2017-11-20 09:08:28 +01:00
|
|
|
/** @file
|
|
|
|
Data type, macros and function prototypes of heap guard feature.
|
|
|
|
|
2018-10-24 06:47:45 +02:00
|
|
|
Copyright (c) 2017-2018, Intel Corporation. All rights reserved.<BR>
|
2019-04-04 01:05:13 +02:00
|
|
|
SPDX-License-Identifier: BSD-2-Clause-Patent
|
2017-11-20 09:08:28 +01:00
|
|
|
|
|
|
|
**/
|
|
|
|
|
|
|
|
#ifndef _HEAPGUARD_H_
|
|
|
|
#define _HEAPGUARD_H_
|
|
|
|
|
|
|
|
//
|
|
|
|
// Following macros are used to define and access the guarded memory bitmap
|
|
|
|
// table.
|
|
|
|
//
|
|
|
|
// To simplify the access and reduce the memory used for this table, the
|
|
|
|
// table is constructed in the similar way as page table structure but in
|
|
|
|
// reverse direction, i.e. from bottom growing up to top.
|
|
|
|
//
|
|
|
|
// - 1-bit tracks 1 page (4KB)
|
|
|
|
// - 1-UINT64 map entry tracks 256KB memory
|
|
|
|
// - 1K-UINT64 map table tracks 256MB memory
|
|
|
|
// - Five levels of tables can track any address of memory of 64-bit
|
|
|
|
// system, like below.
|
|
|
|
//
|
|
|
|
// 512 * 512 * 512 * 512 * 1K * 64b * 4K
|
|
|
|
// 111111111 111111111 111111111 111111111 1111111111 111111 111111111111
|
|
|
|
// 63 54 45 36 27 17 11 0
|
|
|
|
// 9b 9b 9b 9b 10b 6b 12b
|
|
|
|
// L0 -> L1 -> L2 -> L3 -> L4 -> bits -> page
|
|
|
|
// 1FF 1FF 1FF 1FF 3FF 3F FFF
|
|
|
|
//
|
|
|
|
// L4 table has 1K * sizeof(UINT64) = 8K (2-page), which can track 256MB
|
|
|
|
// memory. Each table of L0-L3 will be allocated when its memory address
|
|
|
|
// range is to be tracked. Only 1-page will be allocated each time. This
|
|
|
|
// can save memories used to establish this map table.
|
|
|
|
//
|
|
|
|
// For a normal configuration of system with 4G memory, two levels of tables
|
|
|
|
// can track the whole memory, because two levels (L3+L4) of map tables have
|
|
|
|
// already coverred 37-bit of memory address. And for a normal UEFI BIOS,
|
|
|
|
// less than 128M memory would be consumed during boot. That means we just
|
|
|
|
// need
|
|
|
|
//
|
|
|
|
// 1-page (L3) + 2-page (L4)
|
|
|
|
//
|
|
|
|
// memory (3 pages) to track the memory allocation works. In this case,
|
|
|
|
// there's no need to setup L0-L2 tables.
|
|
|
|
//
|
|
|
|
|
|
|
|
//
|
|
|
|
// Each entry occupies 8B/64b. 1-page can hold 512 entries, which spans 9
|
|
|
|
// bits in address. (512 = 1 << 9)
|
|
|
|
//
|
|
|
|
#define BYTE_LENGTH_SHIFT 3 // (8 = 1 << 3)
|
|
|
|
|
|
|
|
#define GUARDED_HEAP_MAP_TABLE_ENTRY_SHIFT \
|
|
|
|
(EFI_PAGE_SHIFT - BYTE_LENGTH_SHIFT)
|
|
|
|
|
|
|
|
#define GUARDED_HEAP_MAP_TABLE_DEPTH 5
|
|
|
|
|
|
|
|
// Use UINT64_index + bit_index_of_UINT64 to locate the bit in may
|
|
|
|
#define GUARDED_HEAP_MAP_ENTRY_BIT_SHIFT 6 // (64 = 1 << 6)
|
|
|
|
|
|
|
|
#define GUARDED_HEAP_MAP_ENTRY_BITS \
|
|
|
|
(1 << GUARDED_HEAP_MAP_ENTRY_BIT_SHIFT)
|
|
|
|
|
|
|
|
#define GUARDED_HEAP_MAP_ENTRY_BYTES \
|
|
|
|
(GUARDED_HEAP_MAP_ENTRY_BITS / 8)
|
|
|
|
|
|
|
|
// L4 table address width: 64 - 9 * 4 - 6 - 12 = 10b
|
|
|
|
#define GUARDED_HEAP_MAP_ENTRY_SHIFT \
|
|
|
|
(GUARDED_HEAP_MAP_ENTRY_BITS \
|
|
|
|
- GUARDED_HEAP_MAP_TABLE_ENTRY_SHIFT * 4 \
|
|
|
|
- GUARDED_HEAP_MAP_ENTRY_BIT_SHIFT \
|
|
|
|
- EFI_PAGE_SHIFT)
|
|
|
|
|
|
|
|
// L4 table address mask: (1 << 10 - 1) = 0x3FF
|
|
|
|
#define GUARDED_HEAP_MAP_ENTRY_MASK \
|
|
|
|
((1 << GUARDED_HEAP_MAP_ENTRY_SHIFT) - 1)
|
|
|
|
|
|
|
|
// Size of each L4 table: (1 << 10) * 8 = 8KB = 2-page
|
|
|
|
#define GUARDED_HEAP_MAP_SIZE \
|
|
|
|
((1 << GUARDED_HEAP_MAP_ENTRY_SHIFT) * GUARDED_HEAP_MAP_ENTRY_BYTES)
|
|
|
|
|
|
|
|
// Memory size tracked by one L4 table: 8KB * 8 * 4KB = 256MB
|
|
|
|
#define GUARDED_HEAP_MAP_UNIT_SIZE \
|
|
|
|
(GUARDED_HEAP_MAP_SIZE * 8 * EFI_PAGE_SIZE)
|
|
|
|
|
|
|
|
// L4 table entry number: 8KB / 8 = 1024
|
|
|
|
#define GUARDED_HEAP_MAP_ENTRIES_PER_UNIT \
|
|
|
|
(GUARDED_HEAP_MAP_SIZE / GUARDED_HEAP_MAP_ENTRY_BYTES)
|
|
|
|
|
|
|
|
// L4 table entry indexing
|
|
|
|
#define GUARDED_HEAP_MAP_ENTRY_INDEX(Address) \
|
|
|
|
(RShiftU64 (Address, EFI_PAGE_SHIFT \
|
|
|
|
+ GUARDED_HEAP_MAP_ENTRY_BIT_SHIFT) \
|
|
|
|
& GUARDED_HEAP_MAP_ENTRY_MASK)
|
|
|
|
|
|
|
|
// L4 table entry bit indexing
|
|
|
|
#define GUARDED_HEAP_MAP_ENTRY_BIT_INDEX(Address) \
|
|
|
|
(RShiftU64 (Address, EFI_PAGE_SHIFT) \
|
|
|
|
& ((1 << GUARDED_HEAP_MAP_ENTRY_BIT_SHIFT) - 1))
|
|
|
|
|
|
|
|
//
|
|
|
|
// Total bits (pages) tracked by one L4 table (65536-bit)
|
|
|
|
//
|
|
|
|
#define GUARDED_HEAP_MAP_BITS \
|
|
|
|
(1 << (GUARDED_HEAP_MAP_ENTRY_SHIFT \
|
|
|
|
+ GUARDED_HEAP_MAP_ENTRY_BIT_SHIFT))
|
|
|
|
|
|
|
|
//
|
|
|
|
// Bit indexing inside the whole L4 table (0 - 65535)
|
|
|
|
//
|
|
|
|
#define GUARDED_HEAP_MAP_BIT_INDEX(Address) \
|
|
|
|
(RShiftU64 (Address, EFI_PAGE_SHIFT) \
|
|
|
|
& ((1 << (GUARDED_HEAP_MAP_ENTRY_SHIFT \
|
|
|
|
+ GUARDED_HEAP_MAP_ENTRY_BIT_SHIFT)) - 1))
|
|
|
|
|
|
|
|
//
|
|
|
|
// Memory address bit width tracked by L4 table: 10 + 6 + 12 = 28
|
|
|
|
//
|
|
|
|
#define GUARDED_HEAP_MAP_TABLE_SHIFT \
|
|
|
|
(GUARDED_HEAP_MAP_ENTRY_SHIFT + GUARDED_HEAP_MAP_ENTRY_BIT_SHIFT \
|
|
|
|
+ EFI_PAGE_SHIFT)
|
|
|
|
|
|
|
|
//
|
|
|
|
// Macro used to initialize the local array variable for map table traversing
|
|
|
|
// {55, 46, 37, 28, 18}
|
|
|
|
//
|
|
|
|
#define GUARDED_HEAP_MAP_TABLE_DEPTH_SHIFTS \
|
|
|
|
{ \
|
|
|
|
GUARDED_HEAP_MAP_TABLE_SHIFT + GUARDED_HEAP_MAP_TABLE_ENTRY_SHIFT * 3, \
|
|
|
|
GUARDED_HEAP_MAP_TABLE_SHIFT + GUARDED_HEAP_MAP_TABLE_ENTRY_SHIFT * 2, \
|
|
|
|
GUARDED_HEAP_MAP_TABLE_SHIFT + GUARDED_HEAP_MAP_TABLE_ENTRY_SHIFT, \
|
|
|
|
GUARDED_HEAP_MAP_TABLE_SHIFT, \
|
|
|
|
EFI_PAGE_SHIFT + GUARDED_HEAP_MAP_ENTRY_BIT_SHIFT \
|
|
|
|
}
|
|
|
|
|
|
|
|
//
|
|
|
|
// Masks used to extract address range of each level of table
|
|
|
|
// {0x1FF, 0x1FF, 0x1FF, 0x1FF, 0x3FF}
|
|
|
|
//
|
|
|
|
#define GUARDED_HEAP_MAP_TABLE_DEPTH_MASKS \
|
|
|
|
{ \
|
|
|
|
(1 << GUARDED_HEAP_MAP_TABLE_ENTRY_SHIFT) - 1, \
|
|
|
|
(1 << GUARDED_HEAP_MAP_TABLE_ENTRY_SHIFT) - 1, \
|
|
|
|
(1 << GUARDED_HEAP_MAP_TABLE_ENTRY_SHIFT) - 1, \
|
|
|
|
(1 << GUARDED_HEAP_MAP_TABLE_ENTRY_SHIFT) - 1, \
|
|
|
|
(1 << GUARDED_HEAP_MAP_ENTRY_SHIFT) - 1 \
|
|
|
|
}
|
|
|
|
|
|
|
|
//
|
|
|
|
// Memory type to guard (matching the related PCD definition)
|
|
|
|
//
|
2017-12-09 12:15:49 +01:00
|
|
|
#define GUARD_HEAP_TYPE_PAGE BIT0
|
|
|
|
#define GUARD_HEAP_TYPE_POOL BIT1
|
2018-10-24 06:47:45 +02:00
|
|
|
#define GUARD_HEAP_TYPE_FREED BIT4
|
|
|
|
#define GUARD_HEAP_TYPE_ALL \
|
|
|
|
(GUARD_HEAP_TYPE_PAGE|GUARD_HEAP_TYPE_POOL|GUARD_HEAP_TYPE_FREED)
|
2017-11-20 09:08:28 +01:00
|
|
|
|
|
|
|
//
|
|
|
|
// Debug message level
|
|
|
|
//
|
|
|
|
#define HEAP_GUARD_DEBUG_LEVEL (DEBUG_POOL|DEBUG_PAGE)
|
|
|
|
|
|
|
|
typedef struct {
|
|
|
|
UINT32 TailMark;
|
|
|
|
UINT32 HeadMark;
|
|
|
|
EFI_PHYSICAL_ADDRESS Address;
|
|
|
|
LIST_ENTRY Link;
|
|
|
|
} HEAP_GUARD_NODE;
|
|
|
|
|
|
|
|
/**
|
|
|
|
Internal function. Converts a memory range to the specified type.
|
|
|
|
The range must exist in the memory map.
|
|
|
|
|
|
|
|
@param Start The first address of the range Must be page
|
|
|
|
aligned.
|
|
|
|
@param NumberOfPages The number of pages to convert.
|
|
|
|
@param NewType The new type for the memory range.
|
|
|
|
|
|
|
|
@retval EFI_INVALID_PARAMETER Invalid parameter.
|
|
|
|
@retval EFI_NOT_FOUND Could not find a descriptor cover the specified
|
|
|
|
range or convertion not allowed.
|
|
|
|
@retval EFI_SUCCESS Successfully converts the memory range to the
|
|
|
|
specified type.
|
|
|
|
|
|
|
|
**/
|
|
|
|
EFI_STATUS
|
|
|
|
CoreConvertPages (
|
|
|
|
IN UINT64 Start,
|
|
|
|
IN UINT64 NumberOfPages,
|
|
|
|
IN EFI_MEMORY_TYPE NewType
|
|
|
|
);
|
|
|
|
|
|
|
|
/**
|
|
|
|
Allocate or free guarded memory.
|
|
|
|
|
|
|
|
@param[in] Start Start address of memory to allocate or free.
|
|
|
|
@param[in] NumberOfPages Memory size in pages.
|
|
|
|
@param[in] NewType Memory type to convert to.
|
|
|
|
|
|
|
|
@return VOID.
|
|
|
|
**/
|
|
|
|
EFI_STATUS
|
|
|
|
CoreConvertPagesWithGuard (
|
|
|
|
IN UINT64 Start,
|
|
|
|
IN UINTN NumberOfPages,
|
|
|
|
IN EFI_MEMORY_TYPE NewType
|
|
|
|
);
|
|
|
|
|
|
|
|
/**
|
|
|
|
Set head Guard and tail Guard for the given memory range.
|
|
|
|
|
|
|
|
@param[in] Memory Base address of memory to set guard for.
|
|
|
|
@param[in] NumberOfPages Memory size in pages.
|
|
|
|
|
|
|
|
@return VOID.
|
|
|
|
**/
|
|
|
|
VOID
|
|
|
|
SetGuardForMemory (
|
|
|
|
IN EFI_PHYSICAL_ADDRESS Memory,
|
|
|
|
IN UINTN NumberOfPages
|
|
|
|
);
|
|
|
|
|
|
|
|
/**
|
|
|
|
Unset head Guard and tail Guard for the given memory range.
|
|
|
|
|
|
|
|
@param[in] Memory Base address of memory to unset guard for.
|
|
|
|
@param[in] NumberOfPages Memory size in pages.
|
|
|
|
|
|
|
|
@return VOID.
|
|
|
|
**/
|
|
|
|
VOID
|
|
|
|
UnsetGuardForMemory (
|
|
|
|
IN EFI_PHYSICAL_ADDRESS Memory,
|
|
|
|
IN UINTN NumberOfPages
|
|
|
|
);
|
|
|
|
|
|
|
|
/**
|
|
|
|
Adjust the base and number of pages to really allocate according to Guard.
|
|
|
|
|
|
|
|
@param[in,out] Memory Base address of free memory.
|
|
|
|
@param[in,out] NumberOfPages Size of memory to allocate.
|
|
|
|
|
|
|
|
@return VOID.
|
|
|
|
**/
|
|
|
|
VOID
|
|
|
|
AdjustMemoryA (
|
|
|
|
IN OUT EFI_PHYSICAL_ADDRESS *Memory,
|
|
|
|
IN OUT UINTN *NumberOfPages
|
|
|
|
);
|
|
|
|
|
|
|
|
/**
|
|
|
|
Adjust the start address and number of pages to free according to Guard.
|
|
|
|
|
|
|
|
The purpose of this function is to keep the shared Guard page with adjacent
|
|
|
|
memory block if it's still in guard, or free it if no more sharing. Another
|
|
|
|
is to reserve pages as Guard pages in partial page free situation.
|
|
|
|
|
|
|
|
@param[in,out] Memory Base address of memory to free.
|
|
|
|
@param[in,out] NumberOfPages Size of memory to free.
|
|
|
|
|
|
|
|
@return VOID.
|
|
|
|
**/
|
|
|
|
VOID
|
|
|
|
AdjustMemoryF (
|
|
|
|
IN OUT EFI_PHYSICAL_ADDRESS *Memory,
|
|
|
|
IN OUT UINTN *NumberOfPages
|
|
|
|
);
|
|
|
|
|
|
|
|
/**
|
|
|
|
Adjust address of free memory according to existing and/or required Guard.
|
|
|
|
|
|
|
|
This function will check if there're existing Guard pages of adjacent
|
|
|
|
memory blocks, and try to use it as the Guard page of the memory to be
|
|
|
|
allocated.
|
|
|
|
|
|
|
|
@param[in] Start Start address of free memory block.
|
|
|
|
@param[in] Size Size of free memory block.
|
|
|
|
@param[in] SizeRequested Size of memory to allocate.
|
|
|
|
|
|
|
|
@return The end address of memory block found.
|
|
|
|
@return 0 if no enough space for the required size of memory and its Guard.
|
|
|
|
**/
|
|
|
|
UINT64
|
|
|
|
AdjustMemoryS (
|
|
|
|
IN UINT64 Start,
|
|
|
|
IN UINT64 Size,
|
|
|
|
IN UINT64 SizeRequested
|
|
|
|
);
|
|
|
|
|
|
|
|
/**
|
|
|
|
Check to see if the pool at the given address should be guarded or not.
|
|
|
|
|
|
|
|
@param[in] MemoryType Pool type to check.
|
|
|
|
|
|
|
|
|
|
|
|
@return TRUE The given type of pool should be guarded.
|
|
|
|
@return FALSE The given type of pool should not be guarded.
|
|
|
|
**/
|
|
|
|
BOOLEAN
|
|
|
|
IsPoolTypeToGuard (
|
|
|
|
IN EFI_MEMORY_TYPE MemoryType
|
|
|
|
);
|
|
|
|
|
|
|
|
/**
|
|
|
|
Check to see if the page at the given address should be guarded or not.
|
|
|
|
|
|
|
|
@param[in] MemoryType Page type to check.
|
|
|
|
@param[in] AllocateType Allocation type to check.
|
|
|
|
|
|
|
|
@return TRUE The given type of page should be guarded.
|
|
|
|
@return FALSE The given type of page should not be guarded.
|
|
|
|
**/
|
|
|
|
BOOLEAN
|
|
|
|
IsPageTypeToGuard (
|
|
|
|
IN EFI_MEMORY_TYPE MemoryType,
|
|
|
|
IN EFI_ALLOCATE_TYPE AllocateType
|
|
|
|
);
|
|
|
|
|
|
|
|
/**
|
|
|
|
Check to see if the page at the given address is guarded or not.
|
|
|
|
|
|
|
|
@param[in] Address The address to check for.
|
|
|
|
|
|
|
|
@return TRUE The page at Address is guarded.
|
|
|
|
@return FALSE The page at Address is not guarded.
|
|
|
|
**/
|
|
|
|
BOOLEAN
|
|
|
|
EFIAPI
|
|
|
|
IsMemoryGuarded (
|
|
|
|
IN EFI_PHYSICAL_ADDRESS Address
|
|
|
|
);
|
|
|
|
|
|
|
|
/**
|
|
|
|
Check to see if the page at the given address is a Guard page or not.
|
|
|
|
|
|
|
|
@param[in] Address The address to check for.
|
|
|
|
|
|
|
|
@return TRUE The page at Address is a Guard page.
|
|
|
|
@return FALSE The page at Address is not a Guard page.
|
|
|
|
**/
|
|
|
|
BOOLEAN
|
|
|
|
EFIAPI
|
|
|
|
IsGuardPage (
|
|
|
|
IN EFI_PHYSICAL_ADDRESS Address
|
|
|
|
);
|
|
|
|
|
|
|
|
/**
|
|
|
|
Dump the guarded memory bit map.
|
|
|
|
**/
|
|
|
|
VOID
|
|
|
|
EFIAPI
|
|
|
|
DumpGuardedMemoryBitmap (
|
|
|
|
VOID
|
|
|
|
);
|
|
|
|
|
|
|
|
/**
|
|
|
|
Adjust the pool head position to make sure the Guard page is adjavent to
|
|
|
|
pool tail or pool head.
|
|
|
|
|
|
|
|
@param[in] Memory Base address of memory allocated.
|
|
|
|
@param[in] NoPages Number of pages actually allocated.
|
|
|
|
@param[in] Size Size of memory requested.
|
|
|
|
(plus pool head/tail overhead)
|
|
|
|
|
|
|
|
@return Address of pool head.
|
|
|
|
**/
|
|
|
|
VOID *
|
|
|
|
AdjustPoolHeadA (
|
|
|
|
IN EFI_PHYSICAL_ADDRESS Memory,
|
|
|
|
IN UINTN NoPages,
|
|
|
|
IN UINTN Size
|
|
|
|
);
|
|
|
|
|
|
|
|
/**
|
|
|
|
Get the page base address according to pool head address.
|
|
|
|
|
|
|
|
@param[in] Memory Head address of pool to free.
|
MdeModulePkg: HeapGuard: Don't Assume Pool Head Allocated In First Page
Currently, HeapGuard, when in the GuardAlignedToTail mode, assumes that
the pool head has been allocated in the first page of memory that was
allocated. This is not the case for ARM64 platforms when allocating
runtime pools, as RUNTIME_PAGE_ALLOCATION_GRANULARITY is 64k, unlike
X64, which has RUNTIME_PAGE_ALLOCATION_GRANULARITY as 4k.
When a runtime pool is allocated on ARM64, the minimum number of pages
allocated is 16, to match the runtime granularity. When a small pool is
allocated and GuardAlignedToTail is true, HeapGuard instructs the pool
head to be placed as (MemoryAllocated + EFI_PAGES_TO_SIZE(Number of Pages)
- SizeRequiredForPool).
This gives this scenario:
|Head Guard|Large Free Number of Pages|PoolHead|TailGuard|
When this pool goes to be freed, HeapGuard instructs the pool code to
free from (PoolHead & ~EFI_PAGE_MASK). However, this assumes that the
PoolHead is in the first page allocated, which as shown above is not true
in this case. For the 4k granularity case (i.e. where the correct number of
pages are allocated for this pool), this logic does work.
In this failing case, HeapGuard then instructs the pool code to free 16
(or more depending) pages from the page the pool head was allocated on,
which as seen above means we overrun the pool and attempt to free memory
far past the pool. We end up running into the tail guard and getting an
access flag fault.
This causes ArmVirtQemu to fail to boot with an access flag fault when
GuardAlignedToTail is set to true (and pool guard enabled for runtime
memory). It should also cause all ARM64 platforms to fail in this
configuration, for exactly the same reason, as this is core code making
the assumption.
This patch removes HeapGuard's assumption that the pool head is allocated
on the first page and instead undoes the same logic that HeapGuard did
when allocating the pool head in the first place.
With this patch in place, ArmVirtQemu boots with GuardAlignedToTail
set to true (and when it is false, also).
BZ: https://bugzilla.tianocore.org/show_bug.cgi?id=4521
Github PR: https://github.com/tianocore/edk2/pull/4731
Cc: Leif Lindholm <quic_llindhol@quicinc.com>
Cc: Ard Biesheuvel <ardb+tianocore@kernel.org>
Cc: Jian J Wang <jian.j.wang@intel.com>
Cc: Liming Gao <gaoliming@byosoft.com.cn>
Cc: Dandan Bi <dandan.bi@intel.com>
Signed-off-by: Oliver Smith-Denny <osde@linux.microsoft.com>
Reviewed-by: Ard Biesheuvel <ardb@kernel.org>
Acked-by: Leif Lindholm <quic_llindhol@quicinc.com>
Reviewed-by: Liming Gao <gaoliming@byosoft.com.cn>
2023-08-09 23:34:57 +02:00
|
|
|
@param[in] NoPages Number of pages actually allocated.
|
|
|
|
@param[in] Size Size of memory requested.
|
|
|
|
(plus pool head/tail overhead)
|
2017-11-20 09:08:28 +01:00
|
|
|
|
|
|
|
@return Address of pool head.
|
|
|
|
**/
|
|
|
|
VOID *
|
|
|
|
AdjustPoolHeadF (
|
MdeModulePkg: HeapGuard: Don't Assume Pool Head Allocated In First Page
Currently, HeapGuard, when in the GuardAlignedToTail mode, assumes that
the pool head has been allocated in the first page of memory that was
allocated. This is not the case for ARM64 platforms when allocating
runtime pools, as RUNTIME_PAGE_ALLOCATION_GRANULARITY is 64k, unlike
X64, which has RUNTIME_PAGE_ALLOCATION_GRANULARITY as 4k.
When a runtime pool is allocated on ARM64, the minimum number of pages
allocated is 16, to match the runtime granularity. When a small pool is
allocated and GuardAlignedToTail is true, HeapGuard instructs the pool
head to be placed as (MemoryAllocated + EFI_PAGES_TO_SIZE(Number of Pages)
- SizeRequiredForPool).
This gives this scenario:
|Head Guard|Large Free Number of Pages|PoolHead|TailGuard|
When this pool goes to be freed, HeapGuard instructs the pool code to
free from (PoolHead & ~EFI_PAGE_MASK). However, this assumes that the
PoolHead is in the first page allocated, which as shown above is not true
in this case. For the 4k granularity case (i.e. where the correct number of
pages are allocated for this pool), this logic does work.
In this failing case, HeapGuard then instructs the pool code to free 16
(or more depending) pages from the page the pool head was allocated on,
which as seen above means we overrun the pool and attempt to free memory
far past the pool. We end up running into the tail guard and getting an
access flag fault.
This causes ArmVirtQemu to fail to boot with an access flag fault when
GuardAlignedToTail is set to true (and pool guard enabled for runtime
memory). It should also cause all ARM64 platforms to fail in this
configuration, for exactly the same reason, as this is core code making
the assumption.
This patch removes HeapGuard's assumption that the pool head is allocated
on the first page and instead undoes the same logic that HeapGuard did
when allocating the pool head in the first place.
With this patch in place, ArmVirtQemu boots with GuardAlignedToTail
set to true (and when it is false, also).
BZ: https://bugzilla.tianocore.org/show_bug.cgi?id=4521
Github PR: https://github.com/tianocore/edk2/pull/4731
Cc: Leif Lindholm <quic_llindhol@quicinc.com>
Cc: Ard Biesheuvel <ardb+tianocore@kernel.org>
Cc: Jian J Wang <jian.j.wang@intel.com>
Cc: Liming Gao <gaoliming@byosoft.com.cn>
Cc: Dandan Bi <dandan.bi@intel.com>
Signed-off-by: Oliver Smith-Denny <osde@linux.microsoft.com>
Reviewed-by: Ard Biesheuvel <ardb@kernel.org>
Acked-by: Leif Lindholm <quic_llindhol@quicinc.com>
Reviewed-by: Liming Gao <gaoliming@byosoft.com.cn>
2023-08-09 23:34:57 +02:00
|
|
|
IN EFI_PHYSICAL_ADDRESS Memory,
|
|
|
|
IN UINTN NoPages,
|
|
|
|
IN UINTN Size
|
2017-11-20 09:08:28 +01:00
|
|
|
);
|
|
|
|
|
2018-01-29 13:03:33 +01:00
|
|
|
/**
|
|
|
|
Check to see if the heap guard is enabled for page and/or pool allocation.
|
|
|
|
|
2018-10-24 06:47:45 +02:00
|
|
|
@param[in] GuardType Specify the sub-type(s) of Heap Guard.
|
|
|
|
|
2018-01-29 13:03:33 +01:00
|
|
|
@return TRUE/FALSE.
|
|
|
|
**/
|
|
|
|
BOOLEAN
|
|
|
|
IsHeapGuardEnabled (
|
2018-10-24 06:47:45 +02:00
|
|
|
UINT8 GuardType
|
2018-01-29 13:03:33 +01:00
|
|
|
);
|
|
|
|
|
2018-03-14 09:28:34 +01:00
|
|
|
/**
|
|
|
|
Notify function used to set all Guard pages after CPU Arch Protocol installed.
|
|
|
|
**/
|
|
|
|
VOID
|
|
|
|
HeapGuardCpuArchProtocolNotify (
|
|
|
|
VOID
|
|
|
|
);
|
|
|
|
|
2018-10-24 06:47:45 +02:00
|
|
|
/**
|
|
|
|
This function checks to see if the given memory map descriptor in a memory map
|
|
|
|
can be merged with any guarded free pages.
|
|
|
|
|
|
|
|
@param MemoryMapEntry A pointer to a descriptor in MemoryMap.
|
|
|
|
@param MaxAddress Maximum address to stop the merge.
|
|
|
|
|
|
|
|
@return VOID
|
|
|
|
|
|
|
|
**/
|
|
|
|
VOID
|
|
|
|
MergeGuardPages (
|
|
|
|
IN EFI_MEMORY_DESCRIPTOR *MemoryMapEntry,
|
|
|
|
IN EFI_PHYSICAL_ADDRESS MaxAddress
|
|
|
|
);
|
|
|
|
|
|
|
|
/**
|
|
|
|
Record freed pages as well as mark them as not-present, if enabled.
|
|
|
|
|
|
|
|
@param[in] BaseAddress Base address of just freed pages.
|
|
|
|
@param[in] Pages Number of freed pages.
|
|
|
|
|
|
|
|
@return VOID.
|
|
|
|
**/
|
|
|
|
VOID
|
|
|
|
EFIAPI
|
|
|
|
GuardFreedPagesChecked (
|
|
|
|
IN EFI_PHYSICAL_ADDRESS BaseAddress,
|
|
|
|
IN UINTN Pages
|
|
|
|
);
|
|
|
|
|
|
|
|
/**
|
|
|
|
Put part (at most 64 pages a time) guarded free pages back to free page pool.
|
|
|
|
|
|
|
|
Freed memory guard is used to detect Use-After-Free (UAF) memory issue, which
|
|
|
|
makes use of 'Used then throw away' way to detect any illegal access to freed
|
|
|
|
memory. The thrown-away memory will be marked as not-present so that any access
|
|
|
|
to those memory (after free) will be caught by page-fault exception.
|
|
|
|
|
|
|
|
The problem is that this will consume lots of memory space. Once no memory
|
|
|
|
left in pool to allocate, we have to restore part of the freed pages to their
|
|
|
|
normal function. Otherwise the whole system will stop functioning.
|
|
|
|
|
|
|
|
@param StartAddress Start address of promoted memory.
|
|
|
|
@param EndAddress End address of promoted memory.
|
|
|
|
|
|
|
|
@return TRUE Succeeded to promote memory.
|
|
|
|
@return FALSE No free memory found.
|
|
|
|
|
|
|
|
**/
|
|
|
|
BOOLEAN
|
|
|
|
PromoteGuardedFreePages (
|
|
|
|
OUT EFI_PHYSICAL_ADDRESS *StartAddress,
|
|
|
|
OUT EFI_PHYSICAL_ADDRESS *EndAddress
|
|
|
|
);
|
|
|
|
|
2017-11-20 09:08:28 +01:00
|
|
|
extern BOOLEAN mOnGuarding;
|
|
|
|
|
|
|
|
#endif
|