MdeModulePkg/DxeCore: Implement heap guard feature for UEFI

This feature makes use of paging mechanism to add a hidden (not present)
page just before and after the allocated memory block. If the code tries
to access memory outside of the allocated part, page fault exception will
be triggered.

This feature is controlled by three PCDs:

    gEfiMdeModulePkgTokenSpaceGuid.PcdHeapGuardPropertyMask
    gEfiMdeModulePkgTokenSpaceGuid.PcdHeapGuardPoolType
    gEfiMdeModulePkgTokenSpaceGuid.PcdHeapGuardPageType

BIT0 and BIT1 of PcdHeapGuardPropertyMask can be used to enable or disable
memory guard for page and pool respectively. PcdHeapGuardPoolType and/or
PcdHeapGuardPageType are used to enable or disable guard for specific type
of memory. For example, we can turn on guard only for EfiBootServicesData
and EfiRuntimeServicesData by setting the PCD with value 0x50.

Pool memory is not ususally integer multiple of one page, and is more likely
less than a page. There's no way to monitor the overflow at both top and
bottom of pool memory. BIT7 of PcdHeapGuardPropertyMask is used to control
how to position the head of pool memory so that it's easier to catch memory
overflow in memory growing direction or in decreasing direction.

Note1: Turning on heap guard, especially pool guard, will introduce too many
memory fragments. Windows 10 has a limitation in its boot loader, which
accepts at most 512 memory descriptors passed from BIOS. This will prevent
Windows 10 from booting if heap guard is enabled. The latest Linux
distribution with grub boot loader has no such issue. Normally it's not
recommended to enable this feature in production build of BIOS.

Note2: Don't enable this feature for NT32 emulation platform which doesn't
support paging.

Cc: Star Zeng <star.zeng@intel.com>
Cc: Eric Dong <eric.dong@intel.com>
Cc: Jiewen Yao <jiewen.yao@intel.com>
Cc: Michael Kinney <michael.d.kinney@intel.com>
Cc: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Suggested-by: Ayellet Wolman <ayellet.wolman@intel.com>
Contributed-under: TianoCore Contribution Agreement 1.1
Signed-off-by: Jian J Wang <jian.j.wang@intel.com>
Reviewed-by: Jiewen Yao <jiewen.yao@intel.com>
Regression-tested-by: Laszlo Ersek <lersek@redhat.com>
This commit is contained in:
Jian J Wang 2017-11-14 10:55:26 +08:00 committed by Star Zeng
parent 99cc7b9507
commit 235a4490c8
7 changed files with 1852 additions and 65 deletions

@ -56,6 +56,7 @@
Mem/MemData.c
Mem/Imem.h
Mem/MemoryProfileRecord.c
Mem/HeapGuard.c
FwVolBlock/FwVolBlock.c
FwVolBlock/FwVolBlock.h
FwVol/FwVolWrite.c
@ -193,6 +194,9 @@
gEfiMdeModulePkgTokenSpaceGuid.PcdImageProtectionPolicy ## CONSUMES
gEfiMdeModulePkgTokenSpaceGuid.PcdDxeNxMemoryProtectionPolicy ## CONSUMES
gEfiMdeModulePkgTokenSpaceGuid.PcdNullPointerDetectionPropertyMask ## CONSUMES
gEfiMdeModulePkgTokenSpaceGuid.PcdHeapGuardPageType ## CONSUMES
gEfiMdeModulePkgTokenSpaceGuid.PcdHeapGuardPoolType ## CONSUMES
gEfiMdeModulePkgTokenSpaceGuid.PcdHeapGuardPropertyMask ## CONSUMES
# [Hob]
# RESOURCE_DESCRIPTOR ## CONSUMES

File diff suppressed because it is too large Load Diff

@ -0,0 +1,394 @@
/** @file
Data type, macros and function prototypes of heap guard feature.
Copyright (c) 2017, Intel Corporation. All rights reserved.<BR>
This program and the accompanying materials
are licensed and made available under the terms and conditions of the BSD License
which accompanies this distribution. The full text of the license may be found at
http://opensource.org/licenses/bsd-license.php
THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS,
WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED.
**/
#ifndef _HEAPGUARD_H_
#define _HEAPGUARD_H_
//
// Following macros are used to define and access the guarded memory bitmap
// table.
//
// To simplify the access and reduce the memory used for this table, the
// table is constructed in the similar way as page table structure but in
// reverse direction, i.e. from bottom growing up to top.
//
// - 1-bit tracks 1 page (4KB)
// - 1-UINT64 map entry tracks 256KB memory
// - 1K-UINT64 map table tracks 256MB memory
// - Five levels of tables can track any address of memory of 64-bit
// system, like below.
//
// 512 * 512 * 512 * 512 * 1K * 64b * 4K
// 111111111 111111111 111111111 111111111 1111111111 111111 111111111111
// 63 54 45 36 27 17 11 0
// 9b 9b 9b 9b 10b 6b 12b
// L0 -> L1 -> L2 -> L3 -> L4 -> bits -> page
// 1FF 1FF 1FF 1FF 3FF 3F FFF
//
// L4 table has 1K * sizeof(UINT64) = 8K (2-page), which can track 256MB
// memory. Each table of L0-L3 will be allocated when its memory address
// range is to be tracked. Only 1-page will be allocated each time. This
// can save memories used to establish this map table.
//
// For a normal configuration of system with 4G memory, two levels of tables
// can track the whole memory, because two levels (L3+L4) of map tables have
// already coverred 37-bit of memory address. And for a normal UEFI BIOS,
// less than 128M memory would be consumed during boot. That means we just
// need
//
// 1-page (L3) + 2-page (L4)
//
// memory (3 pages) to track the memory allocation works. In this case,
// there's no need to setup L0-L2 tables.
//
//
// Each entry occupies 8B/64b. 1-page can hold 512 entries, which spans 9
// bits in address. (512 = 1 << 9)
//
#define BYTE_LENGTH_SHIFT 3 // (8 = 1 << 3)
#define GUARDED_HEAP_MAP_TABLE_ENTRY_SHIFT \
(EFI_PAGE_SHIFT - BYTE_LENGTH_SHIFT)
#define GUARDED_HEAP_MAP_TABLE_DEPTH 5
// Use UINT64_index + bit_index_of_UINT64 to locate the bit in may
#define GUARDED_HEAP_MAP_ENTRY_BIT_SHIFT 6 // (64 = 1 << 6)
#define GUARDED_HEAP_MAP_ENTRY_BITS \
(1 << GUARDED_HEAP_MAP_ENTRY_BIT_SHIFT)
#define GUARDED_HEAP_MAP_ENTRY_BYTES \
(GUARDED_HEAP_MAP_ENTRY_BITS / 8)
// L4 table address width: 64 - 9 * 4 - 6 - 12 = 10b
#define GUARDED_HEAP_MAP_ENTRY_SHIFT \
(GUARDED_HEAP_MAP_ENTRY_BITS \
- GUARDED_HEAP_MAP_TABLE_ENTRY_SHIFT * 4 \
- GUARDED_HEAP_MAP_ENTRY_BIT_SHIFT \
- EFI_PAGE_SHIFT)
// L4 table address mask: (1 << 10 - 1) = 0x3FF
#define GUARDED_HEAP_MAP_ENTRY_MASK \
((1 << GUARDED_HEAP_MAP_ENTRY_SHIFT) - 1)
// Size of each L4 table: (1 << 10) * 8 = 8KB = 2-page
#define GUARDED_HEAP_MAP_SIZE \
((1 << GUARDED_HEAP_MAP_ENTRY_SHIFT) * GUARDED_HEAP_MAP_ENTRY_BYTES)
// Memory size tracked by one L4 table: 8KB * 8 * 4KB = 256MB
#define GUARDED_HEAP_MAP_UNIT_SIZE \
(GUARDED_HEAP_MAP_SIZE * 8 * EFI_PAGE_SIZE)
// L4 table entry number: 8KB / 8 = 1024
#define GUARDED_HEAP_MAP_ENTRIES_PER_UNIT \
(GUARDED_HEAP_MAP_SIZE / GUARDED_HEAP_MAP_ENTRY_BYTES)
// L4 table entry indexing
#define GUARDED_HEAP_MAP_ENTRY_INDEX(Address) \
(RShiftU64 (Address, EFI_PAGE_SHIFT \
+ GUARDED_HEAP_MAP_ENTRY_BIT_SHIFT) \
& GUARDED_HEAP_MAP_ENTRY_MASK)
// L4 table entry bit indexing
#define GUARDED_HEAP_MAP_ENTRY_BIT_INDEX(Address) \
(RShiftU64 (Address, EFI_PAGE_SHIFT) \
& ((1 << GUARDED_HEAP_MAP_ENTRY_BIT_SHIFT) - 1))
//
// Total bits (pages) tracked by one L4 table (65536-bit)
//
#define GUARDED_HEAP_MAP_BITS \
(1 << (GUARDED_HEAP_MAP_ENTRY_SHIFT \
+ GUARDED_HEAP_MAP_ENTRY_BIT_SHIFT))
//
// Bit indexing inside the whole L4 table (0 - 65535)
//
#define GUARDED_HEAP_MAP_BIT_INDEX(Address) \
(RShiftU64 (Address, EFI_PAGE_SHIFT) \
& ((1 << (GUARDED_HEAP_MAP_ENTRY_SHIFT \
+ GUARDED_HEAP_MAP_ENTRY_BIT_SHIFT)) - 1))
//
// Memory address bit width tracked by L4 table: 10 + 6 + 12 = 28
//
#define GUARDED_HEAP_MAP_TABLE_SHIFT \
(GUARDED_HEAP_MAP_ENTRY_SHIFT + GUARDED_HEAP_MAP_ENTRY_BIT_SHIFT \
+ EFI_PAGE_SHIFT)
//
// Macro used to initialize the local array variable for map table traversing
// {55, 46, 37, 28, 18}
//
#define GUARDED_HEAP_MAP_TABLE_DEPTH_SHIFTS \
{ \
GUARDED_HEAP_MAP_TABLE_SHIFT + GUARDED_HEAP_MAP_TABLE_ENTRY_SHIFT * 3, \
GUARDED_HEAP_MAP_TABLE_SHIFT + GUARDED_HEAP_MAP_TABLE_ENTRY_SHIFT * 2, \
GUARDED_HEAP_MAP_TABLE_SHIFT + GUARDED_HEAP_MAP_TABLE_ENTRY_SHIFT, \
GUARDED_HEAP_MAP_TABLE_SHIFT, \
EFI_PAGE_SHIFT + GUARDED_HEAP_MAP_ENTRY_BIT_SHIFT \
}
//
// Masks used to extract address range of each level of table
// {0x1FF, 0x1FF, 0x1FF, 0x1FF, 0x3FF}
//
#define GUARDED_HEAP_MAP_TABLE_DEPTH_MASKS \
{ \
(1 << GUARDED_HEAP_MAP_TABLE_ENTRY_SHIFT) - 1, \
(1 << GUARDED_HEAP_MAP_TABLE_ENTRY_SHIFT) - 1, \
(1 << GUARDED_HEAP_MAP_TABLE_ENTRY_SHIFT) - 1, \
(1 << GUARDED_HEAP_MAP_TABLE_ENTRY_SHIFT) - 1, \
(1 << GUARDED_HEAP_MAP_ENTRY_SHIFT) - 1 \
}
//
// Memory type to guard (matching the related PCD definition)
//
#define GUARD_HEAP_TYPE_POOL BIT0
#define GUARD_HEAP_TYPE_PAGE BIT1
//
// Debug message level
//
#define HEAP_GUARD_DEBUG_LEVEL (DEBUG_POOL|DEBUG_PAGE)
typedef struct {
UINT32 TailMark;
UINT32 HeadMark;
EFI_PHYSICAL_ADDRESS Address;
LIST_ENTRY Link;
} HEAP_GUARD_NODE;
/**
Internal function. Converts a memory range to the specified type.
The range must exist in the memory map.
@param Start The first address of the range Must be page
aligned.
@param NumberOfPages The number of pages to convert.
@param NewType The new type for the memory range.
@retval EFI_INVALID_PARAMETER Invalid parameter.
@retval EFI_NOT_FOUND Could not find a descriptor cover the specified
range or convertion not allowed.
@retval EFI_SUCCESS Successfully converts the memory range to the
specified type.
**/
EFI_STATUS
CoreConvertPages (
IN UINT64 Start,
IN UINT64 NumberOfPages,
IN EFI_MEMORY_TYPE NewType
);
/**
Allocate or free guarded memory.
@param[in] Start Start address of memory to allocate or free.
@param[in] NumberOfPages Memory size in pages.
@param[in] NewType Memory type to convert to.
@return VOID.
**/
EFI_STATUS
CoreConvertPagesWithGuard (
IN UINT64 Start,
IN UINTN NumberOfPages,
IN EFI_MEMORY_TYPE NewType
);
/**
Set head Guard and tail Guard for the given memory range.
@param[in] Memory Base address of memory to set guard for.
@param[in] NumberOfPages Memory size in pages.
@return VOID.
**/
VOID
SetGuardForMemory (
IN EFI_PHYSICAL_ADDRESS Memory,
IN UINTN NumberOfPages
);
/**
Unset head Guard and tail Guard for the given memory range.
@param[in] Memory Base address of memory to unset guard for.
@param[in] NumberOfPages Memory size in pages.
@return VOID.
**/
VOID
UnsetGuardForMemory (
IN EFI_PHYSICAL_ADDRESS Memory,
IN UINTN NumberOfPages
);
/**
Adjust the base and number of pages to really allocate according to Guard.
@param[in,out] Memory Base address of free memory.
@param[in,out] NumberOfPages Size of memory to allocate.
@return VOID.
**/
VOID
AdjustMemoryA (
IN OUT EFI_PHYSICAL_ADDRESS *Memory,
IN OUT UINTN *NumberOfPages
);
/**
Adjust the start address and number of pages to free according to Guard.
The purpose of this function is to keep the shared Guard page with adjacent
memory block if it's still in guard, or free it if no more sharing. Another
is to reserve pages as Guard pages in partial page free situation.
@param[in,out] Memory Base address of memory to free.
@param[in,out] NumberOfPages Size of memory to free.
@return VOID.
**/
VOID
AdjustMemoryF (
IN OUT EFI_PHYSICAL_ADDRESS *Memory,
IN OUT UINTN *NumberOfPages
);
/**
Adjust address of free memory according to existing and/or required Guard.
This function will check if there're existing Guard pages of adjacent
memory blocks, and try to use it as the Guard page of the memory to be
allocated.
@param[in] Start Start address of free memory block.
@param[in] Size Size of free memory block.
@param[in] SizeRequested Size of memory to allocate.
@return The end address of memory block found.
@return 0 if no enough space for the required size of memory and its Guard.
**/
UINT64
AdjustMemoryS (
IN UINT64 Start,
IN UINT64 Size,
IN UINT64 SizeRequested
);
/**
Check to see if the pool at the given address should be guarded or not.
@param[in] MemoryType Pool type to check.
@return TRUE The given type of pool should be guarded.
@return FALSE The given type of pool should not be guarded.
**/
BOOLEAN
IsPoolTypeToGuard (
IN EFI_MEMORY_TYPE MemoryType
);
/**
Check to see if the page at the given address should be guarded or not.
@param[in] MemoryType Page type to check.
@param[in] AllocateType Allocation type to check.
@return TRUE The given type of page should be guarded.
@return FALSE The given type of page should not be guarded.
**/
BOOLEAN
IsPageTypeToGuard (
IN EFI_MEMORY_TYPE MemoryType,
IN EFI_ALLOCATE_TYPE AllocateType
);
/**
Check to see if the page at the given address is guarded or not.
@param[in] Address The address to check for.
@return TRUE The page at Address is guarded.
@return FALSE The page at Address is not guarded.
**/
BOOLEAN
EFIAPI
IsMemoryGuarded (
IN EFI_PHYSICAL_ADDRESS Address
);
/**
Check to see if the page at the given address is a Guard page or not.
@param[in] Address The address to check for.
@return TRUE The page at Address is a Guard page.
@return FALSE The page at Address is not a Guard page.
**/
BOOLEAN
EFIAPI
IsGuardPage (
IN EFI_PHYSICAL_ADDRESS Address
);
/**
Dump the guarded memory bit map.
**/
VOID
EFIAPI
DumpGuardedMemoryBitmap (
VOID
);
/**
Adjust the pool head position to make sure the Guard page is adjavent to
pool tail or pool head.
@param[in] Memory Base address of memory allocated.
@param[in] NoPages Number of pages actually allocated.
@param[in] Size Size of memory requested.
(plus pool head/tail overhead)
@return Address of pool head.
**/
VOID *
AdjustPoolHeadA (
IN EFI_PHYSICAL_ADDRESS Memory,
IN UINTN NoPages,
IN UINTN Size
);
/**
Get the page base address according to pool head address.
@param[in] Memory Head address of pool to free.
@return Address of pool head.
**/
VOID *
AdjustPoolHeadF (
IN EFI_PHYSICAL_ADDRESS Memory
);
extern BOOLEAN mOnGuarding;
#endif

@ -1,7 +1,7 @@
/** @file
Data structure and functions to allocate and free memory space.
Copyright (c) 2006 - 2016, Intel Corporation. All rights reserved.<BR>
Copyright (c) 2006 - 2017, Intel Corporation. All rights reserved.<BR>
This program and the accompanying materials
are licensed and made available under the terms and conditions of the BSD License
which accompanies this distribution. The full text of the license may be found at
@ -61,6 +61,7 @@ typedef struct {
@param PoolType The type of memory for the new pool pages
@param NumberOfPages No of pages to allocate
@param Alignment Bits to align.
@param NeedGuard Flag to indicate Guard page is needed or not
@return The allocated memory, or NULL
@ -69,7 +70,8 @@ VOID *
CoreAllocatePoolPages (
IN EFI_MEMORY_TYPE PoolType,
IN UINTN NumberOfPages,
IN UINTN Alignment
IN UINTN Alignment,
IN BOOLEAN NeedGuard
);
@ -95,6 +97,7 @@ CoreFreePoolPages (
@param PoolType Type of pool to allocate
@param Size The amount of pool to allocate
@param NeedGuard Flag to indicate Guard page is needed or not
@return The allocate pool, or NULL
@ -102,7 +105,8 @@ CoreFreePoolPages (
VOID *
CoreAllocatePoolI (
IN EFI_MEMORY_TYPE PoolType,
IN UINTN Size
IN UINTN Size,
IN BOOLEAN NeedGuard
);
@ -145,6 +149,34 @@ CoreReleaseMemoryLock (
VOID
);
/**
Allocates pages from the memory map.
@param Type The type of allocation to perform
@param MemoryType The type of memory to turn the allocated pages
into
@param NumberOfPages The number of pages to allocate
@param Memory A pointer to receive the base allocated memory
address
@param NeedGuard Flag to indicate Guard page is needed or not
@return Status. On success, Memory is filled in with the base address allocated
@retval EFI_INVALID_PARAMETER Parameters violate checking rules defined in
spec.
@retval EFI_NOT_FOUND Could not allocate pages match the requirement.
@retval EFI_OUT_OF_RESOURCES No enough pages to allocate.
@retval EFI_SUCCESS Pages successfully allocated.
**/
EFI_STATUS
EFIAPI
CoreInternalAllocatePages (
IN EFI_ALLOCATE_TYPE Type,
IN EFI_MEMORY_TYPE MemoryType,
IN UINTN NumberOfPages,
IN OUT EFI_PHYSICAL_ADDRESS *Memory,
IN BOOLEAN NeedGuard
);
//
// Internal Global data

@ -14,6 +14,7 @@ WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED.
#include "DxeMain.h"
#include "Imem.h"
#include "HeapGuard.h"
//
// Entry for tracking the memory regions for each memory type to coalesce similar memory types
@ -287,9 +288,12 @@ AllocateMemoryMapEntry (
//
// The list is empty, to allocate one page to refuel the list
//
FreeDescriptorEntries = CoreAllocatePoolPages (EfiBootServicesData,
FreeDescriptorEntries = CoreAllocatePoolPages (
EfiBootServicesData,
EFI_SIZE_TO_PAGES (DEFAULT_PAGE_ALLOCATION_GRANULARITY),
DEFAULT_PAGE_ALLOCATION_GRANULARITY);
DEFAULT_PAGE_ALLOCATION_GRANULARITY,
FALSE
);
if (FreeDescriptorEntries != NULL) {
//
// Enque the free memmory map entries into the list
@ -896,17 +900,41 @@ CoreConvertPagesEx (
//
CoreAddRange (MemType, Start, RangeEnd, Attribute);
if (ChangingType && (MemType == EfiConventionalMemory)) {
//
// Avoid calling DEBUG_CLEAR_MEMORY() for an address of 0 because this
// macro will ASSERT() if address is 0. Instead, CoreAddRange() guarantees
// that the page starting at address 0 is always filled with zeros.
//
if (Start == 0) {
//
// Avoid calling DEBUG_CLEAR_MEMORY() for an address of 0 because this
// macro will ASSERT() if address is 0. Instead, CoreAddRange()
// guarantees that the page starting at address 0 is always filled
// with zeros.
//
if (RangeEnd > EFI_PAGE_SIZE) {
DEBUG_CLEAR_MEMORY ((VOID *)(UINTN) EFI_PAGE_SIZE, (UINTN) (RangeEnd - EFI_PAGE_SIZE + 1));
}
} else {
DEBUG_CLEAR_MEMORY ((VOID *)(UINTN) Start, (UINTN) (RangeEnd - Start + 1));
//
// If Heap Guard is enabled, the page at the top and/or bottom of
// this memory block to free might be inaccessible. Skipping them
// to avoid page fault exception.
//
UINT64 StartToClear;
UINT64 EndToClear;
StartToClear = Start;
EndToClear = RangeEnd;
if (PcdGet8 (PcdHeapGuardPropertyMask) & (BIT1|BIT0)) {
if (IsGuardPage(StartToClear)) {
StartToClear += EFI_PAGE_SIZE;
}
if (IsGuardPage (EndToClear)) {
EndToClear -= EFI_PAGE_SIZE;
}
ASSERT (EndToClear > StartToClear);
}
DEBUG_CLEAR_MEMORY(
(VOID *)(UINTN)StartToClear,
(UINTN)(EndToClear - StartToClear + 1)
);
}
}
@ -993,6 +1021,7 @@ CoreUpdateMemoryAttributes (
@param NewType The type of memory the range is going to be
turned into
@param Alignment Bits to align with
@param NeedGuard Flag to indicate Guard page is needed or not
@return The base address of the range, or 0 if the range was not found
@ -1003,7 +1032,8 @@ CoreFindFreePagesI (
IN UINT64 MinAddress,
IN UINT64 NumberOfPages,
IN EFI_MEMORY_TYPE NewType,
IN UINTN Alignment
IN UINTN Alignment,
IN BOOLEAN NeedGuard
)
{
UINT64 NumberOfBytes;
@ -1095,6 +1125,17 @@ CoreFindFreePagesI (
// If this is the best match so far remember it
//
if (DescEnd > Target) {
if (NeedGuard) {
DescEnd = AdjustMemoryS (
DescEnd + 1 - DescNumberOfBytes,
DescNumberOfBytes,
NumberOfBytes
);
if (DescEnd == 0) {
continue;
}
}
Target = DescEnd;
}
}
@ -1125,6 +1166,7 @@ CoreFindFreePagesI (
@param NewType The type of memory the range is going to be
turned into
@param Alignment Bits to align with
@param NeedGuard Flag to indicate Guard page is needed or not
@return The base address of the range, or 0 if the range was not found.
@ -1134,7 +1176,8 @@ FindFreePages (
IN UINT64 MaxAddress,
IN UINT64 NoPages,
IN EFI_MEMORY_TYPE NewType,
IN UINTN Alignment
IN UINTN Alignment,
IN BOOLEAN NeedGuard
)
{
UINT64 Start;
@ -1148,7 +1191,8 @@ FindFreePages (
mMemoryTypeStatistics[NewType].BaseAddress,
NoPages,
NewType,
Alignment
Alignment,
NeedGuard
);
if (Start != 0) {
return Start;
@ -1159,7 +1203,8 @@ FindFreePages (
// Attempt to find free pages in the default allocation bin
//
if (MaxAddress >= mDefaultMaximumAddress) {
Start = CoreFindFreePagesI (mDefaultMaximumAddress, 0, NoPages, NewType, Alignment);
Start = CoreFindFreePagesI (mDefaultMaximumAddress, 0, NoPages, NewType,
Alignment, NeedGuard);
if (Start != 0) {
if (Start < mDefaultBaseAddress) {
mDefaultBaseAddress = Start;
@ -1174,7 +1219,8 @@ FindFreePages (
// address range. If this allocation fails, then there are not enough
// resources anywhere to satisfy the request.
//
Start = CoreFindFreePagesI (MaxAddress, 0, NoPages, NewType, Alignment);
Start = CoreFindFreePagesI (MaxAddress, 0, NoPages, NewType, Alignment,
NeedGuard);
if (Start != 0) {
return Start;
}
@ -1189,7 +1235,7 @@ FindFreePages (
//
// If any memory resources were promoted, then re-attempt the allocation
//
return FindFreePages (MaxAddress, NoPages, NewType, Alignment);
return FindFreePages (MaxAddress, NoPages, NewType, Alignment, NeedGuard);
}
@ -1202,6 +1248,7 @@ FindFreePages (
@param NumberOfPages The number of pages to allocate
@param Memory A pointer to receive the base allocated memory
address
@param NeedGuard Flag to indicate Guard page is needed or not
@return Status. On success, Memory is filled in with the base address allocated
@retval EFI_INVALID_PARAMETER Parameters violate checking rules defined in
@ -1217,7 +1264,8 @@ CoreInternalAllocatePages (
IN EFI_ALLOCATE_TYPE Type,
IN EFI_MEMORY_TYPE MemoryType,
IN UINTN NumberOfPages,
IN OUT EFI_PHYSICAL_ADDRESS *Memory
IN OUT EFI_PHYSICAL_ADDRESS *Memory,
IN BOOLEAN NeedGuard
)
{
EFI_STATUS Status;
@ -1303,7 +1351,8 @@ CoreInternalAllocatePages (
// If not a specific address, then find an address to allocate
//
if (Type != AllocateAddress) {
Start = FindFreePages (MaxAddress, NumberOfPages, MemoryType, Alignment);
Start = FindFreePages (MaxAddress, NumberOfPages, MemoryType, Alignment,
NeedGuard);
if (Start == 0) {
Status = EFI_OUT_OF_RESOURCES;
goto Done;
@ -1313,12 +1362,19 @@ CoreInternalAllocatePages (
//
// Convert pages from FreeMemory to the requested type
//
Status = CoreConvertPages (Start, NumberOfPages, MemoryType);
if (NeedGuard) {
Status = CoreConvertPagesWithGuard(Start, NumberOfPages, MemoryType);
} else {
Status = CoreConvertPages(Start, NumberOfPages, MemoryType);
}
Done:
CoreReleaseMemoryLock ();
if (!EFI_ERROR (Status)) {
if (NeedGuard) {
SetGuardForMemory (Start, NumberOfPages);
}
*Memory = Start;
}
@ -1353,8 +1409,11 @@ CoreAllocatePages (
)
{
EFI_STATUS Status;
BOOLEAN NeedGuard;
Status = CoreInternalAllocatePages (Type, MemoryType, NumberOfPages, Memory);
NeedGuard = IsPageTypeToGuard (MemoryType, Type) && !mOnGuarding;
Status = CoreInternalAllocatePages (Type, MemoryType, NumberOfPages, Memory,
NeedGuard);
if (!EFI_ERROR (Status)) {
CoreUpdateProfile (
(EFI_PHYSICAL_ADDRESS) (UINTN) RETURN_ADDRESS (0),
@ -1395,6 +1454,7 @@ CoreInternalFreePages (
LIST_ENTRY *Link;
MEMORY_MAP *Entry;
UINTN Alignment;
BOOLEAN IsGuarded;
//
// Free the range
@ -1404,6 +1464,7 @@ CoreInternalFreePages (
//
// Find the entry that the covers the range
//
IsGuarded = FALSE;
Entry = NULL;
for (Link = gMemoryMap.ForwardLink; Link != &gMemoryMap; Link = Link->ForwardLink) {
Entry = CR(Link, MEMORY_MAP, Link, MEMORY_MAP_SIGNATURE);
@ -1440,14 +1501,20 @@ CoreInternalFreePages (
*MemoryType = Entry->Type;
}
Status = CoreConvertPages (Memory, NumberOfPages, EfiConventionalMemory);
if (EFI_ERROR (Status)) {
goto Done;
IsGuarded = IsPageTypeToGuard (Entry->Type, AllocateAnyPages) &&
IsMemoryGuarded (Memory);
if (IsGuarded) {
Status = CoreConvertPagesWithGuard (Memory, NumberOfPages,
EfiConventionalMemory);
} else {
Status = CoreConvertPages (Memory, NumberOfPages, EfiConventionalMemory);
}
Done:
CoreReleaseMemoryLock ();
if (IsGuarded) {
UnsetGuardForMemory(Memory, NumberOfPages);
}
return Status;
}
@ -1845,6 +1912,12 @@ Done:
*MemoryMapSize = BufferSize;
DEBUG_CODE (
if (PcdGet8 (PcdHeapGuardPropertyMask) & (BIT1|BIT0)) {
DumpGuardedMemoryBitmap ();
}
);
return Status;
}
@ -1856,6 +1929,7 @@ Done:
@param PoolType The type of memory for the new pool pages
@param NumberOfPages No of pages to allocate
@param Alignment Bits to align.
@param NeedGuard Flag to indicate Guard page is needed or not
@return The allocated memory, or NULL
@ -1864,7 +1938,8 @@ VOID *
CoreAllocatePoolPages (
IN EFI_MEMORY_TYPE PoolType,
IN UINTN NumberOfPages,
IN UINTN Alignment
IN UINTN Alignment,
IN BOOLEAN NeedGuard
)
{
UINT64 Start;
@ -1872,7 +1947,8 @@ CoreAllocatePoolPages (
//
// Find the pages to convert
//
Start = FindFreePages (MAX_ADDRESS, NumberOfPages, PoolType, Alignment);
Start = FindFreePages (MAX_ADDRESS, NumberOfPages, PoolType, Alignment,
NeedGuard);
//
// Convert it to boot services data
@ -1880,7 +1956,11 @@ CoreAllocatePoolPages (
if (Start == 0) {
DEBUG ((DEBUG_ERROR | DEBUG_PAGE, "AllocatePoolPages: failed to allocate %d pages\n", (UINT32)NumberOfPages));
} else {
CoreConvertPages (Start, NumberOfPages, PoolType);
if (NeedGuard) {
CoreConvertPagesWithGuard (Start, NumberOfPages, PoolType);
} else {
CoreConvertPages (Start, NumberOfPages, PoolType);
}
}
return (VOID *)(UINTN) Start;

@ -14,6 +14,7 @@ WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED.
#include "DxeMain.h"
#include "Imem.h"
#include "HeapGuard.h"
STATIC EFI_LOCK mPoolMemoryLock = EFI_INITIALIZE_LOCK_VARIABLE (TPL_NOTIFY);
@ -169,7 +170,7 @@ LookupPoolHead (
}
}
Pool = CoreAllocatePoolI (EfiBootServicesData, sizeof (POOL));
Pool = CoreAllocatePoolI (EfiBootServicesData, sizeof (POOL), FALSE);
if (Pool == NULL) {
return NULL;
}
@ -214,7 +215,8 @@ CoreInternalAllocatePool (
OUT VOID **Buffer
)
{
EFI_STATUS Status;
EFI_STATUS Status;
BOOLEAN NeedGuard;
//
// If it's not a valid type, fail it
@ -238,6 +240,8 @@ CoreInternalAllocatePool (
return EFI_OUT_OF_RESOURCES;
}
NeedGuard = IsPoolTypeToGuard (PoolType) && !mOnGuarding;
//
// Acquire the memory lock and make the allocation
//
@ -246,7 +250,7 @@ CoreInternalAllocatePool (
return EFI_OUT_OF_RESOURCES;
}
*Buffer = CoreAllocatePoolI (PoolType, Size);
*Buffer = CoreAllocatePoolI (PoolType, Size, NeedGuard);
CoreReleaseLock (&mPoolMemoryLock);
return (*Buffer != NULL) ? EFI_SUCCESS : EFI_OUT_OF_RESOURCES;
}
@ -298,6 +302,7 @@ CoreAllocatePool (
@param PoolType The type of memory for the new pool pages
@param NoPages No of pages to allocate
@param Granularity Bits to align.
@param NeedGuard Flag to indicate Guard page is needed or not
@return The allocated memory, or NULL
@ -307,7 +312,8 @@ VOID *
CoreAllocatePoolPagesI (
IN EFI_MEMORY_TYPE PoolType,
IN UINTN NoPages,
IN UINTN Granularity
IN UINTN Granularity,
IN BOOLEAN NeedGuard
)
{
VOID *Buffer;
@ -318,11 +324,14 @@ CoreAllocatePoolPagesI (
return NULL;
}
Buffer = CoreAllocatePoolPages (PoolType, NoPages, Granularity);
Buffer = CoreAllocatePoolPages (PoolType, NoPages, Granularity, NeedGuard);
CoreReleaseMemoryLock ();
if (Buffer != NULL) {
ApplyMemoryProtectionPolicy (EfiConventionalMemory, PoolType,
if (NeedGuard) {
SetGuardForMemory ((EFI_PHYSICAL_ADDRESS)(UINTN)Buffer, NoPages);
}
ApplyMemoryProtectionPolicy(EfiConventionalMemory, PoolType,
(EFI_PHYSICAL_ADDRESS)(UINTN)Buffer, EFI_PAGES_TO_SIZE (NoPages));
}
return Buffer;
@ -334,6 +343,7 @@ CoreAllocatePoolPagesI (
@param PoolType Type of pool to allocate
@param Size The amount of pool to allocate
@param NeedGuard Flag to indicate Guard page is needed or not
@return The allocate pool, or NULL
@ -341,7 +351,8 @@ CoreAllocatePoolPagesI (
VOID *
CoreAllocatePoolI (
IN EFI_MEMORY_TYPE PoolType,
IN UINTN Size
IN UINTN Size,
IN BOOLEAN NeedGuard
)
{
POOL *Pool;
@ -355,6 +366,7 @@ CoreAllocatePoolI (
UINTN Offset, MaxOffset;
UINTN NoPages;
UINTN Granularity;
BOOLEAN HasPoolTail;
ASSERT_LOCKED (&mPoolMemoryLock);
@ -372,6 +384,9 @@ CoreAllocatePoolI (
// Adjust the size by the pool header & tail overhead
//
HasPoolTail = !(NeedGuard &&
((PcdGet8 (PcdHeapGuardPropertyMask) & BIT7) == 0));
//
// Adjusting the Size to be of proper alignment so that
// we don't get an unaligned access fault later when
@ -391,10 +406,16 @@ CoreAllocatePoolI (
// If allocation is over max size, just allocate pages for the request
// (slow)
//
if (Index >= SIZE_TO_LIST (Granularity)) {
NoPages = EFI_SIZE_TO_PAGES(Size) + EFI_SIZE_TO_PAGES (Granularity) - 1;
if (Index >= SIZE_TO_LIST (Granularity) || NeedGuard) {
if (!HasPoolTail) {
Size -= sizeof (POOL_TAIL);
}
NoPages = EFI_SIZE_TO_PAGES (Size) + EFI_SIZE_TO_PAGES (Granularity) - 1;
NoPages &= ~(UINTN)(EFI_SIZE_TO_PAGES (Granularity) - 1);
Head = CoreAllocatePoolPagesI (PoolType, NoPages, Granularity);
Head = CoreAllocatePoolPagesI (PoolType, NoPages, Granularity, NeedGuard);
if (NeedGuard) {
Head = AdjustPoolHeadA ((EFI_PHYSICAL_ADDRESS)(UINTN)Head, NoPages, Size);
}
goto Done;
}
@ -422,7 +443,8 @@ CoreAllocatePoolI (
//
// Get another page
//
NewPage = CoreAllocatePoolPagesI (PoolType, EFI_SIZE_TO_PAGES (Granularity), Granularity);
NewPage = CoreAllocatePoolPagesI (PoolType, EFI_SIZE_TO_PAGES (Granularity),
Granularity, NeedGuard);
if (NewPage == NULL) {
goto Done;
}
@ -468,30 +490,39 @@ Done:
if (Head != NULL) {
//
// Account the allocation
//
Pool->Used += Size;
//
// If we have a pool buffer, fill in the header & tail info
//
Head->Signature = POOL_HEAD_SIGNATURE;
Head->Size = Size;
Head->Type = (EFI_MEMORY_TYPE) PoolType;
Tail = HEAD_TO_TAIL (Head);
Tail->Signature = POOL_TAIL_SIGNATURE;
Tail->Size = Size;
Buffer = Head->Data;
DEBUG_CLEAR_MEMORY (Buffer, Size - POOL_OVERHEAD);
if (HasPoolTail) {
Tail = HEAD_TO_TAIL (Head);
Tail->Signature = POOL_TAIL_SIGNATURE;
Tail->Size = Size;
Size -= POOL_OVERHEAD;
} else {
Size -= SIZE_OF_POOL_HEAD;
}
DEBUG_CLEAR_MEMORY (Buffer, Size);
DEBUG ((
DEBUG_POOL,
"AllocatePoolI: Type %x, Addr %p (len %lx) %,ld\n", PoolType,
Buffer,
(UINT64)(Size - POOL_OVERHEAD),
(UINT64)Size,
(UINT64) Pool->Used
));
//
// Account the allocation
//
Pool->Used += Size;
} else {
DEBUG ((DEBUG_ERROR | DEBUG_POOL, "AllocatePool: failed to allocate %ld bytes\n", (UINT64) Size));
@ -588,6 +619,34 @@ CoreFreePoolPagesI (
(EFI_PHYSICAL_ADDRESS)(UINTN)Memory, EFI_PAGES_TO_SIZE (NoPages));
}
/**
Internal function. Frees guarded pool pages.
@param PoolType The type of memory for the pool pages
@param Memory The base address to free
@param NoPages The number of pages to free
**/
STATIC
VOID
CoreFreePoolPagesWithGuard (
IN EFI_MEMORY_TYPE PoolType,
IN EFI_PHYSICAL_ADDRESS Memory,
IN UINTN NoPages
)
{
EFI_PHYSICAL_ADDRESS MemoryGuarded;
UINTN NoPagesGuarded;
MemoryGuarded = Memory;
NoPagesGuarded = NoPages;
AdjustMemoryF (&Memory, &NoPages);
CoreFreePoolPagesI (PoolType, Memory, NoPages);
UnsetGuardForMemory (MemoryGuarded, NoPagesGuarded);
}
/**
Internal function to free a pool entry.
Caller must have the memory lock held
@ -616,6 +675,8 @@ CoreFreePoolI (
UINTN Offset;
BOOLEAN AllFree;
UINTN Granularity;
BOOLEAN IsGuarded;
BOOLEAN HasPoolTail;
ASSERT(Buffer != NULL);
//
@ -628,24 +689,32 @@ CoreFreePoolI (
return EFI_INVALID_PARAMETER;
}
Tail = HEAD_TO_TAIL (Head);
ASSERT(Tail != NULL);
IsGuarded = IsPoolTypeToGuard (Head->Type) &&
IsMemoryGuarded ((EFI_PHYSICAL_ADDRESS)(UINTN)Head);
HasPoolTail = !(IsGuarded &&
((PcdGet8 (PcdHeapGuardPropertyMask) & BIT7) == 0));
//
// Debug
//
ASSERT (Tail->Signature == POOL_TAIL_SIGNATURE);
ASSERT (Head->Size == Tail->Size);
ASSERT_LOCKED (&mPoolMemoryLock);
if (HasPoolTail) {
Tail = HEAD_TO_TAIL (Head);
ASSERT (Tail != NULL);
if (Tail->Signature != POOL_TAIL_SIGNATURE) {
return EFI_INVALID_PARAMETER;
}
if (Head->Size != Tail->Size) {
return EFI_INVALID_PARAMETER;
//
// Debug
//
ASSERT (Tail->Signature == POOL_TAIL_SIGNATURE);
ASSERT (Head->Size == Tail->Size);
if (Tail->Signature != POOL_TAIL_SIGNATURE) {
return EFI_INVALID_PARAMETER;
}
if (Head->Size != Tail->Size) {
return EFI_INVALID_PARAMETER;
}
}
ASSERT_LOCKED (&mPoolMemoryLock);
//
// Determine the pool type and account for it
//
@ -680,14 +749,27 @@ CoreFreePoolI (
//
// If it's not on the list, it must be pool pages
//
if (Index >= SIZE_TO_LIST (Granularity)) {
if (Index >= SIZE_TO_LIST (Granularity) || IsGuarded) {
//
// Return the memory pages back to free memory
//
NoPages = EFI_SIZE_TO_PAGES(Size) + EFI_SIZE_TO_PAGES (Granularity) - 1;
NoPages = EFI_SIZE_TO_PAGES (Size) + EFI_SIZE_TO_PAGES (Granularity) - 1;
NoPages &= ~(UINTN)(EFI_SIZE_TO_PAGES (Granularity) - 1);
CoreFreePoolPagesI (Pool->MemoryType, (EFI_PHYSICAL_ADDRESS) (UINTN) Head, NoPages);
if (IsGuarded) {
Head = AdjustPoolHeadF ((EFI_PHYSICAL_ADDRESS)(UINTN)Head);
CoreFreePoolPagesWithGuard (
Pool->MemoryType,
(EFI_PHYSICAL_ADDRESS)(UINTN)Head,
NoPages
);
} else {
CoreFreePoolPagesI (
Pool->MemoryType,
(EFI_PHYSICAL_ADDRESS)(UINTN)Head,
NoPages
);
}
} else {

@ -1065,12 +1065,15 @@ CoreInitializeMemoryProtection (
// - code regions should have no EFI_MEMORY_XP attribute
// - EfiConventionalMemory and EfiBootServicesData should use the
// same attribute
// - heap guard should not be enabled for the same type of memory
//
ASSERT ((GetPermissionAttributeForMemoryType (EfiBootServicesCode) & EFI_MEMORY_XP) == 0);
ASSERT ((GetPermissionAttributeForMemoryType (EfiRuntimeServicesCode) & EFI_MEMORY_XP) == 0);
ASSERT ((GetPermissionAttributeForMemoryType (EfiLoaderCode) & EFI_MEMORY_XP) == 0);
ASSERT (GetPermissionAttributeForMemoryType (EfiBootServicesData) ==
GetPermissionAttributeForMemoryType (EfiConventionalMemory));
ASSERT ((PcdGet64 (PcdDxeNxMemoryProtectionPolicy) & PcdGet64 (PcdHeapGuardPoolType)) == 0);
ASSERT ((PcdGet64 (PcdDxeNxMemoryProtectionPolicy) & PcdGet64 (PcdHeapGuardPageType)) == 0);
if (mImageProtectionPolicy != 0 || PcdGet64 (PcdDxeNxMemoryProtectionPolicy) != 0) {
Status = CoreCreateEvent (