mirror of https://github.com/acidanthera/audk.git
ArmPlatformPkg/PL031RealTimeClockLib: Implement PL031 RTC drive
git-svn-id: https://edk2.svn.sourceforge.net/svnroot/edk2/trunk/edk2@11793 6f19259b-4bc3-4df7-8a09-765794883524
This commit is contained in:
parent
99127e9699
commit
0f4386e775
|
@ -92,6 +92,9 @@
|
|||
#define SP804_TIMER2_BASE (ARM_EB_BOARD_PERIPH_BASE + 0x12000)
|
||||
#define SP804_TIMER3_BASE (ARM_EB_BOARD_PERIPH_BASE + 0x12020)
|
||||
|
||||
// PL301 RTC
|
||||
#define PL031_RTC_BASE (ARM_EB_BOARD_PERIPH_BASE + 0x17000)
|
||||
|
||||
// Dynamic Memory Controller Base
|
||||
#define ARM_EB_DMC_BASE 0x10018000
|
||||
|
||||
|
@ -119,6 +122,10 @@
|
|||
//#define ARM_EB_L2x0_CTLR_BASE 0x1E00A000*/
|
||||
|
||||
|
||||
// PL031 RTC - Other settings
|
||||
#define PL031_PPM_ACCURACY 300000000
|
||||
|
||||
|
||||
/*******************************************
|
||||
// EFI Memory Map in Permanent Memory (DRAM)
|
||||
*******************************************/
|
||||
|
|
|
@ -126,6 +126,9 @@
|
|||
#define ARM_VE_DECPROT_BIT_NMC_TZASC_LOCK (1 << 4)
|
||||
#define ARM_VE_DECPROT_BIT_SMC_TZASC_LOCK (1 << 5)
|
||||
|
||||
// PL031 RTC - Other settings
|
||||
#define PL031_PPM_ACCURACY 300000000
|
||||
|
||||
|
||||
// PL111 Lcd
|
||||
#define PL111_CLCD_CORE_TILE_VIDEO_MODE_OSC_ID 1
|
||||
|
|
|
@ -0,0 +1,59 @@
|
|||
/** @file
|
||||
*
|
||||
* Copyright (c) 2011, ARM Limited. All rights reserved.
|
||||
*
|
||||
* This program and the accompanying materials
|
||||
* are licensed and made available under the terms and conditions of the BSD License
|
||||
* which accompanies this distribution. The full text of the license may be found at
|
||||
* http://opensource.org/licenses/bsd-license.php
|
||||
*
|
||||
* THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED.
|
||||
*
|
||||
**/
|
||||
|
||||
|
||||
#ifndef __PL031_REAL_TIME_CLOCK_H__
|
||||
#define __PL031_REAL_TIME_CLOCK_H__
|
||||
|
||||
#include <Base.h>
|
||||
#include <ArmPlatform.h>
|
||||
|
||||
// PL031 Registers
|
||||
#define PL031_RTC_DR_DATA_REGISTER (PL031_RTC_BASE + 0x000)
|
||||
#define PL031_RTC_MR_MATCH_REGISTER (PL031_RTC_BASE + 0x004)
|
||||
#define PL031_RTC_LR_LOAD_REGISTER (PL031_RTC_BASE + 0x008)
|
||||
#define PL031_RTC_CR_CONTROL_REGISTER (PL031_RTC_BASE + 0x00C)
|
||||
#define PL031_RTC_IMSC_IRQ_MASK_SET_CLEAR_REGISTER (PL031_RTC_BASE + 0x010)
|
||||
#define PL031_RTC_RIS_RAW_IRQ_STATUS_REGISTER (PL031_RTC_BASE + 0x014)
|
||||
#define PL031_RTC_MIS_MASKED_IRQ_STATUS_REGISTER (PL031_RTC_BASE + 0x018)
|
||||
#define PL031_RTC_ICR_IRQ_CLEAR_REGISTER (PL031_RTC_BASE + 0x01C)
|
||||
#define PL031_RTC_PERIPH_ID0 (PL031_RTC_BASE + 0xFE0)
|
||||
#define PL031_RTC_PERIPH_ID1 (PL031_RTC_BASE + 0xFE4)
|
||||
#define PL031_RTC_PERIPH_ID2 (PL031_RTC_BASE + 0xFE8)
|
||||
#define PL031_RTC_PERIPH_ID3 (PL031_RTC_BASE + 0xFEC)
|
||||
#define PL031_RTC_PCELL_ID0 (PL031_RTC_BASE + 0xFF0)
|
||||
#define PL031_RTC_PCELL_ID1 (PL031_RTC_BASE + 0xFF4)
|
||||
#define PL031_RTC_PCELL_ID2 (PL031_RTC_BASE + 0xFF8)
|
||||
#define PL031_RTC_PCELL_ID3 (PL031_RTC_BASE + 0xFFC)
|
||||
|
||||
// PL031 Values
|
||||
#define PL031_RTC_ENABLED 0x00000001
|
||||
#define PL031_SET_IRQ_MASK 0x00000001
|
||||
#define PL031_IRQ_TRIGGERED 0x00000001
|
||||
#define PL031_CLEAR_IRQ 0x00000001
|
||||
|
||||
#define PL031_COUNTS_PER_SECOND 1
|
||||
|
||||
// Define EPOCH (1970-JANUARY-01) in the Julian Date representation
|
||||
#define EPOCH_JULIAN_DATE 2440588
|
||||
|
||||
// Seconds per unit
|
||||
#define SEC_PER_MIN ((UINTN) 60)
|
||||
#define SEC_PER_HOUR ((UINTN) 3600)
|
||||
#define SEC_PER_DAY ((UINTN) 86400)
|
||||
|
||||
#define SEC_PER_MONTH ((UINTN) 2,592,000)
|
||||
#define SEC_PER_YEAR ((UINTN) 31,536,000)
|
||||
|
||||
#endif
|
|
@ -15,12 +15,218 @@
|
|||
|
||||
**/
|
||||
|
||||
#include <Base.h>
|
||||
#include <Uefi.h>
|
||||
#include <PiDxe.h>
|
||||
#include <Library/BaseLib.h>
|
||||
#include <Library/DebugLib.h>
|
||||
#include <Library/UefiLib.h>
|
||||
#include <Library/IoLib.h>
|
||||
#include <Library/RealTimeClockLib.h>
|
||||
#include <Library/MemoryAllocationLib.h>
|
||||
#include <Library/ArmPlatformSysConfigLib.h>
|
||||
#include <Library/UefiBootServicesTableLib.h>
|
||||
#include <Library/UefiRuntimeServicesTableLib.h>
|
||||
#include <Protocol/RealTimeClock.h>
|
||||
#include <Guid/GlobalVariable.h>
|
||||
#include <ArmPlatform.h>
|
||||
#include <Drivers/PL031RealTimeClock.h>
|
||||
|
||||
CHAR16 mTimeZoneVariableName[] = L"PL031_TimeZone";
|
||||
CHAR16 mDaylightVariableName[] = L"PL031_Daylight";
|
||||
BOOLEAN mPL031Initialized = FALSE;
|
||||
|
||||
EFI_STATUS
|
||||
IdentifyPL031 (
|
||||
VOID
|
||||
)
|
||||
{
|
||||
EFI_STATUS Status;
|
||||
|
||||
// Check if this is a PrimeCell Peripheral
|
||||
if( ( MmioRead8( PL031_RTC_PCELL_ID0 ) != 0x0D )
|
||||
|| ( MmioRead8( PL031_RTC_PCELL_ID1 ) != 0xF0 )
|
||||
|| ( MmioRead8( PL031_RTC_PCELL_ID2 ) != 0x05 )
|
||||
|| ( MmioRead8( PL031_RTC_PCELL_ID3 ) != 0xB1 ) ) {
|
||||
Status = EFI_NOT_FOUND;
|
||||
goto EXIT;
|
||||
}
|
||||
|
||||
// Check if this PrimeCell Peripheral is the SP805 Watchdog Timer
|
||||
if( ( MmioRead8( PL031_RTC_PERIPH_ID0 ) != 0x31 )
|
||||
|| ( MmioRead8( PL031_RTC_PERIPH_ID1 ) != 0x10 )
|
||||
|| (( MmioRead8( PL031_RTC_PERIPH_ID2 ) & 0xF) != 0x04 )
|
||||
|| ( MmioRead8( PL031_RTC_PERIPH_ID3 ) != 0x00 ) ) {
|
||||
Status = EFI_NOT_FOUND;
|
||||
goto EXIT;
|
||||
}
|
||||
|
||||
Status = EFI_SUCCESS;
|
||||
|
||||
EXIT:
|
||||
return Status;
|
||||
}
|
||||
|
||||
EFI_STATUS
|
||||
InitializePL031 (
|
||||
VOID
|
||||
)
|
||||
{
|
||||
EFI_STATUS Status;
|
||||
|
||||
// Prepare the hardware
|
||||
Status = IdentifyPL031();
|
||||
if (EFI_ERROR (Status)) {
|
||||
goto EXIT;
|
||||
}
|
||||
|
||||
// Ensure interrupts are masked. We do not want RTC interrupts in UEFI
|
||||
if ( (MmioRead32( PL031_RTC_IMSC_IRQ_MASK_SET_CLEAR_REGISTER ) & PL031_SET_IRQ_MASK) != PL031_SET_IRQ_MASK ) {
|
||||
MmioOr32( PL031_RTC_IMSC_IRQ_MASK_SET_CLEAR_REGISTER, PL031_SET_IRQ_MASK);
|
||||
}
|
||||
|
||||
// Clear any existing interrupts
|
||||
if ( (MmioRead32( PL031_RTC_RIS_RAW_IRQ_STATUS_REGISTER ) & PL031_IRQ_TRIGGERED) == PL031_IRQ_TRIGGERED ) {
|
||||
MmioOr32( PL031_RTC_ICR_IRQ_CLEAR_REGISTER, PL031_CLEAR_IRQ);
|
||||
}
|
||||
|
||||
// Start the clock counter
|
||||
if ( (MmioRead32( PL031_RTC_CR_CONTROL_REGISTER ) & PL031_RTC_ENABLED) != PL031_RTC_ENABLED ) {
|
||||
MmioOr32( PL031_RTC_CR_CONTROL_REGISTER, PL031_RTC_ENABLED);
|
||||
}
|
||||
|
||||
mPL031Initialized = TRUE;
|
||||
|
||||
EXIT:
|
||||
return Status;
|
||||
}
|
||||
|
||||
/**
|
||||
Converts Epoch seconds (elapsed since 1970 JANUARY 01, 00:00:00 UTC) to EFI_TIME
|
||||
**/
|
||||
VOID
|
||||
EpochToEfiTime (
|
||||
IN UINTN EpochSeconds,
|
||||
OUT EFI_TIME *Time
|
||||
)
|
||||
{
|
||||
UINTN a;
|
||||
UINTN b;
|
||||
UINTN c;
|
||||
UINTN d;
|
||||
UINTN g;
|
||||
UINTN j;
|
||||
UINTN m;
|
||||
UINTN y;
|
||||
UINTN da;
|
||||
UINTN db;
|
||||
UINTN dc;
|
||||
UINTN dg;
|
||||
UINTN hh;
|
||||
UINTN mm;
|
||||
UINTN ss;
|
||||
UINTN J;
|
||||
|
||||
if( Time->Daylight == TRUE) {
|
||||
|
||||
}
|
||||
|
||||
J = (EpochSeconds / 86400) + 2440588;
|
||||
j = J + 32044;
|
||||
g = j / 146097;
|
||||
dg = j % 146097;
|
||||
c = (((dg / 36524) + 1) * 3) / 4;
|
||||
dc = dg - (c * 36524);
|
||||
b = dc / 1461;
|
||||
db = dc % 1461;
|
||||
a = (((db / 365) + 1) * 3) / 4;
|
||||
da = db - (a * 365);
|
||||
y = (g * 400) + (c * 100) + (b * 4) + a;
|
||||
m = (((da * 5) + 308) / 153) - 2;
|
||||
d = da - (((m + 4) * 153) / 5) + 122;
|
||||
|
||||
Time->Year = y - 4800 + ((m + 2) / 12);
|
||||
Time->Month = ((m + 2) % 12) + 1;
|
||||
Time->Day = d + 1;
|
||||
|
||||
ss = EpochSeconds % 60;
|
||||
a = (EpochSeconds - ss) / 60;
|
||||
mm = a % 60;
|
||||
b = (a - mm) / 60;
|
||||
hh = b % 24;
|
||||
|
||||
Time->Hour = hh;
|
||||
Time->Minute = mm;
|
||||
Time->Second = ss;
|
||||
Time->Nanosecond = 0;
|
||||
|
||||
}
|
||||
|
||||
/**
|
||||
Converts EFI_TIME to Epoch seconds (elapsed since 1970 JANUARY 01, 00:00:00 UTC)
|
||||
**/
|
||||
UINTN
|
||||
EfiTimeToEpoch (
|
||||
IN EFI_TIME *Time
|
||||
)
|
||||
{
|
||||
UINTN a;
|
||||
UINTN y;
|
||||
UINTN m;
|
||||
UINTN JulianDate; // Absolute Julian Date representation of the supplied Time
|
||||
UINTN EpochDays; // Number of days elapsed since EPOCH_JULIAN_DAY
|
||||
UINTN EpochSeconds;
|
||||
|
||||
a = (14 - Time->Month) / 12 ;
|
||||
y = Time->Year + 4800 - a;
|
||||
m = Time->Month + (12*a) - 3;
|
||||
|
||||
JulianDate = Time->Day + ((153*m + 2)/5) + (365*y) + (y/4) - (y/100) + (y/400) - 32045;
|
||||
|
||||
ASSERT( JulianDate > EPOCH_JULIAN_DATE );
|
||||
EpochDays = JulianDate - EPOCH_JULIAN_DATE;
|
||||
|
||||
EpochSeconds = (EpochDays * SEC_PER_DAY) + ((UINTN)Time->Hour * SEC_PER_HOUR) + (Time->Minute * SEC_PER_MIN) + Time->Second;
|
||||
|
||||
return EpochSeconds;
|
||||
}
|
||||
|
||||
BOOLEAN
|
||||
IsLeapYear (
|
||||
IN EFI_TIME *Time
|
||||
)
|
||||
{
|
||||
if (Time->Year % 4 == 0) {
|
||||
if (Time->Year % 100 == 0) {
|
||||
if (Time->Year % 400 == 0) {
|
||||
return TRUE;
|
||||
} else {
|
||||
return FALSE;
|
||||
}
|
||||
} else {
|
||||
return TRUE;
|
||||
}
|
||||
} else {
|
||||
return FALSE;
|
||||
}
|
||||
}
|
||||
|
||||
BOOLEAN
|
||||
DayValid (
|
||||
IN EFI_TIME *Time
|
||||
)
|
||||
{
|
||||
INTN DayOfMonth[12] = { 31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 };
|
||||
|
||||
if (Time->Day < 1 ||
|
||||
Time->Day > DayOfMonth[Time->Month - 1] ||
|
||||
(Time->Month == 2 && (!IsLeapYear (Time) && Time->Day > 28))
|
||||
) {
|
||||
return FALSE;
|
||||
}
|
||||
|
||||
return TRUE;
|
||||
}
|
||||
|
||||
/**
|
||||
Returns the current time and date information, and the time-keeping capabilities
|
||||
|
@ -42,10 +248,119 @@ LibGetTime (
|
|||
OUT EFI_TIME_CAPABILITIES *Capabilities
|
||||
)
|
||||
{
|
||||
//
|
||||
// Fill in Time and Capabilities via data from you RTC
|
||||
//
|
||||
return EFI_DEVICE_ERROR;
|
||||
EFI_STATUS Status = EFI_SUCCESS;
|
||||
UINTN EpochSeconds;
|
||||
INT16 *TimeZone = 0;
|
||||
UINTN *Daylight = 0;
|
||||
|
||||
// Initialize the hardware if not already done
|
||||
if( !mPL031Initialized ) {
|
||||
Status = InitializePL031();
|
||||
if (EFI_ERROR (Status)) {
|
||||
goto EXIT;
|
||||
}
|
||||
}
|
||||
|
||||
// Snapshot the time as early in the function call as possible
|
||||
// On some platforms we may have access to a battery backed up hardware clock.
|
||||
// If such RTC exists try to use it first.
|
||||
Status = ArmPlatformSysConfigGet (SYS_CFG_RTC, &EpochSeconds);
|
||||
if (Status == EFI_UNSUPPORTED) {
|
||||
// Battery backed up hardware RTC does not exist, revert to PL031
|
||||
EpochSeconds = MmioRead32( PL031_RTC_DR_DATA_REGISTER );
|
||||
Status = EFI_SUCCESS;
|
||||
} else if (EFI_ERROR (Status)) {
|
||||
// Battery backed up hardware RTC exists but could not be read due to error. Abort.
|
||||
goto EXIT;
|
||||
} else {
|
||||
// Battery backed up hardware RTC exists and we read the time correctly from it.
|
||||
// Now sync the PL031 to the new time.
|
||||
MmioWrite32( PL031_RTC_LR_LOAD_REGISTER, EpochSeconds);
|
||||
}
|
||||
|
||||
// Ensure Time is a valid pointer
|
||||
if( Time == NULL ) {
|
||||
Status = EFI_INVALID_PARAMETER;
|
||||
goto EXIT;
|
||||
}
|
||||
|
||||
// Get the current time zone information from non-volatile storage
|
||||
TimeZone = (INT16 *)GetVariable(mTimeZoneVariableName, &gEfiGlobalVariableGuid);
|
||||
|
||||
if( TimeZone == NULL ) {
|
||||
// The time zone variable does not exist in non-volatile storage, so create it.
|
||||
Time->TimeZone = EFI_UNSPECIFIED_TIMEZONE;
|
||||
// Store it
|
||||
Status = gRT->SetVariable (
|
||||
mTimeZoneVariableName,
|
||||
&gEfiGlobalVariableGuid,
|
||||
EFI_VARIABLE_NON_VOLATILE | EFI_VARIABLE_BOOTSERVICE_ACCESS | EFI_VARIABLE_RUNTIME_ACCESS,
|
||||
sizeof(Time->TimeZone),
|
||||
&(Time->TimeZone)
|
||||
);
|
||||
if (EFI_ERROR (Status)) {
|
||||
DEBUG((EFI_D_ERROR,"LibGetTime: ERROR: TimeZone\n"));
|
||||
goto EXIT;
|
||||
}
|
||||
} else {
|
||||
// Got the time zone
|
||||
Time->TimeZone = *TimeZone;
|
||||
FreePool(TimeZone);
|
||||
|
||||
// Check TimeZone bounds: -1440 to 1440 or 2047
|
||||
if( (( Time->TimeZone < -1440 ) || ( Time->TimeZone > 1440 ))
|
||||
&& ( Time->TimeZone != EFI_UNSPECIFIED_TIMEZONE) ) {
|
||||
Time->TimeZone = EFI_UNSPECIFIED_TIMEZONE;
|
||||
}
|
||||
|
||||
// Adjust for the correct time zone
|
||||
if( Time->TimeZone != EFI_UNSPECIFIED_TIMEZONE ) {
|
||||
EpochSeconds += Time->TimeZone * SEC_PER_MIN;
|
||||
}
|
||||
}
|
||||
|
||||
// Get the current daylight information from non-volatile storage
|
||||
Daylight = (UINTN *)GetVariable(mDaylightVariableName, &gEfiGlobalVariableGuid);
|
||||
|
||||
if( Daylight == NULL ) {
|
||||
// The daylight variable does not exist in non-volatile storage, so create it.
|
||||
Time->Daylight = 0;
|
||||
// Store it
|
||||
Status = gRT->SetVariable (
|
||||
mDaylightVariableName,
|
||||
&gEfiGlobalVariableGuid,
|
||||
EFI_VARIABLE_NON_VOLATILE | EFI_VARIABLE_BOOTSERVICE_ACCESS | EFI_VARIABLE_RUNTIME_ACCESS,
|
||||
sizeof(Time->Daylight),
|
||||
&(Time->Daylight)
|
||||
);
|
||||
if (EFI_ERROR (Status)) {
|
||||
DEBUG((EFI_D_ERROR,"LibGetTime: ERROR: Daylight\n"));
|
||||
goto EXIT;
|
||||
}
|
||||
} else {
|
||||
// Got the daylight information
|
||||
Time->Daylight = *Daylight;
|
||||
FreePool(Daylight);
|
||||
|
||||
// Adjust for the correct period
|
||||
if( (Time->Daylight & EFI_TIME_IN_DAYLIGHT) == EFI_TIME_IN_DAYLIGHT ) {
|
||||
// Convert to adjusted time, i.e. spring forwards one hour
|
||||
EpochSeconds += SEC_PER_HOUR;
|
||||
}
|
||||
}
|
||||
|
||||
// Convert from internal 32-bit time to UEFI time
|
||||
EpochToEfiTime( EpochSeconds, Time );
|
||||
|
||||
// Update the Capabilities info
|
||||
if( Capabilities != NULL ) {
|
||||
Capabilities->Resolution = PL031_COUNTS_PER_SECOND; /* PL031 runs at frequency 1Hz */
|
||||
Capabilities->Accuracy = PL031_PPM_ACCURACY; /* Accuracy in ppm multiplied by 1,000,000, e.g. for 50ppm set 50,000,000 */
|
||||
Capabilities->SetsToZero = FALSE; /* FALSE: Setting the time does not clear the values below the resolution level */
|
||||
}
|
||||
|
||||
EXIT:
|
||||
return Status;
|
||||
}
|
||||
|
||||
|
||||
|
@ -65,10 +380,104 @@ LibSetTime (
|
|||
IN EFI_TIME *Time
|
||||
)
|
||||
{
|
||||
EFI_STATUS Status;
|
||||
UINTN EpochSeconds;
|
||||
|
||||
// Because the PL031 is a 32-bit counter counting seconds,
|
||||
// the maximum time span is just over 136 years.
|
||||
// Time is stored in Unix Epoch format, so it starts in 1970,
|
||||
// Therefore it can not exceed the year 2106.
|
||||
// This is not a problem for UEFI, as the current spec limits the years
|
||||
// to the range 1998 .. 2011
|
||||
|
||||
// Check the input parameters' range.
|
||||
if ( ( Time->Year < 1998 ) ||
|
||||
( Time->Year > 2099 ) ||
|
||||
( Time->Month < 1 ) ||
|
||||
( Time->Month > 12 ) ||
|
||||
(!DayValid (Time) ) ||
|
||||
( Time->Hour > 23 ) ||
|
||||
( Time->Minute > 59 ) ||
|
||||
( Time->Second > 59 ) ||
|
||||
( Time->Nanosecond > 999999999 ) ||
|
||||
( !((Time->TimeZone == EFI_UNSPECIFIED_TIMEZONE) || ((Time->TimeZone >= -1440) && (Time->TimeZone <= 1440))) ) ||
|
||||
( Time->Daylight & (~(EFI_TIME_ADJUST_DAYLIGHT | EFI_TIME_IN_DAYLIGHT)) )
|
||||
) {
|
||||
Status = EFI_INVALID_PARAMETER;
|
||||
goto EXIT;
|
||||
}
|
||||
|
||||
// Initialize the hardware if not already done
|
||||
if( !mPL031Initialized ) {
|
||||
Status = InitializePL031();
|
||||
if (EFI_ERROR (Status)) {
|
||||
goto EXIT;
|
||||
}
|
||||
}
|
||||
|
||||
EpochSeconds = EfiTimeToEpoch( Time );
|
||||
|
||||
// Adjust for the correct time zone, i.e. convert to UTC time zone
|
||||
if( Time->TimeZone != EFI_UNSPECIFIED_TIMEZONE ) {
|
||||
EpochSeconds -= Time->TimeZone * SEC_PER_MIN;
|
||||
}
|
||||
|
||||
// TODO: Automatic Daylight activation
|
||||
|
||||
// Adjust for the correct period
|
||||
if( (Time->Daylight & EFI_TIME_IN_DAYLIGHT) == EFI_TIME_IN_DAYLIGHT ) {
|
||||
// Convert to un-adjusted time, i.e. fall back one hour
|
||||
EpochSeconds -= SEC_PER_HOUR;
|
||||
}
|
||||
|
||||
// On some platforms we may have access to a battery backed up hardware clock.
|
||||
//
|
||||
// Use Time, to set the time in your RTC hardware
|
||||
// If such RTC exists then it must be updated first, before the PL031,
|
||||
// to minimise any time drift. This is important because the battery backed-up
|
||||
// RTC maintains the master time for the platform across reboots.
|
||||
//
|
||||
return EFI_DEVICE_ERROR;
|
||||
// If such RTC does not exist then the following function returns UNSUPPORTED.
|
||||
Status = ArmPlatformSysConfigSet (SYS_CFG_RTC, EpochSeconds);
|
||||
if ((EFI_ERROR (Status)) && (Status != EFI_UNSUPPORTED)){
|
||||
// Any status message except SUCCESS and UNSUPPORTED indicates a hardware failure.
|
||||
goto EXIT;
|
||||
}
|
||||
|
||||
|
||||
// Set the PL031
|
||||
MmioWrite32( PL031_RTC_LR_LOAD_REGISTER, EpochSeconds);
|
||||
|
||||
// The accesses to Variable Services can be very slow, because we may be writing to Flash.
|
||||
// Do this after having set the RTC.
|
||||
|
||||
// Save the current time zone information into non-volatile storage
|
||||
Status = gRT->SetVariable (
|
||||
mTimeZoneVariableName,
|
||||
&gEfiGlobalVariableGuid,
|
||||
EFI_VARIABLE_NON_VOLATILE | EFI_VARIABLE_BOOTSERVICE_ACCESS | EFI_VARIABLE_RUNTIME_ACCESS,
|
||||
sizeof(Time->TimeZone),
|
||||
&(Time->TimeZone)
|
||||
);
|
||||
if (EFI_ERROR (Status)) {
|
||||
DEBUG((EFI_D_ERROR,"LibSetTime: ERROR: TimeZone\n"));
|
||||
goto EXIT;
|
||||
}
|
||||
|
||||
// Save the current daylight information into non-volatile storage
|
||||
Status = gRT->SetVariable (
|
||||
mDaylightVariableName,
|
||||
&gEfiGlobalVariableGuid,
|
||||
EFI_VARIABLE_NON_VOLATILE | EFI_VARIABLE_BOOTSERVICE_ACCESS | EFI_VARIABLE_RUNTIME_ACCESS,
|
||||
sizeof(Time->Daylight),
|
||||
&(Time->Daylight)
|
||||
);
|
||||
if (EFI_ERROR (Status)) {
|
||||
DEBUG((EFI_D_ERROR,"LibSetTime: ERROR: Daylight\n"));
|
||||
goto EXIT;
|
||||
}
|
||||
|
||||
EXIT:
|
||||
return Status;
|
||||
}
|
||||
|
||||
|
||||
|
@ -140,10 +549,24 @@ LibRtcInitialize (
|
|||
IN EFI_SYSTEM_TABLE *SystemTable
|
||||
)
|
||||
{
|
||||
//
|
||||
// Do some initialization if reqruied to turn on the RTC
|
||||
//
|
||||
return EFI_SUCCESS;
|
||||
EFI_STATUS Status;
|
||||
EFI_HANDLE Handle;
|
||||
|
||||
// Setup the setters and getters
|
||||
gRT->GetTime = LibGetTime;
|
||||
gRT->SetTime = LibSetTime;
|
||||
gRT->GetWakeupTime = LibGetWakeupTime;
|
||||
gRT->SetWakeupTime = LibSetWakeupTime;
|
||||
|
||||
// Install the protocol
|
||||
Handle = NULL;
|
||||
Status = gBS->InstallMultipleProtocolInterfaces (
|
||||
&Handle,
|
||||
&gEfiRealTimeClockArchProtocolGuid, NULL,
|
||||
NULL
|
||||
);
|
||||
|
||||
return Status;
|
||||
}
|
||||
|
||||
|
||||
|
@ -165,7 +588,7 @@ LibRtcVirtualNotifyEvent (
|
|||
//
|
||||
// Only needed if you are going to support the OS calling RTC functions in virtual mode.
|
||||
// You will need to call EfiConvertPointer (). To convert any stored physical addresses
|
||||
// to virtual address. After the OS transistions to calling in virtual mode, all future
|
||||
// to virtual address. After the OS transitions to calling in virtual mode, all future
|
||||
// runtime calls will be made in virtual mode.
|
||||
//
|
||||
return;
|
||||
|
|
|
@ -29,7 +29,10 @@
|
|||
[Packages]
|
||||
MdePkg/MdePkg.dec
|
||||
EmbeddedPkg/EmbeddedPkg.dec
|
||||
ArmPlatformPkg/ArmPlatformPkg.dec
|
||||
|
||||
[LibraryClasses]
|
||||
IoLib
|
||||
UefiLib
|
||||
DebugLib
|
||||
ArmPlatformSysConfigLib
|
||||
|
|
Loading…
Reference in New Issue