1) Improve how memory usage is tracked in DXE Core

2) Update GetMemoryMap() to merge adjacent memory descriptors with identical types and attributes.

git-svn-id: https://edk2.svn.sourceforge.net/svnroot/edk2/trunk/edk2@10579 6f19259b-4bc3-4df7-8a09-765794883524
This commit is contained in:
mdkinney 2010-06-14 23:21:26 +00:00
parent 2a2e33b20f
commit 2345e7d4a4
1 changed files with 165 additions and 38 deletions

View File

@ -71,6 +71,7 @@ EFI_MEMORY_TYPE_STAISTICS mMemoryTypeStatistics[EfiMaxMemoryType + 1] = {
};
EFI_PHYSICAL_ADDRESS mDefaultMaximumAddress = MAX_ADDRESS;
EFI_PHYSICAL_ADDRESS mDefaultBaseAddress = MAX_ADDRESS;
EFI_MEMORY_TYPE_INFORMATION gMemoryTypeInformation[EfiMaxMemoryType + 1] = {
{ EfiReservedMemoryType, 0 },
@ -374,18 +375,20 @@ CoreFreeMemoryMapStack (
Find untested but initialized memory regions in GCD map and convert them to be DXE allocatable.
**/
VOID
BOOLEAN
PromoteMemoryResource (
VOID
)
{
LIST_ENTRY *Link;
EFI_GCD_MAP_ENTRY *Entry;
LIST_ENTRY *Link;
EFI_GCD_MAP_ENTRY *Entry;
BOOLEAN Promoted;
DEBUG ((DEBUG_PAGE, "Promote the memory resource\n"));
CoreAcquireGcdMemoryLock ();
Promoted = FALSE;
Link = mGcdMemorySpaceMap.ForwardLink;
while (Link != &mGcdMemorySpaceMap) {
@ -415,6 +418,7 @@ PromoteMemoryResource (
);
CoreFreeMemoryMapStack ();
Promoted = TRUE;
}
Link = Link->ForwardLink;
@ -422,7 +426,7 @@ PromoteMemoryResource (
CoreReleaseGcdMemoryLock ();
return;
return Promoted;
}
/**
This function try to allocate Runtime code & Boot time code memory range. If LMFA enabled, 2 patchable PCD
@ -744,8 +748,8 @@ CoreConvertPages (
// Update counters for the number of pages allocated to each memory type
//
if (Entry->Type >= 0 && Entry->Type < EfiMaxMemoryType) {
if (Start >= mMemoryTypeStatistics[Entry->Type].BaseAddress &&
Start <= mMemoryTypeStatistics[Entry->Type].MaximumAddress) {
if ((Start >= mMemoryTypeStatistics[Entry->Type].BaseAddress && Start <= mMemoryTypeStatistics[Entry->Type].MaximumAddress) ||
(Start >= mDefaultBaseAddress && Start <= mDefaultMaximumAddress) ) {
if (NumberOfPages > mMemoryTypeStatistics[Entry->Type].CurrentNumberOfPages) {
mMemoryTypeStatistics[Entry->Type].CurrentNumberOfPages = 0;
} else {
@ -755,10 +759,10 @@ CoreConvertPages (
}
if (NewType >= 0 && NewType < EfiMaxMemoryType) {
if (Start >= mMemoryTypeStatistics[NewType].BaseAddress && Start <= mMemoryTypeStatistics[NewType].MaximumAddress) {
if ((Start >= mMemoryTypeStatistics[NewType].BaseAddress && Start <= mMemoryTypeStatistics[NewType].MaximumAddress) ||
(Start >= mDefaultBaseAddress && Start <= mDefaultMaximumAddress) ) {
mMemoryTypeStatistics[NewType].CurrentNumberOfPages += NumberOfPages;
if (mMemoryTypeStatistics[NewType].CurrentNumberOfPages >
gMemoryTypeInformation[mMemoryTypeStatistics[NewType].InformationIndex].NumberOfPages) {
if (mMemoryTypeStatistics[NewType].CurrentNumberOfPages > gMemoryTypeInformation[mMemoryTypeStatistics[NewType].InformationIndex].NumberOfPages) {
gMemoryTypeInformation[mMemoryTypeStatistics[NewType].InformationIndex].NumberOfPages = (UINT32)mMemoryTypeStatistics[NewType].CurrentNumberOfPages;
}
}
@ -869,6 +873,7 @@ CoreConvertPages (
UINT64
CoreFindFreePagesI (
IN UINT64 MaxAddress,
IN UINT64 MinAddress,
IN UINT64 NumberOfPages,
IN EFI_MEMORY_TYPE NewType,
IN UINTN Alignment
@ -925,9 +930,9 @@ CoreFindFreePagesI (
DescEnd = Entry->End;
//
// If desc is past max allowed address, skip it
// If desc is past max allowed address or below min allowed address, skip it
//
if (DescStart >= MaxAddress) {
if ((DescStart >= MaxAddress) || (DescEnd < MinAddress)) {
continue;
}
@ -947,6 +952,12 @@ CoreFindFreePagesI (
DescNumberOfBytes = DescEnd - DescStart + 1;
if (DescNumberOfBytes >= NumberOfBytes) {
//
// If the start of the allocated range is below the min address allowed, skip it
//
if ((DescEnd - NumberOfBytes + 1) < MinAddress) {
continue;
}
//
// If this is the best match so far remember it
@ -994,41 +1005,62 @@ FindFreePages (
IN UINTN Alignment
)
{
UINT64 NewMaxAddress;
UINT64 Start;
UINT64 Start;
NewMaxAddress = MaxAddress;
if (NewType >= 0 && NewType < EfiMaxMemoryType && NewMaxAddress >= mMemoryTypeStatistics[NewType].MaximumAddress) {
NewMaxAddress = mMemoryTypeStatistics[NewType].MaximumAddress;
} else {
if (NewMaxAddress > mDefaultMaximumAddress) {
NewMaxAddress = mDefaultMaximumAddress;
//
// Attempt to find free pages in the preferred bin based on the requested memory type
//
if (NewType >= 0 && NewType < EfiMaxMemoryType && MaxAddress >= mMemoryTypeStatistics[NewType].MaximumAddress) {
Start = CoreFindFreePagesI (
mMemoryTypeStatistics[NewType].MaximumAddress,
mMemoryTypeStatistics[NewType].BaseAddress,
NoPages,
NewType,
Alignment
);
if (Start != 0) {
return Start;
}
}
Start = CoreFindFreePagesI (NewMaxAddress, NoPages, NewType, Alignment);
if (Start == 0) {
Start = CoreFindFreePagesI (MaxAddress, NoPages, NewType, Alignment);
if (Start == 0) {
//
// Here means there may be no enough memory to use, so try to go through
// all the memory descript to promote the untested memory directly
//
PromoteMemoryResource ();
//
// Allocate memory again after the memory resource re-arranged
//
Start = CoreFindFreePagesI (MaxAddress, NoPages, NewType, Alignment);
//
// Attempt to find free pages in the default allocation bin
//
if (MaxAddress >= mDefaultMaximumAddress) {
Start = CoreFindFreePagesI (mDefaultMaximumAddress, 0, NoPages, NewType, Alignment);
if (Start != 0) {
if (Start < mDefaultBaseAddress) {
mDefaultBaseAddress = Start;
}
return Start;
}
}
return Start;
//
// The allocation did not succeed in any of the prefered bins even after
// promoting resources. Attempt to find free pages anywhere is the requested
// address range. If this allocation fails, then there are not enough
// resources anywhere to satisfy the request.
//
Start = CoreFindFreePagesI (MaxAddress, 0, NoPages, NewType, Alignment);
if (Start != 0) {
return Start;
}
//
// If allocations from the preferred bins fail, then attempt to promote memory resources.
//
if (!PromoteMemoryResource ()) {
return 0;
}
//
// If any memory resources were promoted, then re-attempt the allocation
//
return FindFreePages (MaxAddress, NoPages, NewType, Alignment);
}
/**
Allocates pages from the memory map.
@ -1206,6 +1238,86 @@ Done:
return Status;
}
/**
This function checks to see if the last memory map descriptor in a memory map
can be merged with any of the other memory map descriptors in a memorymap.
Memory descriptors may be merged if they are adjacent and have the same type
and attributes.
@param MemoryMap A pointer to the start of the memory map.
@param MemoryMapDescriptor A pointer to the last descriptor in MemoryMap.
@param DescriptorSize The size, in bytes, of an individual
EFI_MEMORY_DESCRIPTOR.
@return A pointer to the next available descriptor in MemoryMap
**/
EFI_MEMORY_DESCRIPTOR *
MergeMemoryMapDescriptor (
IN EFI_MEMORY_DESCRIPTOR *MemoryMap,
IN EFI_MEMORY_DESCRIPTOR *MemoryMapDescriptor,
IN UINTN DescriptorSize
)
{
//
// Traverse the array of descriptors in MemoryMap
//
for (; MemoryMap != MemoryMapDescriptor; MemoryMap = NEXT_MEMORY_DESCRIPTOR (MemoryMap, DescriptorSize)) {
//
// Check to see if the Type fields are identical.
//
if (MemoryMap->Type != MemoryMapDescriptor->Type) {
continue;
}
//
// Check to see if the Attribute fields are identical.
//
if (MemoryMap->Attribute != MemoryMapDescriptor->Attribute) {
continue;
}
//
// Check to see if MemoryMapDescriptor is immediately above MemoryMap
//
if (MemoryMap->PhysicalStart + EFI_PAGES_TO_SIZE ((UINTN)MemoryMap->NumberOfPages) == MemoryMapDescriptor->PhysicalStart) {
//
// Merge MemoryMapDescriptor into MemoryMap
//
MemoryMap->NumberOfPages += MemoryMapDescriptor->NumberOfPages;
//
// Return MemoryMapDescriptor as the next available slot int he MemoryMap array
//
return MemoryMapDescriptor;
}
//
// Check to see if MemoryMapDescriptor is immediately below MemoryMap
//
if (MemoryMap->PhysicalStart - EFI_PAGES_TO_SIZE ((UINTN)MemoryMapDescriptor->NumberOfPages) == MemoryMapDescriptor->PhysicalStart) {
//
// Merge MemoryMapDescriptor into MemoryMap
//
MemoryMap->PhysicalStart = MemoryMapDescriptor->PhysicalStart;
MemoryMap->VirtualStart = MemoryMapDescriptor->VirtualStart;
MemoryMap->NumberOfPages += MemoryMapDescriptor->NumberOfPages;
//
// Return MemoryMapDescriptor as the next available slot int he MemoryMap array
//
return MemoryMapDescriptor;
}
}
//
// MemoryMapDescrtiptor could not be merged with any descriptors in MemoryMap.
//
// Return the slot immediately after MemoryMapDescriptor as the next available
// slot in the MemoryMap array
//
return NEXT_MEMORY_DESCRIPTOR (MemoryMapDescriptor, DescriptorSize);
}
/**
This function returns a copy of the current memory map. The map is an array of
@ -1255,6 +1367,7 @@ CoreGetMemoryMap (
MEMORY_MAP *Entry;
EFI_GCD_MAP_ENTRY *GcdMapEntry;
EFI_MEMORY_TYPE Type;
EFI_MEMORY_DESCRIPTOR *MemoryMapStart;
//
// Make sure the parameters are valid
@ -1320,6 +1433,7 @@ CoreGetMemoryMap (
// Build the map
//
ZeroMem (MemoryMap, BufferSize);
MemoryMapStart = MemoryMap;
for (Link = gMemoryMap.ForwardLink; Link != &gMemoryMap; Link = Link->ForwardLink) {
Entry = CR (Link, MEMORY_MAP, Link, MEMORY_MAP_SIGNATURE);
ASSERT (Entry->VirtualStart == 0);
@ -1353,7 +1467,11 @@ CoreGetMemoryMap (
MemoryMap->Attribute |= EFI_MEMORY_RUNTIME;
}
MemoryMap = NEXT_MEMORY_DESCRIPTOR (MemoryMap, Size);
//
// Check to see if the new Memory Map Descriptor can be merged with an
// existing descriptor if they are adjacent and have the same attributes
//
MemoryMap = MergeMemoryMapDescriptor (MemoryMapStart, MemoryMap, Size);
}
for (Link = mGcdMemorySpaceMap.ForwardLink; Link != &mGcdMemorySpaceMap; Link = Link->ForwardLink) {
@ -1380,11 +1498,20 @@ CoreGetMemoryMap (
}
}
MemoryMap = NEXT_MEMORY_DESCRIPTOR (MemoryMap, Size);
//
// Check to see if the new Memory Map Descriptor can be merged with an
// existing descriptor if they are adjacent and have the same attributes
//
MemoryMap = MergeMemoryMapDescriptor (MemoryMapStart, MemoryMap, Size);
}
}
}
//
// Compute the size of the buffer actually used after all memory map descriptor merge operations
//
BufferSize = ((UINT8 *)MemoryMap - (UINT8 *)MemoryMapStart);
Status = EFI_SUCCESS;
Done: