ArmPlatformPkg/PL031RealTimeClockLib: Implement PL031 RTC drive

git-svn-id: https://edk2.svn.sourceforge.net/svnroot/edk2/trunk/edk2@11793 6f19259b-4bc3-4df7-8a09-765794883524
This commit is contained in:
oliviermartin 2011-06-11 11:20:27 +00:00
parent 99127e9699
commit 0f4386e775
5 changed files with 511 additions and 16 deletions

View File

@ -92,6 +92,9 @@
#define SP804_TIMER2_BASE (ARM_EB_BOARD_PERIPH_BASE + 0x12000)
#define SP804_TIMER3_BASE (ARM_EB_BOARD_PERIPH_BASE + 0x12020)
// PL301 RTC
#define PL031_RTC_BASE (ARM_EB_BOARD_PERIPH_BASE + 0x17000)
// Dynamic Memory Controller Base
#define ARM_EB_DMC_BASE 0x10018000
@ -119,6 +122,10 @@
//#define ARM_EB_L2x0_CTLR_BASE 0x1E00A000*/
// PL031 RTC - Other settings
#define PL031_PPM_ACCURACY 300000000
/*******************************************
// EFI Memory Map in Permanent Memory (DRAM)
*******************************************/

View File

@ -126,6 +126,9 @@
#define ARM_VE_DECPROT_BIT_NMC_TZASC_LOCK (1 << 4)
#define ARM_VE_DECPROT_BIT_SMC_TZASC_LOCK (1 << 5)
// PL031 RTC - Other settings
#define PL031_PPM_ACCURACY 300000000
// PL111 Lcd
#define PL111_CLCD_CORE_TILE_VIDEO_MODE_OSC_ID 1

View File

@ -0,0 +1,59 @@
/** @file
*
* Copyright (c) 2011, ARM Limited. All rights reserved.
*
* This program and the accompanying materials
* are licensed and made available under the terms and conditions of the BSD License
* which accompanies this distribution. The full text of the license may be found at
* http://opensource.org/licenses/bsd-license.php
*
* THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS,
* WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED.
*
**/
#ifndef __PL031_REAL_TIME_CLOCK_H__
#define __PL031_REAL_TIME_CLOCK_H__
#include <Base.h>
#include <ArmPlatform.h>
// PL031 Registers
#define PL031_RTC_DR_DATA_REGISTER (PL031_RTC_BASE + 0x000)
#define PL031_RTC_MR_MATCH_REGISTER (PL031_RTC_BASE + 0x004)
#define PL031_RTC_LR_LOAD_REGISTER (PL031_RTC_BASE + 0x008)
#define PL031_RTC_CR_CONTROL_REGISTER (PL031_RTC_BASE + 0x00C)
#define PL031_RTC_IMSC_IRQ_MASK_SET_CLEAR_REGISTER (PL031_RTC_BASE + 0x010)
#define PL031_RTC_RIS_RAW_IRQ_STATUS_REGISTER (PL031_RTC_BASE + 0x014)
#define PL031_RTC_MIS_MASKED_IRQ_STATUS_REGISTER (PL031_RTC_BASE + 0x018)
#define PL031_RTC_ICR_IRQ_CLEAR_REGISTER (PL031_RTC_BASE + 0x01C)
#define PL031_RTC_PERIPH_ID0 (PL031_RTC_BASE + 0xFE0)
#define PL031_RTC_PERIPH_ID1 (PL031_RTC_BASE + 0xFE4)
#define PL031_RTC_PERIPH_ID2 (PL031_RTC_BASE + 0xFE8)
#define PL031_RTC_PERIPH_ID3 (PL031_RTC_BASE + 0xFEC)
#define PL031_RTC_PCELL_ID0 (PL031_RTC_BASE + 0xFF0)
#define PL031_RTC_PCELL_ID1 (PL031_RTC_BASE + 0xFF4)
#define PL031_RTC_PCELL_ID2 (PL031_RTC_BASE + 0xFF8)
#define PL031_RTC_PCELL_ID3 (PL031_RTC_BASE + 0xFFC)
// PL031 Values
#define PL031_RTC_ENABLED 0x00000001
#define PL031_SET_IRQ_MASK 0x00000001
#define PL031_IRQ_TRIGGERED 0x00000001
#define PL031_CLEAR_IRQ 0x00000001
#define PL031_COUNTS_PER_SECOND 1
// Define EPOCH (1970-JANUARY-01) in the Julian Date representation
#define EPOCH_JULIAN_DATE 2440588
// Seconds per unit
#define SEC_PER_MIN ((UINTN) 60)
#define SEC_PER_HOUR ((UINTN) 3600)
#define SEC_PER_DAY ((UINTN) 86400)
#define SEC_PER_MONTH ((UINTN) 2,592,000)
#define SEC_PER_YEAR ((UINTN) 31,536,000)
#endif

View File

@ -15,12 +15,218 @@
**/
#include <Base.h>
#include <Uefi.h>
#include <PiDxe.h>
#include <Library/BaseLib.h>
#include <Library/DebugLib.h>
#include <Library/UefiLib.h>
#include <Library/IoLib.h>
#include <Library/RealTimeClockLib.h>
#include <Library/MemoryAllocationLib.h>
#include <Library/ArmPlatformSysConfigLib.h>
#include <Library/UefiBootServicesTableLib.h>
#include <Library/UefiRuntimeServicesTableLib.h>
#include <Protocol/RealTimeClock.h>
#include <Guid/GlobalVariable.h>
#include <ArmPlatform.h>
#include <Drivers/PL031RealTimeClock.h>
CHAR16 mTimeZoneVariableName[] = L"PL031_TimeZone";
CHAR16 mDaylightVariableName[] = L"PL031_Daylight";
BOOLEAN mPL031Initialized = FALSE;
EFI_STATUS
IdentifyPL031 (
VOID
)
{
EFI_STATUS Status;
// Check if this is a PrimeCell Peripheral
if( ( MmioRead8( PL031_RTC_PCELL_ID0 ) != 0x0D )
|| ( MmioRead8( PL031_RTC_PCELL_ID1 ) != 0xF0 )
|| ( MmioRead8( PL031_RTC_PCELL_ID2 ) != 0x05 )
|| ( MmioRead8( PL031_RTC_PCELL_ID3 ) != 0xB1 ) ) {
Status = EFI_NOT_FOUND;
goto EXIT;
}
// Check if this PrimeCell Peripheral is the SP805 Watchdog Timer
if( ( MmioRead8( PL031_RTC_PERIPH_ID0 ) != 0x31 )
|| ( MmioRead8( PL031_RTC_PERIPH_ID1 ) != 0x10 )
|| (( MmioRead8( PL031_RTC_PERIPH_ID2 ) & 0xF) != 0x04 )
|| ( MmioRead8( PL031_RTC_PERIPH_ID3 ) != 0x00 ) ) {
Status = EFI_NOT_FOUND;
goto EXIT;
}
Status = EFI_SUCCESS;
EXIT:
return Status;
}
EFI_STATUS
InitializePL031 (
VOID
)
{
EFI_STATUS Status;
// Prepare the hardware
Status = IdentifyPL031();
if (EFI_ERROR (Status)) {
goto EXIT;
}
// Ensure interrupts are masked. We do not want RTC interrupts in UEFI
if ( (MmioRead32( PL031_RTC_IMSC_IRQ_MASK_SET_CLEAR_REGISTER ) & PL031_SET_IRQ_MASK) != PL031_SET_IRQ_MASK ) {
MmioOr32( PL031_RTC_IMSC_IRQ_MASK_SET_CLEAR_REGISTER, PL031_SET_IRQ_MASK);
}
// Clear any existing interrupts
if ( (MmioRead32( PL031_RTC_RIS_RAW_IRQ_STATUS_REGISTER ) & PL031_IRQ_TRIGGERED) == PL031_IRQ_TRIGGERED ) {
MmioOr32( PL031_RTC_ICR_IRQ_CLEAR_REGISTER, PL031_CLEAR_IRQ);
}
// Start the clock counter
if ( (MmioRead32( PL031_RTC_CR_CONTROL_REGISTER ) & PL031_RTC_ENABLED) != PL031_RTC_ENABLED ) {
MmioOr32( PL031_RTC_CR_CONTROL_REGISTER, PL031_RTC_ENABLED);
}
mPL031Initialized = TRUE;
EXIT:
return Status;
}
/**
Converts Epoch seconds (elapsed since 1970 JANUARY 01, 00:00:00 UTC) to EFI_TIME
**/
VOID
EpochToEfiTime (
IN UINTN EpochSeconds,
OUT EFI_TIME *Time
)
{
UINTN a;
UINTN b;
UINTN c;
UINTN d;
UINTN g;
UINTN j;
UINTN m;
UINTN y;
UINTN da;
UINTN db;
UINTN dc;
UINTN dg;
UINTN hh;
UINTN mm;
UINTN ss;
UINTN J;
if( Time->Daylight == TRUE) {
}
J = (EpochSeconds / 86400) + 2440588;
j = J + 32044;
g = j / 146097;
dg = j % 146097;
c = (((dg / 36524) + 1) * 3) / 4;
dc = dg - (c * 36524);
b = dc / 1461;
db = dc % 1461;
a = (((db / 365) + 1) * 3) / 4;
da = db - (a * 365);
y = (g * 400) + (c * 100) + (b * 4) + a;
m = (((da * 5) + 308) / 153) - 2;
d = da - (((m + 4) * 153) / 5) + 122;
Time->Year = y - 4800 + ((m + 2) / 12);
Time->Month = ((m + 2) % 12) + 1;
Time->Day = d + 1;
ss = EpochSeconds % 60;
a = (EpochSeconds - ss) / 60;
mm = a % 60;
b = (a - mm) / 60;
hh = b % 24;
Time->Hour = hh;
Time->Minute = mm;
Time->Second = ss;
Time->Nanosecond = 0;
}
/**
Converts EFI_TIME to Epoch seconds (elapsed since 1970 JANUARY 01, 00:00:00 UTC)
**/
UINTN
EfiTimeToEpoch (
IN EFI_TIME *Time
)
{
UINTN a;
UINTN y;
UINTN m;
UINTN JulianDate; // Absolute Julian Date representation of the supplied Time
UINTN EpochDays; // Number of days elapsed since EPOCH_JULIAN_DAY
UINTN EpochSeconds;
a = (14 - Time->Month) / 12 ;
y = Time->Year + 4800 - a;
m = Time->Month + (12*a) - 3;
JulianDate = Time->Day + ((153*m + 2)/5) + (365*y) + (y/4) - (y/100) + (y/400) - 32045;
ASSERT( JulianDate > EPOCH_JULIAN_DATE );
EpochDays = JulianDate - EPOCH_JULIAN_DATE;
EpochSeconds = (EpochDays * SEC_PER_DAY) + ((UINTN)Time->Hour * SEC_PER_HOUR) + (Time->Minute * SEC_PER_MIN) + Time->Second;
return EpochSeconds;
}
BOOLEAN
IsLeapYear (
IN EFI_TIME *Time
)
{
if (Time->Year % 4 == 0) {
if (Time->Year % 100 == 0) {
if (Time->Year % 400 == 0) {
return TRUE;
} else {
return FALSE;
}
} else {
return TRUE;
}
} else {
return FALSE;
}
}
BOOLEAN
DayValid (
IN EFI_TIME *Time
)
{
INTN DayOfMonth[12] = { 31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 };
if (Time->Day < 1 ||
Time->Day > DayOfMonth[Time->Month - 1] ||
(Time->Month == 2 && (!IsLeapYear (Time) && Time->Day > 28))
) {
return FALSE;
}
return TRUE;
}
/**
Returns the current time and date information, and the time-keeping capabilities
@ -42,10 +248,119 @@ LibGetTime (
OUT EFI_TIME_CAPABILITIES *Capabilities
)
{
//
// Fill in Time and Capabilities via data from you RTC
//
return EFI_DEVICE_ERROR;
EFI_STATUS Status = EFI_SUCCESS;
UINTN EpochSeconds;
INT16 *TimeZone = 0;
UINTN *Daylight = 0;
// Initialize the hardware if not already done
if( !mPL031Initialized ) {
Status = InitializePL031();
if (EFI_ERROR (Status)) {
goto EXIT;
}
}
// Snapshot the time as early in the function call as possible
// On some platforms we may have access to a battery backed up hardware clock.
// If such RTC exists try to use it first.
Status = ArmPlatformSysConfigGet (SYS_CFG_RTC, &EpochSeconds);
if (Status == EFI_UNSUPPORTED) {
// Battery backed up hardware RTC does not exist, revert to PL031
EpochSeconds = MmioRead32( PL031_RTC_DR_DATA_REGISTER );
Status = EFI_SUCCESS;
} else if (EFI_ERROR (Status)) {
// Battery backed up hardware RTC exists but could not be read due to error. Abort.
goto EXIT;
} else {
// Battery backed up hardware RTC exists and we read the time correctly from it.
// Now sync the PL031 to the new time.
MmioWrite32( PL031_RTC_LR_LOAD_REGISTER, EpochSeconds);
}
// Ensure Time is a valid pointer
if( Time == NULL ) {
Status = EFI_INVALID_PARAMETER;
goto EXIT;
}
// Get the current time zone information from non-volatile storage
TimeZone = (INT16 *)GetVariable(mTimeZoneVariableName, &gEfiGlobalVariableGuid);
if( TimeZone == NULL ) {
// The time zone variable does not exist in non-volatile storage, so create it.
Time->TimeZone = EFI_UNSPECIFIED_TIMEZONE;
// Store it
Status = gRT->SetVariable (
mTimeZoneVariableName,
&gEfiGlobalVariableGuid,
EFI_VARIABLE_NON_VOLATILE | EFI_VARIABLE_BOOTSERVICE_ACCESS | EFI_VARIABLE_RUNTIME_ACCESS,
sizeof(Time->TimeZone),
&(Time->TimeZone)
);
if (EFI_ERROR (Status)) {
DEBUG((EFI_D_ERROR,"LibGetTime: ERROR: TimeZone\n"));
goto EXIT;
}
} else {
// Got the time zone
Time->TimeZone = *TimeZone;
FreePool(TimeZone);
// Check TimeZone bounds: -1440 to 1440 or 2047
if( (( Time->TimeZone < -1440 ) || ( Time->TimeZone > 1440 ))
&& ( Time->TimeZone != EFI_UNSPECIFIED_TIMEZONE) ) {
Time->TimeZone = EFI_UNSPECIFIED_TIMEZONE;
}
// Adjust for the correct time zone
if( Time->TimeZone != EFI_UNSPECIFIED_TIMEZONE ) {
EpochSeconds += Time->TimeZone * SEC_PER_MIN;
}
}
// Get the current daylight information from non-volatile storage
Daylight = (UINTN *)GetVariable(mDaylightVariableName, &gEfiGlobalVariableGuid);
if( Daylight == NULL ) {
// The daylight variable does not exist in non-volatile storage, so create it.
Time->Daylight = 0;
// Store it
Status = gRT->SetVariable (
mDaylightVariableName,
&gEfiGlobalVariableGuid,
EFI_VARIABLE_NON_VOLATILE | EFI_VARIABLE_BOOTSERVICE_ACCESS | EFI_VARIABLE_RUNTIME_ACCESS,
sizeof(Time->Daylight),
&(Time->Daylight)
);
if (EFI_ERROR (Status)) {
DEBUG((EFI_D_ERROR,"LibGetTime: ERROR: Daylight\n"));
goto EXIT;
}
} else {
// Got the daylight information
Time->Daylight = *Daylight;
FreePool(Daylight);
// Adjust for the correct period
if( (Time->Daylight & EFI_TIME_IN_DAYLIGHT) == EFI_TIME_IN_DAYLIGHT ) {
// Convert to adjusted time, i.e. spring forwards one hour
EpochSeconds += SEC_PER_HOUR;
}
}
// Convert from internal 32-bit time to UEFI time
EpochToEfiTime( EpochSeconds, Time );
// Update the Capabilities info
if( Capabilities != NULL ) {
Capabilities->Resolution = PL031_COUNTS_PER_SECOND; /* PL031 runs at frequency 1Hz */
Capabilities->Accuracy = PL031_PPM_ACCURACY; /* Accuracy in ppm multiplied by 1,000,000, e.g. for 50ppm set 50,000,000 */
Capabilities->SetsToZero = FALSE; /* FALSE: Setting the time does not clear the values below the resolution level */
}
EXIT:
return Status;
}
@ -65,10 +380,104 @@ LibSetTime (
IN EFI_TIME *Time
)
{
EFI_STATUS Status;
UINTN EpochSeconds;
// Because the PL031 is a 32-bit counter counting seconds,
// the maximum time span is just over 136 years.
// Time is stored in Unix Epoch format, so it starts in 1970,
// Therefore it can not exceed the year 2106.
// This is not a problem for UEFI, as the current spec limits the years
// to the range 1998 .. 2011
// Check the input parameters' range.
if ( ( Time->Year < 1998 ) ||
( Time->Year > 2099 ) ||
( Time->Month < 1 ) ||
( Time->Month > 12 ) ||
(!DayValid (Time) ) ||
( Time->Hour > 23 ) ||
( Time->Minute > 59 ) ||
( Time->Second > 59 ) ||
( Time->Nanosecond > 999999999 ) ||
( !((Time->TimeZone == EFI_UNSPECIFIED_TIMEZONE) || ((Time->TimeZone >= -1440) && (Time->TimeZone <= 1440))) ) ||
( Time->Daylight & (~(EFI_TIME_ADJUST_DAYLIGHT | EFI_TIME_IN_DAYLIGHT)) )
) {
Status = EFI_INVALID_PARAMETER;
goto EXIT;
}
// Initialize the hardware if not already done
if( !mPL031Initialized ) {
Status = InitializePL031();
if (EFI_ERROR (Status)) {
goto EXIT;
}
}
EpochSeconds = EfiTimeToEpoch( Time );
// Adjust for the correct time zone, i.e. convert to UTC time zone
if( Time->TimeZone != EFI_UNSPECIFIED_TIMEZONE ) {
EpochSeconds -= Time->TimeZone * SEC_PER_MIN;
}
// TODO: Automatic Daylight activation
// Adjust for the correct period
if( (Time->Daylight & EFI_TIME_IN_DAYLIGHT) == EFI_TIME_IN_DAYLIGHT ) {
// Convert to un-adjusted time, i.e. fall back one hour
EpochSeconds -= SEC_PER_HOUR;
}
// On some platforms we may have access to a battery backed up hardware clock.
//
// Use Time, to set the time in your RTC hardware
// If such RTC exists then it must be updated first, before the PL031,
// to minimise any time drift. This is important because the battery backed-up
// RTC maintains the master time for the platform across reboots.
//
return EFI_DEVICE_ERROR;
// If such RTC does not exist then the following function returns UNSUPPORTED.
Status = ArmPlatformSysConfigSet (SYS_CFG_RTC, EpochSeconds);
if ((EFI_ERROR (Status)) && (Status != EFI_UNSUPPORTED)){
// Any status message except SUCCESS and UNSUPPORTED indicates a hardware failure.
goto EXIT;
}
// Set the PL031
MmioWrite32( PL031_RTC_LR_LOAD_REGISTER, EpochSeconds);
// The accesses to Variable Services can be very slow, because we may be writing to Flash.
// Do this after having set the RTC.
// Save the current time zone information into non-volatile storage
Status = gRT->SetVariable (
mTimeZoneVariableName,
&gEfiGlobalVariableGuid,
EFI_VARIABLE_NON_VOLATILE | EFI_VARIABLE_BOOTSERVICE_ACCESS | EFI_VARIABLE_RUNTIME_ACCESS,
sizeof(Time->TimeZone),
&(Time->TimeZone)
);
if (EFI_ERROR (Status)) {
DEBUG((EFI_D_ERROR,"LibSetTime: ERROR: TimeZone\n"));
goto EXIT;
}
// Save the current daylight information into non-volatile storage
Status = gRT->SetVariable (
mDaylightVariableName,
&gEfiGlobalVariableGuid,
EFI_VARIABLE_NON_VOLATILE | EFI_VARIABLE_BOOTSERVICE_ACCESS | EFI_VARIABLE_RUNTIME_ACCESS,
sizeof(Time->Daylight),
&(Time->Daylight)
);
if (EFI_ERROR (Status)) {
DEBUG((EFI_D_ERROR,"LibSetTime: ERROR: Daylight\n"));
goto EXIT;
}
EXIT:
return Status;
}
@ -140,10 +549,24 @@ LibRtcInitialize (
IN EFI_SYSTEM_TABLE *SystemTable
)
{
//
// Do some initialization if reqruied to turn on the RTC
//
return EFI_SUCCESS;
EFI_STATUS Status;
EFI_HANDLE Handle;
// Setup the setters and getters
gRT->GetTime = LibGetTime;
gRT->SetTime = LibSetTime;
gRT->GetWakeupTime = LibGetWakeupTime;
gRT->SetWakeupTime = LibSetWakeupTime;
// Install the protocol
Handle = NULL;
Status = gBS->InstallMultipleProtocolInterfaces (
&Handle,
&gEfiRealTimeClockArchProtocolGuid, NULL,
NULL
);
return Status;
}
@ -165,7 +588,7 @@ LibRtcVirtualNotifyEvent (
//
// Only needed if you are going to support the OS calling RTC functions in virtual mode.
// You will need to call EfiConvertPointer (). To convert any stored physical addresses
// to virtual address. After the OS transistions to calling in virtual mode, all future
// to virtual address. After the OS transitions to calling in virtual mode, all future
// runtime calls will be made in virtual mode.
//
return;

View File

@ -29,7 +29,10 @@
[Packages]
MdePkg/MdePkg.dec
EmbeddedPkg/EmbeddedPkg.dec
ArmPlatformPkg/ArmPlatformPkg.dec
[LibraryClasses]
IoLib
UefiLib
DebugLib
ArmPlatformSysConfigLib