mirror of https://github.com/acidanthera/audk.git
Update XHCI driver to use PCI IO AllocateBuffer/Map/Unmap to do DMA operation.
Signed-off-by: Elvin Li <elvin.li@intel.com> Reviewed-by: Feng Tian <feng.tian@intel.com> git-svn-id: https://svn.code.sf.net/p/edk2/code/trunk/edk2@14546 6f19259b-4bc3-4df7-8a09-765794883524
This commit is contained in:
parent
eb290d0257
commit
1847ed0bfd
|
@ -0,0 +1,758 @@
|
|||
/** @file
|
||||
|
||||
Routine procedures for memory allocate/free.
|
||||
|
||||
Copyright (c) 2013, Intel Corporation. All rights reserved.<BR>
|
||||
This program and the accompanying materials
|
||||
are licensed and made available under the terms and conditions of the BSD License
|
||||
which accompanies this distribution. The full text of the license may be found at
|
||||
http://opensource.org/licenses/bsd-license.php
|
||||
|
||||
THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED.
|
||||
|
||||
**/
|
||||
|
||||
|
||||
#include "Xhci.h"
|
||||
|
||||
|
||||
/**
|
||||
Allocate a block of memory to be used by the buffer pool.
|
||||
|
||||
@param Pool The buffer pool to allocate memory for.
|
||||
@param Pages How many pages to allocate.
|
||||
|
||||
@return The allocated memory block or NULL if failed.
|
||||
|
||||
**/
|
||||
USBHC_MEM_BLOCK *
|
||||
UsbHcAllocMemBlock (
|
||||
IN USBHC_MEM_POOL *Pool,
|
||||
IN UINTN Pages
|
||||
)
|
||||
{
|
||||
USBHC_MEM_BLOCK *Block;
|
||||
EFI_PCI_IO_PROTOCOL *PciIo;
|
||||
VOID *BufHost;
|
||||
VOID *Mapping;
|
||||
EFI_PHYSICAL_ADDRESS MappedAddr;
|
||||
UINTN Bytes;
|
||||
EFI_STATUS Status;
|
||||
|
||||
PciIo = Pool->PciIo;
|
||||
|
||||
Block = AllocateZeroPool (sizeof (USBHC_MEM_BLOCK));
|
||||
if (Block == NULL) {
|
||||
return NULL;
|
||||
}
|
||||
|
||||
//
|
||||
// each bit in the bit array represents USBHC_MEM_UNIT
|
||||
// bytes of memory in the memory block.
|
||||
//
|
||||
ASSERT (USBHC_MEM_UNIT * 8 <= EFI_PAGE_SIZE);
|
||||
|
||||
Block->BufLen = EFI_PAGES_TO_SIZE (Pages);
|
||||
Block->BitsLen = Block->BufLen / (USBHC_MEM_UNIT * 8);
|
||||
Block->Bits = AllocateZeroPool (Block->BitsLen);
|
||||
|
||||
if (Block->Bits == NULL) {
|
||||
gBS->FreePool (Block);
|
||||
return NULL;
|
||||
}
|
||||
|
||||
//
|
||||
// Allocate the number of Pages of memory, then map it for
|
||||
// bus master read and write.
|
||||
//
|
||||
Status = PciIo->AllocateBuffer (
|
||||
PciIo,
|
||||
AllocateAnyPages,
|
||||
EfiBootServicesData,
|
||||
Pages,
|
||||
&BufHost,
|
||||
0
|
||||
);
|
||||
|
||||
if (EFI_ERROR (Status)) {
|
||||
goto FREE_BITARRAY;
|
||||
}
|
||||
|
||||
Bytes = EFI_PAGES_TO_SIZE (Pages);
|
||||
Status = PciIo->Map (
|
||||
PciIo,
|
||||
EfiPciIoOperationBusMasterCommonBuffer,
|
||||
BufHost,
|
||||
&Bytes,
|
||||
&MappedAddr,
|
||||
&Mapping
|
||||
);
|
||||
|
||||
if (EFI_ERROR (Status) || (Bytes != EFI_PAGES_TO_SIZE (Pages))) {
|
||||
goto FREE_BUFFER;
|
||||
}
|
||||
|
||||
Block->BufHost = BufHost;
|
||||
Block->Buf = (UINT8 *) ((UINTN) MappedAddr);
|
||||
Block->Mapping = Mapping;
|
||||
|
||||
return Block;
|
||||
|
||||
FREE_BUFFER:
|
||||
PciIo->FreeBuffer (PciIo, Pages, BufHost);
|
||||
|
||||
FREE_BITARRAY:
|
||||
gBS->FreePool (Block->Bits);
|
||||
gBS->FreePool (Block);
|
||||
return NULL;
|
||||
}
|
||||
|
||||
|
||||
/**
|
||||
Free the memory block from the memory pool.
|
||||
|
||||
@param Pool The memory pool to free the block from.
|
||||
@param Block The memory block to free.
|
||||
|
||||
**/
|
||||
VOID
|
||||
UsbHcFreeMemBlock (
|
||||
IN USBHC_MEM_POOL *Pool,
|
||||
IN USBHC_MEM_BLOCK *Block
|
||||
)
|
||||
{
|
||||
EFI_PCI_IO_PROTOCOL *PciIo;
|
||||
|
||||
ASSERT ((Pool != NULL) && (Block != NULL));
|
||||
|
||||
PciIo = Pool->PciIo;
|
||||
|
||||
//
|
||||
// Unmap the common buffer then free the structures
|
||||
//
|
||||
PciIo->Unmap (PciIo, Block->Mapping);
|
||||
PciIo->FreeBuffer (PciIo, EFI_SIZE_TO_PAGES (Block->BufLen), Block->BufHost);
|
||||
|
||||
gBS->FreePool (Block->Bits);
|
||||
gBS->FreePool (Block);
|
||||
}
|
||||
|
||||
|
||||
/**
|
||||
Alloc some memory from the block.
|
||||
|
||||
@param Block The memory block to allocate memory from.
|
||||
@param Units Number of memory units to allocate.
|
||||
|
||||
@return The pointer to the allocated memory. If couldn't allocate the needed memory,
|
||||
the return value is NULL.
|
||||
|
||||
**/
|
||||
VOID *
|
||||
UsbHcAllocMemFromBlock (
|
||||
IN USBHC_MEM_BLOCK *Block,
|
||||
IN UINTN Units
|
||||
)
|
||||
{
|
||||
UINTN Byte;
|
||||
UINT8 Bit;
|
||||
UINTN StartByte;
|
||||
UINT8 StartBit;
|
||||
UINTN Available;
|
||||
UINTN Count;
|
||||
|
||||
ASSERT ((Block != 0) && (Units != 0));
|
||||
|
||||
StartByte = 0;
|
||||
StartBit = 0;
|
||||
Available = 0;
|
||||
|
||||
for (Byte = 0, Bit = 0; Byte < Block->BitsLen;) {
|
||||
//
|
||||
// If current bit is zero, the corresponding memory unit is
|
||||
// available, otherwise we need to restart our searching.
|
||||
// Available counts the consective number of zero bit.
|
||||
//
|
||||
if (!USB_HC_BIT_IS_SET (Block->Bits[Byte], Bit)) {
|
||||
Available++;
|
||||
|
||||
if (Available >= Units) {
|
||||
break;
|
||||
}
|
||||
|
||||
NEXT_BIT (Byte, Bit);
|
||||
|
||||
} else {
|
||||
NEXT_BIT (Byte, Bit);
|
||||
|
||||
Available = 0;
|
||||
StartByte = Byte;
|
||||
StartBit = Bit;
|
||||
}
|
||||
}
|
||||
|
||||
if (Available < Units) {
|
||||
return NULL;
|
||||
}
|
||||
|
||||
//
|
||||
// Mark the memory as allocated
|
||||
//
|
||||
Byte = StartByte;
|
||||
Bit = StartBit;
|
||||
|
||||
for (Count = 0; Count < Units; Count++) {
|
||||
ASSERT (!USB_HC_BIT_IS_SET (Block->Bits[Byte], Bit));
|
||||
|
||||
Block->Bits[Byte] = (UINT8) (Block->Bits[Byte] | USB_HC_BIT (Bit));
|
||||
NEXT_BIT (Byte, Bit);
|
||||
}
|
||||
|
||||
return Block->BufHost + (StartByte * 8 + StartBit) * USBHC_MEM_UNIT;
|
||||
}
|
||||
|
||||
/**
|
||||
Calculate the corresponding pci bus address according to the Mem parameter.
|
||||
|
||||
@param Pool The memory pool of the host controller.
|
||||
@param Mem The pointer to host memory.
|
||||
@param Size The size of the memory region.
|
||||
|
||||
@return The pci memory address
|
||||
|
||||
**/
|
||||
EFI_PHYSICAL_ADDRESS
|
||||
UsbHcGetPciAddrForHostAddr (
|
||||
IN USBHC_MEM_POOL *Pool,
|
||||
IN VOID *Mem,
|
||||
IN UINTN Size
|
||||
)
|
||||
{
|
||||
USBHC_MEM_BLOCK *Head;
|
||||
USBHC_MEM_BLOCK *Block;
|
||||
UINTN AllocSize;
|
||||
EFI_PHYSICAL_ADDRESS PhyAddr;
|
||||
UINTN Offset;
|
||||
|
||||
Head = Pool->Head;
|
||||
AllocSize = USBHC_MEM_ROUND (Size);
|
||||
|
||||
if (Mem == NULL) {
|
||||
return 0;
|
||||
}
|
||||
|
||||
for (Block = Head; Block != NULL; Block = Block->Next) {
|
||||
//
|
||||
// scan the memory block list for the memory block that
|
||||
// completely contains the allocated memory.
|
||||
//
|
||||
if ((Block->BufHost <= (UINT8 *) Mem) && (((UINT8 *) Mem + AllocSize) <= (Block->BufHost + Block->BufLen))) {
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
ASSERT ((Block != NULL));
|
||||
//
|
||||
// calculate the pci memory address for host memory address.
|
||||
//
|
||||
Offset = (UINT8 *)Mem - Block->BufHost;
|
||||
PhyAddr = (EFI_PHYSICAL_ADDRESS)(UINTN) (Block->Buf + Offset);
|
||||
return PhyAddr;
|
||||
}
|
||||
|
||||
/**
|
||||
Calculate the corresponding host address according to the pci address.
|
||||
|
||||
@param Pool The memory pool of the host controller.
|
||||
@param Mem The pointer to pci memory.
|
||||
@param Size The size of the memory region.
|
||||
|
||||
@return The host memory address
|
||||
|
||||
**/
|
||||
EFI_PHYSICAL_ADDRESS
|
||||
UsbHcGetHostAddrForPciAddr (
|
||||
IN USBHC_MEM_POOL *Pool,
|
||||
IN VOID *Mem,
|
||||
IN UINTN Size
|
||||
)
|
||||
{
|
||||
USBHC_MEM_BLOCK *Head;
|
||||
USBHC_MEM_BLOCK *Block;
|
||||
UINTN AllocSize;
|
||||
EFI_PHYSICAL_ADDRESS HostAddr;
|
||||
UINTN Offset;
|
||||
|
||||
Head = Pool->Head;
|
||||
AllocSize = USBHC_MEM_ROUND (Size);
|
||||
|
||||
if (Mem == NULL) {
|
||||
return 0;
|
||||
}
|
||||
|
||||
for (Block = Head; Block != NULL; Block = Block->Next) {
|
||||
//
|
||||
// scan the memory block list for the memory block that
|
||||
// completely contains the allocated memory.
|
||||
//
|
||||
if ((Block->Buf <= (UINT8 *) Mem) && (((UINT8 *) Mem + AllocSize) <= (Block->Buf + Block->BufLen))) {
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
ASSERT ((Block != NULL));
|
||||
//
|
||||
// calculate the pci memory address for host memory address.
|
||||
//
|
||||
Offset = (UINT8 *)Mem - Block->Buf;
|
||||
HostAddr = (EFI_PHYSICAL_ADDRESS)(UINTN) (Block->BufHost + Offset);
|
||||
return HostAddr;
|
||||
}
|
||||
|
||||
/**
|
||||
Insert the memory block to the pool's list of the blocks.
|
||||
|
||||
@param Head The head of the memory pool's block list.
|
||||
@param Block The memory block to insert.
|
||||
|
||||
**/
|
||||
VOID
|
||||
UsbHcInsertMemBlockToPool (
|
||||
IN USBHC_MEM_BLOCK *Head,
|
||||
IN USBHC_MEM_BLOCK *Block
|
||||
)
|
||||
{
|
||||
ASSERT ((Head != NULL) && (Block != NULL));
|
||||
Block->Next = Head->Next;
|
||||
Head->Next = Block;
|
||||
}
|
||||
|
||||
|
||||
/**
|
||||
Is the memory block empty?
|
||||
|
||||
@param Block The memory block to check.
|
||||
|
||||
@retval TRUE The memory block is empty.
|
||||
@retval FALSE The memory block isn't empty.
|
||||
|
||||
**/
|
||||
BOOLEAN
|
||||
UsbHcIsMemBlockEmpty (
|
||||
IN USBHC_MEM_BLOCK *Block
|
||||
)
|
||||
{
|
||||
UINTN Index;
|
||||
|
||||
for (Index = 0; Index < Block->BitsLen; Index++) {
|
||||
if (Block->Bits[Index] != 0) {
|
||||
return FALSE;
|
||||
}
|
||||
}
|
||||
|
||||
return TRUE;
|
||||
}
|
||||
|
||||
|
||||
/**
|
||||
Unlink the memory block from the pool's list.
|
||||
|
||||
@param Head The block list head of the memory's pool.
|
||||
@param BlockToUnlink The memory block to unlink.
|
||||
|
||||
**/
|
||||
VOID
|
||||
UsbHcUnlinkMemBlock (
|
||||
IN USBHC_MEM_BLOCK *Head,
|
||||
IN USBHC_MEM_BLOCK *BlockToUnlink
|
||||
)
|
||||
{
|
||||
USBHC_MEM_BLOCK *Block;
|
||||
|
||||
ASSERT ((Head != NULL) && (BlockToUnlink != NULL));
|
||||
|
||||
for (Block = Head; Block != NULL; Block = Block->Next) {
|
||||
if (Block->Next == BlockToUnlink) {
|
||||
Block->Next = BlockToUnlink->Next;
|
||||
BlockToUnlink->Next = NULL;
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
/**
|
||||
Initialize the memory management pool for the host controller.
|
||||
|
||||
@param PciIo The PciIo that can be used to access the host controller.
|
||||
|
||||
@retval EFI_SUCCESS The memory pool is initialized.
|
||||
@retval EFI_OUT_OF_RESOURCE Fail to init the memory pool.
|
||||
|
||||
**/
|
||||
USBHC_MEM_POOL *
|
||||
UsbHcInitMemPool (
|
||||
IN EFI_PCI_IO_PROTOCOL *PciIo
|
||||
)
|
||||
{
|
||||
USBHC_MEM_POOL *Pool;
|
||||
|
||||
Pool = AllocatePool (sizeof (USBHC_MEM_POOL));
|
||||
|
||||
if (Pool == NULL) {
|
||||
return Pool;
|
||||
}
|
||||
|
||||
Pool->PciIo = PciIo;
|
||||
Pool->Head = UsbHcAllocMemBlock (Pool, USBHC_MEM_DEFAULT_PAGES);
|
||||
|
||||
if (Pool->Head == NULL) {
|
||||
gBS->FreePool (Pool);
|
||||
Pool = NULL;
|
||||
}
|
||||
|
||||
return Pool;
|
||||
}
|
||||
|
||||
|
||||
/**
|
||||
Release the memory management pool.
|
||||
|
||||
@param Pool The USB memory pool to free.
|
||||
|
||||
@retval EFI_SUCCESS The memory pool is freed.
|
||||
@retval EFI_DEVICE_ERROR Failed to free the memory pool.
|
||||
|
||||
**/
|
||||
EFI_STATUS
|
||||
UsbHcFreeMemPool (
|
||||
IN USBHC_MEM_POOL *Pool
|
||||
)
|
||||
{
|
||||
USBHC_MEM_BLOCK *Block;
|
||||
|
||||
ASSERT (Pool->Head != NULL);
|
||||
|
||||
//
|
||||
// Unlink all the memory blocks from the pool, then free them.
|
||||
// UsbHcUnlinkMemBlock can't be used to unlink and free the
|
||||
// first block.
|
||||
//
|
||||
for (Block = Pool->Head->Next; Block != NULL; Block = Pool->Head->Next) {
|
||||
UsbHcUnlinkMemBlock (Pool->Head, Block);
|
||||
UsbHcFreeMemBlock (Pool, Block);
|
||||
}
|
||||
|
||||
UsbHcFreeMemBlock (Pool, Pool->Head);
|
||||
gBS->FreePool (Pool);
|
||||
return EFI_SUCCESS;
|
||||
}
|
||||
|
||||
|
||||
/**
|
||||
Allocate some memory from the host controller's memory pool
|
||||
which can be used to communicate with host controller.
|
||||
|
||||
@param Pool The host controller's memory pool.
|
||||
@param Size Size of the memory to allocate.
|
||||
|
||||
@return The allocated memory or NULL.
|
||||
|
||||
**/
|
||||
VOID *
|
||||
UsbHcAllocateMem (
|
||||
IN USBHC_MEM_POOL *Pool,
|
||||
IN UINTN Size
|
||||
)
|
||||
{
|
||||
USBHC_MEM_BLOCK *Head;
|
||||
USBHC_MEM_BLOCK *Block;
|
||||
USBHC_MEM_BLOCK *NewBlock;
|
||||
VOID *Mem;
|
||||
UINTN AllocSize;
|
||||
UINTN Pages;
|
||||
|
||||
Mem = NULL;
|
||||
AllocSize = USBHC_MEM_ROUND (Size);
|
||||
Head = Pool->Head;
|
||||
ASSERT (Head != NULL);
|
||||
|
||||
//
|
||||
// First check whether current memory blocks can satisfy the allocation.
|
||||
//
|
||||
for (Block = Head; Block != NULL; Block = Block->Next) {
|
||||
Mem = UsbHcAllocMemFromBlock (Block, AllocSize / USBHC_MEM_UNIT);
|
||||
|
||||
if (Mem != NULL) {
|
||||
ZeroMem (Mem, Size);
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
if (Mem != NULL) {
|
||||
return Mem;
|
||||
}
|
||||
|
||||
//
|
||||
// Create a new memory block if there is not enough memory
|
||||
// in the pool. If the allocation size is larger than the
|
||||
// default page number, just allocate a large enough memory
|
||||
// block. Otherwise allocate default pages.
|
||||
//
|
||||
if (AllocSize > EFI_PAGES_TO_SIZE (USBHC_MEM_DEFAULT_PAGES)) {
|
||||
Pages = EFI_SIZE_TO_PAGES (AllocSize) + 1;
|
||||
} else {
|
||||
Pages = USBHC_MEM_DEFAULT_PAGES;
|
||||
}
|
||||
|
||||
NewBlock = UsbHcAllocMemBlock (Pool, Pages);
|
||||
|
||||
if (NewBlock == NULL) {
|
||||
DEBUG ((EFI_D_ERROR, "UsbHcAllocateMem: failed to allocate block\n"));
|
||||
return NULL;
|
||||
}
|
||||
|
||||
//
|
||||
// Add the new memory block to the pool, then allocate memory from it
|
||||
//
|
||||
UsbHcInsertMemBlockToPool (Head, NewBlock);
|
||||
Mem = UsbHcAllocMemFromBlock (NewBlock, AllocSize / USBHC_MEM_UNIT);
|
||||
|
||||
if (Mem != NULL) {
|
||||
ZeroMem (Mem, Size);
|
||||
}
|
||||
|
||||
return Mem;
|
||||
}
|
||||
|
||||
|
||||
/**
|
||||
Free the allocated memory back to the memory pool.
|
||||
|
||||
@param Pool The memory pool of the host controller.
|
||||
@param Mem The memory to free.
|
||||
@param Size The size of the memory to free.
|
||||
|
||||
**/
|
||||
VOID
|
||||
UsbHcFreeMem (
|
||||
IN USBHC_MEM_POOL *Pool,
|
||||
IN VOID *Mem,
|
||||
IN UINTN Size
|
||||
)
|
||||
{
|
||||
USBHC_MEM_BLOCK *Head;
|
||||
USBHC_MEM_BLOCK *Block;
|
||||
UINT8 *ToFree;
|
||||
UINTN AllocSize;
|
||||
UINTN Byte;
|
||||
UINTN Bit;
|
||||
UINTN Count;
|
||||
|
||||
Head = Pool->Head;
|
||||
AllocSize = USBHC_MEM_ROUND (Size);
|
||||
ToFree = (UINT8 *) Mem;
|
||||
|
||||
for (Block = Head; Block != NULL; Block = Block->Next) {
|
||||
//
|
||||
// scan the memory block list for the memory block that
|
||||
// completely contains the memory to free.
|
||||
//
|
||||
if ((Block->BufHost <= ToFree) && ((ToFree + AllocSize) <= (Block->BufHost + Block->BufLen))) {
|
||||
//
|
||||
// compute the start byte and bit in the bit array
|
||||
//
|
||||
Byte = ((ToFree - Block->BufHost) / USBHC_MEM_UNIT) / 8;
|
||||
Bit = ((ToFree - Block->BufHost) / USBHC_MEM_UNIT) % 8;
|
||||
|
||||
//
|
||||
// reset associated bits in bit arry
|
||||
//
|
||||
for (Count = 0; Count < (AllocSize / USBHC_MEM_UNIT); Count++) {
|
||||
ASSERT (USB_HC_BIT_IS_SET (Block->Bits[Byte], Bit));
|
||||
|
||||
Block->Bits[Byte] = (UINT8) (Block->Bits[Byte] ^ USB_HC_BIT (Bit));
|
||||
NEXT_BIT (Byte, Bit);
|
||||
}
|
||||
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
//
|
||||
// If Block == NULL, it means that the current memory isn't
|
||||
// in the host controller's pool. This is critical because
|
||||
// the caller has passed in a wrong memory point
|
||||
//
|
||||
ASSERT (Block != NULL);
|
||||
|
||||
//
|
||||
// Release the current memory block if it is empty and not the head
|
||||
//
|
||||
if ((Block != Head) && UsbHcIsMemBlockEmpty (Block)) {
|
||||
UsbHcUnlinkMemBlock (Head, Block);
|
||||
UsbHcFreeMemBlock (Pool, Block);
|
||||
}
|
||||
|
||||
return ;
|
||||
}
|
||||
|
||||
/**
|
||||
Allocates pages at a specified alignment that are suitable for an EfiPciIoOperationBusMasterCommonBuffer mapping.
|
||||
|
||||
If Alignment is not a power of two and Alignment is not zero, then ASSERT().
|
||||
|
||||
@param PciIo The PciIo that can be used to access the host controller.
|
||||
@param Pages The number of pages to allocate.
|
||||
@param Alignment The requested alignment of the allocation. Must be a power of two.
|
||||
@param HostAddress The system memory address to map to the PCI controller.
|
||||
@param DeviceAddress The resulting map address for the bus master PCI controller to
|
||||
use to access the hosts HostAddress.
|
||||
@param Mapping A resulting value to pass to Unmap().
|
||||
|
||||
@retval EFI_SUCCESS Success to allocate aligned pages.
|
||||
@retval EFI_INVALID_PARAMETER Pages or Alignment is not valid.
|
||||
@retval EFI_OUT_OF_RESOURCES Do not have enough resources to allocate memory.
|
||||
|
||||
|
||||
**/
|
||||
EFI_STATUS
|
||||
UsbHcAllocateAlignedPages (
|
||||
IN EFI_PCI_IO_PROTOCOL *PciIo,
|
||||
IN UINTN Pages,
|
||||
IN UINTN Alignment,
|
||||
OUT VOID **HostAddress,
|
||||
OUT EFI_PHYSICAL_ADDRESS *DeviceAddress,
|
||||
OUT VOID **Mapping
|
||||
)
|
||||
{
|
||||
EFI_STATUS Status;
|
||||
VOID *Memory;
|
||||
UINTN AlignedMemory;
|
||||
UINTN AlignmentMask;
|
||||
UINTN UnalignedPages;
|
||||
UINTN RealPages;
|
||||
UINTN Bytes;
|
||||
|
||||
//
|
||||
// Alignment must be a power of two or zero.
|
||||
//
|
||||
ASSERT ((Alignment & (Alignment - 1)) == 0);
|
||||
|
||||
if ((Alignment & (Alignment - 1)) != 0) {
|
||||
return EFI_INVALID_PARAMETER;
|
||||
}
|
||||
|
||||
if (Pages == 0) {
|
||||
return EFI_INVALID_PARAMETER;
|
||||
}
|
||||
if (Alignment > EFI_PAGE_SIZE) {
|
||||
//
|
||||
// Caculate the total number of pages since alignment is larger than page size.
|
||||
//
|
||||
AlignmentMask = Alignment - 1;
|
||||
RealPages = Pages + EFI_SIZE_TO_PAGES (Alignment);
|
||||
//
|
||||
// Make sure that Pages plus EFI_SIZE_TO_PAGES (Alignment) does not overflow.
|
||||
//
|
||||
ASSERT (RealPages > Pages);
|
||||
|
||||
Status = PciIo->AllocateBuffer (
|
||||
PciIo,
|
||||
AllocateAnyPages,
|
||||
EfiBootServicesData,
|
||||
Pages,
|
||||
&Memory,
|
||||
0
|
||||
);
|
||||
if (EFI_ERROR (Status)) {
|
||||
return EFI_OUT_OF_RESOURCES;
|
||||
}
|
||||
AlignedMemory = ((UINTN) Memory + AlignmentMask) & ~AlignmentMask;
|
||||
UnalignedPages = EFI_SIZE_TO_PAGES (AlignedMemory - (UINTN) Memory);
|
||||
if (UnalignedPages > 0) {
|
||||
//
|
||||
// Free first unaligned page(s).
|
||||
//
|
||||
Status = PciIo->FreeBuffer (PciIo, UnalignedPages, Memory);
|
||||
ASSERT_EFI_ERROR (Status);
|
||||
}
|
||||
Memory = (VOID *)(UINTN)(AlignedMemory + EFI_PAGES_TO_SIZE (Pages));
|
||||
UnalignedPages = RealPages - Pages - UnalignedPages;
|
||||
if (UnalignedPages > 0) {
|
||||
//
|
||||
// Free last unaligned page(s).
|
||||
//
|
||||
Status = PciIo->FreeBuffer (PciIo, UnalignedPages, Memory);
|
||||
ASSERT_EFI_ERROR (Status);
|
||||
}
|
||||
} else {
|
||||
//
|
||||
// Do not over-allocate pages in this case.
|
||||
//
|
||||
Status = PciIo->AllocateBuffer (
|
||||
PciIo,
|
||||
AllocateAnyPages,
|
||||
EfiBootServicesData,
|
||||
Pages,
|
||||
&Memory,
|
||||
0
|
||||
);
|
||||
if (EFI_ERROR (Status)) {
|
||||
return EFI_OUT_OF_RESOURCES;
|
||||
}
|
||||
AlignedMemory = (UINTN) Memory;
|
||||
}
|
||||
|
||||
Bytes = EFI_PAGES_TO_SIZE (Pages);
|
||||
Status = PciIo->Map (
|
||||
PciIo,
|
||||
EfiPciIoOperationBusMasterCommonBuffer,
|
||||
(VOID *) AlignedMemory,
|
||||
&Bytes,
|
||||
DeviceAddress,
|
||||
Mapping
|
||||
);
|
||||
|
||||
if (EFI_ERROR (Status) || (Bytes != EFI_PAGES_TO_SIZE (Pages))) {
|
||||
Status = PciIo->FreeBuffer (PciIo, Pages, (VOID *) AlignedMemory);
|
||||
return EFI_OUT_OF_RESOURCES;
|
||||
}
|
||||
|
||||
*HostAddress = (VOID *) AlignedMemory;
|
||||
|
||||
return EFI_SUCCESS;
|
||||
}
|
||||
|
||||
/**
|
||||
Frees memory that was allocated with UsbHcAllocateAlignedPages().
|
||||
|
||||
@param PciIo The PciIo that can be used to access the host controller.
|
||||
@param HostAddress The system memory address to map to the PCI controller.
|
||||
@param Pages The number of 4 KB pages to free.
|
||||
@param Mapping The mapping value returned from Map().
|
||||
|
||||
**/
|
||||
VOID
|
||||
UsbHcFreeAlignedPages (
|
||||
IN EFI_PCI_IO_PROTOCOL *PciIo,
|
||||
IN VOID *HostAddress,
|
||||
IN UINTN Pages,
|
||||
VOID *Mapping
|
||||
)
|
||||
{
|
||||
EFI_STATUS Status;
|
||||
|
||||
ASSERT (Pages != 0);
|
||||
|
||||
Status = PciIo->Unmap (PciIo, Mapping);
|
||||
ASSERT_EFI_ERROR (Status);
|
||||
|
||||
Status = PciIo->FreeBuffer (
|
||||
PciIo,
|
||||
Pages,
|
||||
HostAddress
|
||||
);
|
||||
ASSERT_EFI_ERROR (Status);
|
||||
}
|
|
@ -0,0 +1,213 @@
|
|||
/** @file
|
||||
|
||||
This file contains the definination for host controller memory management routines.
|
||||
|
||||
Copyright (c) 2013, Intel Corporation. All rights reserved.<BR>
|
||||
This program and the accompanying materials
|
||||
are licensed and made available under the terms and conditions of the BSD License
|
||||
which accompanies this distribution. The full text of the license may be found at
|
||||
http://opensource.org/licenses/bsd-license.php
|
||||
|
||||
THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED.
|
||||
|
||||
**/
|
||||
|
||||
#ifndef _EFI_XHCI_MEM_H_
|
||||
#define _EFI_XHCI_MEM_H_
|
||||
|
||||
#define USB_HC_BIT(a) ((UINTN)(1 << (a)))
|
||||
|
||||
#define USB_HC_BIT_IS_SET(Data, Bit) \
|
||||
((BOOLEAN)(((Data) & USB_HC_BIT(Bit)) == USB_HC_BIT(Bit)))
|
||||
|
||||
typedef struct _USBHC_MEM_BLOCK USBHC_MEM_BLOCK;
|
||||
struct _USBHC_MEM_BLOCK {
|
||||
UINT8 *Bits; // Bit array to record which unit is allocated
|
||||
UINTN BitsLen;
|
||||
UINT8 *Buf;
|
||||
UINT8 *BufHost;
|
||||
UINTN BufLen; // Memory size in bytes
|
||||
VOID *Mapping;
|
||||
USBHC_MEM_BLOCK *Next;
|
||||
};
|
||||
|
||||
//
|
||||
// USBHC_MEM_POOL is used to manage the memory used by USB
|
||||
// host controller. XHCI requires the control memory and transfer
|
||||
// data to be on the same 4G memory.
|
||||
//
|
||||
typedef struct _USBHC_MEM_POOL {
|
||||
EFI_PCI_IO_PROTOCOL *PciIo;
|
||||
BOOLEAN Check4G;
|
||||
UINT32 Which4G;
|
||||
USBHC_MEM_BLOCK *Head;
|
||||
} USBHC_MEM_POOL;
|
||||
|
||||
//
|
||||
// Memory allocation unit, must be 2^n, n>4
|
||||
//
|
||||
#define USBHC_MEM_UNIT 64
|
||||
|
||||
#define USBHC_MEM_UNIT_MASK (USBHC_MEM_UNIT - 1)
|
||||
#define USBHC_MEM_DEFAULT_PAGES 16
|
||||
|
||||
#define USBHC_MEM_ROUND(Len) (((Len) + USBHC_MEM_UNIT_MASK) & (~USBHC_MEM_UNIT_MASK))
|
||||
|
||||
//
|
||||
// Advance the byte and bit to the next bit, adjust byte accordingly.
|
||||
//
|
||||
#define NEXT_BIT(Byte, Bit) \
|
||||
do { \
|
||||
(Bit)++; \
|
||||
if ((Bit) > 7) { \
|
||||
(Byte)++; \
|
||||
(Bit) = 0; \
|
||||
} \
|
||||
} while (0)
|
||||
|
||||
|
||||
|
||||
/**
|
||||
Initialize the memory management pool for the host controller.
|
||||
|
||||
@param PciIo The PciIo that can be used to access the host controller.
|
||||
|
||||
@retval EFI_SUCCESS The memory pool is initialized.
|
||||
@retval EFI_OUT_OF_RESOURCE Fail to init the memory pool.
|
||||
|
||||
**/
|
||||
USBHC_MEM_POOL *
|
||||
UsbHcInitMemPool (
|
||||
IN EFI_PCI_IO_PROTOCOL *PciIo
|
||||
);
|
||||
|
||||
|
||||
/**
|
||||
Release the memory management pool.
|
||||
|
||||
@param Pool The USB memory pool to free.
|
||||
|
||||
@retval EFI_SUCCESS The memory pool is freed.
|
||||
@retval EFI_DEVICE_ERROR Failed to free the memory pool.
|
||||
|
||||
**/
|
||||
EFI_STATUS
|
||||
UsbHcFreeMemPool (
|
||||
IN USBHC_MEM_POOL *Pool
|
||||
);
|
||||
|
||||
|
||||
/**
|
||||
Allocate some memory from the host controller's memory pool
|
||||
which can be used to communicate with host controller.
|
||||
|
||||
@param Pool The host controller's memory pool.
|
||||
@param Size Size of the memory to allocate.
|
||||
|
||||
@return The allocated memory or NULL.
|
||||
|
||||
**/
|
||||
VOID *
|
||||
UsbHcAllocateMem (
|
||||
IN USBHC_MEM_POOL *Pool,
|
||||
IN UINTN Size
|
||||
);
|
||||
|
||||
|
||||
/**
|
||||
Free the allocated memory back to the memory pool.
|
||||
|
||||
@param Pool The memory pool of the host controller.
|
||||
@param Mem The memory to free.
|
||||
@param Size The size of the memory to free.
|
||||
|
||||
**/
|
||||
VOID
|
||||
UsbHcFreeMem (
|
||||
IN USBHC_MEM_POOL *Pool,
|
||||
IN VOID *Mem,
|
||||
IN UINTN Size
|
||||
);
|
||||
|
||||
/**
|
||||
Calculate the corresponding pci bus address according to the Mem parameter.
|
||||
|
||||
@param Pool The memory pool of the host controller.
|
||||
@param Mem The pointer to host memory.
|
||||
@param Size The size of the memory region.
|
||||
|
||||
@return The pci memory address
|
||||
|
||||
**/
|
||||
EFI_PHYSICAL_ADDRESS
|
||||
UsbHcGetPciAddrForHostAddr (
|
||||
IN USBHC_MEM_POOL *Pool,
|
||||
IN VOID *Mem,
|
||||
IN UINTN Size
|
||||
);
|
||||
|
||||
/**
|
||||
Calculate the corresponding host address according to the pci address.
|
||||
|
||||
@param Pool The memory pool of the host controller.
|
||||
@param Mem The pointer to pci memory.
|
||||
@param Size The size of the memory region.
|
||||
|
||||
@return The host memory address
|
||||
|
||||
**/
|
||||
EFI_PHYSICAL_ADDRESS
|
||||
UsbHcGetHostAddrForPciAddr (
|
||||
IN USBHC_MEM_POOL *Pool,
|
||||
IN VOID *Mem,
|
||||
IN UINTN Size
|
||||
);
|
||||
|
||||
/**
|
||||
Allocates pages at a specified alignment that are suitable for an EfiPciIoOperationBusMasterCommonBuffer mapping.
|
||||
|
||||
If Alignment is not a power of two and Alignment is not zero, then ASSERT().
|
||||
|
||||
@param PciIo The PciIo that can be used to access the host controller.
|
||||
@param Pages The number of pages to allocate.
|
||||
@param Alignment The requested alignment of the allocation. Must be a power of two.
|
||||
@param HostAddress The system memory address to map to the PCI controller.
|
||||
@param DeviceAddress The resulting map address for the bus master PCI controller to
|
||||
use to access the hosts HostAddress.
|
||||
@param Mapping A resulting value to pass to Unmap().
|
||||
|
||||
@retval EFI_SUCCESS Success to allocate aligned pages.
|
||||
@retval EFI_INVALID_PARAMETER Pages or Alignment is not valid.
|
||||
@retval EFI_OUT_OF_RESOURCES Do not have enough resources to allocate memory.
|
||||
|
||||
|
||||
**/
|
||||
EFI_STATUS
|
||||
UsbHcAllocateAlignedPages (
|
||||
IN EFI_PCI_IO_PROTOCOL *PciIo,
|
||||
IN UINTN Pages,
|
||||
IN UINTN Alignment,
|
||||
OUT VOID **HostAddress,
|
||||
OUT EFI_PHYSICAL_ADDRESS *DeviceAddress,
|
||||
OUT VOID **Mapping
|
||||
);
|
||||
|
||||
/**
|
||||
Frees memory that was allocated with UsbHcAllocateAlignedPages().
|
||||
|
||||
@param PciIo The PciIo that can be used to access the host controller.
|
||||
@param HostAddress The system memory address to map to the PCI controller.
|
||||
@param Pages The number of pages to free.
|
||||
@param Mapping The mapping value returned from Map().
|
||||
|
||||
**/
|
||||
VOID
|
||||
UsbHcFreeAlignedPages (
|
||||
IN EFI_PCI_IO_PROTOCOL *PciIo,
|
||||
IN VOID *HostAddress,
|
||||
IN UINTN Pages,
|
||||
VOID *Mapping
|
||||
);
|
||||
|
||||
#endif
|
|
@ -907,6 +907,17 @@ XhcControlTransfer (
|
|||
goto FREE_URB;
|
||||
}
|
||||
|
||||
Xhc->PciIo->Flush (Xhc->PciIo);
|
||||
|
||||
if (Urb->DataMap != NULL) {
|
||||
Status = Xhc->PciIo->Unmap (Xhc->PciIo, Urb->DataMap);
|
||||
ASSERT_EFI_ERROR (Status);
|
||||
if (EFI_ERROR (Status)) {
|
||||
Status = EFI_DEVICE_ERROR;
|
||||
goto FREE_URB;
|
||||
}
|
||||
}
|
||||
|
||||
//
|
||||
// Hook Get_Descriptor request from UsbBus as we need evaluate context and configure endpoint.
|
||||
// Hook Get_Status request form UsbBus as we need trace device attach/detach event happened at hub.
|
||||
|
@ -1185,7 +1196,8 @@ XhcBulkTransfer (
|
|||
Status = EFI_DEVICE_ERROR;
|
||||
}
|
||||
|
||||
FreePool (Urb);
|
||||
Xhc->PciIo->Flush (Xhc->PciIo);
|
||||
XhcFreeUrb (Xhc, Urb);
|
||||
|
||||
ON_EXIT:
|
||||
|
||||
|
@ -1351,6 +1363,7 @@ XhcAsyncInterruptTransfer (
|
|||
Status = RingIntTransferDoorBell (Xhc, Urb);
|
||||
|
||||
ON_EXIT:
|
||||
Xhc->PciIo->Flush (Xhc->PciIo);
|
||||
gBS->RestoreTPL (OldTpl);
|
||||
|
||||
return Status;
|
||||
|
@ -1482,7 +1495,8 @@ XhcSyncInterruptTransfer (
|
|||
Status = EFI_DEVICE_ERROR;
|
||||
}
|
||||
|
||||
FreePool (Urb);
|
||||
Xhc->PciIo->Flush (Xhc->PciIo);
|
||||
XhcFreeUrb (Xhc, Urb);
|
||||
|
||||
ON_EXIT:
|
||||
if (EFI_ERROR (Status)) {
|
||||
|
|
|
@ -40,6 +40,7 @@ typedef struct _USB_DEV_CONTEXT USB_DEV_CONTEXT;
|
|||
#include "XhciReg.h"
|
||||
#include "XhciSched.h"
|
||||
#include "ComponentName.h"
|
||||
#include "UsbHcMem.h"
|
||||
|
||||
//
|
||||
// The unit is microsecond, setting it as 1us.
|
||||
|
@ -201,6 +202,7 @@ struct _USB_XHCI_INSTANCE {
|
|||
UINT32 Signature;
|
||||
EFI_PCI_IO_PROTOCOL *PciIo;
|
||||
UINT64 OriginalPciAttributes;
|
||||
USBHC_MEM_POOL *MemPool;
|
||||
|
||||
EFI_USB2_HC_PROTOCOL Usb2Hc;
|
||||
|
||||
|
@ -223,10 +225,14 @@ struct _USB_XHCI_INSTANCE {
|
|||
UINT16 MaxInterrupt;
|
||||
UINT32 PageSize;
|
||||
UINT64 *ScratchBuf;
|
||||
VOID *ScratchMap;
|
||||
UINT32 MaxScratchpadBufs;
|
||||
UINT64 *ScratchEntry;
|
||||
UINTN *ScratchEntryMap;
|
||||
UINT32 ExtCapRegBase;
|
||||
UINT32 UsbLegSupOffset;
|
||||
UINT64 *DCBAA;
|
||||
VOID *DCBAAMap;
|
||||
UINT32 MaxSlotsEn;
|
||||
//
|
||||
// Cmd Transfer Ring
|
||||
|
|
|
@ -6,7 +6,7 @@
|
|||
# It implements the interfaces of monitoring the status of all ports and transferring
|
||||
# Control, Bulk, Interrupt and Isochronous requests to those attached usb LS/FS/HS/SS devices.
|
||||
#
|
||||
# Copyright (c) 2011 - 2012, Intel Corporation. All rights reserved.<BR>
|
||||
# Copyright (c) 2011 - 2013, Intel Corporation. All rights reserved.<BR>
|
||||
#
|
||||
# This program and the accompanying materials
|
||||
# are licensed and made available under the terms and conditions of the BSD License
|
||||
|
@ -42,6 +42,8 @@
|
|||
Xhci.c
|
||||
XhciReg.c
|
||||
XhciSched.c
|
||||
UsbHcMem.c
|
||||
UsbHcMem.h
|
||||
ComponentName.c
|
||||
ComponentName.h
|
||||
Xhci.h
|
||||
|
|
|
@ -109,7 +109,7 @@ XhcCmdTransfer (
|
|||
Status = EFI_SUCCESS;
|
||||
}
|
||||
|
||||
FreePool (Urb);
|
||||
XhcFreeUrb (Xhc, Urb);
|
||||
|
||||
ON_EXIT:
|
||||
return Status;
|
||||
|
@ -180,6 +180,30 @@ XhcCreateUrb (
|
|||
return Urb;
|
||||
}
|
||||
|
||||
/**
|
||||
Free an allocated URB.
|
||||
|
||||
@param Xhc The XHCI device.
|
||||
@param Urb The URB to free.
|
||||
|
||||
**/
|
||||
VOID
|
||||
XhcFreeUrb (
|
||||
IN USB_XHCI_INSTANCE *Xhc,
|
||||
IN URB *Urb
|
||||
)
|
||||
{
|
||||
if ((Xhc == NULL) || (Urb == NULL)) {
|
||||
return;
|
||||
}
|
||||
|
||||
if (Urb->DataMap != NULL) {
|
||||
Xhc->PciIo->Unmap (Xhc->PciIo, Urb->DataMap);
|
||||
}
|
||||
|
||||
FreePool (Urb);
|
||||
}
|
||||
|
||||
/**
|
||||
Create a transfer TRB.
|
||||
|
||||
|
@ -204,6 +228,10 @@ XhcCreateTransferTrb (
|
|||
UINTN TotalLen;
|
||||
UINTN Len;
|
||||
UINTN TrbNum;
|
||||
EFI_PCI_IO_PROTOCOL_OPERATION MapOp;
|
||||
EFI_PHYSICAL_ADDRESS PhyAddr;
|
||||
VOID *Map;
|
||||
EFI_STATUS Status;
|
||||
|
||||
SlotId = XhcBusDevAddrToSlotId (Xhc, Urb->Ep.BusAddr);
|
||||
if (SlotId == 0) {
|
||||
|
@ -220,12 +248,31 @@ XhcCreateTransferTrb (
|
|||
ASSERT (Dci < 32);
|
||||
EPRing = (TRANSFER_RING *)(UINTN) Xhc->UsbDevContext[SlotId].EndpointTransferRing[Dci-1];
|
||||
Urb->Ring = EPRing;
|
||||
OutputContext = (VOID *)(UINTN)Xhc->DCBAA[SlotId];
|
||||
OutputContext = Xhc->UsbDevContext[SlotId].OutputContext;
|
||||
if (Xhc->HcCParams.Data.Csz == 0) {
|
||||
EPType = (UINT8) ((DEVICE_CONTEXT *)OutputContext)->EP[Dci-1].EPType;
|
||||
} else {
|
||||
EPType = (UINT8) ((DEVICE_CONTEXT_64 *)OutputContext)->EP[Dci-1].EPType;
|
||||
}
|
||||
|
||||
if (Urb->Data != NULL) {
|
||||
if (((UINT8) (Urb->Ep.Direction)) == EfiUsbDataIn) {
|
||||
MapOp = EfiPciIoOperationBusMasterWrite;
|
||||
} else {
|
||||
MapOp = EfiPciIoOperationBusMasterRead;
|
||||
}
|
||||
|
||||
Len = Urb->DataLen;
|
||||
Status = Xhc->PciIo->Map (Xhc->PciIo, MapOp, Urb->Data, &Len, &PhyAddr, &Map);
|
||||
|
||||
if (EFI_ERROR (Status) || (Len != Urb->DataLen)) {
|
||||
DEBUG ((EFI_D_ERROR, "XhcCreateTransferTrb: Fail to map Urb->Data.\n"));
|
||||
return EFI_OUT_OF_RESOURCES;
|
||||
}
|
||||
|
||||
Urb->DataPhy = (VOID *) ((UINTN) PhyAddr);
|
||||
Urb->DataMap = Map;
|
||||
}
|
||||
|
||||
//
|
||||
// Construct the TRB
|
||||
|
@ -267,8 +314,8 @@ XhcCreateTransferTrb (
|
|||
if (Urb->DataLen > 0) {
|
||||
XhcSyncTrsRing (Xhc, EPRing);
|
||||
TrbStart = (TRB *)(UINTN)EPRing->RingEnqueue;
|
||||
TrbStart->TrbCtrData.TRBPtrLo = XHC_LOW_32BIT(Urb->Data);
|
||||
TrbStart->TrbCtrData.TRBPtrHi = XHC_HIGH_32BIT(Urb->Data);
|
||||
TrbStart->TrbCtrData.TRBPtrLo = XHC_LOW_32BIT(Urb->DataPhy);
|
||||
TrbStart->TrbCtrData.TRBPtrHi = XHC_HIGH_32BIT(Urb->DataPhy);
|
||||
TrbStart->TrbCtrData.Lenth = (UINT32) Urb->DataLen;
|
||||
TrbStart->TrbCtrData.TDSize = 0;
|
||||
TrbStart->TrbCtrData.IntTarget = 0;
|
||||
|
@ -333,8 +380,8 @@ XhcCreateTransferTrb (
|
|||
Len = 0x10000;
|
||||
}
|
||||
TrbStart = (TRB *)(UINTN)EPRing->RingEnqueue;
|
||||
TrbStart->TrbNormal.TRBPtrLo = XHC_LOW_32BIT((UINT8 *) Urb->Data + TotalLen);
|
||||
TrbStart->TrbNormal.TRBPtrHi = XHC_HIGH_32BIT((UINT8 *) Urb->Data + TotalLen);
|
||||
TrbStart->TrbNormal.TRBPtrLo = XHC_LOW_32BIT((UINT8 *) Urb->DataPhy + TotalLen);
|
||||
TrbStart->TrbNormal.TRBPtrHi = XHC_HIGH_32BIT((UINT8 *) Urb->DataPhy + TotalLen);
|
||||
TrbStart->TrbNormal.Lenth = (UINT32) Len;
|
||||
TrbStart->TrbNormal.TDSize = 0;
|
||||
TrbStart->TrbNormal.IntTarget = 0;
|
||||
|
@ -368,8 +415,8 @@ XhcCreateTransferTrb (
|
|||
Len = 0x10000;
|
||||
}
|
||||
TrbStart = (TRB *)(UINTN)EPRing->RingEnqueue;
|
||||
TrbStart->TrbNormal.TRBPtrLo = XHC_LOW_32BIT((UINT8 *) Urb->Data + TotalLen);
|
||||
TrbStart->TrbNormal.TRBPtrHi = XHC_HIGH_32BIT((UINT8 *) Urb->Data + TotalLen);
|
||||
TrbStart->TrbNormal.TRBPtrLo = XHC_LOW_32BIT((UINT8 *) Urb->DataPhy + TotalLen);
|
||||
TrbStart->TrbNormal.TRBPtrHi = XHC_HIGH_32BIT((UINT8 *) Urb->DataPhy + TotalLen);
|
||||
TrbStart->TrbNormal.Lenth = (UINT32) Len;
|
||||
TrbStart->TrbNormal.TDSize = 0;
|
||||
TrbStart->TrbNormal.IntTarget = 0;
|
||||
|
@ -412,12 +459,24 @@ XhcInitSched (
|
|||
)
|
||||
{
|
||||
VOID *Dcbaa;
|
||||
EFI_PHYSICAL_ADDRESS DcbaaPhy;
|
||||
UINT64 CmdRing;
|
||||
EFI_PHYSICAL_ADDRESS CmdRingPhy;
|
||||
UINTN Entries;
|
||||
UINT32 MaxScratchpadBufs;
|
||||
UINT64 *ScratchBuf;
|
||||
UINT64 *ScratchEntryBuf;
|
||||
EFI_PHYSICAL_ADDRESS ScratchPhy;
|
||||
UINT64 *ScratchEntry;
|
||||
EFI_PHYSICAL_ADDRESS ScratchEntryPhy;
|
||||
UINT32 Index;
|
||||
UINTN *ScratchEntryMap;
|
||||
EFI_STATUS Status;
|
||||
|
||||
//
|
||||
// Initialize memory management.
|
||||
//
|
||||
Xhc->MemPool = UsbHcInitMemPool (Xhc->PciIo);
|
||||
ASSERT (Xhc->MemPool != NULL);
|
||||
|
||||
//
|
||||
// Program the Max Device Slots Enabled (MaxSlotsEn) field in the CONFIG register (5.4.7)
|
||||
|
@ -434,7 +493,7 @@ XhcInitSched (
|
|||
// Software shall set Device Context Base Address Array entries for unallocated Device Slots to '0'.
|
||||
//
|
||||
Entries = (Xhc->MaxSlotsEn + 1) * sizeof(UINT64);
|
||||
Dcbaa = AllocatePages (EFI_SIZE_TO_PAGES (Entries));
|
||||
Dcbaa = UsbHcAllocateMem (Xhc->MemPool, Entries);
|
||||
ASSERT (Dcbaa != NULL);
|
||||
ZeroMem (Dcbaa, Entries);
|
||||
|
||||
|
@ -447,23 +506,57 @@ XhcInitSched (
|
|||
Xhc->MaxScratchpadBufs = MaxScratchpadBufs;
|
||||
ASSERT (MaxScratchpadBufs <= 1023);
|
||||
if (MaxScratchpadBufs != 0) {
|
||||
ScratchBuf = AllocateAlignedPages (EFI_SIZE_TO_PAGES (MaxScratchpadBufs * sizeof (UINT64)), Xhc->PageSize);
|
||||
ASSERT (ScratchBuf != NULL);
|
||||
//
|
||||
// Allocate the buffer to record the Mapping for each scratch buffer in order to Unmap them
|
||||
//
|
||||
ScratchEntryMap = AllocateZeroPool (sizeof (UINTN) * MaxScratchpadBufs);
|
||||
ASSERT (ScratchEntryMap != NULL);
|
||||
Xhc->ScratchEntryMap = ScratchEntryMap;
|
||||
|
||||
//
|
||||
// Allocate the buffer to record the host address for each entry
|
||||
//
|
||||
ScratchEntry = AllocateZeroPool (sizeof (UINT64) * MaxScratchpadBufs);
|
||||
ASSERT (ScratchEntry != NULL);
|
||||
Xhc->ScratchEntry = ScratchEntry;
|
||||
|
||||
Status = UsbHcAllocateAlignedPages (
|
||||
Xhc->PciIo,
|
||||
EFI_SIZE_TO_PAGES (MaxScratchpadBufs * sizeof (UINT64)),
|
||||
Xhc->PageSize,
|
||||
(VOID **) &ScratchBuf,
|
||||
&ScratchPhy,
|
||||
&Xhc->ScratchMap
|
||||
);
|
||||
ASSERT_EFI_ERROR (Status);
|
||||
|
||||
ZeroMem (ScratchBuf, MaxScratchpadBufs * sizeof (UINT64));
|
||||
Xhc->ScratchBuf = ScratchBuf;
|
||||
|
||||
//
|
||||
// Allocate each scratch buffer
|
||||
//
|
||||
for (Index = 0; Index < MaxScratchpadBufs; Index++) {
|
||||
ScratchEntryBuf = AllocateAlignedPages (EFI_SIZE_TO_PAGES (Xhc->PageSize), Xhc->PageSize);
|
||||
ASSERT (ScratchEntryBuf != NULL);
|
||||
ZeroMem (ScratchEntryBuf, Xhc->PageSize);
|
||||
*ScratchBuf++ = (UINT64)(UINTN)ScratchEntryBuf;
|
||||
Status = UsbHcAllocateAlignedPages (
|
||||
Xhc->PciIo,
|
||||
EFI_SIZE_TO_PAGES (Xhc->PageSize),
|
||||
Xhc->PageSize,
|
||||
(VOID **) &ScratchEntry[Index],
|
||||
&ScratchEntryPhy,
|
||||
(VOID **) &ScratchEntryMap[Index]
|
||||
);
|
||||
ASSERT_EFI_ERROR (Status);
|
||||
ZeroMem ((VOID *)(UINTN)ScratchEntry[Index], Xhc->PageSize);
|
||||
//
|
||||
// Fill with the PCI device address
|
||||
//
|
||||
*ScratchBuf++ = ScratchEntryPhy;
|
||||
}
|
||||
|
||||
//
|
||||
// The Scratchpad Buffer Array contains pointers to the Scratchpad Buffers. Entry 0 of the
|
||||
// Device Context Base Address Array points to the Scratchpad Buffer Array.
|
||||
//
|
||||
*(UINT64 *)Dcbaa = (UINT64)(UINTN)Xhc->ScratchBuf;
|
||||
*(UINT64 *)Dcbaa = (UINT64)(UINTN) ScratchPhy;
|
||||
}
|
||||
|
||||
//
|
||||
|
@ -475,8 +568,10 @@ XhcInitSched (
|
|||
// Some 3rd party XHCI external cards don't support single 64-bytes width register access,
|
||||
// So divide it to two 32-bytes width register access.
|
||||
//
|
||||
XhcWriteOpReg (Xhc, XHC_DCBAAP_OFFSET, XHC_LOW_32BIT(Xhc->DCBAA));
|
||||
XhcWriteOpReg (Xhc, XHC_DCBAAP_OFFSET + 4, XHC_HIGH_32BIT (Xhc->DCBAA));
|
||||
DcbaaPhy = UsbHcGetPciAddrForHostAddr (Xhc->MemPool, Dcbaa, Entries);
|
||||
XhcWriteOpReg (Xhc, XHC_DCBAAP_OFFSET, XHC_LOW_32BIT(DcbaaPhy));
|
||||
XhcWriteOpReg (Xhc, XHC_DCBAAP_OFFSET + 4, XHC_HIGH_32BIT (DcbaaPhy));
|
||||
|
||||
DEBUG ((EFI_D_INFO, "XhcInitSched:DCBAA=0x%x\n", (UINT64)(UINTN)Xhc->DCBAA));
|
||||
|
||||
//
|
||||
|
@ -492,14 +587,15 @@ XhcInitSched (
|
|||
// So we set RCS as inverted PCS init value to let Command Ring empty
|
||||
//
|
||||
CmdRing = (UINT64)(UINTN)Xhc->CmdRing.RingSeg0;
|
||||
ASSERT ((CmdRing & 0x3F) == 0);
|
||||
CmdRing |= XHC_CRCR_RCS;
|
||||
CmdRingPhy = UsbHcGetPciAddrForHostAddr (Xhc->MemPool, (VOID *)(UINTN) CmdRing, sizeof (TRB_TEMPLATE) * CMD_RING_TRB_NUMBER);
|
||||
ASSERT ((CmdRingPhy & 0x3F) == 0);
|
||||
CmdRingPhy |= XHC_CRCR_RCS;
|
||||
//
|
||||
// Some 3rd party XHCI external cards don't support single 64-bytes width register access,
|
||||
// So divide it to two 32-bytes width register access.
|
||||
//
|
||||
XhcWriteOpReg (Xhc, XHC_CRCR_OFFSET, XHC_LOW_32BIT(CmdRing));
|
||||
XhcWriteOpReg (Xhc, XHC_CRCR_OFFSET + 4, XHC_HIGH_32BIT (CmdRing));
|
||||
XhcWriteOpReg (Xhc, XHC_CRCR_OFFSET, XHC_LOW_32BIT(CmdRingPhy));
|
||||
XhcWriteOpReg (Xhc, XHC_CRCR_OFFSET + 4, XHC_HIGH_32BIT (CmdRingPhy));
|
||||
|
||||
DEBUG ((EFI_D_INFO, "XhcInitSched:XHC_CRCR=0x%x\n", Xhc->CmdRing.RingSeg0));
|
||||
|
||||
|
@ -547,6 +643,7 @@ XhcRecoverHaltedEndpoint (
|
|||
CMD_SET_TR_DEQ_POINTER CmdSetTRDeq;
|
||||
UINT8 Dci;
|
||||
UINT8 SlotId;
|
||||
EFI_PHYSICAL_ADDRESS PhyAddr;
|
||||
|
||||
Status = EFI_SUCCESS;
|
||||
SlotId = XhcBusDevAddrToSlotId (Xhc, Urb->Ep.BusAddr);
|
||||
|
@ -578,8 +675,9 @@ XhcRecoverHaltedEndpoint (
|
|||
// 2)Set dequeue pointer
|
||||
//
|
||||
ZeroMem (&CmdSetTRDeq, sizeof (CmdSetTRDeq));
|
||||
CmdSetTRDeq.PtrLo = XHC_LOW_32BIT (Urb->Ring->RingEnqueue) | Urb->Ring->RingPCS;
|
||||
CmdSetTRDeq.PtrHi = XHC_HIGH_32BIT (Urb->Ring->RingEnqueue);
|
||||
PhyAddr = UsbHcGetPciAddrForHostAddr (Xhc->MemPool, Urb->Ring->RingEnqueue, sizeof (CMD_SET_TR_DEQ_POINTER));
|
||||
CmdSetTRDeq.PtrLo = XHC_LOW_32BIT (PhyAddr) | Urb->Ring->RingPCS;
|
||||
CmdSetTRDeq.PtrHi = XHC_HIGH_32BIT (PhyAddr);
|
||||
CmdSetTRDeq.CycleBit = 1;
|
||||
CmdSetTRDeq.Type = TRB_TYPE_SET_TR_DEQUE;
|
||||
CmdSetTRDeq.Endpoint = Dci;
|
||||
|
@ -615,35 +713,45 @@ CreateEventRing (
|
|||
{
|
||||
VOID *Buf;
|
||||
EVENT_RING_SEG_TABLE_ENTRY *ERSTBase;
|
||||
UINTN Size;
|
||||
EFI_PHYSICAL_ADDRESS ERSTPhy;
|
||||
EFI_PHYSICAL_ADDRESS DequeuePhy;
|
||||
|
||||
ASSERT (EventRing != NULL);
|
||||
|
||||
Buf = AllocatePages (EFI_SIZE_TO_PAGES (sizeof (TRB_TEMPLATE) * EVENT_RING_TRB_NUMBER));
|
||||
Size = sizeof (TRB_TEMPLATE) * EVENT_RING_TRB_NUMBER;
|
||||
Buf = UsbHcAllocateMem (Xhc->MemPool, Size);
|
||||
ASSERT (Buf != NULL);
|
||||
ASSERT (((UINTN) Buf & 0x3F) == 0);
|
||||
ZeroMem (Buf, sizeof (TRB_TEMPLATE) * EVENT_RING_TRB_NUMBER);
|
||||
ZeroMem (Buf, Size);
|
||||
|
||||
EventRing->EventRingSeg0 = Buf;
|
||||
EventRing->TrbNumber = EVENT_RING_TRB_NUMBER;
|
||||
EventRing->EventRingDequeue = (TRB_TEMPLATE *) EventRing->EventRingSeg0;
|
||||
EventRing->EventRingEnqueue = (TRB_TEMPLATE *) EventRing->EventRingSeg0;
|
||||
|
||||
DequeuePhy = UsbHcGetPciAddrForHostAddr (Xhc->MemPool, Buf, Size);
|
||||
|
||||
//
|
||||
// Software maintains an Event Ring Consumer Cycle State (CCS) bit, initializing it to '1'
|
||||
// and toggling it every time the Event Ring Dequeue Pointer wraps back to the beginning of the Event Ring.
|
||||
//
|
||||
EventRing->EventRingCCS = 1;
|
||||
|
||||
Buf = AllocatePages (EFI_SIZE_TO_PAGES (sizeof (EVENT_RING_SEG_TABLE_ENTRY) * ERST_NUMBER));
|
||||
Size = EFI_SIZE_TO_PAGES (sizeof (EVENT_RING_SEG_TABLE_ENTRY) * ERST_NUMBER);
|
||||
Buf = UsbHcAllocateMem (Xhc->MemPool, Size);
|
||||
ASSERT (Buf != NULL);
|
||||
ASSERT (((UINTN) Buf & 0x3F) == 0);
|
||||
ZeroMem (Buf, sizeof (EVENT_RING_SEG_TABLE_ENTRY) * ERST_NUMBER);
|
||||
ZeroMem (Buf, Size);
|
||||
|
||||
ERSTBase = (EVENT_RING_SEG_TABLE_ENTRY *) Buf;
|
||||
EventRing->ERSTBase = ERSTBase;
|
||||
ERSTBase->PtrLo = XHC_LOW_32BIT (EventRing->EventRingSeg0);
|
||||
ERSTBase->PtrHi = XHC_HIGH_32BIT (EventRing->EventRingSeg0);
|
||||
ERSTBase->PtrLo = XHC_LOW_32BIT (DequeuePhy);
|
||||
ERSTBase->PtrHi = XHC_HIGH_32BIT (DequeuePhy);
|
||||
ERSTBase->RingTrbSize = EVENT_RING_TRB_NUMBER;
|
||||
|
||||
ERSTPhy = UsbHcGetPciAddrForHostAddr (Xhc->MemPool, ERSTBase, Size);
|
||||
|
||||
//
|
||||
// Program the Interrupter Event Ring Segment Table Size (ERSTSZ) register (5.5.2.3.1)
|
||||
//
|
||||
|
@ -661,12 +769,12 @@ CreateEventRing (
|
|||
XhcWriteRuntimeReg (
|
||||
Xhc,
|
||||
XHC_ERDP_OFFSET,
|
||||
XHC_LOW_32BIT((UINT64)(UINTN)EventRing->EventRingDequeue)
|
||||
XHC_LOW_32BIT((UINT64)(UINTN)DequeuePhy)
|
||||
);
|
||||
XhcWriteRuntimeReg (
|
||||
Xhc,
|
||||
XHC_ERDP_OFFSET + 4,
|
||||
XHC_HIGH_32BIT((UINT64)(UINTN)EventRing->EventRingDequeue)
|
||||
XHC_HIGH_32BIT((UINT64)(UINTN)DequeuePhy)
|
||||
);
|
||||
//
|
||||
// Program the Interrupter Event Ring Segment Table Base Address (ERSTBA) register(5.5.2.3.2)
|
||||
|
@ -677,12 +785,12 @@ CreateEventRing (
|
|||
XhcWriteRuntimeReg (
|
||||
Xhc,
|
||||
XHC_ERSTBA_OFFSET,
|
||||
XHC_LOW_32BIT((UINT64)(UINTN)ERSTBase)
|
||||
XHC_LOW_32BIT((UINT64)(UINTN)ERSTPhy)
|
||||
);
|
||||
XhcWriteRuntimeReg (
|
||||
Xhc,
|
||||
XHC_ERSTBA_OFFSET + 4,
|
||||
XHC_HIGH_32BIT((UINT64)(UINTN)ERSTBase)
|
||||
XHC_HIGH_32BIT((UINT64)(UINTN)ERSTPhy)
|
||||
);
|
||||
//
|
||||
// Need set IMAN IE bit to enble the ring interrupt
|
||||
|
@ -707,8 +815,9 @@ CreateTransferRing (
|
|||
{
|
||||
VOID *Buf;
|
||||
LINK_TRB *EndTrb;
|
||||
EFI_PHYSICAL_ADDRESS PhyAddr;
|
||||
|
||||
Buf = AllocatePages (EFI_SIZE_TO_PAGES (sizeof (TRB_TEMPLATE) * TrbNum));
|
||||
Buf = UsbHcAllocateMem (Xhc->MemPool, sizeof (TRB_TEMPLATE) * TrbNum);
|
||||
ASSERT (Buf != NULL);
|
||||
ASSERT (((UINTN) Buf & 0x3F) == 0);
|
||||
ZeroMem (Buf, sizeof (TRB_TEMPLATE) * TrbNum);
|
||||
|
@ -725,8 +834,9 @@ CreateTransferRing (
|
|||
//
|
||||
EndTrb = (LINK_TRB *) ((UINTN)Buf + sizeof (TRB_TEMPLATE) * (TrbNum - 1));
|
||||
EndTrb->Type = TRB_TYPE_LINK;
|
||||
EndTrb->PtrLo = XHC_LOW_32BIT (Buf);
|
||||
EndTrb->PtrHi = XHC_HIGH_32BIT (Buf);
|
||||
PhyAddr = UsbHcGetPciAddrForHostAddr (Xhc->MemPool, Buf, sizeof (TRB_TEMPLATE) * TrbNum);
|
||||
EndTrb->PtrLo = XHC_LOW_32BIT (PhyAddr);
|
||||
EndTrb->PtrHi = XHC_HIGH_32BIT (PhyAddr);
|
||||
//
|
||||
// Toggle Cycle (TC). When set to '1', the xHC shall toggle its interpretation of the Cycle bit.
|
||||
//
|
||||
|
@ -751,34 +861,19 @@ XhcFreeEventRing (
|
|||
IN EVENT_RING *EventRing
|
||||
)
|
||||
{
|
||||
UINT8 Index;
|
||||
EVENT_RING_SEG_TABLE_ENTRY *TablePtr;
|
||||
VOID *RingBuf;
|
||||
EVENT_RING_SEG_TABLE_ENTRY *EventRingPtr;
|
||||
|
||||
if(EventRing->EventRingSeg0 == NULL) {
|
||||
return EFI_SUCCESS;
|
||||
}
|
||||
|
||||
//
|
||||
// Get the Event Ring Segment Table base address
|
||||
// Free EventRing Segment 0
|
||||
//
|
||||
TablePtr = (EVENT_RING_SEG_TABLE_ENTRY *)(EventRing->ERSTBase);
|
||||
UsbHcFreeMem (Xhc->MemPool, EventRing->EventRingSeg0, sizeof (TRB_TEMPLATE) * EVENT_RING_TRB_NUMBER);
|
||||
|
||||
//
|
||||
// Get all the TRBs Ring and release
|
||||
// Free ESRT table
|
||||
//
|
||||
for (Index = 0; Index < ERST_NUMBER; Index++) {
|
||||
EventRingPtr = TablePtr + Index;
|
||||
RingBuf = (VOID *)(UINTN)(EventRingPtr->PtrLo | LShiftU64 ((UINT64)EventRingPtr->PtrHi, 32));
|
||||
|
||||
if(RingBuf != NULL) {
|
||||
FreePages (RingBuf, EFI_SIZE_TO_PAGES (sizeof (TRB_TEMPLATE) * EVENT_RING_TRB_NUMBER));
|
||||
ZeroMem (EventRingPtr, sizeof (EVENT_RING_SEG_TABLE_ENTRY));
|
||||
}
|
||||
}
|
||||
|
||||
FreePages (TablePtr, EFI_SIZE_TO_PAGES (sizeof (EVENT_RING_SEG_TABLE_ENTRY) * ERST_NUMBER));
|
||||
UsbHcFreeMem (Xhc->MemPool, EventRing->ERSTBase, sizeof (EVENT_RING_SEG_TABLE_ENTRY) * ERST_NUMBER);
|
||||
return EFI_SUCCESS;
|
||||
}
|
||||
|
||||
|
@ -793,28 +888,44 @@ XhcFreeSched (
|
|||
IN USB_XHCI_INSTANCE *Xhc
|
||||
)
|
||||
{
|
||||
UINT32 Index;
|
||||
UINT64 *ScratchBuf;
|
||||
|
||||
UINT32 Index;
|
||||
UINT64 *ScratchEntry;
|
||||
|
||||
if (Xhc->ScratchBuf != NULL) {
|
||||
ScratchBuf = Xhc->ScratchBuf;
|
||||
ScratchEntry = Xhc->ScratchEntry;
|
||||
for (Index = 0; Index < Xhc->MaxScratchpadBufs; Index++) {
|
||||
FreeAlignedPages ((VOID*)(UINTN)*ScratchBuf++, EFI_SIZE_TO_PAGES (Xhc->PageSize));
|
||||
//
|
||||
// Free Scratchpad Buffers
|
||||
//
|
||||
UsbHcFreeAlignedPages (Xhc->PciIo, (VOID*)(UINTN)ScratchEntry[Index], EFI_SIZE_TO_PAGES (Xhc->PageSize), (VOID *) Xhc->ScratchEntryMap[Index]);
|
||||
}
|
||||
FreeAlignedPages (Xhc->ScratchBuf, EFI_SIZE_TO_PAGES (Xhc->MaxScratchpadBufs * sizeof (UINT64)));
|
||||
//
|
||||
// Free Scratchpad Buffer Array
|
||||
//
|
||||
UsbHcFreeAlignedPages (Xhc->PciIo, Xhc->ScratchBuf, EFI_SIZE_TO_PAGES (Xhc->MaxScratchpadBufs * sizeof (UINT64)), Xhc->ScratchMap);
|
||||
FreePool (Xhc->ScratchEntryMap);
|
||||
FreePool (Xhc->ScratchEntry);
|
||||
}
|
||||
|
||||
if (Xhc->DCBAA != NULL) {
|
||||
FreePages (Xhc->DCBAA, EFI_SIZE_TO_PAGES((Xhc->MaxSlotsEn + 1) * sizeof(UINT64)));
|
||||
Xhc->DCBAA = NULL;
|
||||
}
|
||||
|
||||
if (Xhc->CmdRing.RingSeg0 != NULL){
|
||||
FreePages (Xhc->CmdRing.RingSeg0, EFI_SIZE_TO_PAGES (sizeof (TRB_TEMPLATE) * CMD_RING_TRB_NUMBER));
|
||||
if (Xhc->CmdRing.RingSeg0 != NULL) {
|
||||
UsbHcFreeMem (Xhc->MemPool, Xhc->CmdRing.RingSeg0, sizeof (TRB_TEMPLATE) * CMD_RING_TRB_NUMBER);
|
||||
Xhc->CmdRing.RingSeg0 = NULL;
|
||||
}
|
||||
|
||||
|
||||
XhcFreeEventRing (Xhc,&Xhc->EventRing);
|
||||
|
||||
if (Xhc->DCBAA != NULL) {
|
||||
UsbHcFreeMem (Xhc->MemPool, Xhc->DCBAA, (Xhc->MaxSlotsEn + 1) * sizeof(UINT64));
|
||||
Xhc->DCBAA = NULL;
|
||||
}
|
||||
|
||||
//
|
||||
// Free memory pool at last
|
||||
//
|
||||
if (Xhc->MemPool != NULL) {
|
||||
UsbHcFreeMemPool (Xhc->MemPool);
|
||||
Xhc->MemPool = NULL;
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
|
@ -918,6 +1029,7 @@ XhcCheckUrbResult (
|
|||
UINT64 XhcDequeue;
|
||||
UINT32 High;
|
||||
UINT32 Low;
|
||||
EFI_PHYSICAL_ADDRESS PhyAddr;
|
||||
|
||||
ASSERT ((Xhc != NULL) && (Urb != NULL));
|
||||
|
||||
|
@ -955,8 +1067,12 @@ XhcCheckUrbResult (
|
|||
if ((EvtTrb->Type != TRB_TYPE_COMMAND_COMPLT_EVENT) && (EvtTrb->Type != TRB_TYPE_TRANS_EVENT)) {
|
||||
continue;
|
||||
}
|
||||
|
||||
TRBPtr = (TRB_TEMPLATE *)(UINTN)(EvtTrb->TRBPtrLo | LShiftU64 ((UINT64) EvtTrb->TRBPtrHi, 32));
|
||||
|
||||
//
|
||||
// Need convert pci device address to host address
|
||||
//
|
||||
PhyAddr = (EFI_PHYSICAL_ADDRESS)(EvtTrb->TRBPtrLo | LShiftU64 ((UINT64) EvtTrb->TRBPtrHi, 32));
|
||||
TRBPtr = (TRB_TEMPLATE *)(UINTN) UsbHcGetHostAddrForPciAddr (Xhc->MemPool, (VOID *)(UINTN) PhyAddr, sizeof (TRB_TEMPLATE));
|
||||
|
||||
//
|
||||
// Update the status of Urb according to the finished event regardless of whether
|
||||
|
@ -1048,13 +1164,15 @@ EXIT:
|
|||
High = XhcReadRuntimeReg (Xhc, XHC_ERDP_OFFSET + 4);
|
||||
XhcDequeue = (UINT64)(LShiftU64((UINT64)High, 32) | Low);
|
||||
|
||||
if ((XhcDequeue & (~0x0F)) != ((UINT64)(UINTN)Xhc->EventRing.EventRingDequeue & (~0x0F))) {
|
||||
PhyAddr = UsbHcGetPciAddrForHostAddr (Xhc->MemPool, Xhc->EventRing.EventRingDequeue, sizeof (TRB_TEMPLATE));
|
||||
|
||||
if ((XhcDequeue & (~0x0F)) != (PhyAddr & (~0x0F))) {
|
||||
//
|
||||
// Some 3rd party XHCI external cards don't support single 64-bytes width register access,
|
||||
// So divide it to two 32-bytes width register access.
|
||||
//
|
||||
XhcWriteRuntimeReg (Xhc, XHC_ERDP_OFFSET, XHC_LOW_32BIT (Xhc->EventRing.EventRingDequeue) | BIT3);
|
||||
XhcWriteRuntimeReg (Xhc, XHC_ERDP_OFFSET + 4, XHC_HIGH_32BIT (Xhc->EventRing.EventRingDequeue));
|
||||
XhcWriteRuntimeReg (Xhc, XHC_ERDP_OFFSET, XHC_LOW_32BIT (PhyAddr) | BIT3);
|
||||
XhcWriteRuntimeReg (Xhc, XHC_ERDP_OFFSET + 4, XHC_HIGH_32BIT (PhyAddr));
|
||||
}
|
||||
|
||||
return Status;
|
||||
|
@ -1159,7 +1277,7 @@ XhciDelAsyncIntTransfer (
|
|||
(Urb->Ep.Direction == Direction)) {
|
||||
RemoveEntryList (&Urb->UrbList);
|
||||
FreePool (Urb->Data);
|
||||
FreePool (Urb);
|
||||
XhcFreeUrb (Xhc, Urb);
|
||||
return EFI_SUCCESS;
|
||||
}
|
||||
}
|
||||
|
@ -1186,7 +1304,7 @@ XhciDelAllAsyncIntTransfers (
|
|||
Urb = EFI_LIST_CONTAINER (Entry, URB, UrbList);
|
||||
RemoveEntryList (&Urb->UrbList);
|
||||
FreePool (Urb->Data);
|
||||
FreePool (Urb);
|
||||
XhcFreeUrb (Xhc, Urb);
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -1217,6 +1335,60 @@ XhcUpdateAsyncRequest (
|
|||
}
|
||||
}
|
||||
|
||||
/**
|
||||
Flush data from PCI controller specific address to mapped system
|
||||
memory address.
|
||||
|
||||
@param Xhc The XHCI device.
|
||||
@param Urb The URB to unmap.
|
||||
|
||||
@retval EFI_SUCCESS Success to flush data to mapped system memory.
|
||||
@retval EFI_DEVICE_ERROR Fail to flush data to mapped system memory.
|
||||
|
||||
**/
|
||||
EFI_STATUS
|
||||
XhcFlushAsyncIntMap (
|
||||
IN USB_XHCI_INSTANCE *Xhc,
|
||||
IN URB *Urb
|
||||
)
|
||||
{
|
||||
EFI_STATUS Status;
|
||||
EFI_PHYSICAL_ADDRESS PhyAddr;
|
||||
EFI_PCI_IO_PROTOCOL_OPERATION MapOp;
|
||||
EFI_PCI_IO_PROTOCOL *PciIo;
|
||||
UINTN Len;
|
||||
VOID *Map;
|
||||
|
||||
PciIo = Xhc->PciIo;
|
||||
Len = Urb->DataLen;
|
||||
|
||||
if (Urb->Ep.Direction == EfiUsbDataIn) {
|
||||
MapOp = EfiPciIoOperationBusMasterWrite;
|
||||
} else {
|
||||
MapOp = EfiPciIoOperationBusMasterRead;
|
||||
}
|
||||
|
||||
if (Urb->DataMap != NULL) {
|
||||
Status = PciIo->Unmap (PciIo, Urb->DataMap);
|
||||
if (EFI_ERROR (Status)) {
|
||||
goto ON_ERROR;
|
||||
}
|
||||
}
|
||||
|
||||
Urb->DataMap = NULL;
|
||||
|
||||
Status = PciIo->Map (PciIo, MapOp, Urb->Data, &Len, &PhyAddr, &Map);
|
||||
if (EFI_ERROR (Status) || (Len != Urb->DataLen)) {
|
||||
goto ON_ERROR;
|
||||
}
|
||||
|
||||
Urb->DataPhy = (VOID *) ((UINTN) PhyAddr);
|
||||
Urb->DataMap = Map;
|
||||
return EFI_SUCCESS;
|
||||
|
||||
ON_ERROR:
|
||||
return EFI_DEVICE_ERROR;
|
||||
}
|
||||
|
||||
/**
|
||||
Interrupt transfer periodic check handler.
|
||||
|
@ -1238,6 +1410,7 @@ XhcMonitorAsyncRequests (
|
|||
UINT8 *ProcBuf;
|
||||
URB *Urb;
|
||||
UINT8 SlotId;
|
||||
EFI_STATUS Status;
|
||||
EFI_TPL OldTpl;
|
||||
|
||||
OldTpl = gBS->RaiseTPL (XHC_TPL);
|
||||
|
@ -1265,6 +1438,15 @@ XhcMonitorAsyncRequests (
|
|||
continue;
|
||||
}
|
||||
|
||||
//
|
||||
// Flush any PCI posted write transactions from a PCI host
|
||||
// bridge to system memory.
|
||||
//
|
||||
Status = XhcFlushAsyncIntMap (Xhc, Urb);
|
||||
if (EFI_ERROR (Status)) {
|
||||
DEBUG ((EFI_D_ERROR, "XhcMonitorAsyncRequests: Fail to Flush AsyncInt Mapped Memeory\n"));
|
||||
}
|
||||
|
||||
//
|
||||
// Allocate a buffer then copy the transferred data for user.
|
||||
// If failed to allocate the buffer, update the URB for next
|
||||
|
@ -1582,7 +1764,7 @@ XhcSyncTrsRing (
|
|||
// Toggle PCS maintained by software
|
||||
//
|
||||
TrsRing->RingPCS = (TrsRing->RingPCS & BIT0) ? 0 : 1;
|
||||
TrsTrb = (TRB_TEMPLATE *)(UINTN)((TrsTrb->Parameter1 | LShiftU64 ((UINT64)TrsTrb->Parameter2, 32)) & ~0x0F);
|
||||
TrsTrb = (TRB_TEMPLATE *) TrsRing->RingSeg0; // Use host address
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -1727,6 +1909,7 @@ XhcInitializeDeviceSlot (
|
|||
UINT8 SlotId;
|
||||
UINT8 ParentSlotId;
|
||||
DEVICE_CONTEXT *ParentDeviceContext;
|
||||
EFI_PHYSICAL_ADDRESS PhyAddr;
|
||||
|
||||
ZeroMem (&CmdTrb, sizeof (CMD_TRB_ENABLE_SLOT));
|
||||
CmdTrb.CycleBit = 1;
|
||||
|
@ -1754,7 +1937,7 @@ XhcInitializeDeviceSlot (
|
|||
// 4.3.3 Device Slot Initialization
|
||||
// 1) Allocate an Input Context data structure (6.2.5) and initialize all fields to '0'.
|
||||
//
|
||||
InputContext = AllocatePages (EFI_SIZE_TO_PAGES (sizeof (INPUT_CONTEXT)));
|
||||
InputContext = UsbHcAllocateMem (Xhc->MemPool, sizeof (INPUT_CONTEXT));
|
||||
ASSERT (InputContext != NULL);
|
||||
ASSERT (((UINTN) InputContext & 0x3F) == 0);
|
||||
ZeroMem (InputContext, sizeof (INPUT_CONTEXT));
|
||||
|
@ -1843,13 +2026,18 @@ XhcInitializeDeviceSlot (
|
|||
//
|
||||
// Init the DCS(dequeue cycle state) as the transfer ring's CCS
|
||||
//
|
||||
InputContext->EP[0].PtrLo = XHC_LOW_32BIT (((TRANSFER_RING *)(UINTN)Xhc->UsbDevContext[SlotId].EndpointTransferRing[0])->RingSeg0) | BIT0;
|
||||
InputContext->EP[0].PtrHi = XHC_HIGH_32BIT (((TRANSFER_RING *)(UINTN)Xhc->UsbDevContext[SlotId].EndpointTransferRing[0])->RingSeg0);
|
||||
PhyAddr = UsbHcGetPciAddrForHostAddr (
|
||||
Xhc->MemPool,
|
||||
((TRANSFER_RING *)(UINTN)Xhc->UsbDevContext[SlotId].EndpointTransferRing[0])->RingSeg0,
|
||||
sizeof (TRB_TEMPLATE) * TR_RING_TRB_NUMBER
|
||||
);
|
||||
InputContext->EP[0].PtrLo = XHC_LOW_32BIT (PhyAddr) | BIT0;
|
||||
InputContext->EP[0].PtrHi = XHC_HIGH_32BIT (PhyAddr);
|
||||
|
||||
//
|
||||
// 6) Allocate the Output Device Context data structure (6.2.1) and initialize it to '0'.
|
||||
//
|
||||
OutputContext = AllocatePages (EFI_SIZE_TO_PAGES (sizeof (DEVICE_CONTEXT)));
|
||||
OutputContext = UsbHcAllocateMem (Xhc->MemPool, sizeof (DEVICE_CONTEXT));
|
||||
ASSERT (OutputContext != NULL);
|
||||
ASSERT (((UINTN) OutputContext & 0x3F) == 0);
|
||||
ZeroMem (OutputContext, sizeof (DEVICE_CONTEXT));
|
||||
|
@ -1859,15 +2047,20 @@ XhcInitializeDeviceSlot (
|
|||
// 7) Load the appropriate (Device Slot ID) entry in the Device Context Base Address Array (5.4.6) with
|
||||
// a pointer to the Output Device Context data structure (6.2.1).
|
||||
//
|
||||
Xhc->DCBAA[SlotId] = (UINT64) (UINTN) OutputContext;
|
||||
PhyAddr = UsbHcGetPciAddrForHostAddr (Xhc->MemPool, OutputContext, sizeof (DEVICE_CONTEXT));
|
||||
//
|
||||
// Fill DCBAA with PCI device address
|
||||
//
|
||||
Xhc->DCBAA[SlotId] = (UINT64) (UINTN) PhyAddr;
|
||||
|
||||
//
|
||||
// 8) Issue an Address Device Command for the Device Slot, where the command points to the Input
|
||||
// Context data structure described above.
|
||||
//
|
||||
ZeroMem (&CmdTrbAddr, sizeof (CmdTrbAddr));
|
||||
CmdTrbAddr.PtrLo = XHC_LOW_32BIT (Xhc->UsbDevContext[SlotId].InputContext);
|
||||
CmdTrbAddr.PtrHi = XHC_HIGH_32BIT (Xhc->UsbDevContext[SlotId].InputContext);
|
||||
PhyAddr = UsbHcGetPciAddrForHostAddr (Xhc->MemPool, Xhc->UsbDevContext[SlotId].InputContext, sizeof (INPUT_CONTEXT));
|
||||
CmdTrbAddr.PtrLo = XHC_LOW_32BIT (PhyAddr);
|
||||
CmdTrbAddr.PtrHi = XHC_HIGH_32BIT (PhyAddr);
|
||||
CmdTrbAddr.CycleBit = 1;
|
||||
CmdTrbAddr.Type = TRB_TYPE_ADDRESS_DEV;
|
||||
CmdTrbAddr.SlotId = Xhc->UsbDevContext[SlotId].SlotId;
|
||||
|
@ -1920,6 +2113,7 @@ XhcInitializeDeviceSlot64 (
|
|||
UINT8 SlotId;
|
||||
UINT8 ParentSlotId;
|
||||
DEVICE_CONTEXT_64 *ParentDeviceContext;
|
||||
EFI_PHYSICAL_ADDRESS PhyAddr;
|
||||
|
||||
ZeroMem (&CmdTrb, sizeof (CMD_TRB_ENABLE_SLOT));
|
||||
CmdTrb.CycleBit = 1;
|
||||
|
@ -1947,7 +2141,7 @@ XhcInitializeDeviceSlot64 (
|
|||
// 4.3.3 Device Slot Initialization
|
||||
// 1) Allocate an Input Context data structure (6.2.5) and initialize all fields to '0'.
|
||||
//
|
||||
InputContext = AllocatePages (EFI_SIZE_TO_PAGES (sizeof (INPUT_CONTEXT_64)));
|
||||
InputContext = UsbHcAllocateMem (Xhc->MemPool, sizeof (INPUT_CONTEXT_64));
|
||||
ASSERT (InputContext != NULL);
|
||||
ASSERT (((UINTN) InputContext & 0x3F) == 0);
|
||||
ZeroMem (InputContext, sizeof (INPUT_CONTEXT_64));
|
||||
|
@ -2036,13 +2230,18 @@ XhcInitializeDeviceSlot64 (
|
|||
//
|
||||
// Init the DCS(dequeue cycle state) as the transfer ring's CCS
|
||||
//
|
||||
InputContext->EP[0].PtrLo = XHC_LOW_32BIT (((TRANSFER_RING *)(UINTN)Xhc->UsbDevContext[SlotId].EndpointTransferRing[0])->RingSeg0) | BIT0;
|
||||
InputContext->EP[0].PtrHi = XHC_HIGH_32BIT (((TRANSFER_RING *)(UINTN)Xhc->UsbDevContext[SlotId].EndpointTransferRing[0])->RingSeg0);
|
||||
PhyAddr = UsbHcGetPciAddrForHostAddr (
|
||||
Xhc->MemPool,
|
||||
((TRANSFER_RING *)(UINTN)Xhc->UsbDevContext[SlotId].EndpointTransferRing[0])->RingSeg0,
|
||||
sizeof (TRB_TEMPLATE) * TR_RING_TRB_NUMBER
|
||||
);
|
||||
InputContext->EP[0].PtrLo = XHC_LOW_32BIT (PhyAddr) | BIT0;
|
||||
InputContext->EP[0].PtrHi = XHC_HIGH_32BIT (PhyAddr);
|
||||
|
||||
//
|
||||
// 6) Allocate the Output Device Context data structure (6.2.1) and initialize it to '0'.
|
||||
//
|
||||
OutputContext = AllocatePages (EFI_SIZE_TO_PAGES (sizeof (DEVICE_CONTEXT_64)));
|
||||
OutputContext = UsbHcAllocateMem (Xhc->MemPool, sizeof (DEVICE_CONTEXT_64));
|
||||
ASSERT (OutputContext != NULL);
|
||||
ASSERT (((UINTN) OutputContext & 0x3F) == 0);
|
||||
ZeroMem (OutputContext, sizeof (DEVICE_CONTEXT_64));
|
||||
|
@ -2052,15 +2251,20 @@ XhcInitializeDeviceSlot64 (
|
|||
// 7) Load the appropriate (Device Slot ID) entry in the Device Context Base Address Array (5.4.6) with
|
||||
// a pointer to the Output Device Context data structure (6.2.1).
|
||||
//
|
||||
Xhc->DCBAA[SlotId] = (UINT64) (UINTN) OutputContext;
|
||||
PhyAddr = UsbHcGetPciAddrForHostAddr (Xhc->MemPool, OutputContext, sizeof (DEVICE_CONTEXT_64));
|
||||
//
|
||||
// Fill DCBAA with PCI device address
|
||||
//
|
||||
Xhc->DCBAA[SlotId] = (UINT64) (UINTN) PhyAddr;
|
||||
|
||||
//
|
||||
// 8) Issue an Address Device Command for the Device Slot, where the command points to the Input
|
||||
// Context data structure described above.
|
||||
//
|
||||
ZeroMem (&CmdTrbAddr, sizeof (CmdTrbAddr));
|
||||
CmdTrbAddr.PtrLo = XHC_LOW_32BIT (Xhc->UsbDevContext[SlotId].InputContext);
|
||||
CmdTrbAddr.PtrHi = XHC_HIGH_32BIT (Xhc->UsbDevContext[SlotId].InputContext);
|
||||
PhyAddr = UsbHcGetPciAddrForHostAddr (Xhc->MemPool, Xhc->UsbDevContext[SlotId].InputContext, sizeof (INPUT_CONTEXT_64));
|
||||
CmdTrbAddr.PtrLo = XHC_LOW_32BIT (PhyAddr);
|
||||
CmdTrbAddr.PtrHi = XHC_HIGH_32BIT (PhyAddr);
|
||||
CmdTrbAddr.CycleBit = 1;
|
||||
CmdTrbAddr.Type = TRB_TYPE_ADDRESS_DEV;
|
||||
CmdTrbAddr.SlotId = Xhc->UsbDevContext[SlotId].SlotId;
|
||||
|
@ -2150,9 +2354,10 @@ XhcDisableSlotCmd (
|
|||
if (Xhc->UsbDevContext[SlotId].EndpointTransferRing[Index] != NULL) {
|
||||
RingSeg = ((TRANSFER_RING *)(UINTN)Xhc->UsbDevContext[SlotId].EndpointTransferRing[Index])->RingSeg0;
|
||||
if (RingSeg != NULL) {
|
||||
FreePages (RingSeg, EFI_SIZE_TO_PAGES (sizeof (TRB_TEMPLATE) * TR_RING_TRB_NUMBER));
|
||||
UsbHcFreeMem (Xhc->MemPool, RingSeg, sizeof (TRB_TEMPLATE) * TR_RING_TRB_NUMBER);
|
||||
}
|
||||
FreePool (Xhc->UsbDevContext[SlotId].EndpointTransferRing[Index]);
|
||||
Xhc->UsbDevContext[SlotId].EndpointTransferRing[Index] = NULL;
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -2163,11 +2368,11 @@ XhcDisableSlotCmd (
|
|||
}
|
||||
|
||||
if (Xhc->UsbDevContext[SlotId].InputContext != NULL) {
|
||||
FreePages (Xhc->UsbDevContext[SlotId].InputContext, EFI_SIZE_TO_PAGES (sizeof (INPUT_CONTEXT)));
|
||||
UsbHcFreeMem (Xhc->MemPool, Xhc->UsbDevContext[SlotId].InputContext, sizeof (INPUT_CONTEXT));
|
||||
}
|
||||
|
||||
if (Xhc->UsbDevContext[SlotId].OutputContext != NULL) {
|
||||
FreePages (Xhc->UsbDevContext[SlotId].OutputContext, EFI_SIZE_TO_PAGES (sizeof (DEVICE_CONTEXT)));
|
||||
UsbHcFreeMem (Xhc->MemPool, Xhc->UsbDevContext[SlotId].OutputContext, sizeof (DEVICE_CONTEXT));
|
||||
}
|
||||
//
|
||||
// Doesn't zero the entry because XhcAsyncInterruptTransfer() may be invoked to remove the established
|
||||
|
@ -2249,9 +2454,10 @@ XhcDisableSlotCmd64 (
|
|||
if (Xhc->UsbDevContext[SlotId].EndpointTransferRing[Index] != NULL) {
|
||||
RingSeg = ((TRANSFER_RING *)(UINTN)Xhc->UsbDevContext[SlotId].EndpointTransferRing[Index])->RingSeg0;
|
||||
if (RingSeg != NULL) {
|
||||
FreePages (RingSeg, EFI_SIZE_TO_PAGES (sizeof (TRB_TEMPLATE) * TR_RING_TRB_NUMBER));
|
||||
UsbHcFreeMem (Xhc->MemPool, RingSeg, sizeof (TRB_TEMPLATE) * TR_RING_TRB_NUMBER);
|
||||
}
|
||||
FreePool (Xhc->UsbDevContext[SlotId].EndpointTransferRing[Index]);
|
||||
Xhc->UsbDevContext[SlotId].EndpointTransferRing[Index] = NULL;
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -2262,11 +2468,11 @@ XhcDisableSlotCmd64 (
|
|||
}
|
||||
|
||||
if (Xhc->UsbDevContext[SlotId].InputContext != NULL) {
|
||||
FreePages (Xhc->UsbDevContext[SlotId].InputContext, EFI_SIZE_TO_PAGES (sizeof (INPUT_CONTEXT_64)));
|
||||
UsbHcFreeMem (Xhc->MemPool, Xhc->UsbDevContext[SlotId].InputContext, sizeof (INPUT_CONTEXT_64));
|
||||
}
|
||||
|
||||
if (Xhc->UsbDevContext[SlotId].OutputContext != NULL) {
|
||||
FreePages (Xhc->UsbDevContext[SlotId].OutputContext, EFI_SIZE_TO_PAGES (sizeof (DEVICE_CONTEXT_64)));
|
||||
UsbHcFreeMem (Xhc->MemPool, Xhc->UsbDevContext[SlotId].OutputContext, sizeof (DEVICE_CONTEXT_64));
|
||||
}
|
||||
//
|
||||
// Doesn't zero the entry because XhcAsyncInterruptTransfer() may be invoked to remove the established
|
||||
|
@ -2311,7 +2517,7 @@ XhcSetConfigCmd (
|
|||
UINT8 Direction;
|
||||
UINT8 Dci;
|
||||
UINT8 MaxDci;
|
||||
UINT32 PhyAddr;
|
||||
EFI_PHYSICAL_ADDRESS PhyAddr;
|
||||
UINT8 Interval;
|
||||
|
||||
TRANSFER_RING *EndpointTransferRing;
|
||||
|
@ -2438,11 +2644,15 @@ XhcSetConfigCmd (
|
|||
break;
|
||||
}
|
||||
|
||||
PhyAddr = XHC_LOW_32BIT (((TRANSFER_RING *)(UINTN)Xhc->UsbDevContext[SlotId].EndpointTransferRing[Dci-1])->RingSeg0);
|
||||
PhyAddr = UsbHcGetPciAddrForHostAddr (
|
||||
Xhc->MemPool,
|
||||
((TRANSFER_RING *)(UINTN)Xhc->UsbDevContext[SlotId].EndpointTransferRing[Dci-1])->RingSeg0,
|
||||
sizeof (TRB_TEMPLATE) * TR_RING_TRB_NUMBER
|
||||
);
|
||||
PhyAddr &= ~(0x0F);
|
||||
PhyAddr |= ((TRANSFER_RING *)(UINTN)Xhc->UsbDevContext[SlotId].EndpointTransferRing[Dci-1])->RingPCS;
|
||||
InputContext->EP[Dci-1].PtrLo = PhyAddr;
|
||||
InputContext->EP[Dci-1].PtrHi = XHC_HIGH_32BIT (((TRANSFER_RING *)(UINTN)Xhc->UsbDevContext[SlotId].EndpointTransferRing[Dci-1])->RingSeg0);
|
||||
InputContext->EP[Dci-1].PtrLo = XHC_LOW_32BIT (PhyAddr);
|
||||
InputContext->EP[Dci-1].PtrHi = XHC_HIGH_32BIT (PhyAddr);
|
||||
|
||||
EpDesc = (USB_ENDPOINT_DESCRIPTOR *)((UINTN)EpDesc + EpDesc->Length);
|
||||
}
|
||||
|
@ -2455,8 +2665,9 @@ XhcSetConfigCmd (
|
|||
// configure endpoint
|
||||
//
|
||||
ZeroMem (&CmdTrbCfgEP, sizeof (CmdTrbCfgEP));
|
||||
CmdTrbCfgEP.PtrLo = XHC_LOW_32BIT (InputContext);
|
||||
CmdTrbCfgEP.PtrHi = XHC_HIGH_32BIT (InputContext);
|
||||
PhyAddr = UsbHcGetPciAddrForHostAddr (Xhc->MemPool, InputContext, sizeof (INPUT_CONTEXT));
|
||||
CmdTrbCfgEP.PtrLo = XHC_LOW_32BIT (PhyAddr);
|
||||
CmdTrbCfgEP.PtrHi = XHC_HIGH_32BIT (PhyAddr);
|
||||
CmdTrbCfgEP.CycleBit = 1;
|
||||
CmdTrbCfgEP.Type = TRB_TYPE_CON_ENDPOINT;
|
||||
CmdTrbCfgEP.SlotId = Xhc->UsbDevContext[SlotId].SlotId;
|
||||
|
@ -2503,7 +2714,7 @@ XhcSetConfigCmd64 (
|
|||
UINT8 Direction;
|
||||
UINT8 Dci;
|
||||
UINT8 MaxDci;
|
||||
UINT32 PhyAddr;
|
||||
EFI_PHYSICAL_ADDRESS PhyAddr;
|
||||
UINT8 Interval;
|
||||
|
||||
TRANSFER_RING *EndpointTransferRing;
|
||||
|
@ -2630,11 +2841,17 @@ XhcSetConfigCmd64 (
|
|||
break;
|
||||
}
|
||||
|
||||
PhyAddr = XHC_LOW_32BIT (((TRANSFER_RING *)(UINTN)Xhc->UsbDevContext[SlotId].EndpointTransferRing[Dci-1])->RingSeg0);
|
||||
PhyAddr = UsbHcGetPciAddrForHostAddr (
|
||||
Xhc->MemPool,
|
||||
((TRANSFER_RING *)(UINTN)Xhc->UsbDevContext[SlotId].EndpointTransferRing[Dci-1])->RingSeg0,
|
||||
sizeof (TRB_TEMPLATE) * TR_RING_TRB_NUMBER
|
||||
);
|
||||
|
||||
PhyAddr &= ~(0x0F);
|
||||
PhyAddr |= ((TRANSFER_RING *)(UINTN)Xhc->UsbDevContext[SlotId].EndpointTransferRing[Dci-1])->RingPCS;
|
||||
InputContext->EP[Dci-1].PtrLo = PhyAddr;
|
||||
InputContext->EP[Dci-1].PtrHi = XHC_HIGH_32BIT (((TRANSFER_RING *)(UINTN)Xhc->UsbDevContext[SlotId].EndpointTransferRing[Dci-1])->RingSeg0);
|
||||
|
||||
InputContext->EP[Dci-1].PtrLo = XHC_LOW_32BIT (PhyAddr);
|
||||
InputContext->EP[Dci-1].PtrHi = XHC_HIGH_32BIT (PhyAddr);
|
||||
|
||||
EpDesc = (USB_ENDPOINT_DESCRIPTOR *)((UINTN)EpDesc + EpDesc->Length);
|
||||
}
|
||||
|
@ -2647,8 +2864,9 @@ XhcSetConfigCmd64 (
|
|||
// configure endpoint
|
||||
//
|
||||
ZeroMem (&CmdTrbCfgEP, sizeof (CmdTrbCfgEP));
|
||||
CmdTrbCfgEP.PtrLo = XHC_LOW_32BIT (InputContext);
|
||||
CmdTrbCfgEP.PtrHi = XHC_HIGH_32BIT (InputContext);
|
||||
PhyAddr = UsbHcGetPciAddrForHostAddr (Xhc->MemPool, InputContext, sizeof (INPUT_CONTEXT_64));
|
||||
CmdTrbCfgEP.PtrLo = XHC_LOW_32BIT (PhyAddr);
|
||||
CmdTrbCfgEP.PtrHi = XHC_HIGH_32BIT (PhyAddr);
|
||||
CmdTrbCfgEP.CycleBit = 1;
|
||||
CmdTrbCfgEP.Type = TRB_TYPE_CON_ENDPOINT;
|
||||
CmdTrbCfgEP.SlotId = Xhc->UsbDevContext[SlotId].SlotId;
|
||||
|
@ -2687,6 +2905,7 @@ XhcEvaluateContext (
|
|||
CMD_TRB_EVALUATE_CONTEXT CmdTrbEvalu;
|
||||
EVT_TRB_COMMAND_COMPLETION *EvtTrb;
|
||||
INPUT_CONTEXT *InputContext;
|
||||
EFI_PHYSICAL_ADDRESS PhyAddr;
|
||||
|
||||
ASSERT (Xhc->UsbDevContext[SlotId].SlotId != 0);
|
||||
|
||||
|
@ -2700,8 +2919,9 @@ XhcEvaluateContext (
|
|||
InputContext->EP[0].MaxPacketSize = MaxPacketSize;
|
||||
|
||||
ZeroMem (&CmdTrbEvalu, sizeof (CmdTrbEvalu));
|
||||
CmdTrbEvalu.PtrLo = XHC_LOW_32BIT (InputContext);
|
||||
CmdTrbEvalu.PtrHi = XHC_HIGH_32BIT (InputContext);
|
||||
PhyAddr = UsbHcGetPciAddrForHostAddr (Xhc->MemPool, InputContext, sizeof (INPUT_CONTEXT));
|
||||
CmdTrbEvalu.PtrLo = XHC_LOW_32BIT (PhyAddr);
|
||||
CmdTrbEvalu.PtrHi = XHC_HIGH_32BIT (PhyAddr);
|
||||
CmdTrbEvalu.CycleBit = 1;
|
||||
CmdTrbEvalu.Type = TRB_TYPE_EVALU_CONTXT;
|
||||
CmdTrbEvalu.SlotId = Xhc->UsbDevContext[SlotId].SlotId;
|
||||
|
@ -2739,6 +2959,7 @@ XhcEvaluateContext64 (
|
|||
CMD_TRB_EVALUATE_CONTEXT CmdTrbEvalu;
|
||||
EVT_TRB_COMMAND_COMPLETION *EvtTrb;
|
||||
INPUT_CONTEXT_64 *InputContext;
|
||||
EFI_PHYSICAL_ADDRESS PhyAddr;
|
||||
|
||||
ASSERT (Xhc->UsbDevContext[SlotId].SlotId != 0);
|
||||
|
||||
|
@ -2752,8 +2973,9 @@ XhcEvaluateContext64 (
|
|||
InputContext->EP[0].MaxPacketSize = MaxPacketSize;
|
||||
|
||||
ZeroMem (&CmdTrbEvalu, sizeof (CmdTrbEvalu));
|
||||
CmdTrbEvalu.PtrLo = XHC_LOW_32BIT (InputContext);
|
||||
CmdTrbEvalu.PtrHi = XHC_HIGH_32BIT (InputContext);
|
||||
PhyAddr = UsbHcGetPciAddrForHostAddr (Xhc->MemPool, InputContext, sizeof (INPUT_CONTEXT_64));
|
||||
CmdTrbEvalu.PtrLo = XHC_LOW_32BIT (PhyAddr);
|
||||
CmdTrbEvalu.PtrHi = XHC_HIGH_32BIT (PhyAddr);
|
||||
CmdTrbEvalu.CycleBit = 1;
|
||||
CmdTrbEvalu.Type = TRB_TYPE_EVALU_CONTXT;
|
||||
CmdTrbEvalu.SlotId = Xhc->UsbDevContext[SlotId].SlotId;
|
||||
|
@ -2797,6 +3019,7 @@ XhcConfigHubContext (
|
|||
INPUT_CONTEXT *InputContext;
|
||||
DEVICE_CONTEXT *OutputContext;
|
||||
CMD_TRB_CONFIG_ENDPOINT CmdTrbCfgEP;
|
||||
EFI_PHYSICAL_ADDRESS PhyAddr;
|
||||
|
||||
ASSERT (Xhc->UsbDevContext[SlotId].SlotId != 0);
|
||||
InputContext = Xhc->UsbDevContext[SlotId].InputContext;
|
||||
|
@ -2819,8 +3042,9 @@ XhcConfigHubContext (
|
|||
InputContext->Slot.MTT = MTT;
|
||||
|
||||
ZeroMem (&CmdTrbCfgEP, sizeof (CmdTrbCfgEP));
|
||||
CmdTrbCfgEP.PtrLo = XHC_LOW_32BIT (InputContext);
|
||||
CmdTrbCfgEP.PtrHi = XHC_HIGH_32BIT (InputContext);
|
||||
PhyAddr = UsbHcGetPciAddrForHostAddr (Xhc->MemPool, InputContext, sizeof (INPUT_CONTEXT));
|
||||
CmdTrbCfgEP.PtrLo = XHC_LOW_32BIT (PhyAddr);
|
||||
CmdTrbCfgEP.PtrHi = XHC_HIGH_32BIT (PhyAddr);
|
||||
CmdTrbCfgEP.CycleBit = 1;
|
||||
CmdTrbCfgEP.Type = TRB_TYPE_CON_ENDPOINT;
|
||||
CmdTrbCfgEP.SlotId = Xhc->UsbDevContext[SlotId].SlotId;
|
||||
|
@ -2863,6 +3087,7 @@ XhcConfigHubContext64 (
|
|||
INPUT_CONTEXT_64 *InputContext;
|
||||
DEVICE_CONTEXT_64 *OutputContext;
|
||||
CMD_TRB_CONFIG_ENDPOINT CmdTrbCfgEP;
|
||||
EFI_PHYSICAL_ADDRESS PhyAddr;
|
||||
|
||||
ASSERT (Xhc->UsbDevContext[SlotId].SlotId != 0);
|
||||
InputContext = Xhc->UsbDevContext[SlotId].InputContext;
|
||||
|
@ -2885,8 +3110,9 @@ XhcConfigHubContext64 (
|
|||
InputContext->Slot.MTT = MTT;
|
||||
|
||||
ZeroMem (&CmdTrbCfgEP, sizeof (CmdTrbCfgEP));
|
||||
CmdTrbCfgEP.PtrLo = XHC_LOW_32BIT (InputContext);
|
||||
CmdTrbCfgEP.PtrHi = XHC_HIGH_32BIT (InputContext);
|
||||
PhyAddr = UsbHcGetPciAddrForHostAddr (Xhc->MemPool, InputContext, sizeof (INPUT_CONTEXT_64));
|
||||
CmdTrbCfgEP.PtrLo = XHC_LOW_32BIT (PhyAddr);
|
||||
CmdTrbCfgEP.PtrHi = XHC_HIGH_32BIT (PhyAddr);
|
||||
CmdTrbCfgEP.CycleBit = 1;
|
||||
CmdTrbCfgEP.Type = TRB_TYPE_CON_ENDPOINT;
|
||||
CmdTrbCfgEP.SlotId = Xhc->UsbDevContext[SlotId].SlotId;
|
||||
|
|
|
@ -2,7 +2,7 @@
|
|||
|
||||
This file contains the definition for XHCI host controller schedule routines.
|
||||
|
||||
Copyright (c) 2011 - 2012, Intel Corporation. All rights reserved.<BR>
|
||||
Copyright (c) 2011 - 2013, Intel Corporation. All rights reserved.<BR>
|
||||
This program and the accompanying materials
|
||||
are licensed and made available under the terms and conditions of the BSD License
|
||||
which accompanies this distribution. The full text of the license may be found at
|
||||
|
@ -172,6 +172,8 @@ typedef struct _URB {
|
|||
EFI_USB_DEVICE_REQUEST *Request;
|
||||
VOID *Data;
|
||||
UINTN DataLen;
|
||||
VOID *DataPhy;
|
||||
VOID *DataMap;
|
||||
EFI_ASYNC_USB_TRANSFER_CALLBACK Callback;
|
||||
VOID *Context;
|
||||
//
|
||||
|
@ -1305,6 +1307,19 @@ XhcCreateUrb (
|
|||
IN VOID *Context
|
||||
);
|
||||
|
||||
/**
|
||||
Free an allocated URB.
|
||||
|
||||
@param Xhc The XHCI device.
|
||||
@param Urb The URB to free.
|
||||
|
||||
**/
|
||||
VOID
|
||||
XhcFreeUrb (
|
||||
IN USB_XHCI_INSTANCE *Xhc,
|
||||
IN URB *Urb
|
||||
);
|
||||
|
||||
/**
|
||||
Create a transfer TRB.
|
||||
|
||||
|
|
Loading…
Reference in New Issue