UefiCpuPkg: Modify GetProcessorLocationByApicId() to support AMD.

Cc: Jordan Justen <jordan.l.justen@intel.com>
Cc: Jeff Fan <jeff.fan@intel.com>
Cc: Liming Gao <liming.gao@intel.com>
Cc: Brijesh Singh <brijesh.singh@amd.com>
Contributed-under: TianoCore Contribution Agreement 1.0
Signed-off-by: Leo Duran <leo.duran@amd.com>
Reviewed-by: Jeff Fan <jeff.fan@intel.com>
This commit is contained in:
Leo Duran 2017-06-17 08:41:49 +08:00 committed by Jeff Fan
parent 890d2bd287
commit 061ead7a2d
2 changed files with 250 additions and 64 deletions

View File

@ -4,6 +4,8 @@
This local APIC library instance supports xAPIC mode only.
Copyright (c) 2010 - 2016, Intel Corporation. All rights reserved.<BR>
Copyright (c) 2017, AMD Inc. All rights reserved.<BR>
This program and the accompanying materials
are licensed and made available under the terms and conditions of the BSD License
which accompanies this distribution. The full text of the license may be found at
@ -15,6 +17,7 @@
**/
#include <Register/Cpuid.h>
#include <Register/Amd/Cpuid.h>
#include <Register/Msr.h>
#include <Register/LocalApic.h>
@ -29,6 +32,28 @@
// Library internal functions
//
/**
Determine if the standard CPU signature is "AuthenticAMD".
@retval TRUE The CPU signature matches.
@retval FALSE The CPU signature does not match.
**/
BOOLEAN
StandardSignatureIsAuthenticAMD (
VOID
)
{
UINT32 RegEbx;
UINT32 RegEcx;
UINT32 RegEdx;
AsmCpuid(CPUID_SIGNATURE, NULL, &RegEbx, &RegEcx, &RegEdx);
return (RegEbx == CPUID_SIGNATURE_AUTHENTIC_AMD_EBX &&
RegEcx == CPUID_SIGNATURE_AUTHENTIC_AMD_ECX &&
RegEdx == CPUID_SIGNATURE_AUTHENTIC_AMD_EDX);
}
/**
Determine if the CPU supports the Local APIC Base Address MSR.
@ -967,19 +992,29 @@ GetProcessorLocationByApicId (
)
{
BOOLEAN TopologyLeafSupported;
UINTN ThreadBits;
UINTN CoreBits;
CPUID_VERSION_INFO_EBX VersionInfoEbx;
CPUID_VERSION_INFO_EDX VersionInfoEdx;
CPUID_CACHE_PARAMS_EAX CacheParamsEax;
CPUID_EXTENDED_TOPOLOGY_EAX ExtendedTopologyEax;
CPUID_EXTENDED_TOPOLOGY_EBX ExtendedTopologyEbx;
CPUID_EXTENDED_TOPOLOGY_ECX ExtendedTopologyEcx;
UINT32 MaxCpuIdIndex;
CPUID_AMD_EXTENDED_CPU_SIG_ECX AmdExtendedCpuSigEcx;
CPUID_AMD_PROCESSOR_TOPOLOGY_EBX AmdProcessorTopologyEbx;
CPUID_AMD_PROCESSOR_TOPOLOGY_ECX AmdProcessorTopologyEcx;
CPUID_AMD_VIR_PHY_ADDRESS_SIZE_ECX AmdVirPhyAddressSizeEcx;
UINT32 MaxStandardCpuIdIndex;
UINT32 MaxExtendedCpuIdIndex;
UINT32 SubIndex;
UINTN LevelType;
UINT32 MaxLogicProcessorsPerPackage;
UINT32 MaxCoresPerPackage;
UINT32 MaxThreadPerPackageMask;
UINT32 ActualThreadPerPackageMask;
UINT32 MaxCoresPerNode;
UINT32 CorePerNodeMask;
UINT32 ApicIdShift;
UINTN ThreadBits;
UINTN CoreBits;
//
// Check if the processor is capable of supporting more than one logical processor.
@ -998,24 +1033,24 @@ GetProcessorLocationByApicId (
return;
}
//
// Assume three-level mapping of APIC ID: Package|Core|Thread.
//
ThreadBits = 0;
CoreBits = 0;
//
// Assume three-level mapping of APIC ID: Package:Core:SMT.
// Get max index of CPUID
//
TopologyLeafSupported = FALSE;
//
// Get the max index of basic CPUID
//
AsmCpuid(CPUID_SIGNATURE, &MaxCpuIdIndex, NULL, NULL, NULL);
AsmCpuid(CPUID_SIGNATURE, &MaxStandardCpuIdIndex, NULL, NULL, NULL);
AsmCpuid(CPUID_EXTENDED_FUNCTION, &MaxExtendedCpuIdIndex, NULL, NULL, NULL);
//
// If the extended topology enumeration leaf is available, it
// is the preferred mechanism for enumerating topology.
//
if (MaxCpuIdIndex >= CPUID_EXTENDED_TOPOLOGY) {
TopologyLeafSupported = FALSE;
if (MaxStandardCpuIdIndex >= CPUID_EXTENDED_TOPOLOGY) {
AsmCpuidEx(
CPUID_EXTENDED_TOPOLOGY,
0,
@ -1065,21 +1100,79 @@ GetProcessorLocationByApicId (
}
if (!TopologyLeafSupported) {
//
// Get logical processor count
//
AsmCpuid(CPUID_VERSION_INFO, NULL, &VersionInfoEbx.Uint32, NULL, NULL);
MaxLogicProcessorsPerPackage = VersionInfoEbx.Bits.MaximumAddressableIdsForLogicalProcessors;
if (MaxCpuIdIndex >= CPUID_CACHE_PARAMS) {
AsmCpuidEx(CPUID_CACHE_PARAMS, 0, &CacheParamsEax.Uint32, NULL, NULL, NULL);
MaxCoresPerPackage = CacheParamsEax.Bits.MaximumAddressableIdsForLogicalProcessors + 1;
//
// Assume single-core processor
//
MaxCoresPerPackage = 1;
//
// Check for topology extensions on AMD processor
//
if (StandardSignatureIsAuthenticAMD()) {
if (MaxExtendedCpuIdIndex >= CPUID_AMD_PROCESSOR_TOPOLOGY) {
AsmCpuid(CPUID_EXTENDED_CPU_SIG, NULL, NULL, &AmdExtendedCpuSigEcx.Uint32, NULL);
if (AmdExtendedCpuSigEcx.Bits.TopologyExtensions != 0) {
AsmCpuid(CPUID_AMD_PROCESSOR_TOPOLOGY, NULL, &AmdProcessorTopologyEbx.Uint32,
&AmdProcessorTopologyEcx.Uint32, NULL);
//
// Get cores per processor package
//
MaxCoresPerPackage = MaxLogicProcessorsPerPackage / (AmdProcessorTopologyEbx.Bits.ThreadsPerCore + 1);
//
// Account for actual thread count (e.g., SMT disabled)
//
AsmCpuid(CPUID_VIR_PHY_ADDRESS_SIZE, NULL, NULL, &AmdVirPhyAddressSizeEcx.Uint32, NULL);
MaxThreadPerPackageMask = 1 << AmdVirPhyAddressSizeEcx.Bits.ApicIdCoreIdSize;
ActualThreadPerPackageMask = 1;
while (ActualThreadPerPackageMask < MaxLogicProcessorsPerPackage) {
ActualThreadPerPackageMask <<= 1;
}
//
// Adjust APIC Id to report concatenation of Package|Core|Thread.
//
if (ActualThreadPerPackageMask < MaxThreadPerPackageMask) {
MaxCoresPerNode = MaxCoresPerPackage / (AmdProcessorTopologyEcx.Bits.NodesPerProcessor + 1);
CorePerNodeMask = 1;
while (CorePerNodeMask < MaxCoresPerNode) {
CorePerNodeMask <<= 1;
}
CorePerNodeMask -= 1;
ApicIdShift = 0;
do {
ApicIdShift += 1;
ActualThreadPerPackageMask <<= 1;
} while (ActualThreadPerPackageMask < MaxThreadPerPackageMask);
InitialApicId = ((InitialApicId & ~CorePerNodeMask) >> ApicIdShift) | (InitialApicId & CorePerNodeMask);
}
}
}
}
else {
//
// Must be a single-core processor.
// Extract core count based on CACHE information
//
MaxCoresPerPackage = 1;
if (MaxStandardCpuIdIndex >= CPUID_CACHE_PARAMS) {
AsmCpuidEx(CPUID_CACHE_PARAMS, 0, &CacheParamsEax.Uint32, NULL, NULL, NULL);
if (CacheParamsEax.Uint32 != 0) {
MaxCoresPerPackage = CacheParamsEax.Bits.MaximumAddressableIdsForLogicalProcessors + 1;
}
}
}
ThreadBits = (UINTN)(HighBitSet32(MaxLogicProcessorsPerPackage / MaxCoresPerPackage - 1) + 1);
CoreBits = (UINTN)(HighBitSet32(MaxCoresPerPackage - 1) + 1); }
CoreBits = (UINTN)(HighBitSet32(MaxCoresPerPackage - 1) + 1);
}
if (Thread != NULL) {
*Thread = InitialApicId & ((1 << ThreadBits) - 1);

View File

@ -5,6 +5,8 @@
which have xAPIC and x2APIC modes.
Copyright (c) 2010 - 2016, Intel Corporation. All rights reserved.<BR>
Copyright (c) 2017, AMD Inc. All rights reserved.<BR>
This program and the accompanying materials
are licensed and made available under the terms and conditions of the BSD License
which accompanies this distribution. The full text of the license may be found at
@ -16,6 +18,7 @@
**/
#include <Register/Cpuid.h>
#include <Register/Amd/Cpuid.h>
#include <Register/Msr.h>
#include <Register/LocalApic.h>
@ -30,6 +33,28 @@
// Library internal functions
//
/**
Determine if the standard CPU signature is "AuthenticAMD".
@retval TRUE The CPU signature matches.
@retval FALSE The CPU signature does not match.
**/
BOOLEAN
StandardSignatureIsAuthenticAMD (
VOID
)
{
UINT32 RegEbx;
UINT32 RegEcx;
UINT32 RegEdx;
AsmCpuid(CPUID_SIGNATURE, NULL, &RegEbx, &RegEcx, &RegEdx);
return (RegEbx == CPUID_SIGNATURE_AUTHENTIC_AMD_EBX &&
RegEcx == CPUID_SIGNATURE_AUTHENTIC_AMD_ECX &&
RegEdx == CPUID_SIGNATURE_AUTHENTIC_AMD_EDX);
}
/**
Determine if the CPU supports the Local APIC Base Address MSR.
@ -1062,19 +1087,29 @@ GetProcessorLocationByApicId (
)
{
BOOLEAN TopologyLeafSupported;
UINTN ThreadBits;
UINTN CoreBits;
CPUID_VERSION_INFO_EBX VersionInfoEbx;
CPUID_VERSION_INFO_EDX VersionInfoEdx;
CPUID_CACHE_PARAMS_EAX CacheParamsEax;
CPUID_EXTENDED_TOPOLOGY_EAX ExtendedTopologyEax;
CPUID_EXTENDED_TOPOLOGY_EBX ExtendedTopologyEbx;
CPUID_EXTENDED_TOPOLOGY_ECX ExtendedTopologyEcx;
UINT32 MaxCpuIdIndex;
CPUID_AMD_EXTENDED_CPU_SIG_ECX AmdExtendedCpuSigEcx;
CPUID_AMD_PROCESSOR_TOPOLOGY_EBX AmdProcessorTopologyEbx;
CPUID_AMD_PROCESSOR_TOPOLOGY_ECX AmdProcessorTopologyEcx;
CPUID_AMD_VIR_PHY_ADDRESS_SIZE_ECX AmdVirPhyAddressSizeEcx;
UINT32 MaxStandardCpuIdIndex;
UINT32 MaxExtendedCpuIdIndex;
UINT32 SubIndex;
UINTN LevelType;
UINT32 MaxLogicProcessorsPerPackage;
UINT32 MaxCoresPerPackage;
UINT32 MaxThreadPerPackageMask;
UINT32 ActualThreadPerPackageMask;
UINT32 MaxCoresPerNode;
UINT32 CorePerNodeMask;
UINT32 ApicIdShift;
UINTN ThreadBits;
UINTN CoreBits;
//
// Check if the processor is capable of supporting more than one logical processor.
@ -1093,24 +1128,24 @@ GetProcessorLocationByApicId (
return;
}
//
// Assume three-level mapping of APIC ID: Package|Core|Thread.
//
ThreadBits = 0;
CoreBits = 0;
//
// Assume three-level mapping of APIC ID: Package:Core:SMT.
// Get max index of CPUID
//
TopologyLeafSupported = FALSE;
//
// Get the max index of basic CPUID
//
AsmCpuid(CPUID_SIGNATURE, &MaxCpuIdIndex, NULL, NULL, NULL);
AsmCpuid(CPUID_SIGNATURE, &MaxStandardCpuIdIndex, NULL, NULL, NULL);
AsmCpuid(CPUID_EXTENDED_FUNCTION, &MaxExtendedCpuIdIndex, NULL, NULL, NULL);
//
// If the extended topology enumeration leaf is available, it
// is the preferred mechanism for enumerating topology.
//
if (MaxCpuIdIndex >= CPUID_EXTENDED_TOPOLOGY) {
TopologyLeafSupported = FALSE;
if (MaxStandardCpuIdIndex >= CPUID_EXTENDED_TOPOLOGY) {
AsmCpuidEx(
CPUID_EXTENDED_TOPOLOGY,
0,
@ -1160,21 +1195,79 @@ GetProcessorLocationByApicId (
}
if (!TopologyLeafSupported) {
//
// Get logical processor count
//
AsmCpuid(CPUID_VERSION_INFO, NULL, &VersionInfoEbx.Uint32, NULL, NULL);
MaxLogicProcessorsPerPackage = VersionInfoEbx.Bits.MaximumAddressableIdsForLogicalProcessors;
if (MaxCpuIdIndex >= CPUID_CACHE_PARAMS) {
AsmCpuidEx(CPUID_CACHE_PARAMS, 0, &CacheParamsEax.Uint32, NULL, NULL, NULL);
MaxCoresPerPackage = CacheParamsEax.Bits.MaximumAddressableIdsForLogicalProcessors + 1;
//
// Assume single-core processor
//
MaxCoresPerPackage = 1;
//
// Check for topology extensions on AMD processor
//
if (StandardSignatureIsAuthenticAMD()) {
if (MaxExtendedCpuIdIndex >= CPUID_AMD_PROCESSOR_TOPOLOGY) {
AsmCpuid(CPUID_EXTENDED_CPU_SIG, NULL, NULL, &AmdExtendedCpuSigEcx.Uint32, NULL);
if (AmdExtendedCpuSigEcx.Bits.TopologyExtensions != 0) {
AsmCpuid(CPUID_AMD_PROCESSOR_TOPOLOGY, NULL, &AmdProcessorTopologyEbx.Uint32,
&AmdProcessorTopologyEcx.Uint32, NULL);
//
// Get cores per processor package
//
MaxCoresPerPackage = MaxLogicProcessorsPerPackage / (AmdProcessorTopologyEbx.Bits.ThreadsPerCore + 1);
//
// Account for actual thread count (e.g., SMT disabled)
//
AsmCpuid(CPUID_VIR_PHY_ADDRESS_SIZE, NULL, NULL, &AmdVirPhyAddressSizeEcx.Uint32, NULL);
MaxThreadPerPackageMask = 1 << AmdVirPhyAddressSizeEcx.Bits.ApicIdCoreIdSize;
ActualThreadPerPackageMask = 1;
while (ActualThreadPerPackageMask < MaxLogicProcessorsPerPackage) {
ActualThreadPerPackageMask <<= 1;
}
//
// Adjust APIC Id to report concatenation of Package|Core|Thread.
//
if (ActualThreadPerPackageMask < MaxThreadPerPackageMask) {
MaxCoresPerNode = MaxCoresPerPackage / (AmdProcessorTopologyEcx.Bits.NodesPerProcessor + 1);
CorePerNodeMask = 1;
while (CorePerNodeMask < MaxCoresPerNode) {
CorePerNodeMask <<= 1;
}
CorePerNodeMask -= 1;
ApicIdShift = 0;
do {
ApicIdShift += 1;
ActualThreadPerPackageMask <<= 1;
} while (ActualThreadPerPackageMask < MaxThreadPerPackageMask);
InitialApicId = ((InitialApicId & ~CorePerNodeMask) >> ApicIdShift) | (InitialApicId & CorePerNodeMask);
}
}
}
}
else {
//
// Must be a single-core processor.
// Extract core count based on CACHE information
//
MaxCoresPerPackage = 1;
if (MaxStandardCpuIdIndex >= CPUID_CACHE_PARAMS) {
AsmCpuidEx(CPUID_CACHE_PARAMS, 0, &CacheParamsEax.Uint32, NULL, NULL, NULL);
if (CacheParamsEax.Uint32 != 0) {
MaxCoresPerPackage = CacheParamsEax.Bits.MaximumAddressableIdsForLogicalProcessors + 1;
}
}
}
ThreadBits = (UINTN)(HighBitSet32(MaxLogicProcessorsPerPackage / MaxCoresPerPackage - 1) + 1);
CoreBits = (UINTN)(HighBitSet32(MaxCoresPerPackage - 1) + 1); }
CoreBits = (UINTN)(HighBitSet32(MaxCoresPerPackage - 1) + 1);
}
if (Thread != NULL) {
*Thread = InitialApicId & ((1 << ThreadBits) - 1);