Clean up Doxygen commenting.

git-svn-id: https://edk2.svn.sourceforge.net/svnroot/edk2/trunk/edk2@8743 6f19259b-4bc3-4df7-8a09-765794883524
This commit is contained in:
darylm503 2009-07-03 21:59:06 +00:00
parent c68e18ef5c
commit 03df16089f
1 changed files with 146 additions and 107 deletions

View File

@ -1,10 +1,10 @@
/** @file /** @file
The header file provides interface definitions exposed by CSM (Compatible Support Module). The header file provides interface definitions exposed by CSM (Compatible Support Module).
The CSM provides compatibility support between the Framework and traditional, legacy BIOS code The CSM provides compatibility support between the Framework and traditional, legacy BIOS code
and allows booting a traditional OS or booting an EFI OS off a device that requires a traditional and allows booting a traditional OS or booting an EFI OS off a device that requires a traditional
option ROM (OpROM). option ROM (OpROM).
These definitions are from Compatibility Support Module Spec Version 0.97. These definitions are from Compatibility Support Module Spec Version 0.97.
Copyright (c) 2007-2009, Intel Corporation Copyright (c) 2007-2009, Intel Corporation
@ -30,7 +30,7 @@ typedef UINT8 PARALLEL_MODE;
#define EFI_COMPATIBILITY16_TABLE_SIGNATURE SIGNATURE_32 ('I', 'F', 'E', '$') #define EFI_COMPATIBILITY16_TABLE_SIGNATURE SIGNATURE_32 ('I', 'F', 'E', '$')
/// ///
/// There is a table located within the traditional BIOS in either the 0xF000:xxxx or 0xE000:xxxx /// There is a table located within the traditional BIOS in either the 0xF000:xxxx or 0xE000:xxxx
/// physical address range. It is located on a 16-byte boundary and provides the physical address of the /// physical address range. It is located on a 16-byte boundary and provides the physical address of the
/// entry point for the Compatibility16 functions. These functions provide the platform-specific /// entry point for the Compatibility16 functions. These functions provide the platform-specific
@ -38,67 +38,67 @@ typedef UINT8 PARALLEL_MODE;
/// thunking by using EFI_LEGACY_BIOS_PROTOCOL.FarCall86() with the 32-bit physical /// thunking by using EFI_LEGACY_BIOS_PROTOCOL.FarCall86() with the 32-bit physical
/// entry point. /// entry point.
/// ///
typedef struct { typedef struct {
/// ///
/// The string "$EFI" denotes the start of the EfiCompatibility table. Byte 0 is "I," byte /// The string "$EFI" denotes the start of the EfiCompatibility table. Byte 0 is "I," byte
/// 1 is "F," byte 2 is "E," and byte 3 is "$" and is normally accessed as a DWORD or UINT32. /// 1 is "F," byte 2 is "E," and byte 3 is "$" and is normally accessed as a DWORD or UINT32.
/// ///
UINT32 Signature; UINT32 Signature;
/// ///
/// The value required such that byte checksum of TableLength equals zero. /// The value required such that byte checksum of TableLength equals zero.
/// ///
UINT8 TableChecksum; UINT8 TableChecksum;
/// ///
/// The length of this table. /// The length of this table.
/// ///
UINT8 TableLength; UINT8 TableLength;
/// ///
/// The major EFI revision for which this table was generated. /// The major EFI revision for which this table was generated.
/// ///
UINT8 EfiMajorRevision; UINT8 EfiMajorRevision;
/// ///
/// The minor EFI revision for which this table was generated. /// The minor EFI revision for which this table was generated.
/// ///
UINT8 EfiMinorRevision; UINT8 EfiMinorRevision;
/// ///
/// The major revision of this table. /// The major revision of this table.
/// ///
UINT8 TableMajorRevision; UINT8 TableMajorRevision;
/// ///
/// The minor revision of this table. /// The minor revision of this table.
/// ///
UINT8 TableMinorRevision; UINT8 TableMinorRevision;
/// ///
/// Reserved for future usage. /// Reserved for future usage.
/// ///
UINT16 Reserved; UINT16 Reserved;
/// ///
/// The segment of the entry point within the traditional BIOS for Compatibility16 functions. /// The segment of the entry point within the traditional BIOS for Compatibility16 functions.
/// ///
UINT16 Compatibility16CallSegment; UINT16 Compatibility16CallSegment;
/// ///
/// The offset of the entry point within the traditional BIOS for Compatibility16 functions. /// The offset of the entry point within the traditional BIOS for Compatibility16 functions.
/// ///
UINT16 Compatibility16CallOffset; UINT16 Compatibility16CallOffset;
/// ///
/// The segment of the entry point within the traditional BIOS for EfiCompatibility to invoke the PnP installation check. /// The segment of the entry point within the traditional BIOS for EfiCompatibility to invoke the PnP installation check.
/// ///
UINT16 PnPInstallationCheckSegment; UINT16 PnPInstallationCheckSegment;
/// ///
/// The Offset of the entry point within the traditional BIOS for EfiCompatibility to invoke the PnP installation check. /// The Offset of the entry point within the traditional BIOS for EfiCompatibility to invoke the PnP installation check.
/// ///
UINT16 PnPInstallationCheckOffset; UINT16 PnPInstallationCheckOffset;
/// ///
/// EFI system resources table. Type EFI_SYSTEM_TABLE is defined in the IntelPlatform Innovation Framework for EFI /// EFI system resources table. Type EFI_SYSTEM_TABLE is defined in the IntelPlatform Innovation Framework for EFI
@ -109,7 +109,7 @@ typedef struct {
/// ///
/// The address of an OEM-provided identifier string. The string is null terminated. /// The address of an OEM-provided identifier string. The string is null terminated.
/// ///
UINT32 OemIdStringPointer; UINT32 OemIdStringPointer;
/// ///
/// The 32-bit physical address where ACPI RSD PTR is stored within the traditional /// The 32-bit physical address where ACPI RSD PTR is stored within the traditional
@ -117,92 +117,92 @@ typedef struct {
/// reserved is the maximum for ACPI 2.0. The EfiCompatibility will fill in the ACPI /// reserved is the maximum for ACPI 2.0. The EfiCompatibility will fill in the ACPI
/// RSD PTR with either the ACPI 1.0b or 2.0 values. /// RSD PTR with either the ACPI 1.0b or 2.0 values.
/// ///
UINT32 AcpiRsdPtrPointer; UINT32 AcpiRsdPtrPointer;
/// ///
/// The OEM revision number. Usage is undefined but provided for OEM module usage. /// The OEM revision number. Usage is undefined but provided for OEM module usage.
/// ///
UINT16 OemRevision; UINT16 OemRevision;
/// ///
/// The 32-bit physical address where INT15 E820 data is stored within the traditional /// The 32-bit physical address where INT15 E820 data is stored within the traditional
/// BIOS. The EfiCompatibility code will fill in the E820Pointer value and copy the /// BIOS. The EfiCompatibility code will fill in the E820Pointer value and copy the
/// data to the indicated area. /// data to the indicated area.
/// ///
UINT32 E820Pointer; UINT32 E820Pointer;
/// ///
/// The length of the E820 data and is filled in by the EfiCompatibility code. /// The length of the E820 data and is filled in by the EfiCompatibility code.
/// ///
UINT32 E820Length; UINT32 E820Length;
/// ///
/// The 32-bit physical address where the $PIR table is stored in the traditional BIOS. /// The 32-bit physical address where the $PIR table is stored in the traditional BIOS.
/// The EfiCompatibility code will fill in the IrqRoutingTablePointer value and /// The EfiCompatibility code will fill in the IrqRoutingTablePointer value and
/// copy the data to the indicated area. /// copy the data to the indicated area.
/// ///
UINT32 IrqRoutingTablePointer; UINT32 IrqRoutingTablePointer;
/// ///
/// The length of the $PIR table and is filled in by the EfiCompatibility code. /// The length of the $PIR table and is filled in by the EfiCompatibility code.
/// ///
UINT32 IrqRoutingTableLength; UINT32 IrqRoutingTableLength;
/// ///
/// The 32-bit physical address where the MP table is stored in the traditional BIOS. /// The 32-bit physical address where the MP table is stored in the traditional BIOS.
/// The EfiCompatibility code will fill in the MpTablePtr value and copy the data to the indicated area. /// The EfiCompatibility code will fill in the MpTablePtr value and copy the data to the indicated area.
/// ///
UINT32 MpTablePtr; UINT32 MpTablePtr;
/// ///
/// The length of the MP table and is filled in by the EfiCompatibility code. /// The length of the MP table and is filled in by the EfiCompatibility code.
/// ///
UINT32 MpTableLength; UINT32 MpTableLength;
/// ///
/// The segment of the OEM-specific INT table/code. /// The segment of the OEM-specific INT table/code.
/// ///
UINT16 OemIntSegment; UINT16 OemIntSegment;
/// ///
/// The offset of the OEM-specific INT table/code. /// The offset of the OEM-specific INT table/code.
/// ///
UINT16 OemIntOffset; UINT16 OemIntOffset;
/// ///
/// The segment of the OEM-specific 32-bit table/code. /// The segment of the OEM-specific 32-bit table/code.
/// ///
UINT16 Oem32Segment; UINT16 Oem32Segment;
/// ///
/// The offset of the OEM-specific 32-bit table/code. /// The offset of the OEM-specific 32-bit table/code.
/// ///
UINT16 Oem32Offset; UINT16 Oem32Offset;
/// ///
/// The segment of the OEM-specific 16-bit table/code. /// The segment of the OEM-specific 16-bit table/code.
/// ///
UINT16 Oem16Segment; UINT16 Oem16Segment;
/// ///
/// The offset of the OEM-specific 16-bit table/code. /// The offset of the OEM-specific 16-bit table/code.
/// ///
UINT16 Oem16Offset; UINT16 Oem16Offset;
/// ///
/// The segment of the TPM binary passed to 16-bit CSM. /// The segment of the TPM binary passed to 16-bit CSM.
/// ///
UINT16 TpmSegment; UINT16 TpmSegment;
/// ///
/// The offset of the TPM binary passed to 16-bit CSM. /// The offset of the TPM binary passed to 16-bit CSM.
/// ///
UINT16 TpmOffset; UINT16 TpmOffset;
/// ///
/// A pointer to a string identifying the independent BIOS vendor. /// A pointer to a string identifying the independent BIOS vendor.
/// ///
UINT32 IbvPointer; UINT32 IbvPointer;
/// ///
/// This field is NULL for all systems not supporting PCI Express. This field is the base /// This field is NULL for all systems not supporting PCI Express. This field is the base
@ -212,7 +212,7 @@ typedef struct {
/// Compatibility16InitializeYourself() is defined in Compatability16 /// Compatibility16InitializeYourself() is defined in Compatability16
/// Functions. /// Functions.
/// ///
UINT32 PciExpressBase; UINT32 PciExpressBase;
/// ///
/// Maximum PCI bus number assigned. /// Maximum PCI bus number assigned.
@ -224,7 +224,7 @@ typedef struct {
/// Functions provided by the CSM binary which communicate between the EfiCompatibility /// Functions provided by the CSM binary which communicate between the EfiCompatibility
/// and Compatability16 code. /// and Compatability16 code.
/// ///
typedef enum { typedef enum {
/// ///
/// Causes the Compatibility16 code to do any internal initialization required. /// Causes the Compatibility16 code to do any internal initialization required.
/// Input: /// Input:
@ -233,7 +233,7 @@ typedef enum {
/// Return: /// Return:
/// AX = Return Status codes /// AX = Return Status codes
/// ///
Compatibility16InitializeYourself = 0x0000, Compatibility16InitializeYourself = 0x0000,
/// ///
/// Causes the Compatibility16 BIOS to perform any drive number translations to match the boot sequence. /// Causes the Compatibility16 BIOS to perform any drive number translations to match the boot sequence.
@ -243,7 +243,7 @@ typedef enum {
/// Return: /// Return:
/// AX = Returned status codes /// AX = Returned status codes
/// ///
Compatibility16UpdateBbs = 0x0001, Compatibility16UpdateBbs = 0x0001,
/// ///
/// Allows the Compatibility16 code to perform any final actions before booting. The Compatibility16 /// Allows the Compatibility16 code to perform any final actions before booting. The Compatibility16
@ -254,7 +254,7 @@ typedef enum {
/// Return: /// Return:
/// AX = Returned status codes /// AX = Returned status codes
/// ///
Compatibility16PrepareToBoot = 0x0002, Compatibility16PrepareToBoot = 0x0002,
/// ///
/// Causes the Compatibility16 BIOS to boot. The Compatibility16 code is Read/Only. /// Causes the Compatibility16 BIOS to boot. The Compatibility16 code is Read/Only.
@ -263,7 +263,7 @@ typedef enum {
/// Output: /// Output:
/// AX = Returned status codes /// AX = Returned status codes
/// ///
Compatibility16Boot = 0x0003, Compatibility16Boot = 0x0003,
/// ///
/// Allows the Compatibility16 code to get the last device from which a boot was attempted. This is /// Allows the Compatibility16 code to get the last device from which a boot was attempted. This is
@ -274,7 +274,7 @@ typedef enum {
/// AX = Returned status codes /// AX = Returned status codes
/// BX = Priority number of the boot device. /// BX = Priority number of the boot device.
/// ///
Compatibility16RetrieveLastBootDevice= 0x0004, Compatibility16RetrieveLastBootDevice= 0x0004,
/// ///
/// Allows the Compatibility16 code rehook INT13, INT18, and/or INT19 after dispatching a legacy OpROM. /// Allows the Compatibility16 code rehook INT13, INT18, and/or INT19 after dispatching a legacy OpROM.
@ -285,7 +285,7 @@ typedef enum {
/// AX = Returned status codes /// AX = Returned status codes
/// BX = Number of non-BBS-compliant devices found. Equals 0 if BBS compliant. /// BX = Number of non-BBS-compliant devices found. Equals 0 if BBS compliant.
/// ///
Compatibility16DispatchOprom = 0x0005, Compatibility16DispatchOprom = 0x0005,
/// ///
/// Finds a free area in the 0xFxxxx or 0xExxxx region of the specified length and returns the address /// Finds a free area in the 0xFxxxx or 0xExxxx region of the specified length and returns the address
@ -302,7 +302,7 @@ typedef enum {
/// AX = Returned status codes /// AX = Returned status codes
/// DS:BX = Address of the region /// DS:BX = Address of the region
/// ///
Compatibility16GetTableAddress = 0x0006, Compatibility16GetTableAddress = 0x0006,
/// ///
/// Enables the EfiCompatibility module to do any nonstandard processing of keyboard LEDs or state. /// Enables the EfiCompatibility module to do any nonstandard processing of keyboard LEDs or state.
@ -315,7 +315,7 @@ typedef enum {
/// Output: /// Output:
/// AX = Returned status codes /// AX = Returned status codes
/// ///
Compatibility16SetKeyboardLeds = 0x0007, Compatibility16SetKeyboardLeds = 0x0007,
/// ///
/// Enables the EfiCompatibility module to install an interrupt handler for PCI mass media devices that /// Enables the EfiCompatibility module to install an interrupt handler for PCI mass media devices that
@ -339,67 +339,67 @@ typedef struct {
UINT16 OpromSegment; ///< The segment where the OpROM was placed. Offset is assumed to be 3. UINT16 OpromSegment; ///< The segment where the OpROM was placed. Offset is assumed to be 3.
UINT8 PciBus; ///< The PCI bus. UINT8 PciBus; ///< The PCI bus.
UINT8 PciDeviceFunction; ///< The PCI device * 0x08 | PCI function. UINT8 PciDeviceFunction; ///< The PCI device * 0x08 | PCI function.
UINT8 NumberBbsEntries; ///< The number of valid BBS table entries upon entry and exit. The IBV code may UINT8 NumberBbsEntries; ///< The number of valid BBS table entries upon entry and exit. The IBV code may
///< increase this number, if BBS-compliant devices also hook INTs in order to force the ///< increase this number, if BBS-compliant devices also hook INTs in order to force the
///< OpROM BIOS Setup to be executed. ///< OpROM BIOS Setup to be executed.
VOID *BbsTablePointer; ///< Pointer to the BBS table. VOID *BbsTablePointer; ///< Pointer to the BBS table.
UINT16 OpromDestinationSegment; ///< The segment where the OpROM can be relocated to. If this value is 0x0000, this UINT16 OpromDestinationSegment; ///< The segment where the OpROM can be relocated to. If this value is 0x0000, this
///< means that the relocation of this run time code is not supported. ///< means that the relocation of this run time code is not supported.
} EFI_DISPATCH_OPROM_TABLE; } EFI_DISPATCH_OPROM_TABLE;
/// ///
/// EFI_TO_COMPATIBILITY16_INIT_TABLE /// EFI_TO_COMPATIBILITY16_INIT_TABLE
/// ///
typedef struct { typedef struct {
/// ///
/// Starting address of memory under 1 MB. The ending address is assumed to be 640 KB or 0x9FFFF. /// Starting address of memory under 1 MB. The ending address is assumed to be 640 KB or 0x9FFFF.
/// ///
UINT32 BiosLessThan1MB; UINT32 BiosLessThan1MB;
/// ///
/// Starting address of the high memory block. /// Starting address of the high memory block.
/// ///
UINT32 HiPmmMemory; UINT32 HiPmmMemory;
/// ///
/// Length of high memory block. /// Length of high memory block.
/// ///
UINT32 HiPmmMemorySizeInBytes; UINT32 HiPmmMemorySizeInBytes;
/// ///
/// The segment of the reverse thunk call code. /// The segment of the reverse thunk call code.
/// ///
UINT16 ReverseThunkCallSegment; UINT16 ReverseThunkCallSegment;
/// ///
/// The offset of the reverse thunk call code. /// The offset of the reverse thunk call code.
/// ///
UINT16 ReverseThunkCallOffset; UINT16 ReverseThunkCallOffset;
/// ///
/// The number of E820 entries copied to the Compatibility16 BIOS. /// The number of E820 entries copied to the Compatibility16 BIOS.
/// ///
UINT32 NumberE820Entries; UINT32 NumberE820Entries;
/// ///
/// The amount of usable memory above 1 MB, e.g., E820 type 1 memory. /// The amount of usable memory above 1 MB, e.g., E820 type 1 memory.
/// ///
UINT32 OsMemoryAbove1Mb; UINT32 OsMemoryAbove1Mb;
/// ///
/// The start of thunk code in main memory. Memory cannot be used by BIOS or PMM. /// The start of thunk code in main memory. Memory cannot be used by BIOS or PMM.
/// ///
UINT32 ThunkStart; UINT32 ThunkStart;
/// ///
/// The size of the thunk code. /// The size of the thunk code.
/// ///
UINT32 ThunkSizeInBytes; UINT32 ThunkSizeInBytes;
/// ///
/// Starting address of memory under 1 MB. /// Starting address of memory under 1 MB.
/// ///
UINT32 LowPmmMemory; UINT32 LowPmmMemory;
/// ///
/// Length of low Memory block. /// Length of low Memory block.
@ -408,7 +408,7 @@ typedef struct {
} EFI_TO_COMPATIBILITY16_INIT_TABLE; } EFI_TO_COMPATIBILITY16_INIT_TABLE;
/// ///
/// DEVICE_PRODUCER_SERIAL & its modes /// DEVICE_PRODUCER_SERIAL
/// ///
typedef struct { typedef struct {
UINT16 Address; ///< I/O address assigned to the serial port UINT16 Address; ///< I/O address assigned to the serial port
@ -416,14 +416,18 @@ typedef struct {
SERIAL_MODE Mode; ///< Mode of serial port. Values are defined below. SERIAL_MODE Mode; ///< Mode of serial port. Values are defined below.
} DEVICE_PRODUCER_SERIAL; } DEVICE_PRODUCER_SERIAL;
///
/// DEVICE_PRODUCER_SERIAL's modes
///@{
#define DEVICE_SERIAL_MODE_NORMAL 0x00 #define DEVICE_SERIAL_MODE_NORMAL 0x00
#define DEVICE_SERIAL_MODE_IRDA 0x01 #define DEVICE_SERIAL_MODE_IRDA 0x01
#define DEVICE_SERIAL_MODE_ASK_IR 0x02 #define DEVICE_SERIAL_MODE_ASK_IR 0x02
#define DEVICE_SERIAL_MODE_DUPLEX_HALF 0x00 #define DEVICE_SERIAL_MODE_DUPLEX_HALF 0x00
#define DEVICE_SERIAL_MODE_DUPLEX_FULL 0x10 #define DEVICE_SERIAL_MODE_DUPLEX_FULL 0x10
///@)
/// ///
/// DEVICE_PRODUCER_PARALLEL & its modes /// DEVICE_PRODUCER_PARALLEL
/// ///
typedef struct { typedef struct {
UINT16 Address; ///< I/O address assigned to the parallel port UINT16 Address; ///< I/O address assigned to the parallel port
@ -432,10 +436,14 @@ typedef struct {
PARALLEL_MODE Mode; ///< Mode of the parallel port. Values are defined below. PARALLEL_MODE Mode; ///< Mode of the parallel port. Values are defined below.
} DEVICE_PRODUCER_PARALLEL; } DEVICE_PRODUCER_PARALLEL;
///
/// DEVICE_PRODUCER_PARALLEL's modes
///@{
#define DEVICE_PARALLEL_MODE_MODE_OUTPUT_ONLY 0x00 #define DEVICE_PARALLEL_MODE_MODE_OUTPUT_ONLY 0x00
#define DEVICE_PARALLEL_MODE_MODE_BIDIRECTIONAL 0x01 #define DEVICE_PARALLEL_MODE_MODE_BIDIRECTIONAL 0x01
#define DEVICE_PARALLEL_MODE_MODE_EPP 0x02 #define DEVICE_PARALLEL_MODE_MODE_EPP 0x02
#define DEVICE_PARALLEL_MODE_MODE_ECP 0x03 #define DEVICE_PARALLEL_MODE_MODE_ECP 0x03
///@}
/// ///
/// DEVICE_PRODUCER_FLOPPY /// DEVICE_PRODUCER_FLOPPY
@ -475,9 +483,9 @@ typedef struct {
} ATAPI_IDENTIFY; } ATAPI_IDENTIFY;
/// ///
/// HDD_INFO & its status /// HDD_INFO
/// ///
typedef struct { typedef struct {
/// ///
/// Status of IDE device. Values are defined below. There is one HDD_INFO structure /// Status of IDE device. Values are defined below. There is one HDD_INFO structure
/// per IDE controller. The IdentifyDrive is per drive. Index 0 is master and index /// per IDE controller. The IdentifyDrive is per drive. Index 0 is master and index
@ -488,34 +496,34 @@ typedef struct {
/// ///
/// PCI bus of IDE controller. /// PCI bus of IDE controller.
/// ///
UINT32 Bus; UINT32 Bus;
/// ///
/// PCI device of IDE controller. /// PCI device of IDE controller.
/// ///
UINT32 Device; UINT32 Device;
/// ///
/// PCI function of IDE controller. /// PCI function of IDE controller.
/// ///
UINT32 Function; UINT32 Function;
/// ///
/// Command ports base address. /// Command ports base address.
/// ///
UINT16 CommandBaseAddress; UINT16 CommandBaseAddress;
/// ///
/// Control ports base address. /// Control ports base address.
/// ///
UINT16 ControlBaseAddress; UINT16 ControlBaseAddress;
/// ///
/// Bus master address /// Bus master address
/// ///
UINT16 BusMasterAddress; UINT16 BusMasterAddress;
UINT8 HddIrq; UINT8 HddIrq;
/// ///
/// Data that identifies the drive data, one per possible attached drive /// Data that identifies the drive data, one per possible attached drive
@ -523,6 +531,9 @@ typedef struct {
ATAPI_IDENTIFY IdentifyDrive[2]; ATAPI_IDENTIFY IdentifyDrive[2];
} HDD_INFO; } HDD_INFO;
///
/// HDD_INFO status bits
///
#define HDD_PRIMARY 0x01 #define HDD_PRIMARY 0x01
#define HDD_SECONDARY 0x02 #define HDD_SECONDARY 0x02
#define HDD_MASTER_ATAPI_CDROM 0x04 #define HDD_MASTER_ATAPI_CDROM 0x04
@ -556,68 +567,68 @@ typedef struct {
/// ///
/// BBS_TABLE, device type values & boot priority values /// BBS_TABLE, device type values & boot priority values
/// ///
typedef struct { typedef struct {
/// ///
/// The boot priority for this boot device. Values are defined below. /// The boot priority for this boot device. Values are defined below.
/// ///
UINT16 BootPriority; UINT16 BootPriority;
/// ///
/// The PCI bus for this boot device. /// The PCI bus for this boot device.
/// ///
UINT32 Bus; UINT32 Bus;
/// ///
/// The PCI device for this boot device. /// The PCI device for this boot device.
/// ///
UINT32 Device; UINT32 Device;
/// ///
/// The PCI function for the boot device. /// The PCI function for the boot device.
/// ///
UINT32 Function; UINT32 Function;
/// ///
/// The PCI class for this boot device. /// The PCI class for this boot device.
/// ///
UINT8 Class; UINT8 Class;
/// ///
/// The PCI Subclass for this boot device. /// The PCI Subclass for this boot device.
/// ///
UINT8 SubClass; UINT8 SubClass;
/// ///
/// Segment:offset address of an ASCIIZ description string describing the manufacturer. /// Segment:offset address of an ASCIIZ description string describing the manufacturer.
/// ///
UINT16 MfgStringOffset; UINT16 MfgStringOffset;
/// ///
/// Segment:offset address of an ASCIIZ description string describing the manufacturer. /// Segment:offset address of an ASCIIZ description string describing the manufacturer.
/// ///
UINT16 MfgStringSegment; UINT16 MfgStringSegment;
/// ///
/// BBS device type. BBS device types are defined below. /// BBS device type. BBS device types are defined below.
/// ///
UINT16 DeviceType; UINT16 DeviceType;
/// ///
/// Status of this boot device. Type BBS_STATUS_FLAGS is defined below. /// Status of this boot device. Type BBS_STATUS_FLAGS is defined below.
/// ///
BBS_STATUS_FLAGS StatusFlags; BBS_STATUS_FLAGS StatusFlags;
/// ///
/// Segment:Offset address of boot loader for IPL devices or install INT13 handler for /// Segment:Offset address of boot loader for IPL devices or install INT13 handler for
/// BCV devices. /// BCV devices.
/// ///
UINT16 BootHandlerOffset; UINT16 BootHandlerOffset;
/// ///
/// Segment:Offset address of boot loader for IPL devices or install INT13 handler for /// Segment:Offset address of boot loader for IPL devices or install INT13 handler for
/// BCV devices. /// BCV devices.
/// ///
UINT16 BootHandlerSegment; UINT16 BootHandlerSegment;
/// ///
/// Segment:offset address of an ASCIIZ description string describing this device. /// Segment:offset address of an ASCIIZ description string describing this device.
@ -627,33 +638,33 @@ typedef struct {
/// ///
/// Segment:offset address of an ASCIIZ description string describing this device. /// Segment:offset address of an ASCIIZ description string describing this device.
/// ///
UINT16 DescStringSegment; UINT16 DescStringSegment;
/// ///
/// Reserved. /// Reserved.
/// ///
UINT32 InitPerReserved; UINT32 InitPerReserved;
/// ///
/// The use of these fields is IBV dependent. They can be used to flag that an OpROM /// The use of these fields is IBV dependent. They can be used to flag that an OpROM
/// has hooked the specified IRQ. The OpROM may be BBS compliant as some SCSI /// has hooked the specified IRQ. The OpROM may be BBS compliant as some SCSI
/// BBS-compliant OpROMs also hook IRQ vectors in order to run their BIOS Setup /// BBS-compliant OpROMs also hook IRQ vectors in order to run their BIOS Setup
/// ///
UINT32 AdditionalIrq13Handler; UINT32 AdditionalIrq13Handler;
/// ///
/// The use of these fields is IBV dependent. They can be used to flag that an OpROM /// The use of these fields is IBV dependent. They can be used to flag that an OpROM
/// has hooked the specified IRQ. The OpROM may be BBS compliant as some SCSI /// has hooked the specified IRQ. The OpROM may be BBS compliant as some SCSI
/// BBS-compliant OpROMs also hook IRQ vectors in order to run their BIOS Setup /// BBS-compliant OpROMs also hook IRQ vectors in order to run their BIOS Setup
/// ///
UINT32 AdditionalIrq18Handler; UINT32 AdditionalIrq18Handler;
/// ///
/// The use of these fields is IBV dependent. They can be used to flag that an OpROM /// The use of these fields is IBV dependent. They can be used to flag that an OpROM
/// has hooked the specified IRQ. The OpROM may be BBS compliant as some SCSI /// has hooked the specified IRQ. The OpROM may be BBS compliant as some SCSI
/// BBS-compliant OpROMs also hook IRQ vectors in order to run their BIOS Setup /// BBS-compliant OpROMs also hook IRQ vectors in order to run their BIOS Setup
/// ///
UINT32 AdditionalIrq19Handler; UINT32 AdditionalIrq19Handler;
/// ///
/// The use of these fields is IBV dependent. They can be used to flag that an OpROM /// The use of these fields is IBV dependent. They can be used to flag that an OpROM
@ -668,6 +679,9 @@ typedef struct {
UINT32 IBV2; UINT32 IBV2;
} BBS_TABLE; } BBS_TABLE;
///
/// BBS device type values
///@{
#define BBS_FLOPPY 0x01 #define BBS_FLOPPY 0x01
#define BBS_HARDDISK 0x02 #define BBS_HARDDISK 0x02
#define BBS_CDROM 0x03 #define BBS_CDROM 0x03
@ -676,31 +690,36 @@ typedef struct {
#define BBS_EMBED_NETWORK 0x06 #define BBS_EMBED_NETWORK 0x06
#define BBS_BEV_DEVICE 0x80 #define BBS_BEV_DEVICE 0x80
#define BBS_UNKNOWN 0xff #define BBS_UNKNOWN 0xff
///@}
///
/// BBS boot priority values
///@{
#define BBS_DO_NOT_BOOT_FROM 0xFFFC #define BBS_DO_NOT_BOOT_FROM 0xFFFC
#define BBS_LOWEST_PRIORITY 0xFFFD #define BBS_LOWEST_PRIORITY 0xFFFD
#define BBS_UNPRIORITIZED_ENTRY 0xFFFE #define BBS_UNPRIORITIZED_ENTRY 0xFFFE
#define BBS_IGNORE_ENTRY 0xFFFF #define BBS_IGNORE_ENTRY 0xFFFF
///@}
/// ///
/// SMM_ATTRIBUTES & relating type, port and data size constants /// SMM_ATTRIBUTES
/// ///
typedef struct { typedef struct {
/// ///
/// Access mechanism used to generate the soft SMI. Defined types are below. The other /// Access mechanism used to generate the soft SMI. Defined types are below. The other
/// values are reserved for future usage. /// values are reserved for future usage.
/// ///
UINT16 Type : 3; UINT16 Type : 3;
/// ///
/// Size of "port" in bits. Defined values are below. /// Size of "port" in bits. Defined values are below.
/// ///
UINT16 PortGranularity : 3; UINT16 PortGranularity : 3;
/// ///
/// Size of data in bits. Defined values are below. /// Size of data in bits. Defined values are below.
/// ///
UINT16 DataGranularity : 3; UINT16 DataGranularity : 3;
/// ///
/// Reserved for future use. /// Reserved for future use.
@ -708,18 +727,30 @@ typedef struct {
UINT16 Reserved : 7; UINT16 Reserved : 7;
} SMM_ATTRIBUTES; } SMM_ATTRIBUTES;
///
/// SMM_ATTRIBUTES type values
///@{
#define STANDARD_IO 0x00 #define STANDARD_IO 0x00
#define STANDARD_MEMORY 0x01 #define STANDARD_MEMORY 0x01
///@}
///
/// SMM_ATTRIBUTES port size constants
///@{
#define PORT_SIZE_8 0x00 #define PORT_SIZE_8 0x00
#define PORT_SIZE_16 0x01 #define PORT_SIZE_16 0x01
#define PORT_SIZE_32 0x02 #define PORT_SIZE_32 0x02
#define PORT_SIZE_64 0x03 #define PORT_SIZE_64 0x03
///@}
///
/// SMM_ATTRIBUTES data size constants
///@{
#define DATA_SIZE_8 0x00 #define DATA_SIZE_8 0x00
#define DATA_SIZE_16 0x01 #define DATA_SIZE_16 0x01
#define DATA_SIZE_32 0x02 #define DATA_SIZE_32 0x02
#define DATA_SIZE_64 0x03 #define DATA_SIZE_64 0x03
///@}
/// ///
/// SMM_FUNCTION & relating constants /// SMM_FUNCTION & relating constants
@ -729,12 +760,20 @@ typedef struct {
UINT16 Owner : 1; UINT16 Owner : 1;
} SMM_FUNCTION; } SMM_FUNCTION;
///
/// SMM_FUNCTION Function constants
///@{
#define INT15_D042 0x0000 #define INT15_D042 0x0000
#define GET_USB_BOOT_INFO 0x0001 #define GET_USB_BOOT_INFO 0x0001
#define DMI_PNP_50_57 0x0002 #define DMI_PNP_50_57 0x0002
///@}
///
/// SMM_FUNCTION Owner constants
///@{
#define STANDARD_OWNER 0x0 #define STANDARD_OWNER 0x0
#define OEM_OWNER 0x1 #define OEM_OWNER 0x1
///@}
/** /**
* SMM_ENTRY * SMM_ENTRY
@ -742,22 +781,22 @@ typedef struct {
* This structure assumes both port and data sizes are 1. SmmAttribute must be * This structure assumes both port and data sizes are 1. SmmAttribute must be
* properly to reflect that assumption. * properly to reflect that assumption.
**/ **/
typedef struct { typedef struct {
/// ///
/// Describes the access mechanism, SmmPort, and SmmData sizes. Type /// Describes the access mechanism, SmmPort, and SmmData sizes. Type
/// SMM_ATTRIBUTES is defined below. /// SMM_ATTRIBUTES is defined below.
/// ///
SMM_ATTRIBUTES SmmAttributes; SMM_ATTRIBUTES SmmAttributes;
/// ///
/// Function Soft SMI is to perform. Type SMM_FUNCTION is defined below. /// Function Soft SMI is to perform. Type SMM_FUNCTION is defined below.
/// ///
SMM_FUNCTION SmmFunction; SMM_FUNCTION SmmFunction;
/// ///
/// SmmPort size depends upon SmmAttributes and ranges from2 bytes to 16 bytes /// SmmPort size depends upon SmmAttributes and ranges from2 bytes to 16 bytes
/// ///
UINT8 SmmPort; UINT8 SmmPort;
/// ///
/// SmmData size depends upon SmmAttributes and ranges from2 bytes to 16 bytes /// SmmData size depends upon SmmAttributes and ranges from2 bytes to 16 bytes
@ -776,22 +815,22 @@ typedef struct {
/// ///
/// UDC_ATTRIBUTES /// UDC_ATTRIBUTES
/// ///
typedef struct { typedef struct {
/// ///
/// This bit set indicates that the ServiceAreaData is valid. /// This bit set indicates that the ServiceAreaData is valid.
/// ///
UINT8 DirectoryServiceValidity : 1; UINT8 DirectoryServiceValidity : 1;
/// ///
/// This bit set indicates to use the Reserve Area Boot Code Address (RACBA) only if /// This bit set indicates to use the Reserve Area Boot Code Address (RACBA) only if
/// DirectoryServiceValidity is 0. /// DirectoryServiceValidity is 0.
/// ///
UINT8 RabcaUsedFlag : 1; UINT8 RabcaUsedFlag : 1;
/// ///
/// This bit set indicates to execute hard disk diagnostics. /// This bit set indicates to execute hard disk diagnostics.
/// ///
UINT8 ExecuteHddDiagnosticsFlag : 1; UINT8 ExecuteHddDiagnosticsFlag : 1;
/// ///
/// Reserved for future use. Set to 0. /// Reserved for future use. Set to 0.
@ -802,40 +841,40 @@ typedef struct {
/// ///
/// UD_TABLE /// UD_TABLE
/// ///
typedef struct { typedef struct {
/// ///
/// This field contains the bit-mapped attributes of the PARTIES information. Type /// This field contains the bit-mapped attributes of the PARTIES information. Type
/// UDC_ATTRIBUTES is defined below. /// UDC_ATTRIBUTES is defined below.
/// ///
UDC_ATTRIBUTES Attributes; UDC_ATTRIBUTES Attributes;
/// ///
/// This field contains the zero-based device on which the selected /// This field contains the zero-based device on which the selected
/// ServiceDataArea is present. It is 0 for master and 1 for the slave device. /// ServiceDataArea is present. It is 0 for master and 1 for the slave device.
/// ///
UINT8 DeviceNumber; UINT8 DeviceNumber;
/// ///
/// This field contains the zero-based index into the BbsTable for the parent device. /// This field contains the zero-based index into the BbsTable for the parent device.
/// This index allows the user to reference the parent device information such as PCI /// This index allows the user to reference the parent device information such as PCI
/// bus, device function. /// bus, device function.
/// ///
UINT8 BbsTableEntryNumberForParentDevice; UINT8 BbsTableEntryNumberForParentDevice;
/// ///
/// This field contains the zero-based index into the BbsTable for the boot entry. /// This field contains the zero-based index into the BbsTable for the boot entry.
/// ///
UINT8 BbsTableEntryNumberForBoot; UINT8 BbsTableEntryNumberForBoot;
/// ///
/// This field contains the zero-based index into the BbsTable for the HDD diagnostics entry. /// This field contains the zero-based index into the BbsTable for the HDD diagnostics entry.
/// ///
UINT8 BbsTableEntryNumberForHddDiag; UINT8 BbsTableEntryNumberForHddDiag;
/// ///
/// The raw Beer data. /// The raw Beer data.
/// ///
UINT8 BeerData[128]; UINT8 BeerData[128];
/// ///
/// The raw data of selected service area. /// The raw data of selected service area.