Cleanup SerailIO drivers to have a device path and use PCD settings for various stuff. Also clean up a few coding convention items.

git-svn-id: https://edk2.svn.sourceforge.net/svnroot/edk2/trunk/edk2@10009 6f19259b-4bc3-4df7-8a09-765794883524
This commit is contained in:
andrewfish 2010-02-15 20:40:51 +00:00
parent 95572bd1b8
commit 026e30c4bb
13 changed files with 481 additions and 257 deletions

View File

@ -25,9 +25,9 @@ ClockInit (
//DPLL1 - DPLL4 are configured part of Configuration header which OMAP3 ROM parses.
// Enable PLL5 and set to 120 MHz as a reference clock.
MmioWrite32(CM_CLKSEL4_PLL, CM_CLKSEL_PLL_MULT(120) | CM_CLKSEL_PLL_DIV(13));
MmioWrite32(CM_CLKSEL5_PLL, CM_CLKSEL_DIV_120M(1));
MmioWrite32(CM_CLKEN2_PLL, CM_CLKEN_FREQSEL_075_100 | CM_CLKEN_ENABLE);
MmioWrite32 (CM_CLKSEL4_PLL, CM_CLKSEL_PLL_MULT(120) | CM_CLKSEL_PLL_DIV(13));
MmioWrite32 (CM_CLKSEL5_PLL, CM_CLKSEL_DIV_120M(1));
MmioWrite32 (CM_CLKEN2_PLL, CM_CLKEN_FREQSEL_075_100 | CM_CLKEN_ENABLE);
// Turn on functional & interface clocks to the USBHOST power domain
MmioOr32(CM_FCLKEN_USBHOST, CM_FCLKEN_USBHOST_EN_USBHOST2_ENABLE

View File

@ -63,19 +63,19 @@ TimerInit (
| CM_CLKSEL_PER_CLKSEL_GPT4_SYS);
// Set count & reload registers
MmioWrite32(TimerBaseAddress + GPTIMER_TCRR, 0x00000000);
MmioWrite32(TimerBaseAddress + GPTIMER_TLDR, 0x00000000);
MmioWrite32 (TimerBaseAddress + GPTIMER_TCRR, 0x00000000);
MmioWrite32 (TimerBaseAddress + GPTIMER_TLDR, 0x00000000);
// Disable interrupts
MmioWrite32(TimerBaseAddress + GPTIMER_TIER, TIER_TCAR_IT_DISABLE | TIER_OVF_IT_DISABLE | TIER_MAT_IT_DISABLE);
MmioWrite32 (TimerBaseAddress + GPTIMER_TIER, TIER_TCAR_IT_DISABLE | TIER_OVF_IT_DISABLE | TIER_MAT_IT_DISABLE);
// Start Timer
MmioWrite32(TimerBaseAddress + GPTIMER_TCLR, TCLR_AR_AUTORELOAD | TCLR_ST_ON);
MmioWrite32 (TimerBaseAddress + GPTIMER_TCLR, TCLR_AR_AUTORELOAD | TCLR_ST_ON);
//Disable OMAP Watchdog timer (WDT2)
MmioWrite32(WDTIMER2_BASE + WSPR, 0xAAAA);
MmioWrite32 (WDTIMER2_BASE + WSPR, 0xAAAA);
DEBUG ((EFI_D_ERROR, "Magic delay to disable watchdog timers properly.\n"));
MmioWrite32(WDTIMER2_BASE + WSPR, 0x5555);
MmioWrite32 (WDTIMER2_BASE + WSPR, 0x5555);
}
VOID
@ -87,26 +87,26 @@ UartInit (
UINT32 UartBaseAddress = UartBase(Uart);
// Set MODE_SELECT=DISABLE before trying to initialize or modify DLL, DLH registers.
MmioWrite32(UartBaseAddress + UART_MDR1_REG, UART_MDR1_MODE_SELECT_DISABLE);
MmioWrite32 (UartBaseAddress + UART_MDR1_REG, UART_MDR1_MODE_SELECT_DISABLE);
// Put device in configuration mode.
MmioWrite32(UartBaseAddress + UART_LCR_REG, UART_LCR_DIV_EN_ENABLE);
MmioWrite32 (UartBaseAddress + UART_LCR_REG, UART_LCR_DIV_EN_ENABLE);
// Programmable divisor N = 48Mhz/16/115200 = 26
MmioWrite32(UartBaseAddress + UART_DLL_REG, 26); // low divisor
MmioWrite32(UartBaseAddress + UART_DLH_REG, 0); // high divisor
MmioWrite32 (UartBaseAddress + UART_DLL_REG, 3000000/FixedPcdGet64 (PcdUartDefaultBaudRate)); // low divisor
MmioWrite32 (UartBaseAddress + UART_DLH_REG, 0); // high divisor
// Enter into UART operational mode.
MmioWrite32(UartBaseAddress + UART_LCR_REG, UART_LCR_DIV_EN_DISABLE | UART_LCR_CHAR_LENGTH_8);
MmioWrite32 (UartBaseAddress + UART_LCR_REG, UART_LCR_DIV_EN_DISABLE | UART_LCR_CHAR_LENGTH_8);
// Force DTR and RTS output to active
MmioWrite32(UartBaseAddress + UART_MCR_REG, UART_MCR_RTS_FORCE_ACTIVE | UART_MCR_DTR_FORCE_ACTIVE);
MmioWrite32 (UartBaseAddress + UART_MCR_REG, UART_MCR_RTS_FORCE_ACTIVE | UART_MCR_DTR_FORCE_ACTIVE);
// Clear & enable fifos
MmioWrite32(UartBaseAddress + UART_FCR_REG, UART_FCR_TX_FIFO_CLEAR | UART_FCR_RX_FIFO_CLEAR | UART_FCR_FIFO_ENABLE);
MmioWrite32 (UartBaseAddress + UART_FCR_REG, UART_FCR_TX_FIFO_CLEAR | UART_FCR_RX_FIFO_CLEAR | UART_FCR_FIFO_ENABLE);
// Restore MODE_SELECT
MmioWrite32(UartBaseAddress + UART_MDR1_REG, UART_MDR1_MODE_SELECT_UART_16X);
MmioWrite32 (UartBaseAddress + UART_MDR1_REG, UART_MDR1_MODE_SELECT_UART_16X);
}
VOID
@ -185,30 +185,30 @@ CEntryPoint (
VOID *HobBase;
//Set up Pin muxing.
PadConfiguration();
PadConfiguration ();
// Set up system clocking
ClockInit();
ClockInit ();
// Build a basic HOB list
HobBase = (VOID *)(UINTN)(FixedPcdGet32(PcdEmbeddedFdBaseAddress) + FixedPcdGet32(PcdEmbeddedFdSize));
CreateHobList(MemoryBase, MemorySize, HobBase, StackBase);
CreateHobList (MemoryBase, MemorySize, HobBase, StackBase);
// Enable program flow prediction, if supported.
ArmEnableBranchPrediction();
ArmEnableBranchPrediction ();
// Initialize CPU cache
InitCache((UINT32)MemoryBase, (UINT32)MemorySize);
InitCache ((UINT32)MemoryBase, (UINT32)MemorySize);
// Add memory allocation hob for relocated FD
BuildMemoryAllocationHob(FixedPcdGet32(PcdEmbeddedFdBaseAddress), FixedPcdGet32(PcdEmbeddedFdSize), EfiBootServicesData);
BuildMemoryAllocationHob (FixedPcdGet32(PcdEmbeddedFdBaseAddress), FixedPcdGet32(PcdEmbeddedFdSize), EfiBootServicesData);
// Add the FVs to the hob list
BuildFvHob(PcdGet32(PcdFlashFvMainBase), PcdGet32(PcdFlashFvMainSize));
BuildFvHob (PcdGet32(PcdFlashFvMainBase), PcdGet32(PcdFlashFvMainSize));
// Start talking
UartInit();
DEBUG((EFI_D_ERROR, "UART Enabled\n"));
UartInit ();
DEBUG ((EFI_D_ERROR, "UART Enabled\n"));
DEBUG_CODE_BEGIN ();
//
@ -251,33 +251,32 @@ CEntryPoint (
}
}
DEBUG_CODE_END ();
DEBUG_CODE_END ();
// Start up a free running time so that the timer lib will work
TimerInit();
TimerInit ();
// SEC phase needs to run library constructors by hand.
ExtractGuidedSectionLibConstructor();
LzmaDecompressLibConstructor();
ExtractGuidedSectionLibConstructor ();
LzmaDecompressLibConstructor ();
// Build HOBs to pass up our version of stuff the DXE Core needs to save space
#if 0
BuildPeCoffLoaderHob ();
BuildExtractSectionHob (
&gLzmaCustomDecompressGuid,
LzmaGuidedSectionGetInfo,
LzmaGuidedSectionExtraction
);
#endif
DecompressFirstFv ();
// Load the DXE Core and transfer control to it
LoadDxeCoreFromFv(NULL, 0);
LoadDxeCoreFromFv (NULL, 0);
// DXE Core should always load and never return
ASSERT(FALSE);
ASSERT (FALSE);
}

View File

@ -53,6 +53,7 @@
gEmbeddedTokenSpaceGuid.PcdCacheEnable
[FixedPcd]
gEfiMdePkgTokenSpaceGuid.PcdUartDefaultBaudRate
gEmbeddedTokenSpaceGuid.PcdEmbeddedFdBaseAddress
gEmbeddedTokenSpaceGuid.PcdEmbeddedFdSize
gEmbeddedTokenSpaceGuid.PcdFlashFvMainBase

View File

@ -1,6 +1,6 @@
#/** @file
#
# Component discription file for Bds module
# Convert SerialLib into SerialIo protocol
#
# Copyright (c) 2008, Intel Corporation. <BR>
# All rights reserved. This program and the accompanying materials
@ -47,7 +47,13 @@
[Protocols]
gEfiSerialIoProtocolGuid
gEfiDevicePathProtocolGuid
[FixedPcd]
gEfiMdePkgTokenSpaceGuid.PcdUartDefaultBaudRate
gEfiMdePkgTokenSpaceGuid.PcdUartDefaultDataBits
gEfiMdePkgTokenSpaceGuid.PcdUartDefaultParity
gEfiMdePkgTokenSpaceGuid.PcdUartDefaultStopBits
[Depex]
TRUE

View File

@ -23,6 +23,7 @@
#include <Library/UefiBootServicesTableLib.h>
#include <Library/DebugLib.h>
#include <Library/SerialPortLib.h>
#include <Library/PcdLib.h>
#include <Protocol/SerialIo.h>
@ -189,7 +190,7 @@ SerialRead (
{
UINTN Count;
Count = SerialPortWrite (Buffer, *BufferSize);
Count = SerialPortRead (Buffer, *BufferSize);
*BufferSize = Count;
return (Count == 0) ? EFI_DEVICE_ERROR : EFI_SUCCESS;
}
@ -201,13 +202,13 @@ EFI_HANDLE gHandle = NULL;
// Template used to initailize the GDB Serial IO protocols
//
EFI_SERIAL_IO_MODE gSerialIoMode = {
0, // ControlMask
0, // Timeout
0, // BaudRate
1, // RceiveFifoDepth
0, // DataBits
0, // Parity
0 // StopBits
0, // ControlMask
0, // Timeout
FixedPcdGet64 (PcdUartDefaultBaudRate), // BaudRate
1, // RceiveFifoDepth
FixedPcdGet8 (PcdUartDefaultDataBits), // DataBits
FixedPcdGet8 (PcdUartDefaultParity), // Parity
FixedPcdGet8 (PcdUartDefaultStopBits) // StopBits
};
@ -222,6 +223,28 @@ EFI_SERIAL_IO_PROTOCOL gSerialIoTemplate = {
&gSerialIoMode
};
typedef struct {
VENDOR_DEVICE_PATH Guid;
UART_DEVICE_PATH Uart;
EFI_DEVICE_PATH_PROTOCOL End;
} SIMPLE_TEXT_OUT_DEVICE_PATH;
SIMPLE_TEXT_OUT_DEVICE_PATH mDevicePath = {
{
{ HARDWARE_DEVICE_PATH, HW_VENDOR_DP, sizeof (VENDOR_DEVICE_PATH), 0},
EFI_CALLER_ID_GUID // Use the drivers GUID
},
{
{ END_DEVICE_PATH_TYPE, END_ENTIRE_DEVICE_PATH_SUBTYPE, sizeof (UART_DEVICE_PATH), 0},
0, // Reserved
FixedPcdGet64 (PcdUartDefaultBaudRate), // BaudRate
FixedPcdGet8 (PcdUartDefaultDataBits), // DataBits
FixedPcdGet8 (PcdUartDefaultParity), // Parity (N)
FixedPcdGet8 (PcdUartDefaultStopBits) // StopBits
},
{ END_DEVICE_PATH_TYPE, END_ENTIRE_DEVICE_PATH_SUBTYPE, sizeof (EFI_DEVICE_PATH_PROTOCOL), 0}
};
/**
Initialize the state information for the Serial Io Protocol
@ -248,7 +271,7 @@ SerialDxeInitialize (
Status = gBS->InstallMultipleProtocolInterfaces (
&gHandle,
&gEfiSerialIoProtocolGuid, &gSerialIoTemplate,
&gEfiDevicePathProtocolGuid, NULL, // BugBug: Need a device path
&gEfiDevicePathProtocolGuid, &mDevicePath,
NULL
);
ASSERT_EFI_ERROR (Status);

View File

@ -64,10 +64,12 @@
#include <Library/MemoryAllocationLib.h>
#include <Library/DebugLib.h>
#include <Library/SerialPortLib.h>
#include <Library/PcdLib.h>
#include <Protocol/SerialIo.h>
#include <Protocol/SimpleTextIn.h>
#include <Protocol/SimpleTextOut.h>
#include <Protocol/DevicePath.h>
#define MODE0_COLUMN_COUNT 80
@ -198,7 +200,30 @@ EFI_SIMPLE_TEXT_OUTPUT_PROTOCOL mSimpleTextOut = {
&mSimpleTextOutMode
};
EFI_HANDLE mInstallHandle = NULL;
EFI_HANDLE mInstallHandle = NULL;
typedef struct {
VENDOR_DEVICE_PATH Guid;
UART_DEVICE_PATH Uart;
EFI_DEVICE_PATH_PROTOCOL End;
} SIMPLE_TEXT_OUT_DEVICE_PATH;
SIMPLE_TEXT_OUT_DEVICE_PATH mDevicePath = {
{
{ HARDWARE_DEVICE_PATH, HW_VENDOR_DP, sizeof (VENDOR_DEVICE_PATH), 0},
EFI_CALLER_ID_GUID
},
{
{ END_DEVICE_PATH_TYPE, END_ENTIRE_DEVICE_PATH_SUBTYPE, sizeof (UART_DEVICE_PATH), 0},
0, // Reserved
FixedPcdGet64 (PcdUartDefaultBaudRate), // BaudRate
FixedPcdGet8 (PcdUartDefaultDataBits), // DataBits
FixedPcdGet8 (PcdUartDefaultParity), // Parity (N)
FixedPcdGet8 (PcdUartDefaultStopBits) // StopBits
},
{ END_DEVICE_PATH_TYPE, END_ENTIRE_DEVICE_PATH_SUBTYPE, sizeof (EFI_DEVICE_PATH_PROTOCOL), 0}
};
@ -271,6 +296,10 @@ ReadKeyStroke (
{
CHAR8 Char;
if (!SerialPortPoll ()) {
return EFI_NOT_READY;
}
SerialPortRead ((UINT8 *)&Char, 1);
//
@ -660,7 +689,8 @@ SimpleTextInOutEntryPoint (
&mInstallHandle,
&gEfiSimpleTextInProtocolGuid, &mSimpleTextIn,
&gEfiSimpleTextOutProtocolGuid, &mSimpleTextOut,
NULL
&gEfiDevicePathProtocolGuid, &mDevicePath,
NULL
);
if (!EFI_ERROR (Status)) {
gST->ConOut = &mSimpleTextOut;

View File

@ -51,5 +51,12 @@
gEfiSerialIoProtocolGuid
gEfiDevicePathProtocolGuid
[FixedPcd]
gEfiMdePkgTokenSpaceGuid.PcdUartDefaultBaudRate
gEfiMdePkgTokenSpaceGuid.PcdUartDefaultDataBits
gEfiMdePkgTokenSpaceGuid.PcdUartDefaultParity
gEfiMdePkgTokenSpaceGuid.PcdUartDefaultStopBits
[depex]
TRUE

View File

@ -22,21 +22,36 @@ NAND_FLASH_INFO *gNandFlashInfo = NULL;
UINT8 *gEccCode;
UINTN gNum512BytesChunks = 0;
//
// Device path for SemiHosting. It contains our autogened Caller ID GUID.
//
typedef struct {
VENDOR_DEVICE_PATH Guid;
EFI_DEVICE_PATH_PROTOCOL End;
} FLASH_DEVICE_PATH;
FLASH_DEVICE_PATH gDevicePath = {
{
{ HARDWARE_DEVICE_PATH, HW_VENDOR_DP, sizeof (VENDOR_DEVICE_PATH), 0 },
EFI_CALLER_ID_GUID
},
{ END_DEVICE_PATH_TYPE, END_ENTIRE_DEVICE_PATH_SUBTYPE, sizeof (EFI_DEVICE_PATH_PROTOCOL), 0}
};
//
// Device path for SemiHosting. It contains our autogened Caller ID GUID.
//
typedef struct {
VENDOR_DEVICE_PATH Guid;
EFI_DEVICE_PATH_PROTOCOL End;
} FLASH_DEVICE_PATH;
FLASH_DEVICE_PATH gDevicePath = {
{
{ HARDWARE_DEVICE_PATH, HW_VENDOR_DP, sizeof (VENDOR_DEVICE_PATH), 0 },
EFI_CALLER_ID_GUID
},
{ END_DEVICE_PATH_TYPE, END_ENTIRE_DEVICE_PATH_SUBTYPE, sizeof (EFI_DEVICE_PATH_PROTOCOL), 0}
};
//Actual page address = Column address + Page address + Block address.
@ -110,26 +125,26 @@ GpmcInit (
)
{
//Enable Smart-idle mode.
MmioWrite32(GPMC_SYSCONFIG, SMARTIDLEMODE);
MmioWrite32 (GPMC_SYSCONFIG, SMARTIDLEMODE);
//Set IRQSTATUS and IRQENABLE to the reset value
MmioWrite32(GPMC_IRQSTATUS, 0x0);
MmioWrite32(GPMC_IRQENABLE, 0x0);
MmioWrite32 (GPMC_IRQSTATUS, 0x0);
MmioWrite32 (GPMC_IRQENABLE, 0x0);
//Disable GPMC timeout control.
MmioWrite32(GPMC_TIMEOUT_CONTROL, TIMEOUTDISABLE);
MmioWrite32 (GPMC_TIMEOUT_CONTROL, TIMEOUTDISABLE);
//Set WRITEPROTECT bit to enable write access.
MmioWrite32(GPMC_CONFIG, WRITEPROTECT_HIGH);
MmioWrite32 (GPMC_CONFIG, WRITEPROTECT_HIGH);
//NOTE: Following GPMC_CONFIGi_0 register settings are taken from u-boot memory dump.
MmioWrite32(GPMC_CONFIG1_0, DEVICETYPE_NAND | DEVICESIZE_X16);
MmioWrite32(GPMC_CONFIG2_0, CSRDOFFTIME | CSWROFFTIME);
MmioWrite32(GPMC_CONFIG3_0, ADVRDOFFTIME | ADVWROFFTIME);
MmioWrite32(GPMC_CONFIG4_0, OEONTIME | OEOFFTIME | WEONTIME | WEOFFTIME);
MmioWrite32(GPMC_CONFIG5_0, RDCYCLETIME | WRCYCLETIME | RDACCESSTIME | PAGEBURSTACCESSTIME);
MmioWrite32(GPMC_CONFIG6_0, WRACCESSTIME | WRDATAONADMUXBUS | CYCLE2CYCLEDELAY | CYCLE2CYCLESAMECSEN);
MmioWrite32(GPMC_CONFIG7_0, MASKADDRESS_128MB | CSVALID | BASEADDRESS);
MmioWrite32 (GPMC_CONFIG1_0, DEVICETYPE_NAND | DEVICESIZE_X16);
MmioWrite32 (GPMC_CONFIG2_0, CSRDOFFTIME | CSWROFFTIME);
MmioWrite32 (GPMC_CONFIG3_0, ADVRDOFFTIME | ADVWROFFTIME);
MmioWrite32 (GPMC_CONFIG4_0, OEONTIME | OEOFFTIME | WEONTIME | WEOFFTIME);
MmioWrite32 (GPMC_CONFIG5_0, RDCYCLETIME | WRCYCLETIME | RDACCESSTIME | PAGEBURSTACCESSTIME);
MmioWrite32 (GPMC_CONFIG6_0, WRACCESSTIME | WRDATAONADMUXBUS | CYCLE2CYCLEDELAY | CYCLE2CYCLESAMECSEN);
MmioWrite32 (GPMC_CONFIG7_0, MASKADDRESS_128MB | CSVALID | BASEADDRESS);
}
EFI_STATUS
@ -215,7 +230,7 @@ NandConfigureEcc (
)
{
//Define ECC size 0 and size 1 to 512 bytes
MmioWrite32(GPMC_ECC_SIZE_CONFIG, (ECCSIZE0_512BYTES | ECCSIZE1_512BYTES));
MmioWrite32 (GPMC_ECC_SIZE_CONFIG, (ECCSIZE0_512BYTES | ECCSIZE1_512BYTES));
}
VOID
@ -224,10 +239,10 @@ NandEnableEcc (
)
{
//Clear all the ECC result registers and select ECC result register 1
MmioWrite32(GPMC_ECC_CONTROL, (ECCCLEAR | ECCPOINTER_REG1));
MmioWrite32 (GPMC_ECC_CONTROL, (ECCCLEAR | ECCPOINTER_REG1));
//Enable ECC engine on CS0
MmioWrite32(GPMC_ECC_CONFIG, (ECCENABLE | ECCCS_0 | ECC16B));
MmioWrite32 (GPMC_ECC_CONFIG, (ECCENABLE | ECCCS_0 | ECC16B));
}
VOID
@ -236,7 +251,7 @@ NandDisableEcc (
)
{
//Turn off ECC engine.
MmioWrite32(GPMC_ECC_CONFIG, ECCDISABLE);
MmioWrite32 (GPMC_ECC_CONFIG, ECCDISABLE);
}
VOID

View File

@ -79,12 +79,12 @@ Set (
break;
case GPIO_MODE_OUTPUT_0:
MmioWrite32(ClearDataOutRegister, GPIO_CLEARDATAOUT_BIT(Pin));
MmioWrite32 (ClearDataOutRegister, GPIO_CLEARDATAOUT_BIT(Pin));
MmioAndThenOr32(OutputEnableRegister, ~GPIO_OE_MASK(Pin), GPIO_OE_OUTPUT(Pin));
break;
case GPIO_MODE_OUTPUT_1:
MmioWrite32(SetDataOutRegister, GPIO_SETDATAOUT_BIT(Pin));
MmioWrite32 (SetDataOutRegister, GPIO_SETDATAOUT_BIT(Pin));
MmioAndThenOr32(OutputEnableRegister, ~GPIO_OE_MASK(Pin), GPIO_OE_OUTPUT(Pin));
break;

View File

@ -54,10 +54,10 @@ ExitBootServicesEvent (
)
{
// Disable all interrupts
MmioWrite32(INTCPS_MIR(0), 0xFFFFFFFF);
MmioWrite32(INTCPS_MIR(1), 0xFFFFFFFF);
MmioWrite32(INTCPS_MIR(2), 0xFFFFFFFF);
MmioWrite32(INTCPS_CONTROL, INTCPS_CONTROL_NEWIRQAGR);
MmioWrite32 (INTCPS_MIR(0), 0xFFFFFFFF);
MmioWrite32 (INTCPS_MIR(1), 0xFFFFFFFF);
MmioWrite32 (INTCPS_MIR(2), 0xFFFFFFFF);
MmioWrite32 (INTCPS_CONTROL, INTCPS_CONTROL_NEWIRQAGR);
}
/**
@ -125,7 +125,7 @@ EnableInterruptSource (
Bank = Source / 32;
Bit = 1UL << (Source % 32);
MmioWrite32(INTCPS_MIR_CLEAR(Bank), Bit);
MmioWrite32 (INTCPS_MIR_CLEAR(Bank), Bit);
return EFI_SUCCESS;
}
@ -159,7 +159,7 @@ DisableInterruptSource(
Bank = Source / 32;
Bit = 1UL << (Source % 32);
MmioWrite32(INTCPS_MIR_SET(Bank), Bit);
MmioWrite32 (INTCPS_MIR_SET(Bank), Bit);
return EFI_SUCCESS;
}
@ -235,7 +235,7 @@ IrqInterruptHandler (
Vector = MmioRead32(INTCPS_SIR_IRQ) & INTCPS_SIR_IRQ_MASK;
// Needed to prevent infinite nesting when Time Driver lowers TPL
MmioWrite32(INTCPS_CONTROL, INTCPS_CONTROL_NEWIRQAGR);
MmioWrite32 (INTCPS_CONTROL, INTCPS_CONTROL_NEWIRQAGR);
InterruptHandler = gRegisteredInterruptHandlers[Vector];
if (InterruptHandler != NULL) {
@ -244,7 +244,7 @@ IrqInterruptHandler (
}
// Needed to clear after running the handler
MmioWrite32(INTCPS_CONTROL, INTCPS_CONTROL_NEWIRQAGR);
MmioWrite32 (INTCPS_CONTROL, INTCPS_CONTROL_NEWIRQAGR);
}
//
@ -316,10 +316,10 @@ InterruptDxeInitialize (
ASSERT_PROTOCOL_ALREADY_INSTALLED (NULL, &gHardwareInterruptProtocolGuid);
// Make sure all interrupts are disabled by default.
MmioWrite32(INTCPS_MIR(0), 0xFFFFFFFF);
MmioWrite32(INTCPS_MIR(1), 0xFFFFFFFF);
MmioWrite32(INTCPS_MIR(2), 0xFFFFFFFF);
MmioWrite32(INTCPS_CONTROL, INTCPS_CONTROL_NEWIRQAGR);
MmioWrite32 (INTCPS_MIR(0), 0xFFFFFFFF);
MmioWrite32 (INTCPS_MIR(1), 0xFFFFFFFF);
MmioWrite32 (INTCPS_MIR(2), 0xFFFFFFFF);
MmioWrite32 (INTCPS_CONTROL, INTCPS_CONTROL_NEWIRQAGR);
Status = gBS->InstallMultipleProtocolInterfaces(&gHardwareInterruptHandle,
&gHardwareInterruptProtocolGuid, &gHardwareInterruptProtocol,

View File

@ -113,22 +113,22 @@ SendCmd (
while ((MmioRead32(MMCHS_PSTATE) & DATI_MASK) == DATI_NOT_ALLOWED);
//Provide the block size.
MmioWrite32(MMCHS_BLK, BLEN_512BYTES);
MmioWrite32 (MMCHS_BLK, BLEN_512BYTES);
//Setting Data timeout counter value to max value.
MmioAndThenOr32(MMCHS_SYSCTL, ~DTO_MASK, DTO_VAL);
//Clear Status register.
MmioWrite32(MMCHS_STAT, 0xFFFFFFFF);
MmioWrite32 (MMCHS_STAT, 0xFFFFFFFF);
//Set command argument register
MmioWrite32(MMCHS_ARG, CmdArgument);
MmioWrite32 (MMCHS_ARG, CmdArgument);
//Enable interrupt enable events to occur
MmioWrite32(MMCHS_IE, CmdInterruptEnableVal);
MmioWrite32 (MMCHS_IE, CmdInterruptEnableVal);
//Send a command
MmioWrite32(MMCHS_CMD, Cmd);
MmioWrite32 (MMCHS_CMD, Cmd);
//Check for the command status.
while (RetryCount < MAX_RETRY_COUNT) {
@ -149,7 +149,7 @@ SendCmd (
//Check if command is completed.
if ((MmcStatus & CC) == CC) {
MmioWrite32(MMCHS_STAT, CC);
MmioWrite32 (MMCHS_STAT, CC);
break;
}
@ -354,12 +354,12 @@ InitializeMMCHS (
MmioOr32(CONTROL_PBIAS_LITE, (PBIASLITEVMODE0 | PBIASLITEPWRDNZ0 | PBIASSPEEDCTRL0 | PBIASLITEVMODE1 | PBIASLITEWRDNZ1));
//Software reset of the MMCHS host controller.
MmioWrite32(MMCHS_SYSCONFIG, SOFTRESET);
MmioWrite32 (MMCHS_SYSCONFIG, SOFTRESET);
gBS->Stall(1000);
while ((MmioRead32(MMCHS_SYSSTATUS) & RESETDONE_MASK) != RESETDONE);
//Soft reset for all.
MmioWrite32(MMCHS_SYSCTL, SRA);
MmioWrite32 (MMCHS_SYSCTL, SRA);
gBS->Stall(1000);
while ((MmioRead32(MMCHS_SYSCTL) & SRA) != 0x0);
@ -373,7 +373,7 @@ InitializeMMCHS (
//MMCHS Controller default initialization
MmioOr32(MMCHS_CON, (OD | DW8_1_4_BIT | CEATA_OFF));
MmioWrite32(MMCHS_HCTL, (SDVS_3_0_V | DTW_1_BIT | SDBP_OFF));
MmioWrite32 (MMCHS_HCTL, (SDVS_3_0_V | DTW_1_BIT | SDBP_OFF));
//Enable internal clock
MmioOr32(MMCHS_SYSCTL, ICE);
@ -403,12 +403,12 @@ PerformCardIdenfication (
BOOLEAN SDCmd8Supported = FALSE;
//Enable interrupts.
MmioWrite32(MMCHS_IE, (BADA_EN | CERR_EN | DEB_EN | DCRC_EN | DTO_EN | CIE_EN |
MmioWrite32 (MMCHS_IE, (BADA_EN | CERR_EN | DEB_EN | DCRC_EN | DTO_EN | CIE_EN |
CEB_EN | CCRC_EN | CTO_EN | BRR_EN | BWR_EN | TC_EN | CC_EN));
//Controller INIT procedure start.
MmioOr32(MMCHS_CON, INIT);
MmioWrite32(MMCHS_CMD, 0x00000000);
MmioWrite32 (MMCHS_CMD, 0x00000000);
while (!(MmioRead32(MMCHS_STAT) & CC));
//Wait for 1 ms
@ -418,7 +418,7 @@ PerformCardIdenfication (
MmioOr32(MMCHS_STAT, CC);
//Retry INIT procedure.
MmioWrite32(MMCHS_CMD, 0x00000000);
MmioWrite32 (MMCHS_CMD, 0x00000000);
while (!(MmioRead32(MMCHS_STAT) & CC));
//End initialization sequence
@ -713,7 +713,7 @@ WriteBlockData(
//Write block worth of data.
for (Count = 0; Count < DataSize; Count++) {
MmioWrite32(MMCHS_DATA, *DataBuffer++);
MmioWrite32 (MMCHS_DATA, *DataBuffer++);
}
break;

View File

@ -63,12 +63,12 @@ ConfigureUSBHost (
UINT8 Data = 0;
// Take USB host out of force-standby mode
MmioWrite32(UHH_SYSCONFIG, UHH_SYSCONFIG_MIDLEMODE_NO_STANDBY
MmioWrite32 (UHH_SYSCONFIG, UHH_SYSCONFIG_MIDLEMODE_NO_STANDBY
| UHH_SYSCONFIG_CLOCKACTIVITY_ON
| UHH_SYSCONFIG_SIDLEMODE_NO_STANDBY
| UHH_SYSCONFIG_ENAWAKEUP_ENABLE
| UHH_SYSCONFIG_AUTOIDLE_ALWAYS_RUN);
MmioWrite32(UHH_HOSTCONFIG, UHH_HOSTCONFIG_P3_CONNECT_STATUS_DISCONNECT
MmioWrite32 (UHH_HOSTCONFIG, UHH_HOSTCONFIG_P3_CONNECT_STATUS_DISCONNECT
| UHH_HOSTCONFIG_P2_CONNECT_STATUS_DISCONNECT
| UHH_HOSTCONFIG_P1_CONNECT_STATUS_DISCONNECT
| UHH_HOSTCONFIG_ENA_INCR_ALIGN_DISABLE
@ -80,7 +80,7 @@ ConfigureUSBHost (
// USB reset (GPIO 147 - Port 5 pin 19) output high
MmioAnd32(GPIO5_BASE + GPIO_OE, ~BIT19);
MmioWrite32(GPIO5_BASE + GPIO_SETDATAOUT, BIT19);
MmioWrite32 (GPIO5_BASE + GPIO_SETDATAOUT, BIT19);
// Get the Power IC protocol.
Status = gBS->LocateProtocol(&gEmbeddedExternalDeviceProtocolGuid, NULL, (VOID **)&gTPS65950);

View File

@ -54,15 +54,24 @@ volatile UINT32 TIER;
volatile UINTN gVector;
/**
C Interrupt Handler calledin the interrupt context when Source interrupt is active.
@param Source Source of the interrupt. Hardware routing off a specific platform defines
what source means.
@param SystemContext Pointer to system register context. Mostly used by debuggers and will
update the system context after the return from the interrupt if
modified. Don't change these values unless you know what you are doing
/**
C Interrupt Handler calledin the interrupt context when Source interrupt is active.
@param Source Source of the interrupt. Hardware routing off a specific platform defines
what source means.
@param SystemContext Pointer to system register context. Mostly used by debuggers and will
update the system context after the return from the interrupt if
modified. Don't change these values unless you know what you are doing
**/
VOID
EFIAPI
@ -71,14 +80,22 @@ TimerInterruptHandler (
IN EFI_SYSTEM_CONTEXT SystemContext
)
{
EFI_TPL OriginalTPL;
//
// DXE core uses this callback for the EFI timer tick. The DXE core uses locks
// that raise to TPL_HIGH and then restore back to current level. Thus we need
// to make sure TPL level is set to TPL_HIGH while we are handling the timer tick.
//
OriginalTPL = gBS->RaiseTPL (TPL_HIGH_LEVEL);
EFI_TPL OriginalTPL;
//
// DXE core uses this callback for the EFI timer tick. The DXE core uses locks
// that raise to TPL_HIGH and then restore back to current level. Thus we need
// to make sure TPL level is set to TPL_HIGH while we are handling the timer tick.
//
OriginalTPL = gBS->RaiseTPL (TPL_HIGH_LEVEL);
if (mTimerPeriodicCallback) {
mTimerPeriodicCallback(SystemContext);
@ -89,7 +106,7 @@ TimerInterruptHandler (
}
// Clear all timer interrupts
MmioWrite32(TISR, TISR_CLEAR_ALL);
MmioWrite32 (TISR, TISR_CLEAR_ALL);
// Poll interrupt status bits to ensure clearing
while ((MmioRead32(TISR) & TISR_ALL_INTERRUPT_MASK) != TISR_NO_INTERRUPTS_PENDING);
@ -97,35 +114,64 @@ TimerInterruptHandler (
gBS->RestoreTPL (OriginalTPL);
}
/**
This function registers the handler NotifyFunction so it is called every time
the timer interrupt fires. It also passes the amount of time since the last
handler call to the NotifyFunction. If NotifyFunction is NULL, then the
handler is unregistered. If the handler is registered, then EFI_SUCCESS is
returned. If the CPU does not support registering a timer interrupt handler,
then EFI_UNSUPPORTED is returned. If an attempt is made to register a handler
when a handler is already registered, then EFI_ALREADY_STARTED is returned.
If an attempt is made to unregister a handler when a handler is not registered,
then EFI_INVALID_PARAMETER is returned. If an error occurs attempting to
register the NotifyFunction with the timer interrupt, then EFI_DEVICE_ERROR
is returned.
@param This The EFI_TIMER_ARCH_PROTOCOL instance.
@param NotifyFunction The function to call when a timer interrupt fires. This
function executes at TPL_HIGH_LEVEL. The DXE Core will
register a handler for the timer interrupt, so it can know
how much time has passed. This information is used to
signal timer based events. NULL will unregister the handler.
@retval EFI_SUCCESS The timer handler was registered.
@retval EFI_UNSUPPORTED The platform does not support timer interrupts.
@retval EFI_ALREADY_STARTED NotifyFunction is not NULL, and a handler is already
registered.
@retval EFI_INVALID_PARAMETER NotifyFunction is NULL, and a handler was not
previously registered.
@retval EFI_DEVICE_ERROR The timer handler could not be registered.
**/
/**
This function registers the handler NotifyFunction so it is called every time
the timer interrupt fires. It also passes the amount of time since the last
handler call to the NotifyFunction. If NotifyFunction is NULL, then the
handler is unregistered. If the handler is registered, then EFI_SUCCESS is
returned. If the CPU does not support registering a timer interrupt handler,
then EFI_UNSUPPORTED is returned. If an attempt is made to register a handler
when a handler is already registered, then EFI_ALREADY_STARTED is returned.
If an attempt is made to unregister a handler when a handler is not registered,
then EFI_INVALID_PARAMETER is returned. If an error occurs attempting to
register the NotifyFunction with the timer interrupt, then EFI_DEVICE_ERROR
is returned.
@param This The EFI_TIMER_ARCH_PROTOCOL instance.
@param NotifyFunction The function to call when a timer interrupt fires. This
function executes at TPL_HIGH_LEVEL. The DXE Core will
register a handler for the timer interrupt, so it can know
how much time has passed. This information is used to
signal timer based events. NULL will unregister the handler.
@retval EFI_SUCCESS The timer handler was registered.
@retval EFI_UNSUPPORTED The platform does not support timer interrupts.
@retval EFI_ALREADY_STARTED NotifyFunction is not NULL, and a handler is already
registered.
@retval EFI_INVALID_PARAMETER NotifyFunction is NULL, and a handler was not
previously registered.
@retval EFI_DEVICE_ERROR The timer handler could not be registered.
**/
EFI_STATUS
EFIAPI
TimerDriverRegisterHandler (
@ -146,31 +192,56 @@ TimerDriverRegisterHandler (
return EFI_SUCCESS;
}
/**
This function adjusts the period of timer interrupts to the value specified
by TimerPeriod. If the timer period is updated, then the selected timer
period is stored in EFI_TIMER.TimerPeriod, and EFI_SUCCESS is returned. If
the timer hardware is not programmable, then EFI_UNSUPPORTED is returned.
If an error occurs while attempting to update the timer period, then the
timer hardware will be put back in its state prior to this call, and
EFI_DEVICE_ERROR is returned. If TimerPeriod is 0, then the timer interrupt
is disabled. This is not the same as disabling the CPU's interrupts.
Instead, it must either turn off the timer hardware, or it must adjust the
interrupt controller so that a CPU interrupt is not generated when the timer
interrupt fires.
@param This The EFI_TIMER_ARCH_PROTOCOL instance.
@param TimerPeriod The rate to program the timer interrupt in 100 nS units. If
the timer hardware is not programmable, then EFI_UNSUPPORTED is
returned. If the timer is programmable, then the timer period
will be rounded up to the nearest timer period that is supported
by the timer hardware. If TimerPeriod is set to 0, then the
timer interrupts will be disabled.
@retval EFI_SUCCESS The timer period was changed.
@retval EFI_UNSUPPORTED The platform cannot change the period of the timer interrupt.
@retval EFI_DEVICE_ERROR The timer period could not be changed due to a device error.
/**
This function adjusts the period of timer interrupts to the value specified
by TimerPeriod. If the timer period is updated, then the selected timer
period is stored in EFI_TIMER.TimerPeriod, and EFI_SUCCESS is returned. If
the timer hardware is not programmable, then EFI_UNSUPPORTED is returned.
If an error occurs while attempting to update the timer period, then the
timer hardware will be put back in its state prior to this call, and
EFI_DEVICE_ERROR is returned. If TimerPeriod is 0, then the timer interrupt
is disabled. This is not the same as disabling the CPU's interrupts.
Instead, it must either turn off the timer hardware, or it must adjust the
interrupt controller so that a CPU interrupt is not generated when the timer
interrupt fires.
@param This The EFI_TIMER_ARCH_PROTOCOL instance.
@param TimerPeriod The rate to program the timer interrupt in 100 nS units. If
the timer hardware is not programmable, then EFI_UNSUPPORTED is
returned. If the timer is programmable, then the timer period
will be rounded up to the nearest timer period that is supported
by the timer hardware. If TimerPeriod is set to 0, then the
timer interrupts will be disabled.
@retval EFI_SUCCESS The timer period was changed.
@retval EFI_UNSUPPORTED The platform cannot change the period of the timer interrupt.
@retval EFI_DEVICE_ERROR The timer period could not be changed due to a device error.
**/
EFI_STATUS
EFIAPI
@ -185,7 +256,7 @@ TimerDriverSetTimerPeriod (
if (TimerPeriod == 0) {
// Turn off GPTIMER3
MmioWrite32(TCLR, TCLR_ST_OFF);
MmioWrite32 (TCLR, TCLR_ST_OFF);
Status = gInterrupt->DisableInterruptSource(gInterrupt, gVector);
} else {
@ -194,14 +265,14 @@ TimerDriverSetTimerPeriod (
// Set GPTIMER3 Load register
LoadValue = (INT32) -TimerCount;
MmioWrite32(TLDR, LoadValue);
MmioWrite32(TCRR, LoadValue);
MmioWrite32 (TLDR, LoadValue);
MmioWrite32 (TCRR, LoadValue);
// Enable Overflow interrupt
MmioWrite32(TIER, TIER_TCAR_IT_DISABLE | TIER_OVF_IT_ENABLE | TIER_MAT_IT_DISABLE);
MmioWrite32 (TIER, TIER_TCAR_IT_DISABLE | TIER_OVF_IT_ENABLE | TIER_MAT_IT_DISABLE);
// Turn on GPTIMER3, it will reload at overflow
MmioWrite32(TCLR, TCLR_AR_AUTORELOAD | TCLR_ST_ON);
MmioWrite32 (TCLR, TCLR_AR_AUTORELOAD | TCLR_ST_ON);
Status = gInterrupt->EnableInterruptSource(gInterrupt, gVector);
}
@ -214,19 +285,32 @@ TimerDriverSetTimerPeriod (
}
/**
This function retrieves the period of timer interrupts in 100 ns units,
returns that value in TimerPeriod, and returns EFI_SUCCESS. If TimerPeriod
is NULL, then EFI_INVALID_PARAMETER is returned. If a TimerPeriod of 0 is
returned, then the timer is currently disabled.
@param This The EFI_TIMER_ARCH_PROTOCOL instance.
@param TimerPeriod A pointer to the timer period to retrieve in 100 ns units. If
0 is returned, then the timer is currently disabled.
@retval EFI_SUCCESS The timer period was returned in TimerPeriod.
@retval EFI_INVALID_PARAMETER TimerPeriod is NULL.
/**
This function retrieves the period of timer interrupts in 100 ns units,
returns that value in TimerPeriod, and returns EFI_SUCCESS. If TimerPeriod
is NULL, then EFI_INVALID_PARAMETER is returned. If a TimerPeriod of 0 is
returned, then the timer is currently disabled.
@param This The EFI_TIMER_ARCH_PROTOCOL instance.
@param TimerPeriod A pointer to the timer period to retrieve in 100 ns units. If
0 is returned, then the timer is currently disabled.
@retval EFI_SUCCESS The timer period was returned in TimerPeriod.
@retval EFI_INVALID_PARAMETER TimerPeriod is NULL.
**/
EFI_STATUS
EFIAPI
@ -243,20 +327,34 @@ TimerDriverGetTimerPeriod (
return EFI_SUCCESS;
}
/**
This function generates a soft timer interrupt. If the platform does not support soft
timer interrupts, then EFI_UNSUPPORTED is returned. Otherwise, EFI_SUCCESS is returned.
If a handler has been registered through the EFI_TIMER_ARCH_PROTOCOL.RegisterHandler()
service, then a soft timer interrupt will be generated. If the timer interrupt is
enabled when this service is called, then the registered handler will be invoked. The
registered handler should not be able to distinguish a hardware-generated timer
interrupt from a software-generated timer interrupt.
@param This The EFI_TIMER_ARCH_PROTOCOL instance.
@retval EFI_SUCCESS The soft timer interrupt was generated.
@retval EFI_UNSUPPORTED The platform does not support the generation of soft timer interrupts.
/**
This function generates a soft timer interrupt. If the platform does not support soft
timer interrupts, then EFI_UNSUPPORTED is returned. Otherwise, EFI_SUCCESS is returned.
If a handler has been registered through the EFI_TIMER_ARCH_PROTOCOL.RegisterHandler()
service, then a soft timer interrupt will be generated. If the timer interrupt is
enabled when this service is called, then the registered handler will be invoked. The
registered handler should not be able to distinguish a hardware-generated timer
interrupt from a software-generated timer interrupt.
@param This The EFI_TIMER_ARCH_PROTOCOL instance.
@retval EFI_SUCCESS The soft timer interrupt was generated.
@retval EFI_UNSUPPORTED The platform does not support the generation of soft timer interrupts.
**/
EFI_STATUS
EFIAPI
@ -289,39 +387,72 @@ TimerDriverRegisterPeriodicCallback (
}
/**
Interface stucture for the Timer Architectural Protocol.
@par Protocol Description:
This protocol provides the services to initialize a periodic timer
interrupt, and to register a handler that is called each time the timer
interrupt fires. It may also provide a service to adjust the rate of the
periodic timer interrupt. When a timer interrupt occurs, the handler is
passed the amount of time that has passed since the previous timer
interrupt.
@param RegisterHandler
Registers a handler that will be called each time the
timer interrupt fires. TimerPeriod defines the minimum
time between timer interrupts, so TimerPeriod will also
be the minimum time between calls to the registered
handler.
@param SetTimerPeriod
Sets the period of the timer interrupt in 100 nS units.
This function is optional, and may return EFI_UNSUPPORTED.
If this function is supported, then the timer period will
be rounded up to the nearest supported timer period.
@param GetTimerPeriod
Retrieves the period of the timer interrupt in 100 nS units.
@param GenerateSoftInterrupt
Generates a soft timer interrupt that simulates the firing of
the timer interrupt. This service can be used to invoke the
registered handler if the timer interrupt has been masked for
a period of time.
/**
Interface stucture for the Timer Architectural Protocol.
@par Protocol Description:
This protocol provides the services to initialize a periodic timer
interrupt, and to register a handler that is called each time the timer
interrupt fires. It may also provide a service to adjust the rate of the
periodic timer interrupt. When a timer interrupt occurs, the handler is
passed the amount of time that has passed since the previous timer
interrupt.
@param RegisterHandler
Registers a handler that will be called each time the
timer interrupt fires. TimerPeriod defines the minimum
time between timer interrupts, so TimerPeriod will also
be the minimum time between calls to the registered
handler.
@param SetTimerPeriod
Sets the period of the timer interrupt in 100 nS units.
This function is optional, and may return EFI_UNSUPPORTED.
If this function is supported, then the timer period will
be rounded up to the nearest supported timer period.
@param GetTimerPeriod
Retrieves the period of the timer interrupt in 100 nS units.
@param GenerateSoftInterrupt
Generates a soft timer interrupt that simulates the firing of
the timer interrupt. This service can be used to invoke the
registered handler if the timer interrupt has been masked for
a period of time.
**/
EFI_TIMER_ARCH_PROTOCOL gTimer = {
TimerDriverRegisterHandler,
@ -335,18 +466,30 @@ TIMER_DEBUG_SUPPORT_PROTOCOL gTimerDebugSupport = {
};
/**
Initialize the state information for the Timer Architectural Protocol and
the Timer Debug support protocol that allows the debugger to break into a
running program.
@param ImageHandle of the loaded driver
@param SystemTable Pointer to the System Table
@retval EFI_SUCCESS Protocol registered
@retval EFI_OUT_OF_RESOURCES Cannot allocate protocol data structure
@retval EFI_DEVICE_ERROR Hardware problems
/**
Initialize the state information for the Timer Architectural Protocol and
the Timer Debug support protocol that allows the debugger to break into a
running program.
@param ImageHandle of the loaded driver
@param SystemTable Pointer to the System Table
@retval EFI_SUCCESS Protocol registered
@retval EFI_OUT_OF_RESOURCES Cannot allocate protocol data structure
@retval EFI_DEVICE_ERROR Hardware problems
**/
EFI_STATUS
EFIAPI