ArmVirtPkg/XenRelocatablePlatformLib: rewrite DTB memory node retrieval in C

Parsing the DTB early on using a handcoded assembly routine is a pointless
waste of brain cycles, since the UEFI firmware always executes from RAM
under Xen. So instead, set up a temporary stack in the memory region at the
beginning of the image, and use the libfdt C library.

Contributed-under: TianoCore Contribution Agreement 1.0
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Acked-by: Laszlo Ersek <lersek@redhat.com>

git-svn-id: https://svn.code.sf.net/p/edk2/code/trunk/edk2@19330 6f19259b-4bc3-4df7-8a09-765794883524
This commit is contained in:
Ard Biesheuvel 2015-12-17 17:11:07 +00:00 committed by abiesheuvel
parent ce44ee32d3
commit 03b6bed17e
4 changed files with 113 additions and 269 deletions

View File

@ -1,237 +0,0 @@
/*
* Copyright (c) 2014, Linaro Ltd. All rights reserved.
*
* This program and the accompanying materials
* are licensed and made available under the terms and conditions of the BSD License
* which accompanies this distribution. The full text of the license may be found at
* http://opensource.org/licenses/bsd-license.php
*
* THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS,
* WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED.
*/
/*
* Theory of operation
* -------------------
*
* This code parses a Flattened Device Tree binary (DTB) to find the base of
* system RAM. It is written in assembly so that it can be executed before a
* stack has been set up.
*
* To find the base of system RAM, we have to traverse the FDT to find a memory
* node. In the context of this implementation, the first node that has a
* device_type property with the value 'memory' and a 'reg' property is
* acceptable, and the name of the node (memory[@xxx]) is ignored, as are any
* other nodes that match the above constraints.
*
* In pseudo code, this implementation does the following:
*
* for each node {
* have_device_type = false
* have_reg = false
*
* for each property {
* if property value == 'memory' {
* if property name == 'device_type' {
* have_device_type = true
* }
* } else {
* if property name == 'reg' {
* have_reg = true
* membase = property value[0]
* memsize = property value[1]
* }
* }
* }
* if have_device_type and have_reg {
* return membase and memsize
* }
* }
* return NOT_FOUND
*/
#define FDT_MAGIC 0xedfe0dd0
#define FDT_BEGIN_NODE 0x1
#define FDT_END_NODE 0x2
#define FDT_PROP 0x3
#define FDT_END 0x9
xMEMSIZE .req x0 // recorded system RAM size
xMEMBASE .req x1 // recorded system RAM base
xLR .req x8 // our preserved link register
xDTP .req x9 // pointer to traverse the DT structure
xSTRTAB .req x10 // pointer to the DTB string table
xMEMNODE .req x11 // bit field to record found properties
#define HAVE_REG 0x1
#define HAVE_DEVICE_TYPE 0x2
.text
.align 3
_memory:
.asciz "memory"
_reg:
.asciz "reg"
_device_type:
.asciz "device_type"
/*
* Compare strings in x4 and x5, return in w7
*/
.align 3
strcmp:
ldrb w2, [x4], #1
ldrb w3, [x5], #1
subs w7, w2, w3
cbz w2, 0f
cbz w3, 0f
beq strcmp
0: ret
.globl find_memnode
find_memnode:
// preserve link register
mov xLR, x30
mov xDTP, x0
/*
* Check the DTB magic at offset 0
*/
movz w4, #(FDT_MAGIC & 0xffff)
movk w4, #(FDT_MAGIC >> 16), lsl #16
ldr w5, [xDTP]
cmp w4, w5
bne err_invalid_magic
/*
* Read the string offset and store it for later use
*/
ldr w4, [xDTP, #12]
rev w4, w4
add xSTRTAB, xDTP, x4
/*
* Read the struct offset and add it to the DT pointer
*/
ldr w5, [xDTP, #8]
rev w5, w5
add xDTP, xDTP, x5
/*
* Check current tag for FDT_BEGIN_NODE
*/
ldr w5, [xDTP]
rev w5, w5
cmp w5, #FDT_BEGIN_NODE
bne err_unexpected_begin_tag
begin_node:
mov xMEMNODE, #0
add xDTP, xDTP, #4
/*
* Advance xDTP past NULL terminated string
*/
0: ldrb w4, [xDTP], #1
cbnz w4, 0b
next_tag:
/*
* Align the DT pointer xDTP to the next 32-bit boundary
*/
add xDTP, xDTP, #3
and xDTP, xDTP, #~3
/*
* Read the next tag, could be BEGIN_NODE, END_NODE, PROP, END
*/
ldr w5, [xDTP]
rev w5, w5
cmp w5, #FDT_BEGIN_NODE
beq begin_node
cmp w5, #FDT_END_NODE
beq end_node
cmp w5, #FDT_PROP
beq prop_node
cmp w5, #FDT_END
beq err_end_of_fdt
b err_unexpected_tag
prop_node:
/*
* If propname == 'reg', record as membase and memsize
* If propname == 'device_type' and value == 'memory',
* set the 'is_memnode' flag for this node
*/
ldr w6, [xDTP, #4]
add xDTP, xDTP, #12
rev w6, w6
mov x5, xDTP
adr x4, _memory
bl strcmp
/*
* Get handle to property name
*/
ldr w5, [xDTP, #-4]
rev w5, w5
add x5, xSTRTAB, x5
cbz w7, check_device_type
/*
* Check for 'reg' property
*/
adr x4, _reg
bl strcmp
cbnz w7, inc_and_next_tag
/*
* Extract two 64-bit quantities from the 'reg' property. These values
* will only be used if the node also turns out to have a device_type
* property with a value of 'memory'.
*
* NOTE: xDTP is only guaranteed to be 32 bit aligned, and we are most
* likely executing with the MMU off, so we cannot use 64 bit
* wide accesses here.
*/
ldp w4, w5, [xDTP]
orr xMEMBASE, x4, x5, lsl #32
ldp w4, w5, [xDTP, #8]
orr xMEMSIZE, x4, x5, lsl #32
rev xMEMBASE, xMEMBASE
rev xMEMSIZE, xMEMSIZE
orr xMEMNODE, xMEMNODE, #HAVE_REG
b inc_and_next_tag
check_device_type:
/*
* Check whether the current property's name is 'device_type'
*/
adr x4, _device_type
bl strcmp
cbnz w7, inc_and_next_tag
orr xMEMNODE, xMEMNODE, #HAVE_DEVICE_TYPE
inc_and_next_tag:
add xDTP, xDTP, x6
b next_tag
end_node:
/*
* Check for device_type = memory and reg = xxxx
* If we have both, we are done
*/
add xDTP, xDTP, #4
cmp xMEMNODE, #(HAVE_REG | HAVE_DEVICE_TYPE)
bne next_tag
ret xLR
err_invalid_magic:
err_unexpected_begin_tag:
err_unexpected_tag:
err_end_of_fdt:
wfi

View File

@ -30,9 +30,6 @@ GCC_ASM_IMPORT(_gPcd_FixedAtBuild_PcdArmPrimaryCore)
GCC_ASM_IMPORT(_gPcd_FixedAtBuild_PcdArmPrimaryCoreMask) GCC_ASM_IMPORT(_gPcd_FixedAtBuild_PcdArmPrimaryCoreMask)
GCC_ASM_IMPORT(_gPcd_FixedAtBuild_PcdCoreCount) GCC_ASM_IMPORT(_gPcd_FixedAtBuild_PcdCoreCount)
.LFdtMagic:
.byte 0xd0, 0x0d, 0xfe, 0xed
.LArm64LinuxMagic: .LArm64LinuxMagic:
.byte 0x41, 0x52, 0x4d, 0x64 .byte 0x41, 0x52, 0x4d, 0x64
@ -43,17 +40,15 @@ GCC_ASM_IMPORT(_gPcd_FixedAtBuild_PcdCoreCount)
// ); // );
ASM_PFX(ArmPlatformPeiBootAction): ASM_PFX(ArmPlatformPeiBootAction):
mov x29, x30 // preserve LR mov x29, x30 // preserve LR
mov x28, x0 // preserve DTB pointer
mov x27, x1 // preserve base of image pointer
// //
// If we are booting from RAM using the Linux kernel boot protocol, x0 will // If we are booting from RAM using the Linux kernel boot protocol, x0 will
// point to the DTB image in memory. Otherwise, we are just coming out of // point to the DTB image in memory. Otherwise, we are just coming out of
// reset, and x0 will be 0. Check also the FDT magic. // reset, and x0 will be 0.
// //
cbz x0, .Lout cbz x0, .Lout
ldr w8, .LFdtMagic
ldr w9, [x0]
cmp w8, w9
bne .Lout
// //
// The base of the runtime image has been preserved in x1. Check whether // The base of the runtime image has been preserved in x1. Check whether
@ -80,36 +75,30 @@ ASM_PFX(ArmPlatformPeiBootAction):
str x1, [x8] str x1, [x8]
str x7, [x9] str x7, [x9]
//
// Discover the memory size and offset from the DTB, and record in the
// respective PCDs. This will also return false if a corrupt DTB is
// encountered. Since we are calling a C function, use the window at the
// beginning of the FD image as a temp stack.
//
adr x1, PcdGet64 (PcdSystemMemorySize)
adr x2, PcdGet64 (PcdSystemMemoryBase)
mov sp, x7
bl FindMemnode
cbz x0, .Lout
// //
// Copy the DTB to the slack space right after the 64 byte arm64/Linux style // Copy the DTB to the slack space right after the 64 byte arm64/Linux style
// image header at the base of this image (defined in the FDF), and record the // image header at the base of this image (defined in the FDF), and record the
// pointer in PcdDeviceTreeInitialBaseAddress. // pointer in PcdDeviceTreeInitialBaseAddress.
// //
adr x8, PcdGet64 (PcdDeviceTreeInitialBaseAddress) adr x8, PcdGet64 (PcdDeviceTreeInitialBaseAddress)
add x1, x1, #0x40 add x27, x27, #0x40
str x1, [x8] str x27, [x8]
ldr w8, [x0, #4] // get DTB size (BE) mov x0, x27
mov x9, x1 mov x1, x28
rev w8, w8 bl CopyFdt
add x8, x8, x0
0:ldp x6, x7, [x0], #16
stp x6, x7, [x9], #16
cmp x0, x8
blt 0b
//
// Discover the memory size and offset from the DTB, and record in the
// respective PCDs
//
mov x0, x1
bl find_memnode // returns (size, base) size in (x0, x1)
cbz x0, .Lout
adr x8, PcdGet64 (PcdSystemMemorySize)
adr x9, PcdGet64 (PcdSystemMemoryBase)
str x0, [x8]
str x1, [x9]
.Lout: .Lout:
ret x29 ret x29

View File

@ -32,14 +32,15 @@
IoLib IoLib
ArmLib ArmLib
PrintLib PrintLib
FdtLib
[Sources.common] [Sources.common]
RelocatableVirt.c RelocatableVirt.c
XenVirtMem.c XenVirtMem.c
FdtParser.c
[Sources.AARCH64] [Sources.AARCH64]
AARCH64/RelocatableVirtHelper.S AARCH64/RelocatableVirtHelper.S
AARCH64/MemnodeParser.S
[FeaturePcd] [FeaturePcd]
gEmbeddedTokenSpaceGuid.PcdCacheEnable gEmbeddedTokenSpaceGuid.PcdCacheEnable

View File

@ -0,0 +1,91 @@
/*
* Copyright (c) 2015, Linaro Ltd. All rights reserved.
*
* This program and the accompanying materials
* are licensed and made available under the terms and conditions of the BSD License
* which accompanies this distribution. The full text of the license may be found at
* http://opensource.org/licenses/bsd-license.php
*
* THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS,
* WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED.
*/
#include <Uefi.h>
#include <Include/libfdt.h>
BOOLEAN
FindMemnode (
IN VOID *DeviceTreeBlob,
OUT UINT64 *SystemMemoryBase,
OUT UINT64 *SystemMemorySize
)
{
INT32 MemoryNode;
INT32 AddressCells;
INT32 SizeCells;
INT32 Length;
CONST INT32 *Prop;
if (fdt_check_header (DeviceTreeBlob) != 0) {
return FALSE;
}
//
// Look for a node called "memory" at the lowest level of the tree
//
MemoryNode = fdt_path_offset (DeviceTreeBlob, "/memory");
if (MemoryNode <= 0) {
return FALSE;
}
//
// Retrieve the #address-cells and #size-cells properties
// from the root node, or use the default if not provided.
//
AddressCells = 1;
SizeCells = 1;
Prop = fdt_getprop (DeviceTreeBlob, 0, "#address-cells", &Length);
if (Length == 4) {
AddressCells = fdt32_to_cpu (*Prop);
}
Prop = fdt_getprop (DeviceTreeBlob, 0, "#size-cells", &Length);
if (Length == 4) {
SizeCells = fdt32_to_cpu (*Prop);
}
//
// Now find the 'reg' property of the /memory node, and read the first
// range listed.
//
Prop = fdt_getprop (DeviceTreeBlob, MemoryNode, "reg", &Length);
if (Length < (AddressCells + SizeCells) * sizeof (INT32)) {
return FALSE;
}
if (AddressCells == 1) {
*SystemMemoryBase = fdt32_to_cpu (*Prop);
} else {
*SystemMemoryBase = fdt64_to_cpu (*(UINT64 *)Prop);
}
Prop += AddressCells;
if (SizeCells == 1) {
*SystemMemorySize = fdt32_to_cpu (*Prop);
} else {
*SystemMemorySize = fdt64_to_cpu (*(UINT64 *)Prop);
}
return TRUE;
}
VOID
CopyFdt (
IN VOID *FdtDest,
IN VOID *FdtSource
)
{
CopyMem (FdtDest, FdtSource, fdt_totalsize (FdtSource));
}