_PAGE_SHIFT, TRUE);
}
/**
Aligns length to the page boundary.
@param Value 64 bit length to align
@return A 64 bit value is the aligned to the value nearest Value with an alignment by Alignment.
**/
UINT64
PageAlignLength (
IN UINT64 Value
)
{
return AlignValue (Value, EFI_PAGE_SHIFT, FALSE);
}
//
// GCD Memory Space Worker Functions
//
/**
Allocate pool for two entries.
@param TopEntry An entry of GCD map
@param BottomEntry An entry of GCD map
@retval EFI_OUT_OF_RESOURCES No enough buffer to be allocated.
@retval EFI_SUCCESS Both entries successfully allocated.
**/
EFI_STATUS
CoreAllocateGcdMapEntry (
IN OUT EFI_GCD_MAP_ENTRY **TopEntry,
IN OUT EFI_GCD_MAP_ENTRY **BottomEntry
)
{
MdeModulePkg/Core: allow HeapGuard even before CpuArchProtocol installed Due to the fact that HeapGuard needs CpuArchProtocol to update page attributes, the feature is normally enabled after CpuArchProtocol is installed. Since there're some drivers are loaded before CpuArchProtocl, they cannot make use HeapGuard feature to detect potential issues. This patch fixes above situation by updating the DXE core to skip the NULL check against global gCpu in the IsMemoryTypeToGuard(), and adding NULL check against gCpu in SetGuardPage() and UnsetGuardPage() to make sure that they can be called but do nothing. This will allow HeapGuard to record all guarded memory without setting the related Guard pages to not- present. Once the CpuArchProtocol is installed, a protocol notify will be called to complete the work of setting Guard pages to not-present. Please note that above changes will cause a #PF in GCD code during cleanup of map entries, which is initiated by CpuDxe driver to update real mtrr and paging attributes back to GCD. During that time, CpuDxe doesn't allow GCD to update memory attributes and then any Guard page cannot be unset. As a result, this will prevent Guarded memory from freeing during memory map cleanup. The solution is to avoid allocating guarded memory as memory map entries in GCD code. It's done by setting global mOnGuarding to TRUE before memory allocation and setting it back to FALSE afterwards in GCD function CoreAllocateGcdMapEntry(). Cc: Star Zeng <star.zeng@intel.com> Cc: Eric Dong <eric.dong@intel.com> Cc: Jiewen Yao <jiewen.yao@intel.com> Contributed-under: TianoCore Contribution Agreement 1.1 Signed-off-by: Jian J Wang <jian.j.wang@intel.com> Reviewed-by: Ruiyu Ni <ruiyu.ni@intel.com>
2018-03-14 09:28:34 +01:00
//
// Set to mOnGuarding to TRUE before memory allocation. This will make sure
// that the entry memory is not "guarded" by HeapGuard. Otherwise it might
// cause problem when it's freed (if HeapGuard is enabled).
//
mOnGuarding = TRUE;
*TopEntry = AllocateZeroPool (sizeof (EFI_GCD_MAP_ENTRY));
MdeModulePkg/Core: allow HeapGuard even before CpuArchProtocol installed Due to the fact that HeapGuard needs CpuArchProtocol to update page attributes, the feature is normally enabled after CpuArchProtocol is installed. Since there're some drivers are loaded before CpuArchProtocl, they cannot make use HeapGuard feature to detect potential issues. This patch fixes above situation by updating the DXE core to skip the NULL check against global gCpu in the IsMemoryTypeToGuard(), and adding NULL check against gCpu in SetGuardPage() and UnsetGuardPage() to make sure that they can be called but do nothing. This will allow HeapGuard to record all guarded memory without setting the related Guard pages to not- present. Once the CpuArchProtocol is installed, a protocol notify will be called to complete the work of setting Guard pages to not-present. Please note that above changes will cause a #PF in GCD code during cleanup of map entries, which is initiated by CpuDxe driver to update real mtrr and paging attributes back to GCD. During that time, CpuDxe doesn't allow GCD to update memory attributes and then any Guard page cannot be unset. As a result, this will prevent Guarded memory from freeing during memory map cleanup. The solution is to avoid allocating guarded memory as memory map entries in GCD code. It's done by setting global mOnGuarding to TRUE before memory allocation and setting it back to FALSE afterwards in GCD function CoreAllocateGcdMapEntry(). Cc: Star Zeng <star.zeng@intel.com> Cc: Eric Dong <eric.dong@intel.com> Cc: Jiewen Yao <jiewen.yao@intel.com> Contributed-under: TianoCore Contribution Agreement 1.1 Signed-off-by: Jian J Wang <jian.j.wang@intel.com> Reviewed-by: Ruiyu Ni <ruiyu.ni@intel.com>
2018-03-14 09:28:34 +01:00
mOnGuarding = FALSE;
if (*TopEntry == NULL) {
return EFI_OUT_OF_RESOURCES;
}
MdeModulePkg/Core: allow HeapGuard even before CpuArchProtocol installed Due to the fact that HeapGuard needs CpuArchProtocol to update page attributes, the feature is normally enabled after CpuArchProtocol is installed. Since there're some drivers are loaded before CpuArchProtocl, they cannot make use HeapGuard feature to detect potential issues. This patch fixes above situation by updating the DXE core to skip the NULL check against global gCpu in the IsMemoryTypeToGuard(), and adding NULL check against gCpu in SetGuardPage() and UnsetGuardPage() to make sure that they can be called but do nothing. This will allow HeapGuard to record all guarded memory without setting the related Guard pages to not- present. Once the CpuArchProtocol is installed, a protocol notify will be called to complete the work of setting Guard pages to not-present. Please note that above changes will cause a #PF in GCD code during cleanup of map entries, which is initiated by CpuDxe driver to update real mtrr and paging attributes back to GCD. During that time, CpuDxe doesn't allow GCD to update memory attributes and then any Guard page cannot be unset. As a result, this will prevent Guarded memory from freeing during memory map cleanup. The solution is to avoid allocating guarded memory as memory map entries in GCD code. It's done by setting global mOnGuarding to TRUE before memory allocation and setting it back to FALSE afterwards in GCD function CoreAllocateGcdMapEntry(). Cc: Star Zeng <star.zeng@intel.com> Cc: Eric Dong <eric.dong@intel.com> Cc: Jiewen Yao <jiewen.yao@intel.com> Contributed-under: TianoCore Contribution Agreement 1.1 Signed-off-by: Jian J Wang <jian.j.wang@intel.com> Reviewed-by: Ruiyu Ni <ruiyu.ni@intel.com>
2018-03-14 09:28:34 +01:00
mOnGuarding = TRUE;
*BottomEntry = AllocateZeroPool (sizeof (EFI_GCD_MAP_ENTRY));
MdeModulePkg/Core: allow HeapGuard even before CpuArchProtocol installed Due to the fact that HeapGuard needs CpuArchProtocol to update page attributes, the feature is normally enabled after CpuArchProtocol is installed. Since there're some drivers are loaded before CpuArchProtocl, they cannot make use HeapGuard feature to detect potential issues. This patch fixes above situation by updating the DXE core to skip the NULL check against global gCpu in the IsMemoryTypeToGuard(), and adding NULL check against gCpu in SetGuardPage() and UnsetGuardPage() to make sure that they can be called but do nothing. This will allow HeapGuard to record all guarded memory without setting the related Guard pages to not- present. Once the CpuArchProtocol is installed, a protocol notify will be called to complete the work of setting Guard pages to not-present. Please note that above changes will cause a #PF in GCD code during cleanup of map entries, which is initiated by CpuDxe driver to update real mtrr and paging attributes back to GCD. During that time, CpuDxe doesn't allow GCD to update memory attributes and then any Guard page cannot be unset. As a result, this will prevent Guarded memory from freeing during memory map cleanup. The solution is to avoid allocating guarded memory as memory map entries in GCD code. It's done by setting global mOnGuarding to TRUE before memory allocation and setting it back to FALSE afterwards in GCD function CoreAllocateGcdMapEntry(). Cc: Star Zeng <star.zeng@intel.com> Cc: Eric Dong <eric.dong@intel.com> Cc: Jiewen Yao <jiewen.yao@intel.com> Contributed-under: TianoCore Contribution Agreement 1.1 Signed-off-by: Jian J Wang <jian.j.wang@intel.com> Reviewed-by: Ruiyu Ni <ruiyu.ni@intel.com>
2018-03-14 09:28:34 +01:00
mOnGuarding = FALSE;
if (*BottomEntry == NULL) {
CoreFreePool (*TopEntry);
return EFI_OUT_OF_RESOURCES;
}
return EFI_SUCCESS;
}
/**
Internal function. Inserts a new descriptor into a sorted list
@param Link The linked list to insert the range BaseAddress
and Length into
@param Entry A pointer to the entry that is inserted
@param BaseAddress The base address of the new range
@param Length The length of the new range in bytes
@param TopEntry Top pad entry to insert if needed.
@param BottomEntry Bottom pad entry to insert if needed.
@retval EFI_SUCCESS The new range was inserted into the linked list
**/
EFI_STATUS
CoreInsertGcdMapEntry (
IN LIST_ENTRY *Link,
IN EFI_GCD_MAP_ENTRY *Entry,
IN EFI_PHYSICAL_ADDRESS BaseAddress,
IN UINT64 Length,
IN EFI_GCD_MAP_ENTRY *TopEntry,
IN EFI_GCD_MAP_ENTRY *BottomEntry
)
{
ASSERT (Length != 0);
if (BaseAddress > Entry->BaseAddress) {
ASSERT (BottomEntry->Signature == 0);
CopyMem (BottomEntry, Entry, sizeof (EFI_GCD_MAP_ENTRY));
Entry->BaseAddress = BaseAddress;
BottomEntry->EndAddress = BaseAddress - 1;
InsertTailList (Link, &BottomEntry->Link);
}
if ((BaseAddress + Length - 1) < Entry->EndAddress) {
ASSERT (TopEntry->Signature == 0);
CopyMem (TopEntry, Entry, sizeof (EFI_GCD_MAP_ENTRY));
TopEntry->BaseAddress = BaseAddress + Length;
Entry->EndAddress = BaseAddress + Length - 1;
InsertHeadList (Link, &TopEntry->Link);
}
return EFI_SUCCESS;
}
/**
Merge the Gcd region specified by Link and its adjacent entry.
@param Link Specify the entry to be merged (with its
adjacent entry).
@param Forward Direction (forward or backward).
@param Map Boundary.
@retval EFI_SUCCESS Successfully returned.
@retval EFI_UNSUPPORTED These adjacent regions could not merge.
**/
EFI_STATUS
CoreMergeGcdMapEntry (
IN LIST_ENTRY *Link,
IN BOOLEAN Forward,
IN LIST_ENTRY *Map
)
{
LIST_ENTRY *AdjacentLink;
EFI_GCD_MAP_ENTRY *Entry;
EFI_GCD_MAP_ENTRY *AdjacentEntry;
//
// Get adjacent entry
//
if (Forward) {
AdjacentLink = Link->ForwardLink;
} else {
AdjacentLink = Link->BackLink;
}
//
// If AdjacentLink is the head of the list, then no merge can be performed
//
if (AdjacentLink == Map) {
return EFI_SUCCESS;
}
Entry = CR (Link, EFI_GCD_MAP_ENTRY, Link, EFI_GCD_MAP_SIGNATURE);
AdjacentEntry = CR (AdjacentLink, EFI_GCD_MAP_ENTRY, Link, EFI_GCD_MAP_SIGNATURE);
if (Entry->Capabilities != AdjacentEntry->Capabilities) {
return EFI_UNSUPPORTED;
}
if (Entry->Attributes != AdjacentEntry->Attributes) {
return EFI_UNSUPPORTED;
}
if (Entry->GcdMemoryType != AdjacentEntry->GcdMemoryType) {
return EFI_UNSUPPORTED;
}
if (Entry->GcdIoType != AdjacentEntry->GcdIoType) {
return EFI_UNSUPPORTED;
}
if (Entry->ImageHandle != AdjacentEntry->ImageHandle) {
return EFI_UNSUPPORTED;
}
if (Entry->DeviceHandle != AdjacentEntry->DeviceHandle) {
return EFI_UNSUPPORTED;
}
if (Forward) {
Entry->EndAddress = AdjacentEntry->EndAddress;
} else {
Entry->BaseAddress = AdjacentEntry->BaseAddress;
}
RemoveEntryList (AdjacentLink);
CoreFreePool (AdjacentEntry);
return EFI_SUCCESS;
}
/**
Merge adjacent entries on total chain.
@param TopEntry Top entry of GCD map.
@param BottomEntry Bottom entry of GCD map.
@param StartLink Start link of the list for this loop.
@param EndLink End link of the list for this loop.
@param Map Boundary.
@retval EFI_SUCCESS GCD map successfully cleaned up.
**/
EFI_STATUS
CoreCleanupGcdMapEntry (
IN EFI_GCD_MAP_ENTRY *TopEntry,
IN EFI_GCD_MAP_ENTRY *BottomEntry,
IN LIST_ENTRY *StartLink,
IN LIST_ENTRY *EndLink,
IN LIST_ENTRY *Map
)
{
LIST_ENTRY *Link;
if (TopEntry->Signature == 0) {
CoreFreePool (TopEntry);
}
if (BottomEntry->Signature == 0) {
CoreFreePool (BottomEntry);
}
Link = StartLink;
while (Link != EndLink->ForwardLink) {
CoreMergeGcdMapEntry (Link, FALSE, Map);
Link = Link->ForwardLink;
}
CoreMergeGcdMapEntry (EndLink, TRUE, Map);
return EFI_SUCCESS;
}
/**
Search a segment of memory space in GCD map. The result is a range of GCD entry list.
@param BaseAddress The start address of the segment.
@param Length The length of the segment.
@param StartLink The first GCD entry involves this segment of
memory space.
@param EndLink The first GCD entry involves this segment of
memory space.
@param Map Points to the start entry to search.
@retval EFI_SUCCESS Successfully found the entry.
@retval EFI_NOT_FOUND Not found.
**/
EFI_STATUS
CoreSearchGcdMapEntry (
IN EFI_PHYSICAL_ADDRESS BaseAddress,
IN UINT64 Length,
OUT LIST_ENTRY **StartLink,
OUT LIST_ENTRY **EndLink,
IN LIST_ENTRY *Map
)
{
LIST_ENTRY *Link;
EFI_GCD_MAP_ENTRY *Entry;
ASSERT (Length != 0);
*StartLink = NULL;
*EndLink = NULL;
Link = Map->ForwardLink;
while (Link != Map) {
Entry = CR (Link, EFI_GCD_MAP_ENTRY, Link, EFI_GCD_MAP_SIGNATURE);
if ((BaseAddress >= Entry->BaseAddress) && (BaseAddress <= Entry->EndAddress)) {
*StartLink = Link;
}
if (*StartLink != NULL) {
if (((BaseAddress + Length - 1) >= Entry->BaseAddress) &&
((BaseAddress + Length - 1) <= Entry->EndAddress))
{
*EndLink = Link;
return EFI_SUCCESS;
}
}
Link = Link->ForwardLink;
}
return EFI_NOT_FOUND;
}
/**
Count the amount of GCD map entries.
@param Map Points to the start entry to do the count loop.
@return The count.
**/
UINTN
CoreCountGcdMapEntry (
IN LIST_ENTRY *Map
)
{
UINTN Count;
LIST_ENTRY *Link;
Count = 0;
Link = Map->ForwardLink;
while (Link != Map) {
Count++;
Link = Link->ForwardLink;
}
return Count;
}
/**
Return the memory attribute specified by Attributes
@param Attributes A num with some attribute bits on.
@return The enum value of memory attribute.
**/
UINT64
ConverToCpuArchAttributes (
UINT64 Attributes
)
{
UINT64 CpuArchAttributes;
CpuArchAttributes = Attributes & EFI_MEMORY_ATTRIBUTE_MASK;
if ((Attributes & EFI_MEMORY_UC) == EFI_MEMORY_UC) {
CpuArchAttributes |= EFI_MEMORY_UC;
} else if ((Attributes & EFI_MEMORY_WC) == EFI_MEMORY_WC) {
CpuArchAttributes |= EFI_MEMORY_WC;
} else if ((Attributes & EFI_MEMORY_WT) == EFI_MEMORY_WT) {
CpuArchAttributes |= EFI_MEMORY_WT;
} else if ((Attributes & EFI_MEMORY_WB) == EFI_MEMORY_WB) {
CpuArchAttributes |= EFI_MEMORY_WB;
} else if ((Attributes & EFI_MEMORY_UCE) == EFI_MEMORY_UCE) {
CpuArchAttributes |= EFI_MEMORY_UCE;
} else if ((Attributes & EFI_MEMORY_WP) == EFI_MEMORY_WP) {
CpuArchAttributes |= EFI_MEMORY_WP;
}
return CpuArchAttributes;
}
/**
Do operation on a segment of memory space specified (add, free, remove, change attribute ...).
@param Operation The type of the operation
@param GcdMemoryType Additional information for the operation
@param GcdIoType Additional information for the operation
@param BaseAddress Start address of the segment
@param Length length of the segment
@param Capabilities The alterable attributes of a newly added entry
@param Attributes The attributes needs to be set
@retval EFI_INVALID_PARAMETER Length is 0 or address (length) not aligned when
setting attribute.
@retval EFI_SUCCESS Action successfully done.
@retval EFI_UNSUPPORTED Could not find the proper descriptor on this
segment or set an upsupported attribute.
@retval EFI_ACCESS_DENIED Operate on an space non-exist or is used for an
image.
@retval EFI_NOT_FOUND Free a non-using space or remove a non-exist
space, and so on.
@retval EFI_OUT_OF_RESOURCES No buffer could be allocated.
@retval EFI_NOT_AVAILABLE_YET The attributes cannot be set because CPU architectural protocol
is not available yet.
**/
EFI_STATUS
CoreConvertSpace (
IN UINTN Operation,
IN EFI_GCD_MEMORY_TYPE GcdMemoryType,
IN EFI_GCD_IO_TYPE GcdIoType,
IN EFI_PHYSICAL_ADDRESS BaseAddress,
IN UINT64 Length,
IN UINT64 Capabilities,
IN UINT64 Attributes
)
{
EFI_STATUS Status;
LIST_ENTRY *Map;
LIST_ENTRY *Link;
EFI_GCD_MAP_ENTRY *Entry;
EFI_GCD_MAP_ENTRY *TopEntry;
EFI_GCD_MAP_ENTRY *BottomEntry;
LIST_ENTRY *StartLink;
LIST_ENTRY *EndLink;
UINT64 CpuArchAttributes;
if (Length == 0) {
DEBUG ((DEBUG_GCD, " Status = %r\n", EFI_INVALID_PARAMETER));
return EFI_INVALID_PARAMETER;
}
Map = NULL;
if ((Operation & GCD_MEMORY_SPACE_OPERATION) != 0) {
CoreAcquireGcdMemoryLock ();
Map = &mGcdMemorySpaceMap;
} else if ((Operation & GCD_IO_SPACE_OPERATION) != 0) {
CoreAcquireGcdIoLock ();
Map = &mGcdIoSpaceMap;
} else {
ASSERT (FALSE);
}
//
// Search for the list of descriptors that cover the range BaseAddress to BaseAddress+Length
//
Status = CoreSearchGcdMapEntry (BaseAddress, Length, &StartLink, &EndLink, Map);
if (EFI_ERROR (Status)) {
Status = EFI_UNSUPPORTED;
goto Done;
}
ASSERT (StartLink != NULL && EndLink != NULL);
//
// Verify that the list of descriptors are unallocated non-existent memory.
//
Link = StartLink;
while (Link != EndLink->ForwardLink) {
Entry = CR (Link, EFI_GCD_MAP_ENTRY, Link, EFI_GCD_MAP_SIGNATURE);
switch (Operation) {
//
// Add operations
//
case GCD_ADD_MEMORY_OPERATION:
if ((Entry->GcdMemoryType != EfiGcdMemoryTypeNonExistent) ||
(Entry->ImageHandle != NULL))
{
Status = EFI_ACCESS_DENIED;
goto Done;
}
break;
case GCD_ADD_IO_OPERATION:
if ((Entry->GcdIoType != EfiGcdIoTypeNonExistent) ||
(Entry->ImageHandle != NULL))
{
Status = EFI_ACCESS_DENIED;
goto Done;
}
break;
//
// Free operations
//
case GCD_FREE_MEMORY_OPERATION:
case GCD_FREE_IO_OPERATION:
if (Entry->ImageHandle == NULL) {
Status = EFI_NOT_FOUND;
goto Done;
}
break;
//
// Remove operations
//
case GCD_REMOVE_MEMORY_OPERATION:
if (Entry->GcdMemoryType == EfiGcdMemoryTypeNonExistent) {
Status = EFI_NOT_FOUND;
goto Done;
}
if (Entry->ImageHandle != NULL) {
Status = EFI_ACCESS_DENIED;
goto Done;
}
break;
case GCD_REMOVE_IO_OPERATION:
if (Entry->GcdIoType == EfiGcdIoTypeNonExistent) {
Status = EFI_NOT_FOUND;
goto Done;
}
if (Entry->ImageHandle != NULL) {
Status = EFI_ACCESS_DENIED;
goto Done;
}
break;
//
// Set attributes operation
//
case GCD_SET_ATTRIBUTES_MEMORY_OPERATION:
if ((Attributes & EFI_MEMORY_RUNTIME) != 0) {
if (((BaseAddress & EFI_PAGE_MASK) != 0) || ((Length & EFI_PAGE_MASK) != 0)) {
Status = EFI_INVALID_PARAMETER;
goto Done;
}
}
if ((Entry->Capabilities & Attributes) != Attributes) {
Status = EFI_UNSUPPORTED;
goto Done;
}
break;
//
// Set capabilities operation
//
case GCD_SET_CAPABILITIES_MEMORY_OPERATION:
if (((BaseAddress & EFI_PAGE_MASK) != 0) || ((Length & EFI_PAGE_MASK) != 0)) {
Status = EFI_INVALID_PARAMETER;
goto Done;
}
//
// Current attributes must still be supported with new capabilities
//
if ((Capabilities & Entry->Attributes) != Entry->Attributes) {
Status = EFI_UNSUPPORTED;
goto Done;
}
break;
}
Link = Link->ForwardLink;
}
//
// Allocate work space to perform this operation
//
Status = CoreAllocateGcdMapEntry (&TopEntry, &BottomEntry);
if (EFI_ERROR (Status)) {
Status = EFI_OUT_OF_RESOURCES;
goto Done;
}
ASSERT (TopEntry != NULL && BottomEntry != NULL);
//
// Initialize CpuArchAttributes to suppress incorrect compiler/analyzer warnings.
//
CpuArchAttributes = 0;
if (Operation == GCD_SET_ATTRIBUTES_MEMORY_OPERATION) {
//
// Call CPU Arch Protocol to attempt to set attributes on the range
//
CpuArchAttributes = ConverToCpuArchAttributes (Attributes);
MdeModulePkg/Gcd: Filter gCpu->SetMemoryAttributes() calls This patch fixes an issue with VlvTbltDevicePkg introduced by commit 5b91bf82c67b586b9588cbe4bbffa1588f6b5926. The history is as below. To support heap guard feature, 14dde9e903bb9a719ebb8f3381da72b19509bc36 added support for SetMemorySpaceAttributes() to handle page attributes, but after that, a combination of CPU arch attributes and other attributes was not allowed anymore, for example, UC + RUNTIME. It is a regression. Then 5b91bf82c67b586b9588cbe4bbffa1588f6b5926 was to fix the regression, and we thought 0 CPU arch attributes may be used to clear CPU arch attributes, so 0 CPU arch attributes was allowed to be sent to gCpu->SetMemoryAttributes(). But some implementation of CPU driver may return error for 0 CPU arch attributes. That fails the case that caller just calls SetMemorySpaceAttributes() with none CPU arch attributes (for example, RUNTIME), and the purpose of the case is not to clear CPU arch attributes. This patch filters the call to gCpu->SetMemoryAttributes() if the requested attributes is 0. It also removes the #define INVALID_CPU_ARCH_ATTRIBUTES that is no longer used. Cc: Heyi Guo <heyi.guo@linaro.org> Cc: Yi Li <phoenix.liyi@huawei.com> Cc: Renhao Liang <liangrenhao@huawei.com> Cc: Star Zeng <star.zeng@intel.com> Cc: Eric Dong <eric.dong@intel.com> Cc: Liming Gao <liming.gao@intel.com> Cc: Jian J Wang <jian.j.wang@intel.com> Cc: Ruiyu Ni <ruiyu.ni@intel.com> Signed-off-by: Michael D Kinney <michael.d.kinney@intel.com> Signed-off-by: Star Zeng <star.zeng@intel.com> Contributed-under: TianoCore Contribution Agreement 1.1 Reviewed-by: Jiewen Yao <jiewen.yao@intel.com> Reviewed-by: Michael D Kinney <michael.d.kinney@intel.com>
2018-04-03 00:40:24 +02:00
//
// CPU arch attributes include page attributes and cache attributes.
MdeModulePkg/Gcd: Filter gCpu->SetMemoryAttributes() calls This patch fixes an issue with VlvTbltDevicePkg introduced by commit 5b91bf82c67b586b9588cbe4bbffa1588f6b5926. The history is as below. To support heap guard feature, 14dde9e903bb9a719ebb8f3381da72b19509bc36 added support for SetMemorySpaceAttributes() to handle page attributes, but after that, a combination of CPU arch attributes and other attributes was not allowed anymore, for example, UC + RUNTIME. It is a regression. Then 5b91bf82c67b586b9588cbe4bbffa1588f6b5926 was to fix the regression, and we thought 0 CPU arch attributes may be used to clear CPU arch attributes, so 0 CPU arch attributes was allowed to be sent to gCpu->SetMemoryAttributes(). But some implementation of CPU driver may return error for 0 CPU arch attributes. That fails the case that caller just calls SetMemorySpaceAttributes() with none CPU arch attributes (for example, RUNTIME), and the purpose of the case is not to clear CPU arch attributes. This patch filters the call to gCpu->SetMemoryAttributes() if the requested attributes is 0. It also removes the #define INVALID_CPU_ARCH_ATTRIBUTES that is no longer used. Cc: Heyi Guo <heyi.guo@linaro.org> Cc: Yi Li <phoenix.liyi@huawei.com> Cc: Renhao Liang <liangrenhao@huawei.com> Cc: Star Zeng <star.zeng@intel.com> Cc: Eric Dong <eric.dong@intel.com> Cc: Liming Gao <liming.gao@intel.com> Cc: Jian J Wang <jian.j.wang@intel.com> Cc: Ruiyu Ni <ruiyu.ni@intel.com> Signed-off-by: Michael D Kinney <michael.d.kinney@intel.com> Signed-off-by: Star Zeng <star.zeng@intel.com> Contributed-under: TianoCore Contribution Agreement 1.1 Reviewed-by: Jiewen Yao <jiewen.yao@intel.com> Reviewed-by: Michael D Kinney <michael.d.kinney@intel.com>
2018-04-03 00:40:24 +02:00
// Only page attributes supports to be cleared, but not cache attributes.
// Caller is expected to use GetMemorySpaceDescriptor() to get the current
// attributes, AND/OR attributes, and then calls SetMemorySpaceAttributes()
// to set the new attributes.
// So 0 CPU arch attributes should not happen as memory should always have
// a cache attribute (no matter UC or WB, etc).
MdeModulePkg/Gcd: Filter gCpu->SetMemoryAttributes() calls This patch fixes an issue with VlvTbltDevicePkg introduced by commit 5b91bf82c67b586b9588cbe4bbffa1588f6b5926. The history is as below. To support heap guard feature, 14dde9e903bb9a719ebb8f3381da72b19509bc36 added support for SetMemorySpaceAttributes() to handle page attributes, but after that, a combination of CPU arch attributes and other attributes was not allowed anymore, for example, UC + RUNTIME. It is a regression. Then 5b91bf82c67b586b9588cbe4bbffa1588f6b5926 was to fix the regression, and we thought 0 CPU arch attributes may be used to clear CPU arch attributes, so 0 CPU arch attributes was allowed to be sent to gCpu->SetMemoryAttributes(). But some implementation of CPU driver may return error for 0 CPU arch attributes. That fails the case that caller just calls SetMemorySpaceAttributes() with none CPU arch attributes (for example, RUNTIME), and the purpose of the case is not to clear CPU arch attributes. This patch filters the call to gCpu->SetMemoryAttributes() if the requested attributes is 0. It also removes the #define INVALID_CPU_ARCH_ATTRIBUTES that is no longer used. Cc: Heyi Guo <heyi.guo@linaro.org> Cc: Yi Li <phoenix.liyi@huawei.com> Cc: Renhao Liang <liangrenhao@huawei.com> Cc: Star Zeng <star.zeng@intel.com> Cc: Eric Dong <eric.dong@intel.com> Cc: Liming Gao <liming.gao@intel.com> Cc: Jian J Wang <jian.j.wang@intel.com> Cc: Ruiyu Ni <ruiyu.ni@intel.com> Signed-off-by: Michael D Kinney <michael.d.kinney@intel.com> Signed-off-by: Star Zeng <star.zeng@intel.com> Contributed-under: TianoCore Contribution Agreement 1.1 Reviewed-by: Jiewen Yao <jiewen.yao@intel.com> Reviewed-by: Michael D Kinney <michael.d.kinney@intel.com>
2018-04-03 00:40:24 +02:00
//
// Here, 0 CPU arch attributes will be filtered to be compatible with the
// case that caller just calls SetMemorySpaceAttributes() with none CPU
// arch attributes (for example, RUNTIME) as the purpose of the case is not
// to clear CPU arch attributes.
//
if (CpuArchAttributes != 0) {
if (gCpu == NULL) {
Status = EFI_NOT_AVAILABLE_YET;
} else {
Status = gCpu->SetMemoryAttributes (
gCpu,
BaseAddress,
Length,
CpuArchAttributes
);
}
if (EFI_ERROR (Status)) {
CoreFreePool (TopEntry);
CoreFreePool (BottomEntry);
goto Done;
}
}
}
//
// Convert/Insert the list of descriptors from StartLink to EndLink
//
Link = StartLink;
while (Link != EndLink->ForwardLink) {
Entry = CR (Link, EFI_GCD_MAP_ENTRY, Link, EFI_GCD_MAP_SIGNATURE);
CoreInsertGcdMapEntry (Link, Entry, BaseAddress, Length, TopEntry, BottomEntry);
switch (Operation) {
//
// Add operations
//
case GCD_ADD_MEMORY_OPERATION:
Entry->GcdMemoryType = GcdMemoryType;
if (GcdMemoryType == EfiGcdMemoryTypeMemoryMappedIo) {
Entry->Capabilities = Capabilities | EFI_MEMORY_RUNTIME | EFI_MEMORY_PORT_IO;
} else {
Entry->Capabilities = Capabilities | EFI_MEMORY_RUNTIME;
}
break;
case GCD_ADD_IO_OPERATION:
Entry->GcdIoType = GcdIoType;
break;
//
// Free operations
//
case GCD_FREE_MEMORY_OPERATION:
case GCD_FREE_IO_OPERATION:
Entry->ImageHandle = NULL;
Entry->DeviceHandle = NULL;
break;
//
// Remove operations
//
case GCD_REMOVE_MEMORY_OPERATION:
Entry->GcdMemoryType = EfiGcdMemoryTypeNonExistent;
Entry->Capabilities = 0;
break;
case GCD_REMOVE_IO_OPERATION:
Entry->GcdIoType = EfiGcdIoTypeNonExistent;
break;
//
// Set attributes operation
//
case GCD_SET_ATTRIBUTES_MEMORY_OPERATION:
MdeModulePkg/Gcd: Filter gCpu->SetMemoryAttributes() calls This patch fixes an issue with VlvTbltDevicePkg introduced by commit 5b91bf82c67b586b9588cbe4bbffa1588f6b5926. The history is as below. To support heap guard feature, 14dde9e903bb9a719ebb8f3381da72b19509bc36 added support for SetMemorySpaceAttributes() to handle page attributes, but after that, a combination of CPU arch attributes and other attributes was not allowed anymore, for example, UC + RUNTIME. It is a regression. Then 5b91bf82c67b586b9588cbe4bbffa1588f6b5926 was to fix the regression, and we thought 0 CPU arch attributes may be used to clear CPU arch attributes, so 0 CPU arch attributes was allowed to be sent to gCpu->SetMemoryAttributes(). But some implementation of CPU driver may return error for 0 CPU arch attributes. That fails the case that caller just calls SetMemorySpaceAttributes() with none CPU arch attributes (for example, RUNTIME), and the purpose of the case is not to clear CPU arch attributes. This patch filters the call to gCpu->SetMemoryAttributes() if the requested attributes is 0. It also removes the #define INVALID_CPU_ARCH_ATTRIBUTES that is no longer used. Cc: Heyi Guo <heyi.guo@linaro.org> Cc: Yi Li <phoenix.liyi@huawei.com> Cc: Renhao Liang <liangrenhao@huawei.com> Cc: Star Zeng <star.zeng@intel.com> Cc: Eric Dong <eric.dong@intel.com> Cc: Liming Gao <liming.gao@intel.com> Cc: Jian J Wang <jian.j.wang@intel.com> Cc: Ruiyu Ni <ruiyu.ni@intel.com> Signed-off-by: Michael D Kinney <michael.d.kinney@intel.com> Signed-off-by: Star Zeng <star.zeng@intel.com> Contributed-under: TianoCore Contribution Agreement 1.1 Reviewed-by: Jiewen Yao <jiewen.yao@intel.com> Reviewed-by: Michael D Kinney <michael.d.kinney@intel.com>
2018-04-03 00:40:24 +02:00
if (CpuArchAttributes == 0) {
//
// Keep original CPU arch attributes when caller just calls
// SetMemorySpaceAttributes() with none CPU arch attributes (for example, RUNTIME).
//
Attributes |= (Entry->Attributes & (EFI_CACHE_ATTRIBUTE_MASK | EFI_MEMORY_ATTRIBUTE_MASK));
MdeModulePkg/Gcd: Filter gCpu->SetMemoryAttributes() calls This patch fixes an issue with VlvTbltDevicePkg introduced by commit 5b91bf82c67b586b9588cbe4bbffa1588f6b5926. The history is as below. To support heap guard feature, 14dde9e903bb9a719ebb8f3381da72b19509bc36 added support for SetMemorySpaceAttributes() to handle page attributes, but after that, a combination of CPU arch attributes and other attributes was not allowed anymore, for example, UC + RUNTIME. It is a regression. Then 5b91bf82c67b586b9588cbe4bbffa1588f6b5926 was to fix the regression, and we thought 0 CPU arch attributes may be used to clear CPU arch attributes, so 0 CPU arch attributes was allowed to be sent to gCpu->SetMemoryAttributes(). But some implementation of CPU driver may return error for 0 CPU arch attributes. That fails the case that caller just calls SetMemorySpaceAttributes() with none CPU arch attributes (for example, RUNTIME), and the purpose of the case is not to clear CPU arch attributes. This patch filters the call to gCpu->SetMemoryAttributes() if the requested attributes is 0. It also removes the #define INVALID_CPU_ARCH_ATTRIBUTES that is no longer used. Cc: Heyi Guo <heyi.guo@linaro.org> Cc: Yi Li <phoenix.liyi@huawei.com> Cc: Renhao Liang <liangrenhao@huawei.com> Cc: Star Zeng <star.zeng@intel.com> Cc: Eric Dong <eric.dong@intel.com> Cc: Liming Gao <liming.gao@intel.com> Cc: Jian J Wang <jian.j.wang@intel.com> Cc: Ruiyu Ni <ruiyu.ni@intel.com> Signed-off-by: Michael D Kinney <michael.d.kinney@intel.com> Signed-off-by: Star Zeng <star.zeng@intel.com> Contributed-under: TianoCore Contribution Agreement 1.1 Reviewed-by: Jiewen Yao <jiewen.yao@intel.com> Reviewed-by: Michael D Kinney <michael.d.kinney@intel.com>
2018-04-03 00:40:24 +02:00
}
Entry->Attributes = Attributes;
break;
//
// Set capabilities operation
//
case GCD_SET_CAPABILITIES_MEMORY_OPERATION:
Entry->Capabilities = Capabilities;
break;
}
Link = Link->ForwardLink;
}
//
// Cleanup
//
Status = CoreCleanupGcdMapEntry (TopEntry, BottomEntry, StartLink, EndLink, Map);
Done:
DEBUG ((DEBUG_GCD, " Status = %r\n", Status));
if ((Operation & GCD_MEMORY_SPACE_OPERATION) != 0) {
CoreReleaseGcdMemoryLock ();
CoreDumpGcdMemorySpaceMap (FALSE);
}
if ((Operation & GCD_IO_SPACE_OPERATION) != 0) {
CoreReleaseGcdIoLock ();
CoreDumpGcdIoSpaceMap (FALSE);
}
return Status;
}
/**
Check whether an entry could be used to allocate space.
@param Operation Allocate memory or IO
@param Entry The entry to be tested
@param GcdMemoryType The desired memory type
@param GcdIoType The desired IO type
@retval EFI_NOT_FOUND The memory type does not match or there's an
image handle on the entry.
@retval EFI_UNSUPPORTED The operation unsupported.
@retval EFI_SUCCESS It's ok for this entry to be used to allocate
space.
**/
EFI_STATUS
CoreAllocateSpaceCheckEntry (
IN UINTN Operation,
IN EFI_GCD_MAP_ENTRY *Entry,
IN EFI_GCD_MEMORY_TYPE GcdMemoryType,
IN EFI_GCD_IO_TYPE GcdIoType
)
{
if (Entry->ImageHandle != NULL) {
return EFI_NOT_FOUND;
}
switch (Operation) {
case GCD_ALLOCATE_MEMORY_OPERATION:
if (Entry->GcdMemoryType != GcdMemoryType) {
return EFI_NOT_FOUND;
}
break;
case GCD_ALLOCATE_IO_OPERATION:
if (Entry->GcdIoType != GcdIoType) {
return EFI_NOT_FOUND;
}
break;
default:
return EFI_UNSUPPORTED;
}
return EFI_SUCCESS;
}
/**
Allocate space on specified address and length.
@param Operation The type of operation (memory or IO)
@param GcdAllocateType The type of allocate operation
@param GcdMemoryType The desired memory type
@param GcdIoType The desired IO type
@param Alignment Align with 2^Alignment
@param Length Length to allocate
@param BaseAddress Base address to allocate
@param ImageHandle The image handle consume the allocated space.
@param DeviceHandle The device handle consume the allocated space.
@retval EFI_INVALID_PARAMETER Invalid parameter.
@retval EFI_NOT_FOUND No descriptor for the desired space exists.
@retval EFI_SUCCESS Space successfully allocated.
**/
EFI_STATUS
CoreAllocateSpace (
IN UINTN Operation,
IN EFI_GCD_ALLOCATE_TYPE GcdAllocateType,
IN EFI_GCD_MEMORY_TYPE GcdMemoryType,
IN EFI_GCD_IO_TYPE GcdIoType,
IN UINTN Alignment,
IN UINT64 Length,
IN OUT EFI_PHYSICAL_ADDRESS *BaseAddress,
IN EFI_HANDLE ImageHandle,
IN EFI_HANDLE DeviceHandle OPTIONAL
)
{
EFI_STATUS Status;
EFI_PHYSICAL_ADDRESS AlignmentMask;
EFI_PHYSICAL_ADDRESS MaxAddress;
LIST_ENTRY *Map;
LIST_ENTRY *Link;
LIST_ENTRY *SubLink;
EFI_GCD_MAP_ENTRY *Entry;
EFI_GCD_MAP_ENTRY *TopEntry;
EFI_GCD_MAP_ENTRY *BottomEntry;
LIST_ENTRY *StartLink;
LIST_ENTRY *EndLink;
BOOLEAN Found;
//
// Make sure parameters are valid
//
if ((UINT32)GcdAllocateType >= EfiGcdMaxAllocateType) {
DEBUG ((DEBUG_GCD, " Status = %r\n", EFI_INVALID_PARAMETER));
return EFI_INVALID_PARAMETER;
}
if ((UINT32)GcdMemoryType >= EfiGcdMemoryTypeMaximum) {
DEBUG ((DEBUG_GCD, " Status = %r\n", EFI_INVALID_PARAMETER));
return EFI_INVALID_PARAMETER;
}
if ((UINT32)GcdIoType >= EfiGcdIoTypeMaximum) {
DEBUG ((DEBUG_GCD, " Status = %r\n", EFI_INVALID_PARAMETER));
return EFI_INVALID_PARAMETER;
}
if (BaseAddress == NULL) {
DEBUG ((DEBUG_GCD, " Status = %r\n", EFI_INVALID_PARAMETER));
return EFI_INVALID_PARAMETER;
}
if (ImageHandle == NULL) {
DEBUG ((DEBUG_GCD, " Status = %r\n", EFI_INVALID_PARAMETER));
return EFI_INVALID_PARAMETER;
}
if (Alignment >= 64) {
DEBUG ((DEBUG_GCD, " Status = %r\n", EFI_NOT_FOUND));
return EFI_NOT_FOUND;
}
if (Length == 0) {
DEBUG ((DEBUG_GCD, " Status = %r\n", EFI_INVALID_PARAMETER));
return EFI_INVALID_PARAMETER;
}
Map = NULL;
if ((Operation & GCD_MEMORY_SPACE_OPERATION) != 0) {
CoreAcquireGcdMemoryLock ();
Map = &mGcdMemorySpaceMap;
} else if ((Operation & GCD_IO_SPACE_OPERATION) != 0) {
CoreAcquireGcdIoLock ();
Map = &mGcdIoSpaceMap;
} else {
ASSERT (FALSE);
}
Found = FALSE;
StartLink = NULL;
EndLink = NULL;
//
// Compute alignment bit mask
//
AlignmentMask = LShiftU64 (1, Alignment) - 1;
if (GcdAllocateType == EfiGcdAllocateAddress) {
//
// Verify that the BaseAddress passed in is aligned correctly
//
if ((*BaseAddress & AlignmentMask) != 0) {
Status = EFI_NOT_FOUND;
goto Done;
}
//
// Search for the list of descriptors that cover the range BaseAddress to BaseAddress+Length
//
Status = CoreSearchGcdMapEntry (*BaseAddress, Length, &StartLink, &EndLink, Map);
if (EFI_ERROR (Status)) {
Status = EFI_NOT_FOUND;
goto Done;
}
ASSERT (StartLink != NULL && EndLink != NULL);
//
// Verify that the list of descriptors are unallocated memory matching GcdMemoryType.
//
Link = StartLink;
while (Link != EndLink->ForwardLink) {
Entry = CR (Link, EFI_GCD_MAP_ENTRY, Link, EFI_GCD_MAP_SIGNATURE);
Link = Link->ForwardLink;
Status = CoreAllocateSpaceCheckEntry (Operation, Entry, GcdMemoryType, GcdIoType);
if (EFI_ERROR (Status)) {
goto Done;
}
}
Found = TRUE;
} else {
Entry = CR (Map->BackLink, EFI_GCD_MAP_ENTRY, Link, EFI_GCD_MAP_SIGNATURE);
//
// Compute the maximum address to use in the search algorithm
//
if ((GcdAllocateType == EfiGcdAllocateMaxAddressSearchBottomUp) ||
(GcdAllocateType == EfiGcdAllocateMaxAddressSearchTopDown))
{
MaxAddress = *BaseAddress;
} else {
MaxAddress = Entry->EndAddress;
}
//
// Verify that the list of descriptors are unallocated memory matching GcdMemoryType.
//
if ((GcdAllocateType == EfiGcdAllocateMaxAddressSearchTopDown) ||
(GcdAllocateType == EfiGcdAllocateAnySearchTopDown))
{
Link = Map->BackLink;
} else {
Link = Map->ForwardLink;
}
while (Link != Map) {
Entry = CR (Link, EFI_GCD_MAP_ENTRY, Link, EFI_GCD_MAP_SIGNATURE);
if ((GcdAllocateType == EfiGcdAllocateMaxAddressSearchTopDown) ||
(GcdAllocateType == EfiGcdAllocateAnySearchTopDown))
{
Link = Link->BackLink;
} else {
Link = Link->ForwardLink;
}
Status = CoreAllocateSpaceCheckEntry (Operation, Entry, GcdMemoryType, GcdIoType);
if (EFI_ERROR (Status)) {
continue;
}
if ((GcdAllocateType == EfiGcdAllocateMaxAddressSearchTopDown) ||
(GcdAllocateType == EfiGcdAllocateAnySearchTopDown))
{
if ((Entry->BaseAddress + Length) > MaxAddress) {
continue;
}
if (Length > (Entry->EndAddress + 1)) {
Status = EFI_NOT_FOUND;
goto Done;
}
if (Entry->EndAddress > MaxAddress) {
*BaseAddress = MaxAddress;
} else {
*BaseAddress = Entry->EndAddress;
}
*BaseAddress = (*BaseAddress + 1 - Length) & (~AlignmentMask);
} else {
*BaseAddress = (Entry->BaseAddress + AlignmentMask) & (~AlignmentMask);
if ((*BaseAddress + Length - 1) > MaxAddress) {
Status = EFI_NOT_FOUND;
goto Done;
}
}
//
// Search for the list of descriptors that cover the range BaseAddress to BaseAddress+Length
//
Status = CoreSearchGcdMapEntry (*BaseAddress, Length, &StartLink, &EndLink, Map);
if (EFI_ERROR (Status)) {
Status = EFI_NOT_FOUND;
goto Done;
}
ASSERT (StartLink != NULL && EndLink != NULL);
Link = StartLink;
//
// Verify that the list of descriptors are unallocated memory matching GcdMemoryType.
//
Found = TRUE;
SubLink = StartLink;
while (SubLink != EndLink->ForwardLink) {
Entry = CR (SubLink, EFI_GCD_MAP_ENTRY, Link, EFI_GCD_MAP_SIGNATURE);
Status = CoreAllocateSpaceCheckEntry (Operation, Entry, GcdMemoryType, GcdIoType);
if (EFI_ERROR (Status)) {
Link = SubLink;
Found = FALSE;
break;
}
SubLink = SubLink->ForwardLink;
}
if (Found) {
break;
}
}
}
if (!Found) {
Status = EFI_NOT_FOUND;
goto Done;
}
//
// Allocate work space to perform this operation
//
Status = CoreAllocateGcdMapEntry (&TopEntry, &BottomEntry);
if (EFI_ERROR (Status)) {
Status = EFI_OUT_OF_RESOURCES;
goto Done;
}
ASSERT (TopEntry != NULL && BottomEntry != NULL);
//
// Convert/Insert the list of descriptors from StartLink to EndLink
//
Link = StartLink;
while (Link != EndLink->ForwardLink) {
Entry = CR (Link, EFI_GCD_MAP_ENTRY, Link, EFI_GCD_MAP_SIGNATURE);
CoreInsertGcdMapEntry (Link, Entry, *BaseAddress, Length, TopEntry, BottomEntry);
Entry->ImageHandle = ImageHandle;
Entry->DeviceHandle = DeviceHandle;
Link = Link->ForwardLink;
}
//
// Cleanup
//
Status = CoreCleanupGcdMapEntry (TopEntry, BottomEntry, StartLink, EndLink, Map);
Done:
DEBUG ((DEBUG_GCD, " Status = %r", Status));
if (!EFI_ERROR (Status)) {
DEBUG ((DEBUG_GCD, " (BaseAddress = %016lx)", *BaseAddress));
}
DEBUG ((DEBUG_GCD, "\n"));
if ((Operation & GCD_MEMORY_SPACE_OPERATION) != 0) {
CoreReleaseGcdMemoryLock ();
CoreDumpGcdMemorySpaceMap (FALSE);
}
if ((Operation & GCD_IO_SPACE_OPERATION) != 0) {
CoreReleaseGcdIoLock ();
CoreDumpGcdIoSpaceMap (FALSE);
}
return Status;
}
/**
Add a segment of memory to GCD map.
@param GcdMemoryType Memory type of the segment.
@param BaseAddress Base address of the segment.
@param Length Length of the segment.
@param Capabilities alterable attributes of the segment.
@retval EFI_INVALID_PARAMETER Invalid parameters.
@retval EFI_SUCCESS Successfully add a segment of memory space.
**/
EFI_STATUS
CoreInternalAddMemorySpace (
IN EFI_GCD_MEMORY_TYPE GcdMemoryType,
IN EFI_PHYSICAL_ADDRESS BaseAddress,
IN UINT64 Length,
IN UINT64 Capabilities
)
{
DEBUG ((DEBUG_GCD, "GCD:AddMemorySpace(Base=%016lx,Length=%016lx)\n", BaseAddress, Length));
DEBUG ((DEBUG_GCD, " GcdMemoryType = %a\n", mGcdMemoryTypeNames[MIN (GcdMemoryType, EfiGcdMemoryTypeMaximum)]));
DEBUG ((DEBUG_GCD, " Capabilities = %016lx\n", Capabilities));
//
// Make sure parameters are valid
//
if ((GcdMemoryType <= EfiGcdMemoryTypeNonExistent) || (GcdMemoryType >= EfiGcdMemoryTypeMaximum)) {
return EFI_INVALID_PARAMETER;
}
return CoreConvertSpace (GCD_ADD_MEMORY_OPERATION, GcdMemoryType, (EFI_GCD_IO_TYPE)0, BaseAddress, Length, Capabilities, 0);
}
//
// GCD Core Services
//
/**
Allocates nonexistent memory, reserved memory, system memory, or memorymapped
I/O resources from the global coherency domain of the processor.
@param GcdAllocateType The type of allocate operation
@param GcdMemoryType The desired memory type
@param Alignment Align with 2^Alignment
@param Length Length to allocate
@param BaseAddress Base address to allocate
@param ImageHandle The image handle consume the allocated space.
@param DeviceHandle The device handle consume the allocated space.
@retval EFI_INVALID_PARAMETER Invalid parameter.
@retval EFI_NOT_FOUND No descriptor contains the desired space.
@retval EFI_SUCCESS Memory space successfully allocated.
**/
EFI_STATUS
EFIAPI
CoreAllocateMemorySpace (
IN EFI_GCD_ALLOCATE_TYPE GcdAllocateType,
IN EFI_GCD_MEMORY_TYPE GcdMemoryType,
IN UINTN Alignment,
IN UINT64 Length,
IN OUT EFI_PHYSICAL_ADDRESS *BaseAddress,
IN EFI_HANDLE ImageHandle,
IN EFI_HANDLE DeviceHandle OPTIONAL
)
{
if (BaseAddress != NULL) {
DEBUG ((DEBUG_GCD, "GCD:AllocateMemorySpace(Base=%016lx,Length=%016lx)\n", *BaseAddress, Length));
} else {
DEBUG ((DEBUG_GCD, "GCD:AllocateMemorySpace(Base=<NULL>,Length=%016lx)\n", Length));
}
DEBUG ((DEBUG_GCD, " GcdAllocateType = %a\n", mGcdAllocationTypeNames[MIN (GcdAllocateType, EfiGcdMaxAllocateType)]));
DEBUG ((DEBUG_GCD, " GcdMemoryType = %a\n", mGcdMemoryTypeNames[MIN (GcdMemoryType, EfiGcdMemoryTypeMaximum)]));
DEBUG ((DEBUG_GCD, " Alignment = %016lx\n", LShiftU64 (1, Alignment)));
DEBUG ((DEBUG_GCD, " ImageHandle = %p\n", ImageHandle));
DEBUG ((DEBUG_GCD, " DeviceHandle = %p\n", DeviceHandle));
return CoreAllocateSpace (
GCD_ALLOCATE_MEMORY_OPERATION,
GcdAllocateType,
GcdMemoryType,
(EFI_GCD_IO_TYPE)0,
Alignment,
Length,
BaseAddress,
ImageHandle,
DeviceHandle
);
}
/**
Adds reserved memory, system memory, or memory-mapped I/O resources to the
global coherency domain of the processor.
@param GcdMemoryType Memory type of the memory space.
@param BaseAddress Base address of the memory space.
@param Length Length of the memory space.
@param Capabilities alterable attributes of the memory space.
@retval EFI_SUCCESS Merged this memory space into GCD map.
**/
EFI_STATUS
EFIAPI
CoreAddMemorySpace (
IN EFI_GCD_MEMORY_TYPE GcdMemoryType,
IN EFI_PHYSICAL_ADDRESS BaseAddress,
IN UINT64 Length,
IN UINT64 Capabilities
)
{
EFI_STATUS Status;
EFI_PHYSICAL_ADDRESS PageBaseAddress;
UINT64 PageLength;
Status = CoreInternalAddMemorySpace (GcdMemoryType, BaseAddress, Length, Capabilities);
if (!EFI_ERROR (Status) && ((GcdMemoryType == EfiGcdMemoryTypeSystemMemory) || (GcdMemoryType == EfiGcdMemoryTypeMoreReliable))) {
PageBaseAddress = PageAlignAddress (BaseAddress);
PageLength = PageAlignLength (BaseAddress + Length - PageBaseAddress);
Status = CoreAllocateMemorySpace (
EfiGcdAllocateAddress,
GcdMemoryType,
EFI_PAGE_SHIFT,
PageLength,
&PageBaseAddress,
gDxeCoreImageHandle,
NULL
);
if (!EFI_ERROR (Status)) {
CoreAddMemoryDescriptor (
EfiConventionalMemory,
PageBaseAddress,
RShiftU64 (PageLength, EFI_PAGE_SHIFT),
Capabilities
);
} else {
for ( ; PageLength != 0; PageLength -= EFI_PAGE_SIZE, PageBaseAddress += EFI_PAGE_SIZE) {
Status = CoreAllocateMemorySpace (
EfiGcdAllocateAddress,
GcdMemoryType,
EFI_PAGE_SHIFT,
EFI_PAGE_SIZE,
&PageBaseAddress,
gDxeCoreImageHandle,
NULL
);
if (!EFI_ERROR (Status)) {
CoreAddMemoryDescriptor (
EfiConventionalMemory,
PageBaseAddress,
1,
Capabilities
);
}
}
}
}
return Status;
}
/**
Frees nonexistent memory, reserved memory, system memory, or memory-mapped
I/O resources from the global coherency domain of the processor.
@param BaseAddress Base address of the memory space.
@param Length Length of the memory space.
@retval EFI_SUCCESS Space successfully freed.
**/
EFI_STATUS
EFIAPI
CoreFreeMemorySpace (
IN EFI_PHYSICAL_ADDRESS BaseAddress,
IN UINT64 Length
)
{
DEBUG ((DEBUG_GCD, "GCD:FreeMemorySpace(Base=%016lx,Length=%016lx)\n", BaseAddress, Length));
return CoreConvertSpace (GCD_FREE_MEMORY_OPERATION, (EFI_GCD_MEMORY_TYPE)0, (EFI_GCD_IO_TYPE)0, BaseAddress, Length, 0, 0);
}
/**
Removes reserved memory, system memory, or memory-mapped I/O resources from
the global coherency domain of the processor.
@param BaseAddress Base address of the memory space.
@param Length Length of the memory space.
@retval EFI_SUCCESS Successfully remove a segment of memory space.
**/
EFI_STATUS
EFIAPI
CoreRemoveMemorySpace (
IN EFI_PHYSICAL_ADDRESS BaseAddress,
IN UINT64 Length
)
{
DEBUG ((DEBUG_GCD, "GCD:RemoveMemorySpace(Base=%016lx,Length=%016lx)\n", BaseAddress, Length));
return CoreConvertSpace (GCD_REMOVE_MEMORY_OPERATION, (EFI_GCD_MEMORY_TYPE)0, (EFI_GCD_IO_TYPE)0, BaseAddress, Length, 0, 0);
}
/**
Build a memory descriptor according to an entry.
@param Descriptor The descriptor to be built
@param Entry According to this entry
**/
VOID
BuildMemoryDescriptor (
IN OUT EFI_GCD_MEMORY_SPACE_DESCRIPTOR *Descriptor,
IN EFI_GCD_MAP_ENTRY *Entry
)
{
Descriptor->BaseAddress = Entry->BaseAddress;
Descriptor->Length = Entry->EndAddress - Entry->BaseAddress + 1;
Descriptor->Capabilities = Entry->Capabilities;
Descriptor->Attributes = Entry->Attributes;
Descriptor->GcdMemoryType = Entry->GcdMemoryType;
Descriptor->ImageHandle = Entry->ImageHandle;
Descriptor->DeviceHandle = Entry->DeviceHandle;
}
/**
Retrieves the descriptor for a memory region containing a specified address.
@param BaseAddress Specified start address
@param Descriptor Specified length
@retval EFI_INVALID_PARAMETER Invalid parameter
@retval EFI_SUCCESS Successfully get memory space descriptor.
**/
EFI_STATUS
EFIAPI
CoreGetMemorySpaceDescriptor (
IN EFI_PHYSICAL_ADDRESS BaseAddress,
OUT EFI_GCD_MEMORY_SPACE_DESCRIPTOR *Descriptor
)
{
EFI_STATUS Status;
LIST_ENTRY *StartLink;
LIST_ENTRY *EndLink;
EFI_GCD_MAP_ENTRY *Entry;
//
// Make sure parameters are valid
//
if (Descriptor == NULL) {
return EFI_INVALID_PARAMETER;
}
CoreAcquireGcdMemoryLock ();
//
// Search for the list of descriptors that contain BaseAddress
//
Status = CoreSearchGcdMapEntry (BaseAddress, 1, &StartLink, &EndLink, &mGcdMemorySpaceMap);
if (EFI_ERROR (Status)) {
Status = EFI_NOT_FOUND;
} else {
ASSERT (StartLink != NULL && EndLink != NULL);
//
// Copy the contents of the found descriptor into Descriptor
//
Entry = CR (StartLink, EFI_GCD_MAP_ENTRY, Link, EFI_GCD_MAP_SIGNATURE);
BuildMemoryDescriptor (Descriptor, Entry);
}
CoreReleaseGcdMemoryLock ();
return Status;
}
/**
Modifies the attributes for a memory region in the global coherency domain of the
processor.
@param BaseAddress Specified start address
@param Length Specified length
@param Attributes Specified attributes
@retval EFI_SUCCESS The attributes were set for the memory region.
@retval EFI_INVALID_PARAMETER Length is zero.
@retval EFI_UNSUPPORTED The processor does not support one or more bytes of the memory
resource range specified by BaseAddress and Length.
@retval EFI_UNSUPPORTED The bit mask of attributes is not support for the memory resource
range specified by BaseAddress and Length.
@retval EFI_ACCESS_DEFINED The attributes for the memory resource range specified by
BaseAddress and Length cannot be modified.
@retval EFI_OUT_OF_RESOURCES There are not enough system resources to modify the attributes of
the memory resource range.
@retval EFI_NOT_AVAILABLE_YET The attributes cannot be set because CPU architectural protocol is
not available yet.
**/
EFI_STATUS
EFIAPI
CoreSetMemorySpaceAttributes (
IN EFI_PHYSICAL_ADDRESS BaseAddress,
IN UINT64 Length,
IN UINT64 Attributes
)
{
DEBUG ((DEBUG_GCD, "GCD:SetMemorySpaceAttributes(Base=%016lx,Length=%016lx)\n", BaseAddress, Length));
DEBUG ((DEBUG_GCD, " Attributes = %016lx\n", Attributes));
return CoreConvertSpace (GCD_SET_ATTRIBUTES_MEMORY_OPERATION, (EFI_GCD_MEMORY_TYPE)0, (EFI_GCD_IO_TYPE)0, BaseAddress, Length, 0, Attributes);
}
/**
Modifies the capabilities for a memory region in the global coherency domain of the
processor.
@param BaseAddress The physical address that is the start address of a memory region.
@param Length The size in bytes of the memory region.
@param Capabilities The bit mask of capabilities that the memory region supports.
@retval EFI_SUCCESS The capabilities were set for the memory region.
@retval EFI_INVALID_PARAMETER Length is zero.
@retval EFI_UNSUPPORTED The capabilities specified by Capabilities do not include the
memory region attributes currently in use.
@retval EFI_ACCESS_DENIED The capabilities for the memory resource range specified by
BaseAddress and Length cannot be modified.
@retval EFI_OUT_OF_RESOURCES There are not enough system resources to modify the capabilities
of the memory resource range.
**/
EFI_STATUS
EFIAPI
CoreSetMemorySpaceCapabilities (
IN EFI_PHYSICAL_ADDRESS BaseAddress,
IN UINT64 Length,
IN UINT64 Capabilities
)
{
EFI_STATUS Status;
DEBUG ((DEBUG_GCD, "GCD:CoreSetMemorySpaceCapabilities(Base=%016lx,Length=%016lx)\n", BaseAddress, Length));
DEBUG ((DEBUG_GCD, " Capabilities = %016lx\n", Capabilities));
Status = CoreConvertSpace (GCD_SET_CAPABILITIES_MEMORY_OPERATION, (EFI_GCD_MEMORY_TYPE)0, (EFI_GCD_IO_TYPE)0, BaseAddress, Length, Capabilities, 0);
if (!EFI_ERROR (Status)) {
CoreUpdateMemoryAttributes (BaseAddress, RShiftU64 (Length, EFI_PAGE_SHIFT), Capabilities & (~EFI_MEMORY_RUNTIME));
}
return Status;
}
/**
Returns a map of the memory resources in the global coherency domain of the
processor.
@param NumberOfDescriptors Number of descriptors.
@param MemorySpaceMap Descriptor array
@retval EFI_INVALID_PARAMETER Invalid parameter
@retval EFI_OUT_OF_RESOURCES No enough buffer to allocate
@retval EFI_SUCCESS Successfully get memory space map.
**/
EFI_STATUS
EFIAPI
CoreGetMemorySpaceMap (
OUT UINTN *NumberOfDescriptors,
OUT EFI_GCD_MEMORY_SPACE_DESCRIPTOR **MemorySpaceMap
)
{
LIST_ENTRY *Link;
EFI_GCD_MAP_ENTRY *Entry;
EFI_GCD_MEMORY_SPACE_DESCRIPTOR *Descriptor;
UINTN DescriptorCount;
//
// Make sure parameters are valid
//
if (NumberOfDescriptors == NULL) {
return EFI_INVALID_PARAMETER;
}
if (MemorySpaceMap == NULL) {
return EFI_INVALID_PARAMETER;
}
*NumberOfDescriptors = 0;
*MemorySpaceMap = NULL;
//
// Take the lock, for entering the loop with the lock held.
//
CoreAcquireGcdMemoryLock ();
while (TRUE) {
//
// Count descriptors. It might be done more than once because the
// AllocatePool() called below has to be running outside the GCD lock.
//
DescriptorCount = CoreCountGcdMapEntry (&mGcdMemorySpaceMap);
if ((DescriptorCount == *NumberOfDescriptors) && (*MemorySpaceMap != NULL)) {
//
// Fill in the MemorySpaceMap if no memory space map change.
//
Descriptor = *MemorySpaceMap;
Link = mGcdMemorySpaceMap.ForwardLink;
while (Link != &mGcdMemorySpaceMap) {
Entry = CR (Link, EFI_GCD_MAP_ENTRY, Link, EFI_GCD_MAP_SIGNATURE);
BuildMemoryDescriptor (Descriptor, Entry);
Descriptor++;
Link = Link->ForwardLink;
}
//
// We're done; exit the loop with the lock held.
//
break;
}
//
// Release the lock before memory allocation, because it might cause
// GCD lock conflict in one of calling path in AllocatPool().
//
CoreReleaseGcdMemoryLock ();
//
// Allocate memory to store the MemorySpaceMap. Note it might be already
// allocated if there's map descriptor change during memory allocation at
// last time.
//
if (*MemorySpaceMap != NULL) {
FreePool (*MemorySpaceMap);
}
*MemorySpaceMap = AllocatePool (
DescriptorCount *
sizeof (EFI_GCD_MEMORY_SPACE_DESCRIPTOR)
);
if (*MemorySpaceMap == NULL) {
*NumberOfDescriptors = 0;
return EFI_OUT_OF_RESOURCES;
}
//
// Save the descriptor count got before for another round of check to make
// sure we won't miss any, since we have code running outside the GCD lock.
//
*NumberOfDescriptors = DescriptorCount;
//
// Re-acquire the lock, for the next iteration.
//
CoreAcquireGcdMemoryLock ();
}
//
// We exited the loop with the lock held, release it.
//
CoreReleaseGcdMemoryLock ();
return EFI_SUCCESS;
}
/**
Adds reserved I/O or I/O resources to the global coherency domain of the processor.
@param GcdIoType IO type of the segment.
@param BaseAddress Base address of the segment.
@param Length Length of the segment.
@retval EFI_SUCCESS Merged this segment into GCD map.
@retval EFI_INVALID_PARAMETER Parameter not valid
**/
EFI_STATUS
EFIAPI
CoreAddIoSpace (
IN EFI_GCD_IO_TYPE GcdIoType,
IN EFI_PHYSICAL_ADDRESS BaseAddress,
IN UINT64 Length
)
{
DEBUG ((DEBUG_GCD, "GCD:AddIoSpace(Base=%016lx,Length=%016lx)\n", BaseAddress, Length));
DEBUG ((DEBUG_GCD, " GcdIoType = %a\n", mGcdIoTypeNames[MIN (GcdIoType, EfiGcdIoTypeMaximum)]));
//
// Make sure parameters are valid
//
if ((GcdIoType <= EfiGcdIoTypeNonExistent) || (GcdIoType >= EfiGcdIoTypeMaximum)) {
return EFI_INVALID_PARAMETER;
}
return CoreConvertSpace (GCD_ADD_IO_OPERATION, (EFI_GCD_MEMORY_TYPE)0, GcdIoType, BaseAddress, Length, 0, 0);
}
/**
Allocates nonexistent I/O, reserved I/O, or I/O resources from the global coherency
domain of the processor.
@param GcdAllocateType The type of allocate operation
@param GcdIoType The desired IO type
@param Alignment Align with 2^Alignment
@param Length Length to allocate
@param BaseAddress Base address to allocate
@param ImageHandle The image handle consume the allocated space.
@param DeviceHandle The device handle consume the allocated space.
@retval EFI_INVALID_PARAMETER Invalid parameter.
@retval EFI_NOT_FOUND No descriptor contains the desired space.
@retval EFI_SUCCESS IO space successfully allocated.
**/
EFI_STATUS
EFIAPI
CoreAllocateIoSpace (
IN EFI_GCD_ALLOCATE_TYPE GcdAllocateType,
IN EFI_GCD_IO_TYPE GcdIoType,
IN UINTN Alignment,
IN UINT64 Length,
IN OUT EFI_PHYSICAL_ADDRESS *BaseAddress,
IN EFI_HANDLE ImageHandle,
IN EFI_HANDLE DeviceHandle OPTIONAL
)
{
if (BaseAddress != NULL) {
DEBUG ((DEBUG_GCD, "GCD:AllocateIoSpace(Base=%016lx,Length=%016lx)\n", *BaseAddress, Length));
} else {
DEBUG ((DEBUG_GCD, "GCD:AllocateIoSpace(Base=<NULL>,Length=%016lx)\n", Length));
}
DEBUG ((DEBUG_GCD, " GcdAllocateType = %a\n", mGcdAllocationTypeNames[MIN (GcdAllocateType, EfiGcdMaxAllocateType)]));
DEBUG ((DEBUG_GCD, " GcdIoType = %a\n", mGcdIoTypeNames[MIN (GcdIoType, EfiGcdIoTypeMaximum)]));
DEBUG ((DEBUG_GCD, " Alignment = %016lx\n", LShiftU64 (1, Alignment)));
DEBUG ((DEBUG_GCD, " ImageHandle = %p\n", ImageHandle));
DEBUG ((DEBUG_GCD, " DeviceHandle = %p\n", DeviceHandle));
return CoreAllocateSpace (
GCD_ALLOCATE_IO_OPERATION,
GcdAllocateType,
(EFI_GCD_MEMORY_TYPE)0,
GcdIoType,
Alignment,
Length,
BaseAddress,
ImageHandle,
DeviceHandle
);
}
/**
Frees nonexistent I/O, reserved I/O, or I/O resources from the global coherency
domain of the processor.
@param BaseAddress Base address of the segment.
@param Length Length of the segment.
@retval EFI_SUCCESS Space successfully freed.
**/
EFI_STATUS
EFIAPI
CoreFreeIoSpace (
IN EFI_PHYSICAL_ADDRESS BaseAddress,
IN UINT64 Length
)
{
DEBUG ((DEBUG_GCD, "GCD:FreeIoSpace(Base=%016lx,Length=%016lx)\n", BaseAddress, Length));
return CoreConvertSpace (GCD_FREE_IO_OPERATION, (EFI_GCD_MEMORY_TYPE)0, (EFI_GCD_IO_TYPE)0, BaseAddress, Length, 0, 0);
}
/**
Removes reserved I/O or I/O resources from the global coherency domain of the
processor.
@param BaseAddress Base address of the segment.
@param Length Length of the segment.
@retval EFI_SUCCESS Successfully removed a segment of IO space.
**/
EFI_STATUS
EFIAPI
CoreRemoveIoSpace (
IN EFI_PHYSICAL_ADDRESS BaseAddress,
IN UINT64 Length
)
{
DEBUG ((DEBUG_GCD, "GCD:RemoveIoSpace(Base=%016lx,Length=%016lx)\n", BaseAddress, Length));
return CoreConvertSpace (GCD_REMOVE_IO_OPERATION, (EFI_GCD_MEMORY_TYPE)0, (EFI_GCD_IO_TYPE)0, BaseAddress, Length, 0, 0);
}
/**
Build a IO descriptor according to an entry.
@param Descriptor The descriptor to be built
@param Entry According to this entry
**/
VOID
BuildIoDescriptor (
IN EFI_GCD_IO_SPACE_DESCRIPTOR *Descriptor,
IN EFI_GCD_MAP_ENTRY *Entry
)
{
Descriptor->BaseAddress = Entry->BaseAddress;
Descriptor->Length = Entry->EndAddress - Entry->BaseAddress + 1;
Descriptor->GcdIoType = Entry->GcdIoType;
Descriptor->ImageHandle = Entry->ImageHandle;
Descriptor->DeviceHandle = Entry->DeviceHandle;
}
/**
Retrieves the descriptor for an I/O region containing a specified address.
@param BaseAddress Specified start address
@param Descriptor Specified length
@retval EFI_INVALID_PARAMETER Descriptor is NULL.
@retval EFI_SUCCESS Successfully get the IO space descriptor.
**/
EFI_STATUS
EFIAPI
CoreGetIoSpaceDescriptor (
IN EFI_PHYSICAL_ADDRESS BaseAddress,
OUT EFI_GCD_IO_SPACE_DESCRIPTOR *Descriptor
)
{
EFI_STATUS Status;
LIST_ENTRY *StartLink;
LIST_ENTRY *EndLink;
EFI_GCD_MAP_ENTRY *Entry;
//
// Make sure parameters are valid
//
if (Descriptor == NULL) {
return EFI_INVALID_PARAMETER;
}
CoreAcquireGcdIoLock ();
//
// Search for the list of descriptors that contain BaseAddress
//
Status = CoreSearchGcdMapEntry (BaseAddress, 1, &StartLink, &EndLink, &mGcdIoSpaceMap);
if (EFI_ERROR (Status)) {
Status = EFI_NOT_FOUND;
} else {
ASSERT (StartLink != NULL && EndLink != NULL);
//
// Copy the contents of the found descriptor into Descriptor
//
Entry = CR (StartLink, EFI_GCD_MAP_ENTRY, Link, EFI_GCD_MAP_SIGNATURE);
BuildIoDescriptor (Descriptor, Entry);
}
CoreReleaseGcdIoLock ();
return Status;
}
/**
Returns a map of the I/O resources in the global coherency domain of the processor.
@param NumberOfDescriptors Number of descriptors.
@param IoSpaceMap Descriptor array
@retval EFI_INVALID_PARAMETER Invalid parameter
@retval EFI_OUT_OF_RESOURCES No enough buffer to allocate
@retval EFI_SUCCESS Successfully get IO space map.
**/
EFI_STATUS
EFIAPI
CoreGetIoSpaceMap (
OUT UINTN *NumberOfDescriptors,
OUT EFI_GCD_IO_SPACE_DESCRIPTOR **IoSpaceMap
)
{
EFI_STATUS Status;
LIST_ENTRY *Link;
EFI_GCD_MAP_ENTRY *Entry;
EFI_GCD_IO_SPACE_DESCRIPTOR *Descriptor;
//
// Make sure parameters are valid
//
if (NumberOfDescriptors == NULL) {
return EFI_INVALID_PARAMETER;
}
if (IoSpaceMap == NULL) {
return EFI_INVALID_PARAMETER;
}
CoreAcquireGcdIoLock ();
//
// Count the number of descriptors
//
*NumberOfDescriptors = CoreCountGcdMapEntry (&mGcdIoSpaceMap);
//
// Allocate the IoSpaceMap
//
*IoSpaceMap = AllocatePool (*NumberOfDescriptors * sizeof (EFI_GCD_IO_SPACE_DESCRIPTOR));
if (*IoSpaceMap == NULL) {
Status = EFI_OUT_OF_RESOURCES;
goto Done;
}
//
// Fill in the IoSpaceMap
//
Descriptor = *IoSpaceMap;
Link = mGcdIoSpaceMap.ForwardLink;
while (Link != &mGcdIoSpaceMap) {
Entry = CR (Link, EFI_GCD_MAP_ENTRY, Link, EFI_GCD_MAP_SIGNATURE);
BuildIoDescriptor (Descriptor, Entry);
Descriptor++;
Link = Link->ForwardLink;
}
Status = EFI_SUCCESS;
Done:
CoreReleaseGcdIoLock ();
return Status;
}
/**
Converts a Resource Descriptor HOB attributes mask to an EFI Memory Descriptor
capabilities mask
@param GcdMemoryType Type of resource in the GCD memory map.
@param Attributes The attribute mask in the Resource Descriptor
HOB.
@return The capabilities mask for an EFI Memory Descriptor.
**/
UINT64
CoreConvertResourceDescriptorHobAttributesToCapabilities (
EFI_GCD_MEMORY_TYPE GcdMemoryType,
UINT64 Attributes
)
{
UINT64 Capabilities;
GCD_ATTRIBUTE_CONVERSION_ENTRY *Conversion;
//
// Convert the Resource HOB Attributes to an EFI Memory Capabilities mask
//
for (Capabilities = 0, Conversion = mAttributeConversionTable; Conversion->Attribute != 0; Conversion++) {
if (Conversion->Memory || ((GcdMemoryType != EfiGcdMemoryTypeSystemMemory) && (GcdMemoryType != EfiGcdMemoryTypeMoreReliable))) {
if (Attributes & Conversion->Attribute) {
Capabilities |= Conversion->Capability;
}
}
}
return Capabilities;
}
/**
Calculate total memory bin size neeeded.
@return The total memory bin size neeeded.
**/
UINT64
CalculateTotalMemoryBinSizeNeeded (
VOID
)
{
UINTN Index;
UINT64 TotalSize;
//
// Loop through each memory type in the order specified by the gMemoryTypeInformation[] array
//
TotalSize = 0;
for (Index = 0; gMemoryTypeInformation[Index].Type != EfiMaxMemoryType; Index++) {
TotalSize += LShiftU64 (gMemoryTypeInformation[Index].NumberOfPages, EFI_PAGE_SHIFT);
}
return TotalSize;
}
/**
Find the largest region in the specified region that is not covered by an existing memory allocation
@param BaseAddress On input start of the region to check.
On output start of the largest free region.
@param Length On input size of region to check.
On output size of the largest free region.
@param MemoryHob Hob pointer for the first memory allocation pointer to check
**/
VOID
FindLargestFreeRegion (
IN OUT EFI_PHYSICAL_ADDRESS *BaseAddress,
IN OUT UINT64 *Length,
IN EFI_HOB_MEMORY_ALLOCATION *MemoryHob
)
{
EFI_PHYSICAL_ADDRESS TopAddress;
EFI_PHYSICAL_ADDRESS AllocatedTop;
EFI_PHYSICAL_ADDRESS LowerBase;
UINT64 LowerSize;
EFI_PHYSICAL_ADDRESS UpperBase;
UINT64 UpperSize;
TopAddress = *BaseAddress + *Length;
while (MemoryHob != NULL) {
AllocatedTop = MemoryHob->AllocDescriptor.MemoryBaseAddress + MemoryHob->AllocDescriptor.MemoryLength;
if ((MemoryHob->AllocDescriptor.MemoryBaseAddress >= *BaseAddress) &&
(AllocatedTop <= TopAddress))
{
LowerBase = *BaseAddress;
LowerSize = MemoryHob->AllocDescriptor.MemoryBaseAddress - *BaseAddress;
UpperBase = AllocatedTop;
UpperSize = TopAddress - AllocatedTop;
if (LowerSize != 0) {
FindLargestFreeRegion (&LowerBase, &LowerSize, (EFI_HOB_MEMORY_ALLOCATION *)GetNextHob (EFI_HOB_TYPE_MEMORY_ALLOCATION, GET_NEXT_HOB (MemoryHob)));
}
if (UpperSize != 0) {
FindLargestFreeRegion (&UpperBase, &UpperSize, (EFI_HOB_MEMORY_ALLOCATION *)GetNextHob (EFI_HOB_TYPE_MEMORY_ALLOCATION, GET_NEXT_HOB (MemoryHob)));
}
if (UpperSize >= LowerSize) {
*Length = UpperSize;
*BaseAddress = UpperBase;
} else {
*Length = LowerSize;
*BaseAddress = LowerBase;
}
return;
}
MemoryHob = GetNextHob (EFI_HOB_TYPE_MEMORY_ALLOCATION, GET_NEXT_HOB (MemoryHob));
}
}
/**
External function. Initializes memory services based on the memory
descriptor HOBs. This function is responsible for priming the memory
map, so memory allocations and resource allocations can be made.
The first part of this function can not depend on any memory services
until at least one memory descriptor is provided to the memory services.
@param HobStart The start address of the HOB.
@param MemoryBaseAddress Start address of memory region found to init DXE
core.
@param MemoryLength Length of memory region found to init DXE core.
@retval EFI_SUCCESS Memory services successfully initialized.
**/
EFI_STATUS
CoreInitializeMemoryServices (
IN VOID **HobStart,
OUT EFI_PHYSICAL_ADDRESS *MemoryBaseAddress,
OUT UINT64 *MemoryLength
)
{
EFI_PEI_HOB_POINTERS Hob;
EFI_MEMORY_TYPE_INFORMATION *EfiMemoryTypeInformation;
UINTN DataSize;
BOOLEAN Found;
EFI_HOB_HANDOFF_INFO_TABLE *PhitHob;
EFI_HOB_RESOURCE_DESCRIPTOR *ResourceHob;
EFI_HOB_RESOURCE_DESCRIPTOR *PhitResourceHob;
MdeModulePkg/Core/Dxe: Set MemoryTypeInfo bin range from HOB Provide an optional method for PEI to declare a specific address range to use for the Memory Type Information bins. The current algorithm uses heuristics that tends to place the Memory Type Information bins in the same location, but memory configuration changes across boots or algorithm changes across a firmware updates could potentially change the Memory Type Information bin location. If the bin locations move across an S4 save/resume cycle, then the S4 resume may fail. Enabling this feature increases the number of scenarios that an S4 resume operation may succeed. If the HOB List contains a Resource Descriptor HOB that describes tested system memory and has an Owner GUID of gEfiMemoryTypeInformationGuid, then use the address range described by the Resource Descriptor HOB as the preferred location of the Memory Type Information bins. If this HOB is not detected, then the current behavior is preserved. The HOB with an Owner GUID of gEfiMemoryTypeInformationGuid is ignored for the following conditions: * The HOB with an Owner GUID of gEfiMemoryTypeInformationGuid is smaller than the Memory Type Information bins. * The HOB list contains more than one Resource Descriptor HOB with an owner GUID of gEfiMemoryTypeInformationGuid. * The Resource Descriptor HOB with an Owner GUID of gEfiMemoryTypeInformationGuid is the same Resource Descriptor HOB that that describes the PHIT memory range. Cc: Liming Gao <gaoliming@byosoft.com.cn> Cc: Aaron Li <aaron.li@intel.com> Cc: Liu Yun <yun.y.liu@intel.com> Cc: Andrew Fish <afish@apple.com> Cc: Laszlo Ersek <lersek@redhat.com> Signed-off-by: Michael D Kinney <michael.d.kinney@intel.com> Reviewed-by: Liming Gao <gaoliming@byosoft.com.cn> Reviewed-by: Laszlo Ersek <lersek@redhat.com>
2024-01-28 22:33:32 +01:00
EFI_HOB_RESOURCE_DESCRIPTOR *MemoryTypeInformationResourceHob;
UINTN Count;
EFI_PHYSICAL_ADDRESS BaseAddress;
UINT64 Length;
UINT64 Attributes;
UINT64 Capabilities;
EFI_PHYSICAL_ADDRESS TestedMemoryBaseAddress;
UINT64 TestedMemoryLength;
EFI_PHYSICAL_ADDRESS HighAddress;
EFI_HOB_GUID_TYPE *GuidHob;
UINT32 ReservedCodePageNumber;
UINT64 MinimalMemorySizeNeeded;
//
// Point at the first HOB. This must be the PHIT HOB.
//
Hob.Raw = *HobStart;
ASSERT (GET_HOB_TYPE (Hob) == EFI_HOB_TYPE_HANDOFF);
//
// Initialize the spin locks and maps in the memory services.
// Also fill in the memory services into the EFI Boot Services Table
//
CoreInitializePool ();
//
// Initialize Local Variables
//
PhitResourceHob = NULL;
ResourceHob = NULL;
BaseAddress = 0;
Length = 0;
Attributes = 0;
//
// Cache the PHIT HOB for later use
//
PhitHob = Hob.HandoffInformationTable;
if (PcdGet64 (PcdLoadModuleAtFixAddressEnable) != 0) {
ReservedCodePageNumber = PcdGet32 (PcdLoadFixAddressRuntimeCodePageNumber);
ReservedCodePageNumber += PcdGet32 (PcdLoadFixAddressBootTimeCodePageNumber);
//
// cache the Top address for loading modules at Fixed Address
//
gLoadModuleAtFixAddressConfigurationTable.DxeCodeTopAddress = PhitHob->EfiMemoryTop
+ EFI_PAGES_TO_SIZE (ReservedCodePageNumber);
}
//
// See if a Memory Type Information HOB is available
//
MdeModulePkg/Core/Dxe: Set MemoryTypeInfo bin range from HOB Provide an optional method for PEI to declare a specific address range to use for the Memory Type Information bins. The current algorithm uses heuristics that tends to place the Memory Type Information bins in the same location, but memory configuration changes across boots or algorithm changes across a firmware updates could potentially change the Memory Type Information bin location. If the bin locations move across an S4 save/resume cycle, then the S4 resume may fail. Enabling this feature increases the number of scenarios that an S4 resume operation may succeed. If the HOB List contains a Resource Descriptor HOB that describes tested system memory and has an Owner GUID of gEfiMemoryTypeInformationGuid, then use the address range described by the Resource Descriptor HOB as the preferred location of the Memory Type Information bins. If this HOB is not detected, then the current behavior is preserved. The HOB with an Owner GUID of gEfiMemoryTypeInformationGuid is ignored for the following conditions: * The HOB with an Owner GUID of gEfiMemoryTypeInformationGuid is smaller than the Memory Type Information bins. * The HOB list contains more than one Resource Descriptor HOB with an owner GUID of gEfiMemoryTypeInformationGuid. * The Resource Descriptor HOB with an Owner GUID of gEfiMemoryTypeInformationGuid is the same Resource Descriptor HOB that that describes the PHIT memory range. Cc: Liming Gao <gaoliming@byosoft.com.cn> Cc: Aaron Li <aaron.li@intel.com> Cc: Liu Yun <yun.y.liu@intel.com> Cc: Andrew Fish <afish@apple.com> Cc: Laszlo Ersek <lersek@redhat.com> Signed-off-by: Michael D Kinney <michael.d.kinney@intel.com> Reviewed-by: Liming Gao <gaoliming@byosoft.com.cn> Reviewed-by: Laszlo Ersek <lersek@redhat.com>
2024-01-28 22:33:32 +01:00
MemoryTypeInformationResourceHob = NULL;
GuidHob = GetFirstGuidHob (&gEfiMemoryTypeInformationGuid);
if (GuidHob != NULL) {
EfiMemoryTypeInformation = GET_GUID_HOB_DATA (GuidHob);
DataSize = GET_GUID_HOB_DATA_SIZE (GuidHob);
if ((EfiMemoryTypeInformation != NULL) && (DataSize > 0) && (DataSize <= (EfiMaxMemoryType + 1) * sizeof (EFI_MEMORY_TYPE_INFORMATION))) {
CopyMem (&gMemoryTypeInformation, EfiMemoryTypeInformation, DataSize);
MdeModulePkg/Core/Dxe: Set MemoryTypeInfo bin range from HOB Provide an optional method for PEI to declare a specific address range to use for the Memory Type Information bins. The current algorithm uses heuristics that tends to place the Memory Type Information bins in the same location, but memory configuration changes across boots or algorithm changes across a firmware updates could potentially change the Memory Type Information bin location. If the bin locations move across an S4 save/resume cycle, then the S4 resume may fail. Enabling this feature increases the number of scenarios that an S4 resume operation may succeed. If the HOB List contains a Resource Descriptor HOB that describes tested system memory and has an Owner GUID of gEfiMemoryTypeInformationGuid, then use the address range described by the Resource Descriptor HOB as the preferred location of the Memory Type Information bins. If this HOB is not detected, then the current behavior is preserved. The HOB with an Owner GUID of gEfiMemoryTypeInformationGuid is ignored for the following conditions: * The HOB with an Owner GUID of gEfiMemoryTypeInformationGuid is smaller than the Memory Type Information bins. * The HOB list contains more than one Resource Descriptor HOB with an owner GUID of gEfiMemoryTypeInformationGuid. * The Resource Descriptor HOB with an Owner GUID of gEfiMemoryTypeInformationGuid is the same Resource Descriptor HOB that that describes the PHIT memory range. Cc: Liming Gao <gaoliming@byosoft.com.cn> Cc: Aaron Li <aaron.li@intel.com> Cc: Liu Yun <yun.y.liu@intel.com> Cc: Andrew Fish <afish@apple.com> Cc: Laszlo Ersek <lersek@redhat.com> Signed-off-by: Michael D Kinney <michael.d.kinney@intel.com> Reviewed-by: Liming Gao <gaoliming@byosoft.com.cn> Reviewed-by: Laszlo Ersek <lersek@redhat.com>
2024-01-28 22:33:32 +01:00
//
// Look for Resource Descriptor HOB with a ResourceType of System Memory
// and an Owner GUID of gEfiMemoryTypeInformationGuid. If more than 1 is
// found, then set MemoryTypeInformationResourceHob to NULL.
//
Count = 0;
for (Hob.Raw = *HobStart; !END_OF_HOB_LIST (Hob); Hob.Raw = GET_NEXT_HOB (Hob)) {
if (GET_HOB_TYPE (Hob) != EFI_HOB_TYPE_RESOURCE_DESCRIPTOR) {
continue;
}
ResourceHob = Hob.ResourceDescriptor;
if (!CompareGuid (&ResourceHob->Owner, &gEfiMemoryTypeInformationGuid)) {
continue;
}
Count++;
if (ResourceHob->ResourceType != EFI_RESOURCE_SYSTEM_MEMORY) {
continue;
}
if ((ResourceHob->ResourceAttribute & MEMORY_ATTRIBUTE_MASK) != TESTED_MEMORY_ATTRIBUTES) {
continue;
}
if (ResourceHob->ResourceLength >= CalculateTotalMemoryBinSizeNeeded ()) {
MemoryTypeInformationResourceHob = ResourceHob;
}
}
if (Count > 1) {
MemoryTypeInformationResourceHob = NULL;
}
}
}
//
// Include the total memory bin size needed to make sure memory bin could be allocated successfully.
//
MinimalMemorySizeNeeded = MINIMUM_INITIAL_MEMORY_SIZE + CalculateTotalMemoryBinSizeNeeded ();
//
// Find the Resource Descriptor HOB that contains PHIT range EfiFreeMemoryBottom..EfiFreeMemoryTop
//
Found = FALSE;
for (Hob.Raw = *HobStart; !END_OF_HOB_LIST (Hob); Hob.Raw = GET_NEXT_HOB (Hob)) {
//
// Skip all HOBs except Resource Descriptor HOBs
//
if (GET_HOB_TYPE (Hob) != EFI_HOB_TYPE_RESOURCE_DESCRIPTOR) {
continue;
}
//
// Skip Resource Descriptor HOBs that do not describe tested system memory
//
ResourceHob = Hob.ResourceDescriptor;
if (ResourceHob->ResourceType != EFI_RESOURCE_SYSTEM_MEMORY) {
continue;
}
if ((ResourceHob->ResourceAttribute & MEMORY_ATTRIBUTE_MASK) != TESTED_MEMORY_ATTRIBUTES) {
continue;
}
//
// Skip Resource Descriptor HOBs that do not contain the PHIT range EfiFreeMemoryBottom..EfiFreeMemoryTop
//
if (PhitHob->EfiFreeMemoryBottom < ResourceHob->PhysicalStart) {
continue;
}
if (PhitHob->EfiFreeMemoryTop > (ResourceHob->PhysicalStart + ResourceHob->ResourceLength)) {
continue;
}
//
// Cache the resource descriptor HOB for the memory region described by the PHIT HOB
//
PhitResourceHob = ResourceHob;
Found = TRUE;
MdeModulePkg/Core/Dxe: Set MemoryTypeInfo bin range from HOB Provide an optional method for PEI to declare a specific address range to use for the Memory Type Information bins. The current algorithm uses heuristics that tends to place the Memory Type Information bins in the same location, but memory configuration changes across boots or algorithm changes across a firmware updates could potentially change the Memory Type Information bin location. If the bin locations move across an S4 save/resume cycle, then the S4 resume may fail. Enabling this feature increases the number of scenarios that an S4 resume operation may succeed. If the HOB List contains a Resource Descriptor HOB that describes tested system memory and has an Owner GUID of gEfiMemoryTypeInformationGuid, then use the address range described by the Resource Descriptor HOB as the preferred location of the Memory Type Information bins. If this HOB is not detected, then the current behavior is preserved. The HOB with an Owner GUID of gEfiMemoryTypeInformationGuid is ignored for the following conditions: * The HOB with an Owner GUID of gEfiMemoryTypeInformationGuid is smaller than the Memory Type Information bins. * The HOB list contains more than one Resource Descriptor HOB with an owner GUID of gEfiMemoryTypeInformationGuid. * The Resource Descriptor HOB with an Owner GUID of gEfiMemoryTypeInformationGuid is the same Resource Descriptor HOB that that describes the PHIT memory range. Cc: Liming Gao <gaoliming@byosoft.com.cn> Cc: Aaron Li <aaron.li@intel.com> Cc: Liu Yun <yun.y.liu@intel.com> Cc: Andrew Fish <afish@apple.com> Cc: Laszlo Ersek <lersek@redhat.com> Signed-off-by: Michael D Kinney <michael.d.kinney@intel.com> Reviewed-by: Liming Gao <gaoliming@byosoft.com.cn> Reviewed-by: Laszlo Ersek <lersek@redhat.com>
2024-01-28 22:33:32 +01:00
//
// If a Memory Type Information Resource HOB was found and is the same
// Resource HOB that describes the PHIT HOB, then ignore the Memory Type
// Information Resource HOB.
//
if (MemoryTypeInformationResourceHob == PhitResourceHob) {
MemoryTypeInformationResourceHob = NULL;
}
//
// Compute range between PHIT EfiMemoryTop and the end of the Resource Descriptor HOB
//
Attributes = PhitResourceHob->ResourceAttribute;
BaseAddress = PageAlignAddress (PhitHob->EfiMemoryTop);
Length = PageAlignLength (ResourceHob->PhysicalStart + ResourceHob->ResourceLength - BaseAddress);
FindLargestFreeRegion (&BaseAddress, &Length, (EFI_HOB_MEMORY_ALLOCATION *)GetFirstHob (EFI_HOB_TYPE_MEMORY_ALLOCATION));
if (Length < MinimalMemorySizeNeeded) {
//
// If that range is not large enough to intialize the DXE Core, then
// Compute range between PHIT EfiFreeMemoryBottom and PHIT EfiFreeMemoryTop
//
BaseAddress = PageAlignAddress (PhitHob->EfiFreeMemoryBottom);
Length = PageAlignLength (PhitHob->EfiFreeMemoryTop - BaseAddress);
// This region is required to have no memory allocation inside it, skip check for entries in HOB List
if (Length < MinimalMemorySizeNeeded) {
//
// If that range is not large enough to intialize the DXE Core, then
// Compute range between the start of the Resource Descriptor HOB and the start of the HOB List
//
BaseAddress = PageAlignAddress (ResourceHob->PhysicalStart);
Length = PageAlignLength ((UINT64)((UINTN)*HobStart - BaseAddress));
FindLargestFreeRegion (&BaseAddress, &Length, (EFI_HOB_MEMORY_ALLOCATION *)GetFirstHob (EFI_HOB_TYPE_MEMORY_ALLOCATION));
}
}
break;
}
//
// Assert if a resource descriptor HOB for the memory region described by the PHIT was not found
//
ASSERT (Found);
//
// Take the range in the resource descriptor HOB for the memory region described
// by the PHIT as higher priority if it is big enough. It can make the memory bin
// allocated to be at the same memory region with PHIT that has more better compatibility
// to avoid memory fragmentation for some code practices assume and allocate <4G ACPI memory.
//
if (Length < MinimalMemorySizeNeeded) {
//
// Search all the resource descriptor HOBs from the highest possible addresses down for a memory
MdeModulePkg/Core/Dxe: Set MemoryTypeInfo bin range from HOB Provide an optional method for PEI to declare a specific address range to use for the Memory Type Information bins. The current algorithm uses heuristics that tends to place the Memory Type Information bins in the same location, but memory configuration changes across boots or algorithm changes across a firmware updates could potentially change the Memory Type Information bin location. If the bin locations move across an S4 save/resume cycle, then the S4 resume may fail. Enabling this feature increases the number of scenarios that an S4 resume operation may succeed. If the HOB List contains a Resource Descriptor HOB that describes tested system memory and has an Owner GUID of gEfiMemoryTypeInformationGuid, then use the address range described by the Resource Descriptor HOB as the preferred location of the Memory Type Information bins. If this HOB is not detected, then the current behavior is preserved. The HOB with an Owner GUID of gEfiMemoryTypeInformationGuid is ignored for the following conditions: * The HOB with an Owner GUID of gEfiMemoryTypeInformationGuid is smaller than the Memory Type Information bins. * The HOB list contains more than one Resource Descriptor HOB with an owner GUID of gEfiMemoryTypeInformationGuid. * The Resource Descriptor HOB with an Owner GUID of gEfiMemoryTypeInformationGuid is the same Resource Descriptor HOB that that describes the PHIT memory range. Cc: Liming Gao <gaoliming@byosoft.com.cn> Cc: Aaron Li <aaron.li@intel.com> Cc: Liu Yun <yun.y.liu@intel.com> Cc: Andrew Fish <afish@apple.com> Cc: Laszlo Ersek <lersek@redhat.com> Signed-off-by: Michael D Kinney <michael.d.kinney@intel.com> Reviewed-by: Liming Gao <gaoliming@byosoft.com.cn> Reviewed-by: Laszlo Ersek <lersek@redhat.com>
2024-01-28 22:33:32 +01:00
// region that is big enough to initialize the DXE core. Always skip the PHIT Resource HOB
// and the Memory Type Information Resource HOB. The max address must be within the physically
// addressable range for the processor.
//
HighAddress = MAX_ALLOC_ADDRESS;
for (Hob.Raw = *HobStart; !END_OF_HOB_LIST (Hob); Hob.Raw = GET_NEXT_HOB (Hob)) {
//
// Skip the Resource Descriptor HOB that contains the PHIT
//
if (Hob.ResourceDescriptor == PhitResourceHob) {
continue;
}
MdeModulePkg/Core/Dxe: Set MemoryTypeInfo bin range from HOB Provide an optional method for PEI to declare a specific address range to use for the Memory Type Information bins. The current algorithm uses heuristics that tends to place the Memory Type Information bins in the same location, but memory configuration changes across boots or algorithm changes across a firmware updates could potentially change the Memory Type Information bin location. If the bin locations move across an S4 save/resume cycle, then the S4 resume may fail. Enabling this feature increases the number of scenarios that an S4 resume operation may succeed. If the HOB List contains a Resource Descriptor HOB that describes tested system memory and has an Owner GUID of gEfiMemoryTypeInformationGuid, then use the address range described by the Resource Descriptor HOB as the preferred location of the Memory Type Information bins. If this HOB is not detected, then the current behavior is preserved. The HOB with an Owner GUID of gEfiMemoryTypeInformationGuid is ignored for the following conditions: * The HOB with an Owner GUID of gEfiMemoryTypeInformationGuid is smaller than the Memory Type Information bins. * The HOB list contains more than one Resource Descriptor HOB with an owner GUID of gEfiMemoryTypeInformationGuid. * The Resource Descriptor HOB with an Owner GUID of gEfiMemoryTypeInformationGuid is the same Resource Descriptor HOB that that describes the PHIT memory range. Cc: Liming Gao <gaoliming@byosoft.com.cn> Cc: Aaron Li <aaron.li@intel.com> Cc: Liu Yun <yun.y.liu@intel.com> Cc: Andrew Fish <afish@apple.com> Cc: Laszlo Ersek <lersek@redhat.com> Signed-off-by: Michael D Kinney <michael.d.kinney@intel.com> Reviewed-by: Liming Gao <gaoliming@byosoft.com.cn> Reviewed-by: Laszlo Ersek <lersek@redhat.com>
2024-01-28 22:33:32 +01:00
//
// Skip the Resource Descriptor HOB that contains Memory Type Information bins
//
if (Hob.ResourceDescriptor == MemoryTypeInformationResourceHob) {
continue;
}
//
// Skip all HOBs except Resource Descriptor HOBs
//
if (GET_HOB_TYPE (Hob) != EFI_HOB_TYPE_RESOURCE_DESCRIPTOR) {
continue;
}
//
// Skip Resource Descriptor HOBs that do not describe tested system memory below MAX_ALLOC_ADDRESS
//
ResourceHob = Hob.ResourceDescriptor;
if (ResourceHob->ResourceType != EFI_RESOURCE_SYSTEM_MEMORY) {
continue;
}
if ((ResourceHob->ResourceAttribute & MEMORY_ATTRIBUTE_MASK) != TESTED_MEMORY_ATTRIBUTES) {
continue;
}
if ((ResourceHob->PhysicalStart + ResourceHob->ResourceLength) > (EFI_PHYSICAL_ADDRESS)MAX_ALLOC_ADDRESS) {
continue;
}
//
// Skip Resource Descriptor HOBs that are below a previously found Resource Descriptor HOB
//
if ((HighAddress != (EFI_PHYSICAL_ADDRESS)MAX_ALLOC_ADDRESS) && (ResourceHob->PhysicalStart <= HighAddress)) {
continue;
}
//
// Skip Resource Descriptor HOBs that are not large enough to initilize the DXE Core
//
TestedMemoryBaseAddress = PageAlignAddress (ResourceHob->PhysicalStart);
TestedMemoryLength = PageAlignLength (ResourceHob->PhysicalStart + ResourceHob->ResourceLength - TestedMemoryBaseAddress);
FindLargestFreeRegion (&TestedMemoryBaseAddress, &TestedMemoryLength, (EFI_HOB_MEMORY_ALLOCATION *)GetFirstHob (EFI_HOB_TYPE_MEMORY_ALLOCATION));
if (TestedMemoryLength < MinimalMemorySizeNeeded) {
continue;
}
//
// Save the range described by the Resource Descriptor that is large enough to initilize the DXE Core
//
BaseAddress = TestedMemoryBaseAddress;
Length = TestedMemoryLength;
Attributes = ResourceHob->ResourceAttribute;
HighAddress = ResourceHob->PhysicalStart;
}
}
DEBUG ((DEBUG_INFO, "CoreInitializeMemoryServices:\n"));
DEBUG ((DEBUG_INFO, " BaseAddress - 0x%lx Length - 0x%lx MinimalMemorySizeNeeded - 0x%lx\n", BaseAddress, Length, MinimalMemorySizeNeeded));
//
// If no memory regions are found that are big enough to initialize the DXE core, then ASSERT().
//
ASSERT (Length >= MinimalMemorySizeNeeded);
//
// Convert the Resource HOB Attributes to an EFI Memory Capabilities mask
//
if ((Attributes & EFI_RESOURCE_ATTRIBUTE_MORE_RELIABLE) == EFI_RESOURCE_ATTRIBUTE_MORE_RELIABLE) {
Capabilities = CoreConvertResourceDescriptorHobAttributesToCapabilities (EfiGcdMemoryTypeMoreReliable, Attributes);
} else {
Capabilities = CoreConvertResourceDescriptorHobAttributesToCapabilities (EfiGcdMemoryTypeSystemMemory, Attributes);
}
MdeModulePkg/Core/Dxe: Set MemoryTypeInfo bin range from HOB Provide an optional method for PEI to declare a specific address range to use for the Memory Type Information bins. The current algorithm uses heuristics that tends to place the Memory Type Information bins in the same location, but memory configuration changes across boots or algorithm changes across a firmware updates could potentially change the Memory Type Information bin location. If the bin locations move across an S4 save/resume cycle, then the S4 resume may fail. Enabling this feature increases the number of scenarios that an S4 resume operation may succeed. If the HOB List contains a Resource Descriptor HOB that describes tested system memory and has an Owner GUID of gEfiMemoryTypeInformationGuid, then use the address range described by the Resource Descriptor HOB as the preferred location of the Memory Type Information bins. If this HOB is not detected, then the current behavior is preserved. The HOB with an Owner GUID of gEfiMemoryTypeInformationGuid is ignored for the following conditions: * The HOB with an Owner GUID of gEfiMemoryTypeInformationGuid is smaller than the Memory Type Information bins. * The HOB list contains more than one Resource Descriptor HOB with an owner GUID of gEfiMemoryTypeInformationGuid. * The Resource Descriptor HOB with an Owner GUID of gEfiMemoryTypeInformationGuid is the same Resource Descriptor HOB that that describes the PHIT memory range. Cc: Liming Gao <gaoliming@byosoft.com.cn> Cc: Aaron Li <aaron.li@intel.com> Cc: Liu Yun <yun.y.liu@intel.com> Cc: Andrew Fish <afish@apple.com> Cc: Laszlo Ersek <lersek@redhat.com> Signed-off-by: Michael D Kinney <michael.d.kinney@intel.com> Reviewed-by: Liming Gao <gaoliming@byosoft.com.cn> Reviewed-by: Laszlo Ersek <lersek@redhat.com>
2024-01-28 22:33:32 +01:00
if (MemoryTypeInformationResourceHob != NULL) {
//
// If a Memory Type Information Resource HOB was found, then use the address
// range of the Memory Type Information Resource HOB as the preferred
// address range for the Memory Type Information bins.
//
CoreSetMemoryTypeInformationRange (
MemoryTypeInformationResourceHob->PhysicalStart,
MemoryTypeInformationResourceHob->ResourceLength
);
}
//
// Declare the very first memory region, so the EFI Memory Services are available.
//
CoreAddMemoryDescriptor (
EfiConventionalMemory,
BaseAddress,
RShiftU64 (Length, EFI_PAGE_SHIFT),
Capabilities
);
*MemoryBaseAddress = BaseAddress;
*MemoryLength = Length;
return EFI_SUCCESS;
}
/**
External function. Initializes the GCD and memory services based on the memory
descriptor HOBs. This function is responsible for priming the GCD map and the
memory map, so memory allocations and resource allocations can be made. The
HobStart will be relocated to a pool buffer.
@param HobStart The start address of the HOB
@param MemoryBaseAddress Start address of memory region found to init DXE
core.
@param MemoryLength Length of memory region found to init DXE core.
@retval EFI_SUCCESS GCD services successfully initialized.
**/
EFI_STATUS
CoreInitializeGcdServices (
IN OUT VOID **HobStart,
IN EFI_PHYSICAL_ADDRESS MemoryBaseAddress,
IN UINT64 MemoryLength
)
{
EFI_PEI_HOB_POINTERS Hob;
VOID *NewHobList;
EFI_HOB_HANDOFF_INFO_TABLE *PhitHob;
UINT8 SizeOfMemorySpace;
UINT8 SizeOfIoSpace;
EFI_HOB_RESOURCE_DESCRIPTOR *ResourceHob;
EFI_PHYSICAL_ADDRESS BaseAddress;
UINT64 Length;
EFI_STATUS Status;
EFI_GCD_MAP_ENTRY *Entry;
EFI_GCD_MEMORY_TYPE GcdMemoryType;
EFI_GCD_IO_TYPE GcdIoType;
EFI_GCD_MEMORY_SPACE_DESCRIPTOR Descriptor;
EFI_HOB_MEMORY_ALLOCATION *MemoryHob;
EFI_HOB_FIRMWARE_VOLUME *FirmwareVolumeHob;
UINTN NumberOfDescriptors;
EFI_GCD_MEMORY_SPACE_DESCRIPTOR *MemorySpaceMap;
UINTN Index;
UINT64 Capabilities;
EFI_HOB_CPU *CpuHob;
EFI_GCD_MEMORY_SPACE_DESCRIPTOR *MemorySpaceMapHobList;
//
// Cache the PHIT HOB for later use
//
PhitHob = (EFI_HOB_HANDOFF_INFO_TABLE *)(*HobStart);
//
// Get the number of address lines in the I/O and Memory space for the CPU
//
CpuHob = GetFirstHob (EFI_HOB_TYPE_CPU);
ASSERT (CpuHob != NULL);
SizeOfMemorySpace = CpuHob->SizeOfMemorySpace;
SizeOfIoSpace = CpuHob->SizeOfIoSpace;
//
// Initialize the GCD Memory Space Map
//
Entry = AllocateCopyPool (sizeof (EFI_GCD_MAP_ENTRY), &mGcdMemorySpaceMapEntryTemplate);
ASSERT (Entry != NULL);
Entry->EndAddress = LShiftU64 (1, SizeOfMemorySpace) - 1;
InsertHeadList (&mGcdMemorySpaceMap, &Entry->Link);
CoreDumpGcdMemorySpaceMap (TRUE);
//
// Initialize the GCD I/O Space Map
//
Entry = AllocateCopyPool (sizeof (EFI_GCD_MAP_ENTRY), &mGcdIoSpaceMapEntryTemplate);
ASSERT (Entry != NULL);
Entry->EndAddress = LShiftU64 (1, SizeOfIoSpace) - 1;
InsertHeadList (&mGcdIoSpaceMap, &Entry->Link);
CoreDumpGcdIoSpaceMap (TRUE);
//
// Walk the HOB list and add all resource descriptors to the GCD
//
for (Hob.Raw = *HobStart; !END_OF_HOB_LIST (Hob); Hob.Raw = GET_NEXT_HOB (Hob)) {
GcdMemoryType = EfiGcdMemoryTypeNonExistent;
GcdIoType = EfiGcdIoTypeNonExistent;
if (GET_HOB_TYPE (Hob) == EFI_HOB_TYPE_RESOURCE_DESCRIPTOR) {
ResourceHob = Hob.ResourceDescriptor;
switch (ResourceHob->ResourceType) {
case EFI_RESOURCE_SYSTEM_MEMORY:
if ((ResourceHob->ResourceAttribute & MEMORY_ATTRIBUTE_MASK) == TESTED_MEMORY_ATTRIBUTES) {
if ((ResourceHob->ResourceAttribute & EFI_RESOURCE_ATTRIBUTE_MORE_RELIABLE) == EFI_RESOURCE_ATTRIBUTE_MORE_RELIABLE) {
GcdMemoryType = EfiGcdMemoryTypeMoreReliable;
} else {
GcdMemoryType = EfiGcdMemoryTypeSystemMemory;
}
}
if ((ResourceHob->ResourceAttribute & MEMORY_ATTRIBUTE_MASK) == INITIALIZED_MEMORY_ATTRIBUTES) {
GcdMemoryType = EfiGcdMemoryTypeReserved;
}
if ((ResourceHob->ResourceAttribute & MEMORY_ATTRIBUTE_MASK) == PRESENT_MEMORY_ATTRIBUTES) {
GcdMemoryType = EfiGcdMemoryTypeReserved;
}
if ((ResourceHob->ResourceAttribute & EFI_RESOURCE_ATTRIBUTE_PERSISTENT) == EFI_RESOURCE_ATTRIBUTE_PERSISTENT) {
GcdMemoryType = EfiGcdMemoryTypePersistent;
}
break;
case EFI_RESOURCE_MEMORY_MAPPED_IO:
case EFI_RESOURCE_FIRMWARE_DEVICE:
GcdMemoryType = EfiGcdMemoryTypeMemoryMappedIo;
break;
case EFI_RESOURCE_MEMORY_MAPPED_IO_PORT:
case EFI_RESOURCE_MEMORY_RESERVED:
GcdMemoryType = EfiGcdMemoryTypeReserved;
break;
case BZ3937_EFI_RESOURCE_MEMORY_UNACCEPTED:
GcdMemoryType = EFI_GCD_MEMORY_TYPE_UNACCEPTED;
break;
case EFI_RESOURCE_IO:
GcdIoType = EfiGcdIoTypeIo;
break;
case EFI_RESOURCE_IO_RESERVED:
GcdIoType = EfiGcdIoTypeReserved;
break;
}
if (GcdMemoryType != EfiGcdMemoryTypeNonExistent) {
//
// Validate the Resource HOB Attributes
//
CoreValidateResourceDescriptorHobAttributes (ResourceHob->ResourceAttribute);
//
// Convert the Resource HOB Attributes to an EFI Memory Capabilities mask
//
Capabilities = CoreConvertResourceDescriptorHobAttributesToCapabilities (
GcdMemoryType,
ResourceHob->ResourceAttribute
);
Status = CoreInternalAddMemorySpace (
GcdMemoryType,
ResourceHob->PhysicalStart,
ResourceHob->ResourceLength,
Capabilities
);
}
if (GcdIoType != EfiGcdIoTypeNonExistent) {
Status = CoreAddIoSpace (
GcdIoType,
ResourceHob->PhysicalStart,
ResourceHob->ResourceLength
);
}
}
}
//
// Allocate first memory region from the GCD by the DXE core
//
Status = CoreGetMemorySpaceDescriptor (MemoryBaseAddress, &Descriptor);
if (!EFI_ERROR (Status)) {
ASSERT (
(Descriptor.GcdMemoryType == EfiGcdMemoryTypeSystemMemory) ||
(Descriptor.GcdMemoryType == EfiGcdMemoryTypeMoreReliable)
);
Status = CoreAllocateMemorySpace (
EfiGcdAllocateAddress,
Descriptor.GcdMemoryType,
0,
MemoryLength,
&MemoryBaseAddress,
gDxeCoreImageHandle,
NULL
);
}
//
// Walk the HOB list and allocate all memory space that is consumed by memory allocation HOBs,
// and Firmware Volume HOBs. Also update the EFI Memory Map with the memory allocation HOBs.
//
for (Hob.Raw = *HobStart; !END_OF_HOB_LIST (Hob); Hob.Raw = GET_NEXT_HOB (Hob)) {
if (GET_HOB_TYPE (Hob) == EFI_HOB_TYPE_MEMORY_ALLOCATION) {
MemoryHob = Hob.MemoryAllocation;
BaseAddress = MemoryHob->AllocDescriptor.MemoryBaseAddress;
Status = CoreGetMemorySpaceDescriptor (BaseAddress, &Descriptor);
if (!EFI_ERROR (Status)) {
Status = CoreAllocateMemorySpace (
EfiGcdAllocateAddress,
Descriptor.GcdMemoryType,
0,
MemoryHob->AllocDescriptor.MemoryLength,
&BaseAddress,
gDxeCoreImageHandle,
NULL
);
if (!EFI_ERROR (Status) &&
((Descriptor.GcdMemoryType == EfiGcdMemoryTypeSystemMemory) ||
(Descriptor.GcdMemoryType == EfiGcdMemoryTypeMoreReliable)))
{
CoreAddMemoryDescriptor (
MemoryHob->AllocDescriptor.MemoryType,
MemoryHob->AllocDescriptor.MemoryBaseAddress,
RShiftU64 (MemoryHob->AllocDescriptor.MemoryLength, EFI_PAGE_SHIFT),
Descriptor.Capabilities & (~EFI_MEMORY_RUNTIME)
);
}
}
}
if (GET_HOB_TYPE (Hob) == EFI_HOB_TYPE_FV) {
FirmwareVolumeHob = Hob.FirmwareVolume;
BaseAddress = FirmwareVolumeHob->BaseAddress;
Status = CoreAllocateMemorySpace (
EfiGcdAllocateAddress,
EfiGcdMemoryTypeMemoryMappedIo,
0,
FirmwareVolumeHob->Length,
&BaseAddress,
gDxeCoreImageHandle,
NULL
);
}
}
//
// Add and allocate the remaining unallocated system memory to the memory services.
//
Status = CoreGetMemorySpaceMap (&NumberOfDescriptors, &MemorySpaceMap);
ASSERT (Status == EFI_SUCCESS);
MemorySpaceMapHobList = NULL;
for (Index = 0; Index < NumberOfDescriptors; Index++) {
if ((MemorySpaceMap[Index].GcdMemoryType == EfiGcdMemoryTypeSystemMemory) ||
(MemorySpaceMap[Index].GcdMemoryType == EfiGcdMemoryTypeMoreReliable))
{
if (MemorySpaceMap[Index].ImageHandle == NULL) {
BaseAddress = PageAlignAddress (MemorySpaceMap[Index].BaseAddress);
Length = PageAlignLength (MemorySpaceMap[Index].BaseAddress + MemorySpaceMap[Index].Length - BaseAddress);
if ((Length == 0) || (MemorySpaceMap[Index].BaseAddress + MemorySpaceMap[Index].Length < BaseAddress)) {
continue;
}
if (((UINTN)MemorySpaceMap[Index].BaseAddress <= (UINTN)(*HobStart)) &&
((UINTN)(MemorySpaceMap[Index].BaseAddress + MemorySpaceMap[Index].Length) >= (UINTN)PhitHob->EfiFreeMemoryBottom))
{
//
// Skip the memory space that covers HOB List, it should be processed
// after HOB List relocation to avoid the resources allocated by others
// to corrupt HOB List before its relocation.
//
MemorySpaceMapHobList = &MemorySpaceMap[Index];
continue;
}
CoreAddMemoryDescriptor (
EfiConventionalMemory,
BaseAddress,
RShiftU64 (Length, EFI_PAGE_SHIFT),
MemorySpaceMap[Index].Capabilities & (~EFI_MEMORY_RUNTIME)
);
Status = CoreAllocateMemorySpace (
EfiGcdAllocateAddress,
MemorySpaceMap[Index].GcdMemoryType,
0,
Length,
&BaseAddress,
gDxeCoreImageHandle,
NULL
);
}
}
}
//
// Relocate HOB List to an allocated pool buffer.
// The relocation should be at after all the tested memory resources added
// (except the memory space that covers HOB List) to the memory services,
// because the memory resource found in CoreInitializeMemoryServices()
// may have not enough remaining resource for HOB List.
//
NewHobList = AllocateCopyPool (
(UINTN)PhitHob->EfiFreeMemoryBottom - (UINTN)(*HobStart),
*HobStart
);
ASSERT (NewHobList != NULL);
*HobStart = NewHobList;
gHobList = NewHobList;
if (MemorySpaceMapHobList != NULL) {
//
// Add and allocate the memory space that covers HOB List to the memory services
// after HOB List relocation.
//
BaseAddress = PageAlignAddress (MemorySpaceMapHobList->BaseAddress);
Length = PageAlignLength (MemorySpaceMapHobList->BaseAddress + MemorySpaceMapHobList->Length - BaseAddress);
CoreAddMemoryDescriptor (
EfiConventionalMemory,
BaseAddress,
RShiftU64 (Length, EFI_PAGE_SHIFT),
MemorySpaceMapHobList->Capabilities & (~EFI_MEMORY_RUNTIME)
);
Status = CoreAllocateMemorySpace (
EfiGcdAllocateAddress,
MemorySpaceMapHobList->GcdMemoryType,
0,
Length,
&BaseAddress,
gDxeCoreImageHandle,
NULL
);
}
CoreFreePool (MemorySpaceMap);
return EFI_SUCCESS;
}