ArmVirtPkg: Apply uncrustify changes

REF: https://bugzilla.tianocore.org/show_bug.cgi?id=3737

Apply uncrustify changes to .c/.h files in the ArmVirtPkg package

Cc: Andrew Fish <afish@apple.com>
Cc: Leif Lindholm <leif@nuviainc.com>
Cc: Michael D Kinney <michael.d.kinney@intel.com>
Signed-off-by: Michael Kubacki <michael.kubacki@microsoft.com>
Reviewed-by: Sami Mujawar <sami.mujawar@arm.com>
This commit is contained in:
Michael Kubacki 2021-12-05 14:53:52 -08:00 committed by mergify[bot]
parent 40b0b23ed3
commit 2b16a4fb91
38 changed files with 1419 additions and 1126 deletions

View File

@ -26,13 +26,13 @@ FindAcpiTableProtocol (
VOID
)
{
EFI_STATUS Status;
EFI_ACPI_TABLE_PROTOCOL *AcpiTable;
EFI_STATUS Status;
EFI_ACPI_TABLE_PROTOCOL *AcpiTable;
Status = gBS->LocateProtocol (
&gEfiAcpiTableProtocolGuid,
NULL,
(VOID**)&AcpiTable
(VOID **)&AcpiTable
);
ASSERT_EFI_ERROR (Status);
return AcpiTable;
@ -52,32 +52,32 @@ FindAcpiTableProtocol (
EFI_STATUS
EFIAPI
InstallCloudHvAcpiTables (
IN EFI_ACPI_TABLE_PROTOCOL *AcpiProtocol
IN EFI_ACPI_TABLE_PROTOCOL *AcpiProtocol
)
{
UINTN InstalledKey;
UINTN TableSize;
UINTN AcpiTableLength;
UINT64 RsdpPtr;
UINT64 XsdtPtr;
UINT64 TableOffset;
UINT64 AcpiTablePtr;
UINT64 *DsdtPtr;
EFI_STATUS Status;
UINTN InstalledKey;
UINTN TableSize;
UINTN AcpiTableLength;
UINT64 RsdpPtr;
UINT64 XsdtPtr;
UINT64 TableOffset;
UINT64 AcpiTablePtr;
UINT64 *DsdtPtr;
EFI_STATUS Status;
if (AcpiProtocol == NULL) {
return EFI_INVALID_PARAMETER;
}
RsdpPtr = PcdGet64 (PcdCloudHvAcpiRsdpBaseAddress);
XsdtPtr = ((EFI_ACPI_6_3_ROOT_SYSTEM_DESCRIPTION_POINTER *)RsdpPtr)->XsdtAddress;
RsdpPtr = PcdGet64 (PcdCloudHvAcpiRsdpBaseAddress);
XsdtPtr = ((EFI_ACPI_6_3_ROOT_SYSTEM_DESCRIPTION_POINTER *)RsdpPtr)->XsdtAddress;
AcpiTableLength = ((EFI_ACPI_COMMON_HEADER *)XsdtPtr)->Length;
TableOffset = sizeof (EFI_ACPI_DESCRIPTION_HEADER);
DsdtPtr = NULL;
TableOffset = sizeof (EFI_ACPI_DESCRIPTION_HEADER);
DsdtPtr = NULL;
while (TableOffset < AcpiTableLength) {
AcpiTablePtr = *(UINT64 *)(XsdtPtr + TableOffset);
TableSize = ((EFI_ACPI_COMMON_HEADER *)AcpiTablePtr)->Length;
TableSize = ((EFI_ACPI_COMMON_HEADER *)AcpiTablePtr)->Length;
//
// Install ACPI tables from XSDT
@ -89,7 +89,7 @@ InstallCloudHvAcpiTables (
&InstalledKey
);
if (EFI_ERROR (Status)) {
return Status;
return Status;
}
//
@ -97,7 +97,8 @@ InstallCloudHvAcpiTables (
//
if ((DsdtPtr == NULL) &&
(EFI_ACPI_6_3_FIXED_ACPI_DESCRIPTION_TABLE_SIGNATURE ==
((EFI_ACPI_COMMON_HEADER *)AcpiTablePtr)->Signature)) {
((EFI_ACPI_COMMON_HEADER *)AcpiTablePtr)->Signature))
{
DsdtPtr = (UINT64 *)((EFI_ACPI_6_3_FIXED_ACPI_DESCRIPTION_TABLE *)AcpiTablePtr)->XDsdt;
}
@ -113,12 +114,12 @@ InstallCloudHvAcpiTables (
// Install DSDT table
//
TableSize = ((EFI_ACPI_COMMON_HEADER *)DsdtPtr)->Length;
Status = AcpiProtocol->InstallAcpiTable (
AcpiProtocol,
DsdtPtr,
TableSize,
&InstalledKey
);
Status = AcpiProtocol->InstallAcpiTable (
AcpiProtocol,
DsdtPtr,
TableSize,
&InstalledKey
);
return Status;
}
@ -138,22 +139,22 @@ InstallCloudHvAcpiTables (
EFI_STATUS
EFIAPI
CloudHvAcpiPlatformEntryPoint (
IN EFI_HANDLE ImageHandle,
IN EFI_SYSTEM_TABLE *SystemTable
IN EFI_HANDLE ImageHandle,
IN EFI_SYSTEM_TABLE *SystemTable
)
{
EFI_STATUS Status;
EFI_STATUS Status;
Status = InstallCloudHvAcpiTables (FindAcpiTableProtocol ());
if (EFI_ERROR (Status)) {
DEBUG ((
DEBUG_ERROR,
"%a: Fail to install Acpi table: %r\n",
__FUNCTION__,
Status
));
CpuDeadLoop ();
DEBUG ((
DEBUG_ERROR,
"%a: Fail to install Acpi table: %r\n",
__FUNCTION__,
Status
));
CpuDeadLoop ();
}
return EFI_SUCCESS;

View File

@ -28,19 +28,20 @@
EFI_STATUS
EFIAPI
PlatformHasAcpiDt (
IN EFI_HANDLE ImageHandle,
IN EFI_SYSTEM_TABLE *SystemTable
IN EFI_HANDLE ImageHandle,
IN EFI_SYSTEM_TABLE *SystemTable
)
{
EFI_STATUS Status;
EFI_STATUS Status;
//
// If we fail to install any of the necessary protocols below, the OS will be
// unbootable anyway (due to lacking hardware description), so tolerate no
// errors here.
//
if (MAX_UINTN == MAX_UINT64 &&
!PcdGetBool (PcdForceNoAcpi)) {
if ((MAX_UINTN == MAX_UINT64) &&
!PcdGetBool (PcdForceNoAcpi))
{
Status = gBS->InstallProtocolInterface (
&ImageHandle,
&gEdkiiPlatformHasAcpiGuid,

View File

@ -11,12 +11,12 @@
#ifndef EARLY_16550_UART_BASE_ADDRESS_H__
#define EARLY_16550_UART_BASE_ADDRESS_H__
#define EARLY_16550_UART_BASE_ADDRESS_GUID { \
#define EARLY_16550_UART_BASE_ADDRESS_GUID { \
0xea67ca3e, 0x1f54, 0x436b, { \
0x97, 0x88, 0xd4, 0xeb, 0x29, 0xc3, 0x42, 0x67 \
} \
}
extern EFI_GUID gEarly16550UartBaseAddressGuid;
extern EFI_GUID gEarly16550UartBaseAddressGuid;
#endif // EARLY_16550_UART_BASE_ADDRESS_H__

View File

@ -11,11 +11,11 @@
#ifndef __EARLY_PL011_BASE_ADDRESS_H__
#define __EARLY_PL011_BASE_ADDRESS_H__
#define EARLY_PL011_BASE_ADDRESS_GUID { \
#define EARLY_PL011_BASE_ADDRESS_GUID {\
0xB199DEA9, 0xFD5C, 0x4A84, \
{ 0x80, 0x82, 0x2F, 0x41, 0x70, 0x78, 0x03, 0x05 } \
}
extern EFI_GUID gEarlyPL011BaseAddressGuid;
extern EFI_GUID gEarlyPL011BaseAddressGuid;
#endif

View File

@ -29,7 +29,7 @@
VOID
EFIAPI
ArmVirtGetMemoryMap (
OUT ARM_MEMORY_REGION_DESCRIPTOR **VirtualMemoryMap
OUT ARM_MEMORY_REGION_DESCRIPTOR **VirtualMemoryMap
);
#endif

View File

@ -33,7 +33,7 @@
STATIC
EFI_STATUS
PlatformHasAcpiDt (
IN EFI_HANDLE ImageHandle
IN EFI_HANDLE ImageHandle
)
{
if (!PcdGetBool (PcdForceNoAcpi)) {
@ -69,11 +69,11 @@ PlatformHasAcpiDt (
EFI_STATUS
EFIAPI
KvmtoolPlatformDxeEntryPoint (
IN EFI_HANDLE ImageHandle,
IN EFI_SYSTEM_TABLE *SystemTable
IN EFI_HANDLE ImageHandle,
IN EFI_SYSTEM_TABLE *SystemTable
)
{
EFI_STATUS Status;
EFI_STATUS Status;
Status = PlatformHasAcpiDt (ImageHandle);
ASSERT_EFI_ERROR (Status);

View File

@ -43,7 +43,7 @@ HobLibConstructor (
IN EFI_SYSTEM_TABLE *SystemTable
)
{
UINTN Index;
UINTN Index;
for (Index = 0; Index < SystemTable->NumberOfTableEntries; Index++) {
if (CompareGuid (&gEfiHobListGuid, &(SystemTable->ConfigurationTable[Index].VendorGuid))) {
@ -101,15 +101,15 @@ GetHobList (
VOID *
EFIAPI
GetNextHob (
IN UINT16 Type,
IN CONST VOID *HobStart
IN UINT16 Type,
IN CONST VOID *HobStart
)
{
EFI_PEI_HOB_POINTERS Hob;
ASSERT (HobStart != NULL);
Hob.Raw = (UINT8 *) HobStart;
Hob.Raw = (UINT8 *)HobStart;
//
// Parse the HOB list until end of list or matching type is found.
//
@ -117,8 +117,10 @@ GetNextHob (
if (Hob.Header->HobType == Type) {
return Hob.Raw;
}
Hob.Raw = GET_NEXT_HOB (Hob);
}
return NULL;
}
@ -138,10 +140,10 @@ GetNextHob (
VOID *
EFIAPI
GetFirstHob (
IN UINT16 Type
IN UINT16 Type
)
{
VOID *HobList;
VOID *HobList;
HobList = GetHobList ();
return GetNextHob (Type, HobList);
@ -172,19 +174,21 @@ GetFirstHob (
VOID *
EFIAPI
GetNextGuidHob (
IN CONST EFI_GUID *Guid,
IN CONST VOID *HobStart
IN CONST EFI_GUID *Guid,
IN CONST VOID *HobStart
)
{
EFI_PEI_HOB_POINTERS GuidHob;
GuidHob.Raw = (UINT8 *) HobStart;
GuidHob.Raw = (UINT8 *)HobStart;
while ((GuidHob.Raw = GetNextHob (EFI_HOB_TYPE_GUID_EXTENSION, GuidHob.Raw)) != NULL) {
if (CompareGuid (Guid, &GuidHob.Guid->Name)) {
break;
}
GuidHob.Raw = GET_NEXT_HOB (GuidHob);
}
return GuidHob.Raw;
}
@ -209,10 +213,10 @@ GetNextGuidHob (
VOID *
EFIAPI
GetFirstGuidHob (
IN CONST EFI_GUID *Guid
IN CONST EFI_GUID *Guid
)
{
VOID *HobList;
VOID *HobList;
HobList = GetHobList ();
return GetNextGuidHob (Guid, HobList);
@ -237,11 +241,11 @@ GetBootModeHob (
VOID
)
{
EFI_HOB_HANDOFF_INFO_TABLE *HandOffHob;
EFI_HOB_HANDOFF_INFO_TABLE *HandOffHob;
HandOffHob = (EFI_HOB_HANDOFF_INFO_TABLE *) GetHobList ();
HandOffHob = (EFI_HOB_HANDOFF_INFO_TABLE *)GetHobList ();
return HandOffHob->BootMode;
return HandOffHob->BootMode;
}
/**
@ -263,10 +267,10 @@ GetBootModeHob (
VOID
EFIAPI
BuildModuleHob (
IN CONST EFI_GUID *ModuleName,
IN EFI_PHYSICAL_ADDRESS MemoryAllocationModule,
IN UINT64 ModuleLength,
IN EFI_PHYSICAL_ADDRESS EntryPoint
IN CONST EFI_GUID *ModuleName,
IN EFI_PHYSICAL_ADDRESS MemoryAllocationModule,
IN UINT64 ModuleLength,
IN EFI_PHYSICAL_ADDRESS EntryPoint
)
{
//
@ -330,8 +334,8 @@ BuildResourceDescriptorHob (
VOID *
EFIAPI
BuildGuidHob (
IN CONST EFI_GUID *Guid,
IN UINTN DataLength
IN CONST EFI_GUID *Guid,
IN UINTN DataLength
)
{
//
@ -369,9 +373,9 @@ BuildGuidHob (
VOID *
EFIAPI
BuildGuidDataHob (
IN CONST EFI_GUID *Guid,
IN VOID *Data,
IN UINTN DataLength
IN CONST EFI_GUID *Guid,
IN VOID *Data,
IN UINTN DataLength
)
{
//
@ -398,8 +402,8 @@ BuildGuidDataHob (
VOID
EFIAPI
BuildFvHob (
IN EFI_PHYSICAL_ADDRESS BaseAddress,
IN UINT64 Length
IN EFI_PHYSICAL_ADDRESS BaseAddress,
IN UINT64 Length
)
{
//
@ -427,10 +431,10 @@ BuildFvHob (
VOID
EFIAPI
BuildFv2Hob (
IN EFI_PHYSICAL_ADDRESS BaseAddress,
IN UINT64 Length,
IN CONST EFI_GUID *FvName,
IN CONST EFI_GUID *FileName
IN EFI_PHYSICAL_ADDRESS BaseAddress,
IN UINT64 Length,
IN CONST EFI_GUID *FvName,
IN CONST EFI_GUID *FileName
)
{
ASSERT (FALSE);
@ -460,12 +464,12 @@ BuildFv2Hob (
VOID
EFIAPI
BuildFv3Hob (
IN EFI_PHYSICAL_ADDRESS BaseAddress,
IN UINT64 Length,
IN UINT32 AuthenticationStatus,
IN BOOLEAN ExtractedFv,
IN CONST EFI_GUID *FvName OPTIONAL,
IN CONST EFI_GUID *FileName OPTIONAL
IN EFI_PHYSICAL_ADDRESS BaseAddress,
IN UINT64 Length,
IN UINT32 AuthenticationStatus,
IN BOOLEAN ExtractedFv,
IN CONST EFI_GUID *FvName OPTIONAL,
IN CONST EFI_GUID *FileName OPTIONAL
)
{
ASSERT (FALSE);
@ -488,8 +492,8 @@ BuildFv3Hob (
VOID
EFIAPI
BuildCvHob (
IN EFI_PHYSICAL_ADDRESS BaseAddress,
IN UINT64 Length
IN EFI_PHYSICAL_ADDRESS BaseAddress,
IN UINT64 Length
)
{
//
@ -514,8 +518,8 @@ BuildCvHob (
VOID
EFIAPI
BuildCpuHob (
IN UINT8 SizeOfMemorySpace,
IN UINT8 SizeOfIoSpace
IN UINT8 SizeOfMemorySpace,
IN UINT8 SizeOfIoSpace
)
{
//
@ -540,8 +544,8 @@ BuildCpuHob (
VOID
EFIAPI
BuildStackHob (
IN EFI_PHYSICAL_ADDRESS BaseAddress,
IN UINT64 Length
IN EFI_PHYSICAL_ADDRESS BaseAddress,
IN UINT64 Length
)
{
//
@ -567,9 +571,9 @@ BuildStackHob (
VOID
EFIAPI
BuildBspStoreHob (
IN EFI_PHYSICAL_ADDRESS BaseAddress,
IN UINT64 Length,
IN EFI_MEMORY_TYPE MemoryType
IN EFI_PHYSICAL_ADDRESS BaseAddress,
IN UINT64 Length,
IN EFI_MEMORY_TYPE MemoryType
)
{
//
@ -595,9 +599,9 @@ BuildBspStoreHob (
VOID
EFIAPI
BuildMemoryAllocationHob (
IN EFI_PHYSICAL_ADDRESS BaseAddress,
IN UINT64 Length,
IN EFI_MEMORY_TYPE MemoryType
IN EFI_PHYSICAL_ADDRESS BaseAddress,
IN UINT64 Length,
IN EFI_MEMORY_TYPE MemoryType
)
{
//

View File

@ -19,7 +19,7 @@
#include <Protocol/FdtClient.h>
STATIC ARM_GIC_ARCH_REVISION mGicArchRevision;
STATIC ARM_GIC_ARCH_REVISION mGicArchRevision;
RETURN_STATUS
EFIAPI
@ -27,115 +27,133 @@ ArmVirtGicArchLibConstructor (
VOID
)
{
UINT32 IccSre;
FDT_CLIENT_PROTOCOL *FdtClient;
CONST UINT64 *Reg;
UINT32 RegSize;
UINTN AddressCells, SizeCells;
UINTN GicRevision;
EFI_STATUS Status;
UINT64 DistBase, CpuBase, RedistBase;
RETURN_STATUS PcdStatus;
UINT32 IccSre;
FDT_CLIENT_PROTOCOL *FdtClient;
CONST UINT64 *Reg;
UINT32 RegSize;
UINTN AddressCells, SizeCells;
UINTN GicRevision;
EFI_STATUS Status;
UINT64 DistBase, CpuBase, RedistBase;
RETURN_STATUS PcdStatus;
Status = gBS->LocateProtocol (&gFdtClientProtocolGuid, NULL,
(VOID **)&FdtClient);
Status = gBS->LocateProtocol (
&gFdtClientProtocolGuid,
NULL,
(VOID **)&FdtClient
);
ASSERT_EFI_ERROR (Status);
GicRevision = 2;
Status = FdtClient->FindCompatibleNodeReg (FdtClient, "arm,cortex-a15-gic",
(CONST VOID **)&Reg, &AddressCells, &SizeCells,
&RegSize);
Status = FdtClient->FindCompatibleNodeReg (
FdtClient,
"arm,cortex-a15-gic",
(CONST VOID **)&Reg,
&AddressCells,
&SizeCells,
&RegSize
);
if (Status == EFI_NOT_FOUND) {
GicRevision = 3;
Status = FdtClient->FindCompatibleNodeReg (FdtClient, "arm,gic-v3",
(CONST VOID **)&Reg, &AddressCells, &SizeCells,
&RegSize);
Status = FdtClient->FindCompatibleNodeReg (
FdtClient,
"arm,gic-v3",
(CONST VOID **)&Reg,
&AddressCells,
&SizeCells,
&RegSize
);
}
if (EFI_ERROR (Status)) {
return Status;
}
switch (GicRevision) {
case 3:
//
// The GIC v3 DT binding describes a series of at least 3 physical (base
// addresses, size) pairs: the distributor interface (GICD), at least one
// redistributor region (GICR) containing dedicated redistributor
// interfaces for all individual CPUs, and the CPU interface (GICC).
// Under virtualization, we assume that the first redistributor region
// listed covers the boot CPU. Also, our GICv3 driver only supports the
// system register CPU interface, so we can safely ignore the MMIO version
// which is listed after the sequence of redistributor interfaces.
// This means we are only interested in the first two memory regions
// supplied, and ignore everything else.
//
ASSERT (RegSize >= 32);
case 3:
//
// The GIC v3 DT binding describes a series of at least 3 physical (base
// addresses, size) pairs: the distributor interface (GICD), at least one
// redistributor region (GICR) containing dedicated redistributor
// interfaces for all individual CPUs, and the CPU interface (GICC).
// Under virtualization, we assume that the first redistributor region
// listed covers the boot CPU. Also, our GICv3 driver only supports the
// system register CPU interface, so we can safely ignore the MMIO version
// which is listed after the sequence of redistributor interfaces.
// This means we are only interested in the first two memory regions
// supplied, and ignore everything else.
//
ASSERT (RegSize >= 32);
// RegProp[0..1] == { GICD base, GICD size }
DistBase = SwapBytes64 (Reg[0]);
ASSERT (DistBase < MAX_UINTN);
// RegProp[0..1] == { GICD base, GICD size }
DistBase = SwapBytes64 (Reg[0]);
ASSERT (DistBase < MAX_UINTN);
// RegProp[2..3] == { GICR base, GICR size }
RedistBase = SwapBytes64 (Reg[2]);
ASSERT (RedistBase < MAX_UINTN);
// RegProp[2..3] == { GICR base, GICR size }
RedistBase = SwapBytes64 (Reg[2]);
ASSERT (RedistBase < MAX_UINTN);
PcdStatus = PcdSet64S (PcdGicDistributorBase, DistBase);
ASSERT_RETURN_ERROR (PcdStatus);
PcdStatus = PcdSet64S (PcdGicRedistributorsBase, RedistBase);
ASSERT_RETURN_ERROR (PcdStatus);
PcdStatus = PcdSet64S (PcdGicDistributorBase, DistBase);
ASSERT_RETURN_ERROR (PcdStatus);
PcdStatus = PcdSet64S (PcdGicRedistributorsBase, RedistBase);
ASSERT_RETURN_ERROR (PcdStatus);
DEBUG ((
DEBUG_INFO,
"Found GIC v3 (re)distributor @ 0x%Lx (0x%Lx)\n",
DistBase,
RedistBase
));
DEBUG ((DEBUG_INFO, "Found GIC v3 (re)distributor @ 0x%Lx (0x%Lx)\n",
DistBase, RedistBase));
//
// The default implementation of ArmGicArchLib is responsible for enabling
// the system register interface on the GICv3 if one is found. So let's do
// the same here.
//
IccSre = ArmGicV3GetControlSystemRegisterEnable ();
if (!(IccSre & ICC_SRE_EL2_SRE)) {
ArmGicV3SetControlSystemRegisterEnable (IccSre | ICC_SRE_EL2_SRE);
//
// The default implementation of ArmGicArchLib is responsible for enabling
// the system register interface on the GICv3 if one is found. So let's do
// the same here.
//
IccSre = ArmGicV3GetControlSystemRegisterEnable ();
}
if (!(IccSre & ICC_SRE_EL2_SRE)) {
ArmGicV3SetControlSystemRegisterEnable (IccSre | ICC_SRE_EL2_SRE);
IccSre = ArmGicV3GetControlSystemRegisterEnable ();
}
//
// Unlike the default implementation, there is no fall through to GICv2
// mode if this GICv3 cannot be driven in native mode due to the fact
// that the System Register interface is unavailable.
//
ASSERT (IccSre & ICC_SRE_EL2_SRE);
//
// Unlike the default implementation, there is no fall through to GICv2
// mode if this GICv3 cannot be driven in native mode due to the fact
// that the System Register interface is unavailable.
//
ASSERT (IccSre & ICC_SRE_EL2_SRE);
mGicArchRevision = ARM_GIC_ARCH_REVISION_3;
break;
mGicArchRevision = ARM_GIC_ARCH_REVISION_3;
break;
case 2:
//
// When the GICv2 is emulated with virtualization=on, it adds a virtual
// set of control registers. This means the register property can be
// either 32 or 64 bytes in size.
//
ASSERT ((RegSize == 32) || (RegSize == 64));
case 2:
//
// When the GICv2 is emulated with virtualization=on, it adds a virtual
// set of control registers. This means the register property can be
// either 32 or 64 bytes in size.
//
ASSERT ((RegSize == 32) || (RegSize == 64));
DistBase = SwapBytes64 (Reg[0]);
CpuBase = SwapBytes64 (Reg[2]);
ASSERT (DistBase < MAX_UINTN);
ASSERT (CpuBase < MAX_UINTN);
DistBase = SwapBytes64 (Reg[0]);
CpuBase = SwapBytes64 (Reg[2]);
ASSERT (DistBase < MAX_UINTN);
ASSERT (CpuBase < MAX_UINTN);
PcdStatus = PcdSet64S (PcdGicDistributorBase, DistBase);
ASSERT_RETURN_ERROR (PcdStatus);
PcdStatus = PcdSet64S (PcdGicInterruptInterfaceBase, CpuBase);
ASSERT_RETURN_ERROR (PcdStatus);
PcdStatus = PcdSet64S (PcdGicDistributorBase, DistBase);
ASSERT_RETURN_ERROR (PcdStatus);
PcdStatus = PcdSet64S (PcdGicInterruptInterfaceBase, CpuBase);
ASSERT_RETURN_ERROR (PcdStatus);
DEBUG ((DEBUG_INFO, "Found GIC @ 0x%Lx/0x%Lx\n", DistBase, CpuBase));
DEBUG ((DEBUG_INFO, "Found GIC @ 0x%Lx/0x%Lx\n", DistBase, CpuBase));
mGicArchRevision = ARM_GIC_ARCH_REVISION_2;
break;
mGicArchRevision = ARM_GIC_ARCH_REVISION_2;
break;
default:
DEBUG ((DEBUG_ERROR, "%a: No GIC revision specified!\n", __FUNCTION__));
return RETURN_NOT_FOUND;
default:
DEBUG ((DEBUG_ERROR, "%a: No GIC revision specified!\n", __FUNCTION__));
return RETURN_NOT_FOUND;
}
return RETURN_SUCCESS;
}

View File

@ -35,7 +35,7 @@ InitMmu (
// Get Virtual Memory Map from the Platform Library
ArmVirtGetMemoryMap (&MemoryTable);
//Note: Because we called PeiServicesInstallPeiMemory() before to call InitMmu() the MMU Page Table resides in
// Note: Because we called PeiServicesInstallPeiMemory() before to call InitMmu() the MMU Page Table resides in
// DRAM (even at the top of DRAM as it is the first permanent memory allocation)
Status = ArmConfigureMmu (MemoryTable, &TranslationTableBase, &TranslationTableSize);
if (EFI_ERROR (Status)) {
@ -46,12 +46,12 @@ InitMmu (
EFI_STATUS
EFIAPI
MemoryPeim (
IN EFI_PHYSICAL_ADDRESS UefiMemoryBase,
IN UINT64 UefiMemorySize
IN EFI_PHYSICAL_ADDRESS UefiMemoryBase,
IN UINT64 UefiMemorySize
)
{
EFI_RESOURCE_ATTRIBUTE_TYPE ResourceAttributes;
UINT64 SystemMemoryTop;
EFI_RESOURCE_ATTRIBUTE_TYPE ResourceAttributes;
UINT64 SystemMemoryTop;
// Ensure PcdSystemMemorySize has been set
ASSERT (PcdGet64 (PcdSystemMemorySize) != 0);
@ -60,35 +60,35 @@ MemoryPeim (
// Now, the permanent memory has been installed, we can call AllocatePages()
//
ResourceAttributes = (
EFI_RESOURCE_ATTRIBUTE_PRESENT |
EFI_RESOURCE_ATTRIBUTE_INITIALIZED |
EFI_RESOURCE_ATTRIBUTE_WRITE_BACK_CACHEABLE |
EFI_RESOURCE_ATTRIBUTE_TESTED
);
EFI_RESOURCE_ATTRIBUTE_PRESENT |
EFI_RESOURCE_ATTRIBUTE_INITIALIZED |
EFI_RESOURCE_ATTRIBUTE_WRITE_BACK_CACHEABLE |
EFI_RESOURCE_ATTRIBUTE_TESTED
);
SystemMemoryTop = PcdGet64 (PcdSystemMemoryBase) +
PcdGet64 (PcdSystemMemorySize);
if (SystemMemoryTop - 1 > MAX_ALLOC_ADDRESS) {
BuildResourceDescriptorHob (
EFI_RESOURCE_SYSTEM_MEMORY,
ResourceAttributes,
PcdGet64 (PcdSystemMemoryBase),
(UINT64)MAX_ALLOC_ADDRESS - PcdGet64 (PcdSystemMemoryBase) + 1
);
EFI_RESOURCE_SYSTEM_MEMORY,
ResourceAttributes,
PcdGet64 (PcdSystemMemoryBase),
(UINT64)MAX_ALLOC_ADDRESS - PcdGet64 (PcdSystemMemoryBase) + 1
);
BuildResourceDescriptorHob (
EFI_RESOURCE_SYSTEM_MEMORY,
ResourceAttributes,
(UINT64)MAX_ALLOC_ADDRESS + 1,
SystemMemoryTop - MAX_ALLOC_ADDRESS - 1
);
EFI_RESOURCE_SYSTEM_MEMORY,
ResourceAttributes,
(UINT64)MAX_ALLOC_ADDRESS + 1,
SystemMemoryTop - MAX_ALLOC_ADDRESS - 1
);
} else {
BuildResourceDescriptorHob (
EFI_RESOURCE_SYSTEM_MEMORY,
ResourceAttributes,
PcdGet64 (PcdSystemMemoryBase),
PcdGet64 (PcdSystemMemorySize)
);
EFI_RESOURCE_SYSTEM_MEMORY,
ResourceAttributes,
PcdGet64 (PcdSystemMemoryBase),
PcdGet64 (PcdSystemMemorySize)
);
}
//
@ -98,7 +98,7 @@ MemoryPeim (
// that the contents we put there with the caches and MMU off will still
// be visible after turning them on.
//
InvalidateDataCacheRange ((VOID*)(UINTN)UefiMemoryBase, UefiMemorySize);
InvalidateDataCacheRange ((VOID *)(UINTN)UefiMemoryBase, UefiMemorySize);
// Build Memory Allocation Hob
InitMmu ();

View File

@ -22,31 +22,44 @@ ArmVirtPL031FdtClientLibConstructor (
VOID
)
{
EFI_STATUS Status;
FDT_CLIENT_PROTOCOL *FdtClient;
INT32 Node;
CONST UINT64 *Reg;
UINT32 RegSize;
UINT64 RegBase;
RETURN_STATUS PcdStatus;
EFI_STATUS Status;
FDT_CLIENT_PROTOCOL *FdtClient;
INT32 Node;
CONST UINT64 *Reg;
UINT32 RegSize;
UINT64 RegBase;
RETURN_STATUS PcdStatus;
Status = gBS->LocateProtocol (&gFdtClientProtocolGuid, NULL,
(VOID **)&FdtClient);
Status = gBS->LocateProtocol (
&gFdtClientProtocolGuid,
NULL,
(VOID **)&FdtClient
);
ASSERT_EFI_ERROR (Status);
Status = FdtClient->FindCompatibleNode (FdtClient, "arm,pl031", &Node);
if (EFI_ERROR (Status)) {
DEBUG ((DEBUG_WARN, "%a: No 'arm,pl031' compatible DT node found\n",
__FUNCTION__));
DEBUG ((
DEBUG_WARN,
"%a: No 'arm,pl031' compatible DT node found\n",
__FUNCTION__
));
return EFI_SUCCESS;
}
Status = FdtClient->GetNodeProperty (FdtClient, Node, "reg",
(CONST VOID **)&Reg, &RegSize);
Status = FdtClient->GetNodeProperty (
FdtClient,
Node,
"reg",
(CONST VOID **)&Reg,
&RegSize
);
if (EFI_ERROR (Status)) {
DEBUG ((DEBUG_WARN,
DEBUG ((
DEBUG_WARN,
"%a: No 'reg' property found in 'arm,pl031' compatible DT node\n",
__FUNCTION__));
__FUNCTION__
));
return EFI_SUCCESS;
}
@ -66,10 +79,15 @@ ArmVirtPL031FdtClientLibConstructor (
// need to disable it in the device tree to prevent the OS from attaching
// its device driver as well.
//
Status = FdtClient->SetNodeProperty (FdtClient, Node, "status",
"disabled", sizeof ("disabled"));
Status = FdtClient->SetNodeProperty (
FdtClient,
Node,
"status",
"disabled",
sizeof ("disabled")
);
if (EFI_ERROR (Status)) {
DEBUG ((DEBUG_WARN, "Failed to set PL031 status to 'disabled'\n"));
DEBUG ((DEBUG_WARN, "Failed to set PL031 status to 'disabled'\n"));
}
return EFI_SUCCESS;

View File

@ -19,30 +19,30 @@
#pragma pack(1)
typedef struct {
ACPI_HID_DEVICE_PATH AcpiDevicePath;
EFI_DEVICE_PATH_PROTOCOL EndDevicePath;
ACPI_HID_DEVICE_PATH AcpiDevicePath;
EFI_DEVICE_PATH_PROTOCOL EndDevicePath;
} EFI_PCI_ROOT_BRIDGE_DEVICE_PATH;
#pragma pack ()
GLOBAL_REMOVE_IF_UNREFERENCED
CHAR16 *mPciHostBridgeAcpiAddressSpaceTypeStr[] = {
CHAR16 *mPciHostBridgeAcpiAddressSpaceTypeStr[] = {
L"Mem",
L"I/O",
L"Bus"
};
STATIC CONST EFI_PCI_ROOT_BRIDGE_DEVICE_PATH mEfiPciRootBridgeDevicePath = {
STATIC CONST EFI_PCI_ROOT_BRIDGE_DEVICE_PATH mEfiPciRootBridgeDevicePath = {
{
{
ACPI_DEVICE_PATH,
ACPI_DP,
{
(UINT8) (sizeof (ACPI_HID_DEVICE_PATH)),
(UINT8) ((sizeof (ACPI_HID_DEVICE_PATH)) >> 8)
(UINT8)(sizeof (ACPI_HID_DEVICE_PATH)),
(UINT8)((sizeof (ACPI_HID_DEVICE_PATH)) >> 8)
}
},
EISA_PNP_ID (0x0A03), // HID
0 // UID
0 // UID
},
{
@ -55,13 +55,12 @@ STATIC CONST EFI_PCI_ROOT_BRIDGE_DEVICE_PATH mEfiPciRootBridgeDevicePath = {
}
};
GLOBAL_REMOVE_IF_UNREFERENCED
CHAR16 *mPciHostBridgeLibAcpiAddressSpaceTypeStr[] = {
CHAR16 *mPciHostBridgeLibAcpiAddressSpaceTypeStr[] = {
L"Mem", L"I/O", L"Bus"
};
STATIC PCI_ROOT_BRIDGE mRootBridge;
STATIC PCI_ROOT_BRIDGE mRootBridge;
/**
Utility function to return all the root bridge instances in an array.
@ -84,18 +83,18 @@ STATIC PCI_ROOT_BRIDGE mRootBridge;
PCI_ROOT_BRIDGE *
EFIAPI
PciHostBridgeUtilityGetRootBridges (
OUT UINTN *Count,
IN UINT64 Attributes,
IN UINT64 AllocationAttributes,
IN BOOLEAN DmaAbove4G,
IN BOOLEAN NoExtendedConfigSpace,
IN UINTN BusMin,
IN UINTN BusMax,
IN PCI_ROOT_BRIDGE_APERTURE *Io,
IN PCI_ROOT_BRIDGE_APERTURE *Mem,
IN PCI_ROOT_BRIDGE_APERTURE *MemAbove4G,
IN PCI_ROOT_BRIDGE_APERTURE *PMem,
IN PCI_ROOT_BRIDGE_APERTURE *PMemAbove4G
OUT UINTN *Count,
IN UINT64 Attributes,
IN UINT64 AllocationAttributes,
IN BOOLEAN DmaAbove4G,
IN BOOLEAN NoExtendedConfigSpace,
IN UINTN BusMin,
IN UINTN BusMax,
IN PCI_ROOT_BRIDGE_APERTURE *Io,
IN PCI_ROOT_BRIDGE_APERTURE *Mem,
IN PCI_ROOT_BRIDGE_APERTURE *MemAbove4G,
IN PCI_ROOT_BRIDGE_APERTURE *PMem,
IN PCI_ROOT_BRIDGE_APERTURE *PMemAbove4G
)
{
if ((Count == NULL) ||
@ -103,38 +102,38 @@ PciHostBridgeUtilityGetRootBridges (
(Mem == NULL) ||
(MemAbove4G == NULL) ||
(PMem == NULL) ||
(PMemAbove4G == NULL)) {
(PMemAbove4G == NULL))
{
return NULL;
}
*Count = 1;
mRootBridge.Segment = 0;
mRootBridge.Supports = Attributes;
mRootBridge.Attributes = Attributes;
mRootBridge.Segment = 0;
mRootBridge.Supports = Attributes;
mRootBridge.Attributes = Attributes;
mRootBridge.DmaAbove4G = DmaAbove4G;
mRootBridge.NoExtendedConfigSpace = NoExtendedConfigSpace;
mRootBridge.ResourceAssigned = FALSE;
mRootBridge.AllocationAttributes = AllocationAttributes;
mRootBridge.AllocationAttributes = AllocationAttributes;
mRootBridge.Bus.Base = BusMin;
mRootBridge.Bus.Limit = BusMax;
mRootBridge.Io.Base = Io->Base;
mRootBridge.Io.Limit = Io->Limit;
mRootBridge.Mem.Base = Mem->Base;
mRootBridge.Mem.Limit = Mem->Limit;
mRootBridge.MemAbove4G.Base = MemAbove4G->Base;
mRootBridge.MemAbove4G.Limit = MemAbove4G->Limit;
mRootBridge.PMem.Base = PMem->Base;
mRootBridge.PMem.Limit = PMem->Limit;
mRootBridge.PMemAbove4G.Base = PMemAbove4G->Base;
mRootBridge.PMemAbove4G.Limit = PMemAbove4G->Limit;
mRootBridge.Bus.Base = BusMin;
mRootBridge.Bus.Limit = BusMax;
mRootBridge.Io.Base = Io->Base;
mRootBridge.Io.Limit = Io->Limit;
mRootBridge.Mem.Base = Mem->Base;
mRootBridge.Mem.Limit = Mem->Limit;
mRootBridge.MemAbove4G.Base = MemAbove4G->Base;
mRootBridge.MemAbove4G.Limit = MemAbove4G->Limit;
mRootBridge.PMem.Base = PMem->Base;
mRootBridge.PMem.Limit = PMem->Limit;
mRootBridge.PMemAbove4G.Base = PMemAbove4G->Base;
mRootBridge.PMemAbove4G.Limit = PMemAbove4G->Limit;
mRootBridge.DevicePath =
(EFI_DEVICE_PATH_PROTOCOL*)&mEfiPciRootBridgeDevicePath;
(EFI_DEVICE_PATH_PROTOCOL *)&mEfiPciRootBridgeDevicePath;
return &mRootBridge;
}
@ -149,8 +148,8 @@ PciHostBridgeUtilityGetRootBridges (
VOID
EFIAPI
PciHostBridgeUtilityFreeRootBridges (
IN PCI_ROOT_BRIDGE *Bridges,
IN UINTN Count
IN PCI_ROOT_BRIDGE *Bridges,
IN UINTN Count
)
{
// Nothing to do here.
@ -176,18 +175,20 @@ PciHostBridgeUtilityResourceConflict (
IN VOID *Configuration
)
{
EFI_ACPI_ADDRESS_SPACE_DESCRIPTOR *Descriptor;
UINTN RootBridgeIndex;
EFI_ACPI_ADDRESS_SPACE_DESCRIPTOR *Descriptor;
UINTN RootBridgeIndex;
DEBUG ((DEBUG_ERROR, "PciHostBridge: Resource conflict happens!\n"));
RootBridgeIndex = 0;
Descriptor = (EFI_ACPI_ADDRESS_SPACE_DESCRIPTOR*)Configuration;
Descriptor = (EFI_ACPI_ADDRESS_SPACE_DESCRIPTOR *)Configuration;
while (Descriptor->Desc == ACPI_ADDRESS_SPACE_DESCRIPTOR) {
DEBUG ((DEBUG_ERROR, "RootBridge[%d]:\n", RootBridgeIndex++));
for (; Descriptor->Desc == ACPI_ADDRESS_SPACE_DESCRIPTOR; Descriptor++) {
ASSERT (Descriptor->ResType <
ARRAY_SIZE (mPciHostBridgeAcpiAddressSpaceTypeStr)
);
for ( ; Descriptor->Desc == ACPI_ADDRESS_SPACE_DESCRIPTOR; Descriptor++) {
ASSERT (
Descriptor->ResType <
ARRAY_SIZE (mPciHostBridgeAcpiAddressSpaceTypeStr)
);
DEBUG ((
DEBUG_ERROR,
" %s: Length/Alignment = 0x%lx / 0x%lx\n",
@ -207,12 +208,13 @@ PciHostBridgeUtilityResourceConflict (
));
}
}
//
// Skip the END descriptor for root bridge
//
ASSERT (Descriptor->Desc == ACPI_END_TAG_DESCRIPTOR);
Descriptor = (EFI_ACPI_ADDRESS_SPACE_DESCRIPTOR*)(
(EFI_ACPI_END_TAG_DESCRIPTOR*)Descriptor + 1
);
Descriptor = (EFI_ACPI_ADDRESS_SPACE_DESCRIPTOR *)(
(EFI_ACPI_END_TAG_DESCRIPTOR *)Descriptor + 1
);
}
}

View File

@ -27,7 +27,7 @@
#include <Protocol/FdtClient.h>
STATIC UINT32 mArmPsciMethod;
STATIC UINT32 mArmPsciMethod;
RETURN_STATUS
EFIAPI
@ -35,16 +35,24 @@ ArmPsciResetSystemLibConstructor (
VOID
)
{
EFI_STATUS Status;
FDT_CLIENT_PROTOCOL *FdtClient;
CONST VOID *Prop;
EFI_STATUS Status;
FDT_CLIENT_PROTOCOL *FdtClient;
CONST VOID *Prop;
Status = gBS->LocateProtocol (&gFdtClientProtocolGuid, NULL,
(VOID **)&FdtClient);
Status = gBS->LocateProtocol (
&gFdtClientProtocolGuid,
NULL,
(VOID **)&FdtClient
);
ASSERT_EFI_ERROR (Status);
Status = FdtClient->FindCompatibleNodeProperty (FdtClient, "arm,psci-0.2",
"method", &Prop, NULL);
Status = FdtClient->FindCompatibleNodeProperty (
FdtClient,
"arm,psci-0.2",
"method",
&Prop,
NULL
);
if (EFI_ERROR (Status)) {
return Status;
}
@ -54,10 +62,15 @@ ArmPsciResetSystemLibConstructor (
} else if (AsciiStrnCmp (Prop, "smc", 3) == 0) {
mArmPsciMethod = 2;
} else {
DEBUG ((DEBUG_ERROR, "%a: Unknown PSCI method \"%a\"\n", __FUNCTION__,
Prop));
DEBUG ((
DEBUG_ERROR,
"%a: Unknown PSCI method \"%a\"\n",
__FUNCTION__,
Prop
));
return EFI_NOT_FOUND;
}
return EFI_SUCCESS;
}
@ -75,24 +88,24 @@ ResetCold (
VOID
)
{
ARM_SMC_ARGS ArmSmcArgs;
ARM_HVC_ARGS ArmHvcArgs;
ARM_SMC_ARGS ArmSmcArgs;
ARM_HVC_ARGS ArmHvcArgs;
// Send a PSCI 0.2 SYSTEM_RESET command
ArmSmcArgs.Arg0 = ARM_SMC_ID_PSCI_SYSTEM_RESET;
ArmHvcArgs.Arg0 = ARM_SMC_ID_PSCI_SYSTEM_RESET;
switch (mArmPsciMethod) {
case 1:
ArmCallHvc (&ArmHvcArgs);
break;
case 1:
ArmCallHvc (&ArmHvcArgs);
break;
case 2:
ArmCallSmc (&ArmSmcArgs);
break;
case 2:
ArmCallSmc (&ArmSmcArgs);
break;
default:
DEBUG ((DEBUG_ERROR, "%a: no PSCI method defined\n", __FUNCTION__));
default:
DEBUG ((DEBUG_ERROR, "%a: no PSCI method defined\n", __FUNCTION__));
}
}
@ -124,24 +137,24 @@ ResetShutdown (
VOID
)
{
ARM_SMC_ARGS ArmSmcArgs;
ARM_HVC_ARGS ArmHvcArgs;
ARM_SMC_ARGS ArmSmcArgs;
ARM_HVC_ARGS ArmHvcArgs;
// Send a PSCI 0.2 SYSTEM_OFF command
ArmSmcArgs.Arg0 = ARM_SMC_ID_PSCI_SYSTEM_OFF;
ArmHvcArgs.Arg0 = ARM_SMC_ID_PSCI_SYSTEM_OFF;
switch (mArmPsciMethod) {
case 1:
ArmCallHvc (&ArmHvcArgs);
break;
case 1:
ArmCallHvc (&ArmHvcArgs);
break;
case 2:
ArmCallSmc (&ArmSmcArgs);
break;
case 2:
ArmCallSmc (&ArmSmcArgs);
break;
default:
DEBUG ((DEBUG_ERROR, "%a: no PSCI method defined\n", __FUNCTION__));
default:
DEBUG ((DEBUG_ERROR, "%a: no PSCI method defined\n", __FUNCTION__));
}
}
@ -159,8 +172,8 @@ ResetShutdown (
VOID
EFIAPI
ResetPlatformSpecific (
IN UINTN DataSize,
IN VOID *ResetData
IN UINTN DataSize,
IN VOID *ResetData
)
{
// Map the platform specific reset as reboot
@ -182,30 +195,30 @@ ResetPlatformSpecific (
VOID
EFIAPI
ResetSystem (
IN EFI_RESET_TYPE ResetType,
IN EFI_STATUS ResetStatus,
IN UINTN DataSize,
IN VOID *ResetData OPTIONAL
IN EFI_RESET_TYPE ResetType,
IN EFI_STATUS ResetStatus,
IN UINTN DataSize,
IN VOID *ResetData OPTIONAL
)
{
switch (ResetType) {
case EfiResetWarm:
ResetWarm ();
break;
case EfiResetWarm:
ResetWarm ();
break;
case EfiResetCold:
ResetCold ();
break;
case EfiResetCold:
ResetCold ();
break;
case EfiResetShutdown:
ResetShutdown ();
return;
case EfiResetShutdown:
ResetShutdown ();
return;
case EfiResetPlatformSpecific:
ResetPlatformSpecific (DataSize, ResetData);
return;
case EfiResetPlatformSpecific:
ResetPlatformSpecific (DataSize, ResetData);
return;
default:
return;
default:
return;
}
}

View File

@ -34,20 +34,20 @@ DiscoverPsciMethod (
VOID
)
{
VOID *DeviceTreeBase;
INT32 Node, Prev;
INT32 Len;
CONST CHAR8 *Compatible;
CONST CHAR8 *CompatibleItem;
CONST VOID *Prop;
VOID *DeviceTreeBase;
INT32 Node, Prev;
INT32 Len;
CONST CHAR8 *Compatible;
CONST CHAR8 *CompatibleItem;
CONST VOID *Prop;
DeviceTreeBase = (VOID*)(UINTN)PcdGet64 (PcdDeviceTreeInitialBaseAddress);
DeviceTreeBase = (VOID *)(UINTN)PcdGet64 (PcdDeviceTreeInitialBaseAddress);
ASSERT (fdt_check_header (DeviceTreeBase) == 0);
//
// Enumerate all FDT nodes looking for the PSCI node and capture the method
//
for (Prev = 0;; Prev = Node) {
for (Prev = 0; ; Prev = Node) {
Node = fdt_next_node (DeviceTreeBase, Prev, NULL);
if (Node < 0) {
break;
@ -62,16 +62,19 @@ DiscoverPsciMethod (
// Iterate over the NULL-separated items in the compatible string
//
for (CompatibleItem = Compatible; CompatibleItem < Compatible + Len;
CompatibleItem += 1 + AsciiStrLen (CompatibleItem)) {
CompatibleItem += 1 + AsciiStrLen (CompatibleItem))
{
if (AsciiStrCmp (CompatibleItem, "arm,psci-0.2") != 0) {
continue;
}
Prop = fdt_getprop (DeviceTreeBase, Node, "method", NULL);
if (!Prop) {
DEBUG ((DEBUG_ERROR, "%a: Missing PSCI method property\n",
__FUNCTION__));
DEBUG ((
DEBUG_ERROR,
"%a: Missing PSCI method property\n",
__FUNCTION__
));
return PsciMethodUnknown;
}
@ -80,39 +83,44 @@ DiscoverPsciMethod (
} else if (AsciiStrnCmp (Prop, "smc", 3) == 0) {
return PsciMethodSmc;
} else {
DEBUG ((DEBUG_ERROR, "%a: Unknown PSCI method \"%a\"\n", __FUNCTION__,
Prop));
DEBUG ((
DEBUG_ERROR,
"%a: Unknown PSCI method \"%a\"\n",
__FUNCTION__,
Prop
));
return PsciMethodUnknown;
}
}
}
return PsciMethodUnknown;
}
STATIC
VOID
PerformPsciAction (
IN UINTN Arg0
IN UINTN Arg0
)
{
ARM_SMC_ARGS ArmSmcArgs;
ARM_HVC_ARGS ArmHvcArgs;
ARM_SMC_ARGS ArmSmcArgs;
ARM_HVC_ARGS ArmHvcArgs;
ArmSmcArgs.Arg0 = Arg0;
ArmHvcArgs.Arg0 = Arg0;
switch (DiscoverPsciMethod ()) {
case PsciMethodHvc:
ArmCallHvc (&ArmHvcArgs);
break;
case PsciMethodHvc:
ArmCallHvc (&ArmHvcArgs);
break;
case PsciMethodSmc:
ArmCallSmc (&ArmSmcArgs);
break;
case PsciMethodSmc:
ArmCallSmc (&ArmSmcArgs);
break;
default:
DEBUG ((DEBUG_ERROR, "%a: no PSCI method defined\n", __FUNCTION__));
ASSERT (FALSE);
default:
DEBUG ((DEBUG_ERROR, "%a: no PSCI method defined\n", __FUNCTION__));
ASSERT (FALSE);
}
}
@ -180,8 +188,8 @@ ResetShutdown (
VOID
EFIAPI
ResetPlatformSpecific (
IN UINTN DataSize,
IN VOID *ResetData
IN UINTN DataSize,
IN VOID *ResetData
)
{
// Map the platform specific reset as reboot
@ -203,30 +211,30 @@ ResetPlatformSpecific (
VOID
EFIAPI
ResetSystem (
IN EFI_RESET_TYPE ResetType,
IN EFI_STATUS ResetStatus,
IN UINTN DataSize,
IN VOID *ResetData OPTIONAL
IN EFI_RESET_TYPE ResetType,
IN EFI_STATUS ResetStatus,
IN UINTN DataSize,
IN VOID *ResetData OPTIONAL
)
{
switch (ResetType) {
case EfiResetWarm:
ResetWarm ();
break;
case EfiResetWarm:
ResetWarm ();
break;
case EfiResetCold:
ResetCold ();
break;
case EfiResetCold:
ResetCold ();
break;
case EfiResetShutdown:
ResetShutdown ();
return;
case EfiResetShutdown:
ResetShutdown ();
return;
case EfiResetPlatformSpecific:
ResetPlatformSpecific (DataSize, ResetData);
return;
case EfiResetPlatformSpecific:
ResetPlatformSpecific (DataSize, ResetData);
return;
default:
return;
default:
return;
}
}

View File

@ -18,9 +18,9 @@
#pragma pack (1)
typedef struct {
UINT32 Type;
UINT32 Number;
UINT32 Flags;
UINT32 Type;
UINT32 Number;
UINT32 Flags;
} INTERRUPT_PROPERTY;
#pragma pack ()
@ -30,25 +30,35 @@ ArmVirtTimerFdtClientLibConstructor (
VOID
)
{
EFI_STATUS Status;
FDT_CLIENT_PROTOCOL *FdtClient;
CONST INTERRUPT_PROPERTY *InterruptProp;
UINT32 PropSize;
INT32 SecIntrNum, IntrNum, VirtIntrNum, HypIntrNum;
RETURN_STATUS PcdStatus;
EFI_STATUS Status;
FDT_CLIENT_PROTOCOL *FdtClient;
CONST INTERRUPT_PROPERTY *InterruptProp;
UINT32 PropSize;
INT32 SecIntrNum, IntrNum, VirtIntrNum, HypIntrNum;
RETURN_STATUS PcdStatus;
Status = gBS->LocateProtocol (&gFdtClientProtocolGuid, NULL,
(VOID **)&FdtClient);
Status = gBS->LocateProtocol (
&gFdtClientProtocolGuid,
NULL,
(VOID **)&FdtClient
);
ASSERT_EFI_ERROR (Status);
Status = FdtClient->FindCompatibleNodeProperty (FdtClient, "arm,armv7-timer",
"interrupts", (CONST VOID **)&InterruptProp,
&PropSize);
Status = FdtClient->FindCompatibleNodeProperty (
FdtClient,
"arm,armv7-timer",
"interrupts",
(CONST VOID **)&InterruptProp,
&PropSize
);
if (Status == EFI_NOT_FOUND) {
Status = FdtClient->FindCompatibleNodeProperty (FdtClient,
"arm,armv8-timer", "interrupts",
Status = FdtClient->FindCompatibleNodeProperty (
FdtClient,
"arm,armv8-timer",
"interrupts",
(CONST VOID **)&InterruptProp,
&PropSize);
&PropSize
);
}
if (EFI_ERROR (Status)) {
@ -68,10 +78,16 @@ ArmVirtTimerFdtClientLibConstructor (
VirtIntrNum = SwapBytes32 (InterruptProp[2].Number)
+ (InterruptProp[2].Type ? 16 : 0);
HypIntrNum = PropSize < 48 ? 0 : SwapBytes32 (InterruptProp[3].Number)
+ (InterruptProp[3].Type ? 16 : 0);
+ (InterruptProp[3].Type ? 16 : 0);
DEBUG ((DEBUG_INFO, "Found Timer interrupts %d, %d, %d, %d\n",
SecIntrNum, IntrNum, VirtIntrNum, HypIntrNum));
DEBUG ((
DEBUG_INFO,
"Found Timer interrupts %d, %d, %d, %d\n",
SecIntrNum,
IntrNum,
VirtIntrNum,
HypIntrNum
));
PcdStatus = PcdSet32S (PcdArmArchTimerSecIntrNum, SecIntrNum);
ASSERT_RETURN_ERROR (PcdStatus);

View File

@ -10,7 +10,6 @@
**/
#include <Base.h>
#include <Library/BaseLib.h>
@ -19,7 +18,6 @@
#include <Library/DebugLib.h>
#include <Library/PcdLib.h>
/**
Assert the validity of a PCI address. A valid PCI address should contain 1's
only in the low 28 bits.
@ -62,7 +60,7 @@ PciExpressRegisterForRuntimeAccess (
return RETURN_UNSUPPORTED;
}
STATIC UINT64 mPciExpressBaseAddress;
STATIC UINT64 mPciExpressBaseAddress;
RETURN_STATUS
EFIAPI
@ -74,19 +72,18 @@ PciExpressLibInitialize (
return RETURN_SUCCESS;
}
/**
Gets the base address of PCI Express.
@return The base address of PCI Express.
**/
VOID*
VOID *
GetPciExpressBaseAddress (
VOID
)
{
return (VOID*)(UINTN) mPciExpressBaseAddress;
return (VOID *)(UINTN)mPciExpressBaseAddress;
}
/**
@ -107,11 +104,11 @@ GetPciExpressBaseAddress (
UINT8
EFIAPI
PciExpressRead8 (
IN UINTN Address
IN UINTN Address
)
{
ASSERT_INVALID_PCI_ADDRESS (Address);
return MmioRead8 ((UINTN) GetPciExpressBaseAddress () + Address);
return MmioRead8 ((UINTN)GetPciExpressBaseAddress () + Address);
}
/**
@ -133,12 +130,12 @@ PciExpressRead8 (
UINT8
EFIAPI
PciExpressWrite8 (
IN UINTN Address,
IN UINT8 Value
IN UINTN Address,
IN UINT8 Value
)
{
ASSERT_INVALID_PCI_ADDRESS (Address);
return MmioWrite8 ((UINTN) GetPciExpressBaseAddress () + Address, Value);
return MmioWrite8 ((UINTN)GetPciExpressBaseAddress () + Address, Value);
}
/**
@ -164,12 +161,12 @@ PciExpressWrite8 (
UINT8
EFIAPI
PciExpressOr8 (
IN UINTN Address,
IN UINT8 OrData
IN UINTN Address,
IN UINT8 OrData
)
{
ASSERT_INVALID_PCI_ADDRESS (Address);
return MmioOr8 ((UINTN) GetPciExpressBaseAddress () + Address, OrData);
return MmioOr8 ((UINTN)GetPciExpressBaseAddress () + Address, OrData);
}
/**
@ -195,12 +192,12 @@ PciExpressOr8 (
UINT8
EFIAPI
PciExpressAnd8 (
IN UINTN Address,
IN UINT8 AndData
IN UINTN Address,
IN UINT8 AndData
)
{
ASSERT_INVALID_PCI_ADDRESS (Address);
return MmioAnd8 ((UINTN) GetPciExpressBaseAddress () + Address, AndData);
return MmioAnd8 ((UINTN)GetPciExpressBaseAddress () + Address, AndData);
}
/**
@ -228,14 +225,14 @@ PciExpressAnd8 (
UINT8
EFIAPI
PciExpressAndThenOr8 (
IN UINTN Address,
IN UINT8 AndData,
IN UINT8 OrData
IN UINTN Address,
IN UINT8 AndData,
IN UINT8 OrData
)
{
ASSERT_INVALID_PCI_ADDRESS (Address);
return MmioAndThenOr8 (
(UINTN) GetPciExpressBaseAddress () + Address,
(UINTN)GetPciExpressBaseAddress () + Address,
AndData,
OrData
);
@ -265,14 +262,14 @@ PciExpressAndThenOr8 (
UINT8
EFIAPI
PciExpressBitFieldRead8 (
IN UINTN Address,
IN UINTN StartBit,
IN UINTN EndBit
IN UINTN Address,
IN UINTN StartBit,
IN UINTN EndBit
)
{
ASSERT_INVALID_PCI_ADDRESS (Address);
return MmioBitFieldRead8 (
(UINTN) GetPciExpressBaseAddress () + Address,
(UINTN)GetPciExpressBaseAddress () + Address,
StartBit,
EndBit
);
@ -305,15 +302,15 @@ PciExpressBitFieldRead8 (
UINT8
EFIAPI
PciExpressBitFieldWrite8 (
IN UINTN Address,
IN UINTN StartBit,
IN UINTN EndBit,
IN UINT8 Value
IN UINTN Address,
IN UINTN StartBit,
IN UINTN EndBit,
IN UINT8 Value
)
{
ASSERT_INVALID_PCI_ADDRESS (Address);
return MmioBitFieldWrite8 (
(UINTN) GetPciExpressBaseAddress () + Address,
(UINTN)GetPciExpressBaseAddress () + Address,
StartBit,
EndBit,
Value
@ -350,15 +347,15 @@ PciExpressBitFieldWrite8 (
UINT8
EFIAPI
PciExpressBitFieldOr8 (
IN UINTN Address,
IN UINTN StartBit,
IN UINTN EndBit,
IN UINT8 OrData
IN UINTN Address,
IN UINTN StartBit,
IN UINTN EndBit,
IN UINT8 OrData
)
{
ASSERT_INVALID_PCI_ADDRESS (Address);
return MmioBitFieldOr8 (
(UINTN) GetPciExpressBaseAddress () + Address,
(UINTN)GetPciExpressBaseAddress () + Address,
StartBit,
EndBit,
OrData
@ -395,15 +392,15 @@ PciExpressBitFieldOr8 (
UINT8
EFIAPI
PciExpressBitFieldAnd8 (
IN UINTN Address,
IN UINTN StartBit,
IN UINTN EndBit,
IN UINT8 AndData
IN UINTN Address,
IN UINTN StartBit,
IN UINTN EndBit,
IN UINT8 AndData
)
{
ASSERT_INVALID_PCI_ADDRESS (Address);
return MmioBitFieldAnd8 (
(UINTN) GetPciExpressBaseAddress () + Address,
(UINTN)GetPciExpressBaseAddress () + Address,
StartBit,
EndBit,
AndData
@ -444,16 +441,16 @@ PciExpressBitFieldAnd8 (
UINT8
EFIAPI
PciExpressBitFieldAndThenOr8 (
IN UINTN Address,
IN UINTN StartBit,
IN UINTN EndBit,
IN UINT8 AndData,
IN UINT8 OrData
IN UINTN Address,
IN UINTN StartBit,
IN UINTN EndBit,
IN UINT8 AndData,
IN UINT8 OrData
)
{
ASSERT_INVALID_PCI_ADDRESS (Address);
return MmioBitFieldAndThenOr8 (
(UINTN) GetPciExpressBaseAddress () + Address,
(UINTN)GetPciExpressBaseAddress () + Address,
StartBit,
EndBit,
AndData,
@ -480,11 +477,11 @@ PciExpressBitFieldAndThenOr8 (
UINT16
EFIAPI
PciExpressRead16 (
IN UINTN Address
IN UINTN Address
)
{
ASSERT_INVALID_PCI_ADDRESS (Address);
return MmioRead16 ((UINTN) GetPciExpressBaseAddress () + Address);
return MmioRead16 ((UINTN)GetPciExpressBaseAddress () + Address);
}
/**
@ -507,12 +504,12 @@ PciExpressRead16 (
UINT16
EFIAPI
PciExpressWrite16 (
IN UINTN Address,
IN UINT16 Value
IN UINTN Address,
IN UINT16 Value
)
{
ASSERT_INVALID_PCI_ADDRESS (Address);
return MmioWrite16 ((UINTN) GetPciExpressBaseAddress () + Address, Value);
return MmioWrite16 ((UINTN)GetPciExpressBaseAddress () + Address, Value);
}
/**
@ -539,12 +536,12 @@ PciExpressWrite16 (
UINT16
EFIAPI
PciExpressOr16 (
IN UINTN Address,
IN UINT16 OrData
IN UINTN Address,
IN UINT16 OrData
)
{
ASSERT_INVALID_PCI_ADDRESS (Address);
return MmioOr16 ((UINTN) GetPciExpressBaseAddress () + Address, OrData);
return MmioOr16 ((UINTN)GetPciExpressBaseAddress () + Address, OrData);
}
/**
@ -571,12 +568,12 @@ PciExpressOr16 (
UINT16
EFIAPI
PciExpressAnd16 (
IN UINTN Address,
IN UINT16 AndData
IN UINTN Address,
IN UINT16 AndData
)
{
ASSERT_INVALID_PCI_ADDRESS (Address);
return MmioAnd16 ((UINTN) GetPciExpressBaseAddress () + Address, AndData);
return MmioAnd16 ((UINTN)GetPciExpressBaseAddress () + Address, AndData);
}
/**
@ -605,14 +602,14 @@ PciExpressAnd16 (
UINT16
EFIAPI
PciExpressAndThenOr16 (
IN UINTN Address,
IN UINT16 AndData,
IN UINT16 OrData
IN UINTN Address,
IN UINT16 AndData,
IN UINT16 OrData
)
{
ASSERT_INVALID_PCI_ADDRESS (Address);
return MmioAndThenOr16 (
(UINTN) GetPciExpressBaseAddress () + Address,
(UINTN)GetPciExpressBaseAddress () + Address,
AndData,
OrData
);
@ -643,14 +640,14 @@ PciExpressAndThenOr16 (
UINT16
EFIAPI
PciExpressBitFieldRead16 (
IN UINTN Address,
IN UINTN StartBit,
IN UINTN EndBit
IN UINTN Address,
IN UINTN StartBit,
IN UINTN EndBit
)
{
ASSERT_INVALID_PCI_ADDRESS (Address);
return MmioBitFieldRead16 (
(UINTN) GetPciExpressBaseAddress () + Address,
(UINTN)GetPciExpressBaseAddress () + Address,
StartBit,
EndBit
);
@ -684,15 +681,15 @@ PciExpressBitFieldRead16 (
UINT16
EFIAPI
PciExpressBitFieldWrite16 (
IN UINTN Address,
IN UINTN StartBit,
IN UINTN EndBit,
IN UINT16 Value
IN UINTN Address,
IN UINTN StartBit,
IN UINTN EndBit,
IN UINT16 Value
)
{
ASSERT_INVALID_PCI_ADDRESS (Address);
return MmioBitFieldWrite16 (
(UINTN) GetPciExpressBaseAddress () + Address,
(UINTN)GetPciExpressBaseAddress () + Address,
StartBit,
EndBit,
Value
@ -730,15 +727,15 @@ PciExpressBitFieldWrite16 (
UINT16
EFIAPI
PciExpressBitFieldOr16 (
IN UINTN Address,
IN UINTN StartBit,
IN UINTN EndBit,
IN UINT16 OrData
IN UINTN Address,
IN UINTN StartBit,
IN UINTN EndBit,
IN UINT16 OrData
)
{
ASSERT_INVALID_PCI_ADDRESS (Address);
return MmioBitFieldOr16 (
(UINTN) GetPciExpressBaseAddress () + Address,
(UINTN)GetPciExpressBaseAddress () + Address,
StartBit,
EndBit,
OrData
@ -776,15 +773,15 @@ PciExpressBitFieldOr16 (
UINT16
EFIAPI
PciExpressBitFieldAnd16 (
IN UINTN Address,
IN UINTN StartBit,
IN UINTN EndBit,
IN UINT16 AndData
IN UINTN Address,
IN UINTN StartBit,
IN UINTN EndBit,
IN UINT16 AndData
)
{
ASSERT_INVALID_PCI_ADDRESS (Address);
return MmioBitFieldAnd16 (
(UINTN) GetPciExpressBaseAddress () + Address,
(UINTN)GetPciExpressBaseAddress () + Address,
StartBit,
EndBit,
AndData
@ -826,16 +823,16 @@ PciExpressBitFieldAnd16 (
UINT16
EFIAPI
PciExpressBitFieldAndThenOr16 (
IN UINTN Address,
IN UINTN StartBit,
IN UINTN EndBit,
IN UINT16 AndData,
IN UINT16 OrData
IN UINTN Address,
IN UINTN StartBit,
IN UINTN EndBit,
IN UINT16 AndData,
IN UINT16 OrData
)
{
ASSERT_INVALID_PCI_ADDRESS (Address);
return MmioBitFieldAndThenOr16 (
(UINTN) GetPciExpressBaseAddress () + Address,
(UINTN)GetPciExpressBaseAddress () + Address,
StartBit,
EndBit,
AndData,
@ -862,11 +859,11 @@ PciExpressBitFieldAndThenOr16 (
UINT32
EFIAPI
PciExpressRead32 (
IN UINTN Address
IN UINTN Address
)
{
ASSERT_INVALID_PCI_ADDRESS (Address);
return MmioRead32 ((UINTN) GetPciExpressBaseAddress () + Address);
return MmioRead32 ((UINTN)GetPciExpressBaseAddress () + Address);
}
/**
@ -889,12 +886,12 @@ PciExpressRead32 (
UINT32
EFIAPI
PciExpressWrite32 (
IN UINTN Address,
IN UINT32 Value
IN UINTN Address,
IN UINT32 Value
)
{
ASSERT_INVALID_PCI_ADDRESS (Address);
return MmioWrite32 ((UINTN) GetPciExpressBaseAddress () + Address, Value);
return MmioWrite32 ((UINTN)GetPciExpressBaseAddress () + Address, Value);
}
/**
@ -921,12 +918,12 @@ PciExpressWrite32 (
UINT32
EFIAPI
PciExpressOr32 (
IN UINTN Address,
IN UINT32 OrData
IN UINTN Address,
IN UINT32 OrData
)
{
ASSERT_INVALID_PCI_ADDRESS (Address);
return MmioOr32 ((UINTN) GetPciExpressBaseAddress () + Address, OrData);
return MmioOr32 ((UINTN)GetPciExpressBaseAddress () + Address, OrData);
}
/**
@ -953,12 +950,12 @@ PciExpressOr32 (
UINT32
EFIAPI
PciExpressAnd32 (
IN UINTN Address,
IN UINT32 AndData
IN UINTN Address,
IN UINT32 AndData
)
{
ASSERT_INVALID_PCI_ADDRESS (Address);
return MmioAnd32 ((UINTN) GetPciExpressBaseAddress () + Address, AndData);
return MmioAnd32 ((UINTN)GetPciExpressBaseAddress () + Address, AndData);
}
/**
@ -987,14 +984,14 @@ PciExpressAnd32 (
UINT32
EFIAPI
PciExpressAndThenOr32 (
IN UINTN Address,
IN UINT32 AndData,
IN UINT32 OrData
IN UINTN Address,
IN UINT32 AndData,
IN UINT32 OrData
)
{
ASSERT_INVALID_PCI_ADDRESS (Address);
return MmioAndThenOr32 (
(UINTN) GetPciExpressBaseAddress () + Address,
(UINTN)GetPciExpressBaseAddress () + Address,
AndData,
OrData
);
@ -1025,14 +1022,14 @@ PciExpressAndThenOr32 (
UINT32
EFIAPI
PciExpressBitFieldRead32 (
IN UINTN Address,
IN UINTN StartBit,
IN UINTN EndBit
IN UINTN Address,
IN UINTN StartBit,
IN UINTN EndBit
)
{
ASSERT_INVALID_PCI_ADDRESS (Address);
return MmioBitFieldRead32 (
(UINTN) GetPciExpressBaseAddress () + Address,
(UINTN)GetPciExpressBaseAddress () + Address,
StartBit,
EndBit
);
@ -1066,15 +1063,15 @@ PciExpressBitFieldRead32 (
UINT32
EFIAPI
PciExpressBitFieldWrite32 (
IN UINTN Address,
IN UINTN StartBit,
IN UINTN EndBit,
IN UINT32 Value
IN UINTN Address,
IN UINTN StartBit,
IN UINTN EndBit,
IN UINT32 Value
)
{
ASSERT_INVALID_PCI_ADDRESS (Address);
return MmioBitFieldWrite32 (
(UINTN) GetPciExpressBaseAddress () + Address,
(UINTN)GetPciExpressBaseAddress () + Address,
StartBit,
EndBit,
Value
@ -1112,15 +1109,15 @@ PciExpressBitFieldWrite32 (
UINT32
EFIAPI
PciExpressBitFieldOr32 (
IN UINTN Address,
IN UINTN StartBit,
IN UINTN EndBit,
IN UINT32 OrData
IN UINTN Address,
IN UINTN StartBit,
IN UINTN EndBit,
IN UINT32 OrData
)
{
ASSERT_INVALID_PCI_ADDRESS (Address);
return MmioBitFieldOr32 (
(UINTN) GetPciExpressBaseAddress () + Address,
(UINTN)GetPciExpressBaseAddress () + Address,
StartBit,
EndBit,
OrData
@ -1158,15 +1155,15 @@ PciExpressBitFieldOr32 (
UINT32
EFIAPI
PciExpressBitFieldAnd32 (
IN UINTN Address,
IN UINTN StartBit,
IN UINTN EndBit,
IN UINT32 AndData
IN UINTN Address,
IN UINTN StartBit,
IN UINTN EndBit,
IN UINT32 AndData
)
{
ASSERT_INVALID_PCI_ADDRESS (Address);
return MmioBitFieldAnd32 (
(UINTN) GetPciExpressBaseAddress () + Address,
(UINTN)GetPciExpressBaseAddress () + Address,
StartBit,
EndBit,
AndData
@ -1208,16 +1205,16 @@ PciExpressBitFieldAnd32 (
UINT32
EFIAPI
PciExpressBitFieldAndThenOr32 (
IN UINTN Address,
IN UINTN StartBit,
IN UINTN EndBit,
IN UINT32 AndData,
IN UINT32 OrData
IN UINTN Address,
IN UINTN StartBit,
IN UINTN EndBit,
IN UINT32 AndData,
IN UINT32 OrData
)
{
ASSERT_INVALID_PCI_ADDRESS (Address);
return MmioBitFieldAndThenOr32 (
(UINTN) GetPciExpressBaseAddress () + Address,
(UINTN)GetPciExpressBaseAddress () + Address,
StartBit,
EndBit,
AndData,
@ -1251,12 +1248,12 @@ PciExpressBitFieldAndThenOr32 (
UINTN
EFIAPI
PciExpressReadBuffer (
IN UINTN StartAddress,
IN UINTN Size,
OUT VOID *Buffer
IN UINTN StartAddress,
IN UINTN Size,
OUT VOID *Buffer
)
{
UINTN ReturnValue;
UINTN ReturnValue;
ASSERT_INVALID_PCI_ADDRESS (StartAddress);
ASSERT (((StartAddress & 0xFFF) + Size) <= 0x1000);
@ -1277,41 +1274,41 @@ PciExpressReadBuffer (
// Read a byte if StartAddress is byte aligned
//
*(volatile UINT8 *)Buffer = PciExpressRead8 (StartAddress);
StartAddress += sizeof (UINT8);
Size -= sizeof (UINT8);
Buffer = (UINT8*)Buffer + 1;
StartAddress += sizeof (UINT8);
Size -= sizeof (UINT8);
Buffer = (UINT8 *)Buffer + 1;
}
if (Size >= sizeof (UINT16) && (StartAddress & 2) != 0) {
if ((Size >= sizeof (UINT16)) && ((StartAddress & 2) != 0)) {
//
// Read a word if StartAddress is word aligned
//
WriteUnaligned16 ((UINT16 *) Buffer, (UINT16) PciExpressRead16 (StartAddress));
WriteUnaligned16 ((UINT16 *)Buffer, (UINT16)PciExpressRead16 (StartAddress));
StartAddress += sizeof (UINT16);
Size -= sizeof (UINT16);
Buffer = (UINT16*)Buffer + 1;
Size -= sizeof (UINT16);
Buffer = (UINT16 *)Buffer + 1;
}
while (Size >= sizeof (UINT32)) {
//
// Read as many double words as possible
//
WriteUnaligned32 ((UINT32 *) Buffer, (UINT32) PciExpressRead32 (StartAddress));
WriteUnaligned32 ((UINT32 *)Buffer, (UINT32)PciExpressRead32 (StartAddress));
StartAddress += sizeof (UINT32);
Size -= sizeof (UINT32);
Buffer = (UINT32*)Buffer + 1;
Size -= sizeof (UINT32);
Buffer = (UINT32 *)Buffer + 1;
}
if (Size >= sizeof (UINT16)) {
//
// Read the last remaining word if exist
//
WriteUnaligned16 ((UINT16 *) Buffer, (UINT16) PciExpressRead16 (StartAddress));
WriteUnaligned16 ((UINT16 *)Buffer, (UINT16)PciExpressRead16 (StartAddress));
StartAddress += sizeof (UINT16);
Size -= sizeof (UINT16);
Buffer = (UINT16*)Buffer + 1;
Size -= sizeof (UINT16);
Buffer = (UINT16 *)Buffer + 1;
}
if (Size >= sizeof (UINT8)) {
@ -1351,12 +1348,12 @@ PciExpressReadBuffer (
UINTN
EFIAPI
PciExpressWriteBuffer (
IN UINTN StartAddress,
IN UINTN Size,
IN VOID *Buffer
IN UINTN StartAddress,
IN UINTN Size,
IN VOID *Buffer
)
{
UINTN ReturnValue;
UINTN ReturnValue;
ASSERT_INVALID_PCI_ADDRESS (StartAddress);
ASSERT (((StartAddress & 0xFFF) + Size) <= 0x1000);
@ -1376,47 +1373,47 @@ PciExpressWriteBuffer (
//
// Write a byte if StartAddress is byte aligned
//
PciExpressWrite8 (StartAddress, *(UINT8*)Buffer);
PciExpressWrite8 (StartAddress, *(UINT8 *)Buffer);
StartAddress += sizeof (UINT8);
Size -= sizeof (UINT8);
Buffer = (UINT8*)Buffer + 1;
Size -= sizeof (UINT8);
Buffer = (UINT8 *)Buffer + 1;
}
if (Size >= sizeof (UINT16) && (StartAddress & 2) != 0) {
if ((Size >= sizeof (UINT16)) && ((StartAddress & 2) != 0)) {
//
// Write a word if StartAddress is word aligned
//
PciExpressWrite16 (StartAddress, ReadUnaligned16 ((UINT16*)Buffer));
PciExpressWrite16 (StartAddress, ReadUnaligned16 ((UINT16 *)Buffer));
StartAddress += sizeof (UINT16);
Size -= sizeof (UINT16);
Buffer = (UINT16*)Buffer + 1;
Size -= sizeof (UINT16);
Buffer = (UINT16 *)Buffer + 1;
}
while (Size >= sizeof (UINT32)) {
//
// Write as many double words as possible
//
PciExpressWrite32 (StartAddress, ReadUnaligned32 ((UINT32*)Buffer));
PciExpressWrite32 (StartAddress, ReadUnaligned32 ((UINT32 *)Buffer));
StartAddress += sizeof (UINT32);
Size -= sizeof (UINT32);
Buffer = (UINT32*)Buffer + 1;
Size -= sizeof (UINT32);
Buffer = (UINT32 *)Buffer + 1;
}
if (Size >= sizeof (UINT16)) {
//
// Write the last remaining word if exist
//
PciExpressWrite16 (StartAddress, ReadUnaligned16 ((UINT16*)Buffer));
PciExpressWrite16 (StartAddress, ReadUnaligned16 ((UINT16 *)Buffer));
StartAddress += sizeof (UINT16);
Size -= sizeof (UINT16);
Buffer = (UINT16*)Buffer + 1;
Size -= sizeof (UINT16);
Buffer = (UINT16 *)Buffer + 1;
}
if (Size >= sizeof (UINT8)) {
//
// Write the last remaining byte if exist
//
PciExpressWrite8 (StartAddress, *(UINT8*)Buffer);
PciExpressWrite8 (StartAddress, *(UINT8 *)Buffer);
}
return ReturnValue;

View File

@ -83,6 +83,7 @@ GetSerialConsolePortAddress (
if (Path == NULL) {
return EFI_NOT_FOUND;
}
SerialConsoleNode = fdt_path_offset (Fdt, Path);
}
@ -115,9 +116,9 @@ PlatformHookSerialPortInitialize (
VOID
)
{
RETURN_STATUS Status;
VOID *DeviceTreeBase;
UINT64 SerialConsoleAddress;
RETURN_STATUS Status;
VOID *DeviceTreeBase;
UINT64 SerialConsoleAddress;
if (PcdGet64 (PcdSerialRegisterBase) != 0) {
return RETURN_SUCCESS;

View File

@ -35,8 +35,8 @@ PlatformHookSerialPortInitialize (
VOID
)
{
VOID *Hob;
UINT64 *UartBase;
VOID *Hob;
UINT64 *UartBase;
if (PcdGet64 (PcdSerialRegisterBase) != 0) {
return RETURN_SUCCESS;

View File

@ -74,7 +74,7 @@ SerialPortGetBaseAddress (
//
// Enumerate all FDT nodes looking for a PL011 and capture its base address
//
for (Prev = 0;; Prev = Node) {
for (Prev = 0; ; Prev = Node) {
Node = fdt_next_node (DeviceTreeBase, Prev, NULL);
if (Node < 0) {
break;
@ -89,11 +89,11 @@ SerialPortGetBaseAddress (
// Iterate over the NULL-separated items in the compatible string
//
for (CompatibleItem = Compatible; CompatibleItem < Compatible + Len;
CompatibleItem += 1 + AsciiStrLen (CompatibleItem)) {
CompatibleItem += 1 + AsciiStrLen (CompatibleItem))
{
if (AsciiStrCmp (CompatibleItem, "arm,pl011") == 0) {
NodeStatus = fdt_getprop (DeviceTreeBase, Node, "status", &Len);
if (NodeStatus != NULL && AsciiStrCmp (NodeStatus, "okay") != 0) {
if ((NodeStatus != NULL) && (AsciiStrCmp (NodeStatus, "okay") != 0)) {
continue;
}
@ -101,13 +101,14 @@ SerialPortGetBaseAddress (
if (Len != 16) {
return 0;
}
UartBase = (UINTN)fdt64_to_cpu (ReadUnaligned64 (RegProperty));
BaudRate = (UINTN)FixedPcdGet64 (PcdUartDefaultBaudRate);
BaudRate = (UINTN)FixedPcdGet64 (PcdUartDefaultBaudRate);
ReceiveFifoDepth = 0; // Use the default value for Fifo depth
Parity = (EFI_PARITY_TYPE)FixedPcdGet8 (PcdUartDefaultParity);
DataBits = FixedPcdGet8 (PcdUartDefaultDataBits);
StopBits = (EFI_STOP_BITS_TYPE) FixedPcdGet8 (PcdUartDefaultStopBits);
Parity = (EFI_PARITY_TYPE)FixedPcdGet8 (PcdUartDefaultParity);
DataBits = FixedPcdGet8 (PcdUartDefaultDataBits);
StopBits = (EFI_STOP_BITS_TYPE)FixedPcdGet8 (PcdUartDefaultStopBits);
Status = PL011UartInitializePort (
UartBase,
@ -124,6 +125,7 @@ SerialPortGetBaseAddress (
}
}
}
return 0;
}
@ -140,16 +142,17 @@ SerialPortGetBaseAddress (
UINTN
EFIAPI
SerialPortWrite (
IN UINT8 *Buffer,
IN UINTN NumberOfBytes
IN UINT8 *Buffer,
IN UINTN NumberOfBytes
)
{
UINT64 SerialRegisterBase;
UINT64 SerialRegisterBase;
SerialRegisterBase = SerialPortGetBaseAddress ();
if (SerialRegisterBase != 0) {
return PL011UartWrite ((UINTN)SerialRegisterBase, Buffer, NumberOfBytes);
}
return 0;
}
@ -166,9 +169,9 @@ SerialPortWrite (
UINTN
EFIAPI
SerialPortRead (
OUT UINT8 *Buffer,
IN UINTN NumberOfBytes
)
OUT UINT8 *Buffer,
IN UINTN NumberOfBytes
)
{
return 0;
}
@ -202,7 +205,7 @@ SerialPortPoll (
RETURN_STATUS
EFIAPI
SerialPortSetControl (
IN UINT32 Control
IN UINT32 Control
)
{
return RETURN_UNSUPPORTED;
@ -221,7 +224,7 @@ SerialPortSetControl (
RETURN_STATUS
EFIAPI
SerialPortGetControl (
OUT UINT32 *Control
OUT UINT32 *Control
)
{
return RETURN_UNSUPPORTED;
@ -263,14 +266,13 @@ SerialPortGetControl (
RETURN_STATUS
EFIAPI
SerialPortSetAttributes (
IN OUT UINT64 *BaudRate,
IN OUT UINT32 *ReceiveFifoDepth,
IN OUT UINT32 *Timeout,
IN OUT EFI_PARITY_TYPE *Parity,
IN OUT UINT8 *DataBits,
IN OUT EFI_STOP_BITS_TYPE *StopBits
IN OUT UINT64 *BaudRate,
IN OUT UINT32 *ReceiveFifoDepth,
IN OUT UINT32 *Timeout,
IN OUT EFI_PARITY_TYPE *Parity,
IN OUT UINT8 *DataBits,
IN OUT EFI_STOP_BITS_TYPE *StopBits
)
{
return RETURN_UNSUPPORTED;
}

View File

@ -23,7 +23,7 @@
#include <Library/HobLib.h>
#include <Guid/EarlyPL011BaseAddress.h>
STATIC UINTN mSerialBaseAddress;
STATIC UINTN mSerialBaseAddress;
RETURN_STATUS
EFIAPI
@ -57,9 +57,10 @@ FdtPL011SerialPortLibInitialize (
EFI_STOP_BITS_TYPE StopBits;
Hob = GetFirstGuidHob (&gEarlyPL011BaseAddressGuid);
if (Hob == NULL || GET_GUID_HOB_DATA_SIZE (Hob) != sizeof *UartBase) {
if ((Hob == NULL) || (GET_GUID_HOB_DATA_SIZE (Hob) != sizeof *UartBase)) {
return RETURN_NOT_FOUND;
}
UartBase = GET_GUID_HOB_DATA (Hob);
mSerialBaseAddress = (UINTN)*UartBase;
@ -67,11 +68,11 @@ FdtPL011SerialPortLibInitialize (
return RETURN_NOT_FOUND;
}
BaudRate = (UINTN)PcdGet64 (PcdUartDefaultBaudRate);
BaudRate = (UINTN)PcdGet64 (PcdUartDefaultBaudRate);
ReceiveFifoDepth = 0; // Use the default value for Fifo depth
Parity = (EFI_PARITY_TYPE)PcdGet8 (PcdUartDefaultParity);
DataBits = PcdGet8 (PcdUartDefaultDataBits);
StopBits = (EFI_STOP_BITS_TYPE) PcdGet8 (PcdUartDefaultStopBits);
Parity = (EFI_PARITY_TYPE)PcdGet8 (PcdUartDefaultParity);
DataBits = PcdGet8 (PcdUartDefaultDataBits);
StopBits = (EFI_STOP_BITS_TYPE)PcdGet8 (PcdUartDefaultStopBits);
return PL011UartInitializePort (
mSerialBaseAddress,
@ -97,13 +98,14 @@ FdtPL011SerialPortLibInitialize (
UINTN
EFIAPI
SerialPortWrite (
IN UINT8 *Buffer,
IN UINTN NumberOfBytes
IN UINT8 *Buffer,
IN UINTN NumberOfBytes
)
{
if (mSerialBaseAddress != 0) {
return PL011UartWrite (mSerialBaseAddress, Buffer, NumberOfBytes);
}
return 0;
}
@ -120,13 +122,14 @@ SerialPortWrite (
UINTN
EFIAPI
SerialPortRead (
OUT UINT8 *Buffer,
IN UINTN NumberOfBytes
)
OUT UINT8 *Buffer,
IN UINTN NumberOfBytes
)
{
if (mSerialBaseAddress != 0) {
return PL011UartRead (mSerialBaseAddress, Buffer, NumberOfBytes);
}
return 0;
}
@ -146,6 +149,7 @@ SerialPortPoll (
if (mSerialBaseAddress != 0) {
return PL011UartPoll (mSerialBaseAddress);
}
return FALSE;
}
@ -185,15 +189,15 @@ SerialPortPoll (
RETURN_STATUS
EFIAPI
SerialPortSetAttributes (
IN OUT UINT64 *BaudRate,
IN OUT UINT32 *ReceiveFifoDepth,
IN OUT UINT32 *Timeout,
IN OUT EFI_PARITY_TYPE *Parity,
IN OUT UINT8 *DataBits,
IN OUT EFI_STOP_BITS_TYPE *StopBits
IN OUT UINT64 *BaudRate,
IN OUT UINT32 *ReceiveFifoDepth,
IN OUT UINT32 *Timeout,
IN OUT EFI_PARITY_TYPE *Parity,
IN OUT UINT8 *DataBits,
IN OUT EFI_STOP_BITS_TYPE *StopBits
)
{
RETURN_STATUS Status;
RETURN_STATUS Status;
if (mSerialBaseAddress == 0) {
Status = RETURN_UNSUPPORTED;
@ -225,10 +229,10 @@ SerialPortSetAttributes (
RETURN_STATUS
EFIAPI
SerialPortSetControl (
IN UINT32 Control
IN UINT32 Control
)
{
RETURN_STATUS Status;
RETURN_STATUS Status;
if (mSerialBaseAddress == 0) {
Status = RETURN_UNSUPPORTED;
@ -252,10 +256,10 @@ SerialPortSetControl (
RETURN_STATUS
EFIAPI
SerialPortGetControl (
OUT UINT32 *Control
OUT UINT32 *Control
)
{
RETURN_STATUS Status;
RETURN_STATUS Status;
if (mSerialBaseAddress == 0) {
Status = RETURN_UNSUPPORTED;
@ -265,4 +269,3 @@ SerialPortGetControl (
return Status;
}

View File

@ -38,15 +38,15 @@ PlatformPeim (
UINT64 *FdtHobData;
UINT64 *UartHobData;
Base = (VOID*)(UINTN)PcdGet64 (PcdDeviceTreeInitialBaseAddress);
Base = (VOID *)(UINTN)PcdGet64 (PcdDeviceTreeInitialBaseAddress);
if ((Base == NULL) || (fdt_check_header (Base) != 0)) {
ASSERT (0);
return EFI_INVALID_PARAMETER;
}
FdtSize = fdt_totalsize (Base) + PcdGet32 (PcdDeviceTreeAllocationPadding);
FdtSize = fdt_totalsize (Base) + PcdGet32 (PcdDeviceTreeAllocationPadding);
FdtPages = EFI_SIZE_TO_PAGES (FdtSize);
NewBase = AllocatePages (FdtPages);
NewBase = AllocatePages (FdtPages);
if (NewBase == NULL) {
ASSERT (0);
return EFI_OUT_OF_RESOURCES;

View File

@ -16,11 +16,11 @@
/** RTC Index register is at offset 0x0
*/
#define RTC_INDEX_REG_OFFSET 0x0ULL
#define RTC_INDEX_REG_OFFSET 0x0ULL
/** RTC Target register is at offset 0x1
*/
#define RTC_TARGET_REG_OFFSET 0x1ULL
#define RTC_TARGET_REG_OFFSET 0x1ULL
/** Add the RTC controller address range to the memory map.
@ -34,8 +34,8 @@
STATIC
EFI_STATUS
KvmtoolRtcMapMemory (
IN EFI_HANDLE ImageHandle,
IN EFI_PHYSICAL_ADDRESS RtcPageBase
IN EFI_HANDLE ImageHandle,
IN EFI_PHYSICAL_ADDRESS RtcPageBase
)
{
EFI_STATUS Status;
@ -48,7 +48,8 @@ KvmtoolRtcMapMemory (
);
if (EFI_ERROR (Status)) {
DEBUG ((
DEBUG_ERROR, "Failed to add memory space. Status = %r\n",
DEBUG_ERROR,
"Failed to add memory space. Status = %r\n",
Status
));
return Status;
@ -117,18 +118,18 @@ KvmtoolRtcMapMemory (
EFI_STATUS
EFIAPI
KvmtoolRtcFdtClientLibConstructor (
IN EFI_HANDLE ImageHandle,
IN EFI_SYSTEM_TABLE *SystemTable
IN EFI_HANDLE ImageHandle,
IN EFI_SYSTEM_TABLE *SystemTable
)
{
EFI_STATUS Status;
FDT_CLIENT_PROTOCOL *FdtClient;
INT32 Node;
CONST UINT32 *Reg;
UINT32 RegSize;
UINT64 RegBase;
UINT64 Range;
RETURN_STATUS PcdStatus;
EFI_STATUS Status;
FDT_CLIENT_PROTOCOL *FdtClient;
INT32 Node;
CONST UINT32 *Reg;
UINT32 RegSize;
UINT64 RegBase;
UINT64 Range;
RETURN_STATUS PcdStatus;
Status = gBS->LocateProtocol (
&gFdtClientProtocolGuid,
@ -170,7 +171,7 @@ KvmtoolRtcFdtClientLibConstructor (
ASSERT (RegSize == 16);
RegBase = SwapBytes64 (ReadUnaligned64 ((VOID *)&Reg[0]));
Range = SwapBytes64 (ReadUnaligned64 ((VOID *)&Reg[2]));
Range = SwapBytes64 (ReadUnaligned64 ((VOID *)&Reg[2]));
DEBUG ((
DEBUG_INFO,
"Found motorola,mc146818 RTC @ 0x%Lx Range = 0x%x\n",

View File

@ -15,7 +15,7 @@
#include <Library/MemoryAllocationLib.h>
// Number of Virtual Memory Map Descriptors
#define MAX_VIRTUAL_MEMORY_MAP_DESCRIPTORS 5
#define MAX_VIRTUAL_MEMORY_MAP_DESCRIPTORS 5
/**
Return the Virtual Memory Map of your platform
@ -32,24 +32,24 @@
**/
VOID
ArmVirtGetMemoryMap (
OUT ARM_MEMORY_REGION_DESCRIPTOR **VirtualMemoryMap
OUT ARM_MEMORY_REGION_DESCRIPTOR **VirtualMemoryMap
)
{
ARM_MEMORY_REGION_DESCRIPTOR *VirtualMemoryTable;
UINTN Idx;
EFI_PHYSICAL_ADDRESS TopOfAddressSpace;
UINTN Idx;
EFI_PHYSICAL_ADDRESS TopOfAddressSpace;
ASSERT (VirtualMemoryMap != NULL);
TopOfAddressSpace = LShiftU64 (1ULL, ArmGetPhysicalAddressBits ());
VirtualMemoryTable = (ARM_MEMORY_REGION_DESCRIPTOR*)
AllocatePages (
EFI_SIZE_TO_PAGES (
sizeof (ARM_MEMORY_REGION_DESCRIPTOR) *
MAX_VIRTUAL_MEMORY_MAP_DESCRIPTORS
)
);
VirtualMemoryTable = (ARM_MEMORY_REGION_DESCRIPTOR *)
AllocatePages (
EFI_SIZE_TO_PAGES (
sizeof (ARM_MEMORY_REGION_DESCRIPTOR) *
MAX_VIRTUAL_MEMORY_MAP_DESCRIPTORS
)
);
if (VirtualMemoryTable == NULL) {
DEBUG ((
DEBUG_ERROR,
@ -75,24 +75,24 @@ ArmVirtGetMemoryMap (
// Peripheral space after DRAM
VirtualMemoryTable[++Idx].PhysicalBase = PcdGet64 (PcdSystemMemoryBase) +
PcdGet64 (PcdSystemMemorySize);
VirtualMemoryTable[Idx].VirtualBase = VirtualMemoryTable[Idx].PhysicalBase;
VirtualMemoryTable[Idx].Length = TopOfAddressSpace -
VirtualMemoryTable[Idx].PhysicalBase;
VirtualMemoryTable[Idx].Attributes = ARM_MEMORY_REGION_ATTRIBUTE_DEVICE;
VirtualMemoryTable[Idx].VirtualBase = VirtualMemoryTable[Idx].PhysicalBase;
VirtualMemoryTable[Idx].Length = TopOfAddressSpace -
VirtualMemoryTable[Idx].PhysicalBase;
VirtualMemoryTable[Idx].Attributes = ARM_MEMORY_REGION_ATTRIBUTE_DEVICE;
// Map the FV region as normal executable memory
VirtualMemoryTable[++Idx].PhysicalBase = PcdGet64 (PcdFvBaseAddress);
VirtualMemoryTable[Idx].VirtualBase = VirtualMemoryTable[Idx].PhysicalBase;
VirtualMemoryTable[Idx].Length = FixedPcdGet32 (PcdFvSize);
VirtualMemoryTable[Idx].Attributes = ARM_MEMORY_REGION_ATTRIBUTE_WRITE_BACK;
VirtualMemoryTable[Idx].VirtualBase = VirtualMemoryTable[Idx].PhysicalBase;
VirtualMemoryTable[Idx].Length = FixedPcdGet32 (PcdFvSize);
VirtualMemoryTable[Idx].Attributes = ARM_MEMORY_REGION_ATTRIBUTE_WRITE_BACK;
// End of Table
VirtualMemoryTable[++Idx].PhysicalBase = 0;
VirtualMemoryTable[Idx].VirtualBase = 0;
VirtualMemoryTable[Idx].Length = 0;
VirtualMemoryTable[Idx].Attributes = (ARM_MEMORY_REGION_ATTRIBUTES)0;
VirtualMemoryTable[++Idx].PhysicalBase = 0;
VirtualMemoryTable[Idx].VirtualBase = 0;
VirtualMemoryTable[Idx].Length = 0;
VirtualMemoryTable[Idx].Attributes = (ARM_MEMORY_REGION_ATTRIBUTES)0;
ASSERT((Idx + 1) <= MAX_VIRTUAL_MEMORY_MAP_DESCRIPTORS);
ASSERT ((Idx + 1) <= MAX_VIRTUAL_MEMORY_MAP_DESCRIPTORS);
*VirtualMemoryMap = VirtualMemoryTable;
}

View File

@ -19,15 +19,15 @@
/** Macro defining the maximum number of Flash devices.
*/
#define MAX_FLASH_DEVICES 4
#define MAX_FLASH_DEVICES 4
/** Macro defining the cfi-flash label describing the UEFI variable store.
*/
#define LABEL_UEFI_VAR_STORE "System-firmware"
#define LABEL_UEFI_VAR_STORE "System-firmware"
STATIC NOR_FLASH_DESCRIPTION mNorFlashDevices[MAX_FLASH_DEVICES];
STATIC UINTN mNorFlashDeviceCount = 0;
STATIC INT32 mUefiVarStoreNode = MAX_INT32;
STATIC INT32 mUefiVarStoreNode = MAX_INT32;
STATIC FDT_CLIENT_PROTOCOL *mFdtClient;
/** This function performs platform specific actions to initialise
@ -40,7 +40,7 @@ NorFlashPlatformInitialization (
VOID
)
{
EFI_STATUS Status;
EFI_STATUS Status;
DEBUG ((DEBUG_INFO, "NorFlashPlatformInitialization\n"));
@ -89,24 +89,25 @@ NorFlashPlatformInitialization (
STATIC
EFI_STATUS
SetupVariableStore (
IN NOR_FLASH_DESCRIPTION * FlashDevice
IN NOR_FLASH_DESCRIPTION *FlashDevice
)
{
UINTN FlashRegion;
UINTN FlashNvStorageVariableBase;
UINTN FlashNvStorageFtwWorkingBase;
UINTN FlashNvStorageFtwSpareBase;
UINTN FlashNvStorageVariableSize;
UINTN FlashNvStorageFtwWorkingSize;
UINTN FlashNvStorageFtwSpareSize;
UINTN FlashRegion;
UINTN FlashNvStorageVariableBase;
UINTN FlashNvStorageFtwWorkingBase;
UINTN FlashNvStorageFtwSpareBase;
UINTN FlashNvStorageVariableSize;
UINTN FlashNvStorageFtwWorkingSize;
UINTN FlashNvStorageFtwSpareSize;
FlashNvStorageVariableSize = PcdGet32 (PcdFlashNvStorageVariableSize);
FlashNvStorageVariableSize = PcdGet32 (PcdFlashNvStorageVariableSize);
FlashNvStorageFtwWorkingSize = PcdGet32 (PcdFlashNvStorageFtwWorkingSize);
FlashNvStorageFtwSpareSize = PcdGet32 (PcdFlashNvStorageFtwSpareSize);
FlashNvStorageFtwSpareSize = PcdGet32 (PcdFlashNvStorageFtwSpareSize);
if ((FlashNvStorageVariableSize == 0) ||
(FlashNvStorageFtwWorkingSize == 0) ||
(FlashNvStorageFtwSpareSize == 0)) {
(FlashNvStorageFtwSpareSize == 0))
{
DEBUG ((DEBUG_ERROR, "FlashNvStorage size not defined\n"));
return EFI_INVALID_PARAMETER;
}
@ -115,13 +116,13 @@ SetupVariableStore (
FlashRegion = FlashDevice->DeviceBaseAddress;
FlashNvStorageVariableBase = FlashRegion;
FlashRegion += PcdGet32 (PcdFlashNvStorageVariableSize);
FlashRegion += PcdGet32 (PcdFlashNvStorageVariableSize);
FlashNvStorageFtwWorkingBase = FlashRegion;
FlashRegion += PcdGet32 (PcdFlashNvStorageFtwWorkingSize);
FlashRegion += PcdGet32 (PcdFlashNvStorageFtwWorkingSize);
FlashNvStorageFtwSpareBase = FlashRegion;
FlashRegion += PcdGet32 (PcdFlashNvStorageFtwSpareSize);
FlashRegion += PcdGet32 (PcdFlashNvStorageFtwSpareSize);
if (FlashRegion > (FlashDevice->DeviceBaseAddress + FlashDevice->Size)) {
DEBUG ((DEBUG_ERROR, "Insufficient flash storage size\n"));
@ -187,15 +188,16 @@ SetupVariableStore (
**/
EFI_STATUS
NorFlashPlatformGetDevices (
OUT NOR_FLASH_DESCRIPTION **NorFlashDescriptions,
OUT UINT32 *Count
OUT NOR_FLASH_DESCRIPTION **NorFlashDescriptions,
OUT UINT32 *Count
)
{
if (mNorFlashDeviceCount > 0) {
*NorFlashDescriptions = mNorFlashDevices;
*Count = mNorFlashDeviceCount;
*Count = mNorFlashDeviceCount;
return EFI_SUCCESS;
}
return EFI_NOT_FOUND;
}
@ -211,20 +213,20 @@ NorFlashPlatformGetDevices (
EFI_STATUS
EFIAPI
NorFlashPlatformLibConstructor (
IN EFI_HANDLE ImageHandle,
IN EFI_SYSTEM_TABLE * SystemTable
IN EFI_HANDLE ImageHandle,
IN EFI_SYSTEM_TABLE *SystemTable
)
{
INT32 Node;
EFI_STATUS Status;
EFI_STATUS FindNodeStatus;
CONST UINT32 *Reg;
UINT32 PropSize;
UINT64 Base;
UINT64 Size;
UINTN UefiVarStoreIndex;
CONST CHAR8 *Label;
UINT32 LabelLen;
INT32 Node;
EFI_STATUS Status;
EFI_STATUS FindNodeStatus;
CONST UINT32 *Reg;
UINT32 PropSize;
UINT64 Base;
UINT64 Size;
UINTN UefiVarStoreIndex;
CONST CHAR8 *Label;
UINT32 LabelLen;
if (mNorFlashDeviceCount != 0) {
return EFI_SUCCESS;
@ -244,13 +246,14 @@ NorFlashPlatformLibConstructor (
&Node
);
!EFI_ERROR (FindNodeStatus) &&
(mNorFlashDeviceCount < MAX_FLASH_DEVICES);
(mNorFlashDeviceCount < MAX_FLASH_DEVICES);
FindNodeStatus = mFdtClient->FindNextCompatibleNode (
mFdtClient,
"cfi-flash",
Node,
&Node
)) {
))
{
Status = mFdtClient->GetNodeProperty (
mFdtClient,
Node,
@ -278,15 +281,20 @@ NorFlashPlatformLibConstructor (
&PropSize
);
if (EFI_ERROR (Status)) {
DEBUG ((DEBUG_ERROR, "%a: GetNodeProperty () failed (Status == %r)\n",
__FUNCTION__, Status));
DEBUG ((
DEBUG_ERROR,
"%a: GetNodeProperty () failed (Status == %r)\n",
__FUNCTION__,
Status
));
continue;
}
ASSERT ((PropSize % (4 * sizeof (UINT32))) == 0);
while ((PropSize >= (4 * sizeof (UINT32))) &&
(mNorFlashDeviceCount < MAX_FLASH_DEVICES)) {
(mNorFlashDeviceCount < MAX_FLASH_DEVICES))
{
Base = SwapBytes64 (ReadUnaligned64 ((VOID *)&Reg[0]));
Size = SwapBytes64 (ReadUnaligned64 ((VOID *)&Reg[2]));
Reg += 4;
@ -298,7 +306,8 @@ NorFlashPlatformLibConstructor (
// The firmware is not updatable from inside the guest anyway.
//
if ((PcdGet64 (PcdFvBaseAddress) + PcdGet32 (PcdFvSize) > Base) &&
(Base + Size) > PcdGet64 (PcdFvBaseAddress)) {
((Base + Size) > PcdGet64 (PcdFvBaseAddress)))
{
continue;
}
@ -312,8 +321,8 @@ NorFlashPlatformLibConstructor (
mNorFlashDevices[mNorFlashDeviceCount].DeviceBaseAddress = (UINTN)Base;
mNorFlashDevices[mNorFlashDeviceCount].RegionBaseAddress = (UINTN)Base;
mNorFlashDevices[mNorFlashDeviceCount].Size = (UINTN)Size;
mNorFlashDevices[mNorFlashDeviceCount].BlockSize = KVMTOOL_NOR_BLOCK_SIZE;
mNorFlashDevices[mNorFlashDeviceCount].Size = (UINTN)Size;
mNorFlashDevices[mNorFlashDeviceCount].BlockSize = KVMTOOL_NOR_BLOCK_SIZE;
mNorFlashDeviceCount++;
}
} // for
@ -326,6 +335,7 @@ NorFlashPlatformLibConstructor (
UefiVarStoreIndex = mNorFlashDeviceCount - 1;
mUefiVarStoreNode = Node;
}
if (mNorFlashDevices[UefiVarStoreIndex].DeviceBaseAddress != 0) {
return SetupVariableStore (&mNorFlashDevices[UefiVarStoreIndex]);
}

View File

@ -13,9 +13,9 @@
#include <Protocol/FdtClient.h>
#define QEMU_NOR_BLOCK_SIZE SIZE_256KB
#define QEMU_NOR_BLOCK_SIZE SIZE_256KB
#define MAX_FLASH_BANKS 4
#define MAX_FLASH_BANKS 4
EFI_STATUS
NorFlashPlatformInitialization (
@ -25,40 +25,59 @@ NorFlashPlatformInitialization (
return EFI_SUCCESS;
}
NOR_FLASH_DESCRIPTION mNorFlashDevices[MAX_FLASH_BANKS];
NOR_FLASH_DESCRIPTION mNorFlashDevices[MAX_FLASH_BANKS];
EFI_STATUS
NorFlashPlatformGetDevices (
OUT NOR_FLASH_DESCRIPTION **NorFlashDescriptions,
OUT UINT32 *Count
OUT NOR_FLASH_DESCRIPTION **NorFlashDescriptions,
OUT UINT32 *Count
)
{
FDT_CLIENT_PROTOCOL *FdtClient;
INT32 Node;
EFI_STATUS Status;
EFI_STATUS FindNodeStatus;
CONST UINT32 *Reg;
UINT32 PropSize;
UINT32 Num;
UINT64 Base;
UINT64 Size;
FDT_CLIENT_PROTOCOL *FdtClient;
INT32 Node;
EFI_STATUS Status;
EFI_STATUS FindNodeStatus;
CONST UINT32 *Reg;
UINT32 PropSize;
UINT32 Num;
UINT64 Base;
UINT64 Size;
Status = gBS->LocateProtocol (&gFdtClientProtocolGuid, NULL,
(VOID **)&FdtClient);
Status = gBS->LocateProtocol (
&gFdtClientProtocolGuid,
NULL,
(VOID **)&FdtClient
);
ASSERT_EFI_ERROR (Status);
Num = 0;
for (FindNodeStatus = FdtClient->FindCompatibleNode (FdtClient,
"cfi-flash", &Node);
for (FindNodeStatus = FdtClient->FindCompatibleNode (
FdtClient,
"cfi-flash",
&Node
);
!EFI_ERROR (FindNodeStatus) && Num < MAX_FLASH_BANKS;
FindNodeStatus = FdtClient->FindNextCompatibleNode (FdtClient,
"cfi-flash", Node, &Node)) {
Status = FdtClient->GetNodeProperty (FdtClient, Node, "reg",
(CONST VOID **)&Reg, &PropSize);
FindNodeStatus = FdtClient->FindNextCompatibleNode (
FdtClient,
"cfi-flash",
Node,
&Node
))
{
Status = FdtClient->GetNodeProperty (
FdtClient,
Node,
"reg",
(CONST VOID **)&Reg,
&PropSize
);
if (EFI_ERROR (Status)) {
DEBUG ((DEBUG_ERROR, "%a: GetNodeProperty () failed (Status == %r)\n",
__FUNCTION__, Status));
DEBUG ((
DEBUG_ERROR,
"%a: GetNodeProperty () failed (Status == %r)\n",
__FUNCTION__,
Status
));
continue;
}
@ -76,7 +95,8 @@ NorFlashPlatformGetDevices (
// The firmware is not updatable from inside the guest anyway.
//
if ((PcdGet64 (PcdFvBaseAddress) + PcdGet32 (PcdFvSize) > Base) &&
(Base + Size) > PcdGet64 (PcdFvBaseAddress)) {
((Base + Size) > PcdGet64 (PcdFvBaseAddress)))
{
continue;
}
@ -97,15 +117,20 @@ NorFlashPlatformGetDevices (
// code, which is not intended to be guest updatable, and is usually backed
// in a readonly manner by QEMU anyway.
//
Status = FdtClient->SetNodeProperty (FdtClient, Node, "status",
"disabled", sizeof ("disabled"));
Status = FdtClient->SetNodeProperty (
FdtClient,
Node,
"status",
"disabled",
sizeof ("disabled")
);
if (EFI_ERROR (Status)) {
DEBUG ((DEBUG_WARN, "Failed to set NOR flash status to 'disabled'\n"));
}
}
*NorFlashDescriptions = mNorFlashDevices;
*Count = Num;
*Count = Num;
return EFI_SUCCESS;
}

View File

@ -32,24 +32,23 @@
#include "PlatformBm.h"
#define DP_NODE_LEN(Type) { (UINT8)sizeof (Type), (UINT8)(sizeof (Type) >> 8) }
#define DP_NODE_LEN(Type) { (UINT8)sizeof (Type), (UINT8)(sizeof (Type) >> 8) }
#pragma pack (1)
typedef struct {
VENDOR_DEVICE_PATH SerialDxe;
UART_DEVICE_PATH Uart;
VENDOR_DEFINED_DEVICE_PATH TermType;
EFI_DEVICE_PATH_PROTOCOL End;
VENDOR_DEVICE_PATH SerialDxe;
UART_DEVICE_PATH Uart;
VENDOR_DEFINED_DEVICE_PATH TermType;
EFI_DEVICE_PATH_PROTOCOL End;
} PLATFORM_SERIAL_CONSOLE;
#pragma pack ()
STATIC PLATFORM_SERIAL_CONSOLE mSerialConsole = {
STATIC PLATFORM_SERIAL_CONSOLE mSerialConsole = {
//
// VENDOR_DEVICE_PATH SerialDxe
//
{
{ HARDWARE_DEVICE_PATH, HW_VENDOR_DP, DP_NODE_LEN (VENDOR_DEVICE_PATH) },
{ HARDWARE_DEVICE_PATH, HW_VENDOR_DP, DP_NODE_LEN (VENDOR_DEVICE_PATH) },
EDKII_SERIAL_PORT_LIB_VENDOR_GUID
},
@ -57,7 +56,7 @@ STATIC PLATFORM_SERIAL_CONSOLE mSerialConsole = {
// UART_DEVICE_PATH Uart
//
{
{ MESSAGING_DEVICE_PATH, MSG_UART_DP, DP_NODE_LEN (UART_DEVICE_PATH) },
{ MESSAGING_DEVICE_PATH, MSG_UART_DP, DP_NODE_LEN (UART_DEVICE_PATH) },
0, // Reserved
FixedPcdGet64 (PcdUartDefaultBaudRate), // BaudRate
FixedPcdGet8 (PcdUartDefaultDataBits), // DataBits
@ -87,15 +86,14 @@ STATIC PLATFORM_SERIAL_CONSOLE mSerialConsole = {
}
};
#pragma pack (1)
typedef struct {
USB_CLASS_DEVICE_PATH Keyboard;
EFI_DEVICE_PATH_PROTOCOL End;
USB_CLASS_DEVICE_PATH Keyboard;
EFI_DEVICE_PATH_PROTOCOL End;
} PLATFORM_USB_KEYBOARD;
#pragma pack ()
STATIC PLATFORM_USB_KEYBOARD mUsbKeyboard = {
STATIC PLATFORM_USB_KEYBOARD mUsbKeyboard = {
//
// USB_CLASS_DEVICE_PATH Keyboard
//
@ -120,7 +118,6 @@ STATIC PLATFORM_USB_KEYBOARD mUsbKeyboard = {
}
};
/**
Check if the handle satisfies a particular condition.
@ -134,12 +131,11 @@ STATIC PLATFORM_USB_KEYBOARD mUsbKeyboard = {
**/
typedef
BOOLEAN
(EFIAPI *FILTER_FUNCTION) (
(EFIAPI *FILTER_FUNCTION)(
IN EFI_HANDLE Handle,
IN CONST CHAR16 *ReportText
);
/**
Process a handle.
@ -149,7 +145,7 @@ BOOLEAN
**/
typedef
VOID
(EFIAPI *CALLBACK_FUNCTION) (
(EFIAPI *CALLBACK_FUNCTION)(
IN EFI_HANDLE Handle,
IN CONST CHAR16 *ReportText
);
@ -170,31 +166,41 @@ VOID
STATIC
VOID
FilterAndProcess (
IN EFI_GUID *ProtocolGuid,
IN FILTER_FUNCTION Filter OPTIONAL,
IN CALLBACK_FUNCTION Process
IN EFI_GUID *ProtocolGuid,
IN FILTER_FUNCTION Filter OPTIONAL,
IN CALLBACK_FUNCTION Process
)
{
EFI_STATUS Status;
EFI_HANDLE *Handles;
UINTN NoHandles;
UINTN Idx;
EFI_STATUS Status;
EFI_HANDLE *Handles;
UINTN NoHandles;
UINTN Idx;
Status = gBS->LocateHandleBuffer (ByProtocol, ProtocolGuid,
NULL /* SearchKey */, &NoHandles, &Handles);
Status = gBS->LocateHandleBuffer (
ByProtocol,
ProtocolGuid,
NULL /* SearchKey */,
&NoHandles,
&Handles
);
if (EFI_ERROR (Status)) {
//
// This is not an error, just an informative condition.
//
DEBUG ((DEBUG_VERBOSE, "%a: %g: %r\n", __FUNCTION__, ProtocolGuid,
Status));
DEBUG ((
DEBUG_VERBOSE,
"%a: %g: %r\n",
__FUNCTION__,
ProtocolGuid,
Status
));
return;
}
ASSERT (NoHandles > 0);
for (Idx = 0; Idx < NoHandles; ++Idx) {
CHAR16 *DevicePathText;
STATIC CHAR16 Fallback[] = L"<device path unavailable>";
CHAR16 *DevicePathText;
STATIC CHAR16 Fallback[] = L"<device path unavailable>";
//
// The ConvertDevicePathToText() function handles NULL input transparently.
@ -208,7 +214,7 @@ FilterAndProcess (
DevicePathText = Fallback;
}
if (Filter == NULL || Filter (Handles[Idx], DevicePathText)) {
if ((Filter == NULL) || Filter (Handles[Idx], DevicePathText)) {
Process (Handles[Idx], DevicePathText);
}
@ -216,10 +222,10 @@ FilterAndProcess (
FreePool (DevicePathText);
}
}
gBS->FreePool (Handles);
}
/**
This FILTER_FUNCTION checks if a handle corresponds to a PCI display device.
**/
@ -227,16 +233,19 @@ STATIC
BOOLEAN
EFIAPI
IsPciDisplay (
IN EFI_HANDLE Handle,
IN CONST CHAR16 *ReportText
IN EFI_HANDLE Handle,
IN CONST CHAR16 *ReportText
)
{
EFI_STATUS Status;
EFI_PCI_IO_PROTOCOL *PciIo;
PCI_TYPE00 Pci;
EFI_STATUS Status;
EFI_PCI_IO_PROTOCOL *PciIo;
PCI_TYPE00 Pci;
Status = gBS->HandleProtocol (Handle, &gEfiPciIoProtocolGuid,
(VOID**)&PciIo);
Status = gBS->HandleProtocol (
Handle,
&gEfiPciIoProtocolGuid,
(VOID **)&PciIo
);
if (EFI_ERROR (Status)) {
//
// This is not an error worth reporting.
@ -244,8 +253,13 @@ IsPciDisplay (
return FALSE;
}
Status = PciIo->Pci.Read (PciIo, EfiPciIoWidthUint32, 0 /* Offset */,
sizeof Pci / sizeof (UINT32), &Pci);
Status = PciIo->Pci.Read (
PciIo,
EfiPciIoWidthUint32,
0 /* Offset */,
sizeof Pci / sizeof (UINT32),
&Pci
);
if (EFI_ERROR (Status)) {
DEBUG ((DEBUG_ERROR, "%a: %s: %r\n", __FUNCTION__, ReportText, Status));
return FALSE;
@ -254,7 +268,6 @@ IsPciDisplay (
return IS_PCI_DISPLAY (&Pci);
}
/**
This FILTER_FUNCTION checks if a handle corresponds to a Virtio RNG device at
the VIRTIO_DEVICE_PROTOCOL level.
@ -263,23 +276,26 @@ STATIC
BOOLEAN
EFIAPI
IsVirtioRng (
IN EFI_HANDLE Handle,
IN CONST CHAR16 *ReportText
IN EFI_HANDLE Handle,
IN CONST CHAR16 *ReportText
)
{
EFI_STATUS Status;
VIRTIO_DEVICE_PROTOCOL *VirtIo;
EFI_STATUS Status;
VIRTIO_DEVICE_PROTOCOL *VirtIo;
Status = gBS->HandleProtocol (Handle, &gVirtioDeviceProtocolGuid,
(VOID**)&VirtIo);
Status = gBS->HandleProtocol (
Handle,
&gVirtioDeviceProtocolGuid,
(VOID **)&VirtIo
);
if (EFI_ERROR (Status)) {
return FALSE;
}
return (BOOLEAN)(VirtIo->SubSystemDeviceId ==
VIRTIO_SUBSYSTEM_ENTROPY_SOURCE);
}
/**
This FILTER_FUNCTION checks if a handle corresponds to a Virtio RNG device at
the EFI_PCI_IO_PROTOCOL level.
@ -288,20 +304,23 @@ STATIC
BOOLEAN
EFIAPI
IsVirtioPciRng (
IN EFI_HANDLE Handle,
IN CONST CHAR16 *ReportText
IN EFI_HANDLE Handle,
IN CONST CHAR16 *ReportText
)
{
EFI_STATUS Status;
EFI_PCI_IO_PROTOCOL *PciIo;
UINT16 VendorId;
UINT16 DeviceId;
UINT8 RevisionId;
BOOLEAN Virtio10;
UINT16 SubsystemId;
EFI_STATUS Status;
EFI_PCI_IO_PROTOCOL *PciIo;
UINT16 VendorId;
UINT16 DeviceId;
UINT8 RevisionId;
BOOLEAN Virtio10;
UINT16 SubsystemId;
Status = gBS->HandleProtocol (Handle, &gEfiPciIoProtocolGuid,
(VOID**)&PciIo);
Status = gBS->HandleProtocol (
Handle,
&gEfiPciIoProtocolGuid,
(VOID **)&PciIo
);
if (EFI_ERROR (Status)) {
return FALSE;
}
@ -309,11 +328,17 @@ IsVirtioPciRng (
//
// Read and check VendorId.
//
Status = PciIo->Pci.Read (PciIo, EfiPciIoWidthUint16, PCI_VENDOR_ID_OFFSET,
1, &VendorId);
Status = PciIo->Pci.Read (
PciIo,
EfiPciIoWidthUint16,
PCI_VENDOR_ID_OFFSET,
1,
&VendorId
);
if (EFI_ERROR (Status)) {
goto PciError;
}
if (VendorId != VIRTIO_VENDOR_ID) {
return FALSE;
}
@ -321,13 +346,24 @@ IsVirtioPciRng (
//
// Read DeviceId and RevisionId.
//
Status = PciIo->Pci.Read (PciIo, EfiPciIoWidthUint16, PCI_DEVICE_ID_OFFSET,
1, &DeviceId);
Status = PciIo->Pci.Read (
PciIo,
EfiPciIoWidthUint16,
PCI_DEVICE_ID_OFFSET,
1,
&DeviceId
);
if (EFI_ERROR (Status)) {
goto PciError;
}
Status = PciIo->Pci.Read (PciIo, EfiPciIoWidthUint8, PCI_REVISION_ID_OFFSET,
1, &RevisionId);
Status = PciIo->Pci.Read (
PciIo,
EfiPciIoWidthUint8,
PCI_REVISION_ID_OFFSET,
1,
&RevisionId
);
if (EFI_ERROR (Status)) {
goto PciError;
}
@ -339,10 +375,11 @@ IsVirtioPciRng (
// SubsystemId will only play a sanity-check role. Otherwise, DeviceId can
// only be sanity-checked, and SubsystemId will decide.
//
if (DeviceId == 0x1040 + VIRTIO_SUBSYSTEM_ENTROPY_SOURCE &&
RevisionId >= 0x01) {
if ((DeviceId == 0x1040 + VIRTIO_SUBSYSTEM_ENTROPY_SOURCE) &&
(RevisionId >= 0x01))
{
Virtio10 = TRUE;
} else if (DeviceId >= 0x1000 && DeviceId <= 0x103F && RevisionId == 0x00) {
} else if ((DeviceId >= 0x1000) && (DeviceId <= 0x103F) && (RevisionId == 0x00)) {
Virtio10 = FALSE;
} else {
return FALSE;
@ -351,17 +388,25 @@ IsVirtioPciRng (
//
// Read and check SubsystemId as dictated by Virtio10.
//
Status = PciIo->Pci.Read (PciIo, EfiPciIoWidthUint16,
PCI_SUBSYSTEM_ID_OFFSET, 1, &SubsystemId);
Status = PciIo->Pci.Read (
PciIo,
EfiPciIoWidthUint16,
PCI_SUBSYSTEM_ID_OFFSET,
1,
&SubsystemId
);
if (EFI_ERROR (Status)) {
goto PciError;
}
if (Virtio10 && SubsystemId >= 0x40) {
if (Virtio10 && (SubsystemId >= 0x40)) {
return TRUE;
}
if (!Virtio10 && SubsystemId == VIRTIO_SUBSYSTEM_ENTROPY_SOURCE) {
if (!Virtio10 && (SubsystemId == VIRTIO_SUBSYSTEM_ENTROPY_SOURCE)) {
return TRUE;
}
return FALSE;
PciError:
@ -369,7 +414,6 @@ PciError:
return FALSE;
}
/**
This CALLBACK_FUNCTION attempts to connect a handle non-recursively, asking
the matching driver to produce all first-level child handles.
@ -378,11 +422,11 @@ STATIC
VOID
EFIAPI
Connect (
IN EFI_HANDLE Handle,
IN CONST CHAR16 *ReportText
IN EFI_HANDLE Handle,
IN CONST CHAR16 *ReportText
)
{
EFI_STATUS Status;
EFI_STATUS Status;
Status = gBS->ConnectController (
Handle, // ControllerHandle
@ -390,11 +434,15 @@ Connect (
NULL, // RemainingDevicePath -- produce all children
FALSE // Recursive
);
DEBUG ((EFI_ERROR (Status) ? DEBUG_ERROR : DEBUG_VERBOSE, "%a: %s: %r\n",
__FUNCTION__, ReportText, Status));
DEBUG ((
EFI_ERROR (Status) ? DEBUG_ERROR : DEBUG_VERBOSE,
"%a: %s: %r\n",
__FUNCTION__,
ReportText,
Status
));
}
/**
This CALLBACK_FUNCTION retrieves the EFI_DEVICE_PATH_PROTOCOL from the
handle, and adds it to ConOut and ErrOut.
@ -403,59 +451,78 @@ STATIC
VOID
EFIAPI
AddOutput (
IN EFI_HANDLE Handle,
IN CONST CHAR16 *ReportText
IN EFI_HANDLE Handle,
IN CONST CHAR16 *ReportText
)
{
EFI_STATUS Status;
EFI_DEVICE_PATH_PROTOCOL *DevicePath;
EFI_STATUS Status;
EFI_DEVICE_PATH_PROTOCOL *DevicePath;
DevicePath = DevicePathFromHandle (Handle);
if (DevicePath == NULL) {
DEBUG ((DEBUG_ERROR, "%a: %s: handle %p: device path not found\n",
__FUNCTION__, ReportText, Handle));
DEBUG ((
DEBUG_ERROR,
"%a: %s: handle %p: device path not found\n",
__FUNCTION__,
ReportText,
Handle
));
return;
}
Status = EfiBootManagerUpdateConsoleVariable (ConOut, DevicePath, NULL);
if (EFI_ERROR (Status)) {
DEBUG ((DEBUG_ERROR, "%a: %s: adding to ConOut: %r\n", __FUNCTION__,
ReportText, Status));
DEBUG ((
DEBUG_ERROR,
"%a: %s: adding to ConOut: %r\n",
__FUNCTION__,
ReportText,
Status
));
return;
}
Status = EfiBootManagerUpdateConsoleVariable (ErrOut, DevicePath, NULL);
if (EFI_ERROR (Status)) {
DEBUG ((DEBUG_ERROR, "%a: %s: adding to ErrOut: %r\n", __FUNCTION__,
ReportText, Status));
DEBUG ((
DEBUG_ERROR,
"%a: %s: adding to ErrOut: %r\n",
__FUNCTION__,
ReportText,
Status
));
return;
}
DEBUG ((DEBUG_VERBOSE, "%a: %s: added to ConOut and ErrOut\n", __FUNCTION__,
ReportText));
DEBUG ((
DEBUG_VERBOSE,
"%a: %s: added to ConOut and ErrOut\n",
__FUNCTION__,
ReportText
));
}
STATIC
VOID
PlatformRegisterFvBootOption (
EFI_GUID *FileGuid,
CHAR16 *Description,
UINT32 Attributes
EFI_GUID *FileGuid,
CHAR16 *Description,
UINT32 Attributes
)
{
EFI_STATUS Status;
INTN OptionIndex;
EFI_BOOT_MANAGER_LOAD_OPTION NewOption;
EFI_BOOT_MANAGER_LOAD_OPTION *BootOptions;
UINTN BootOptionCount;
MEDIA_FW_VOL_FILEPATH_DEVICE_PATH FileNode;
EFI_LOADED_IMAGE_PROTOCOL *LoadedImage;
EFI_DEVICE_PATH_PROTOCOL *DevicePath;
EFI_STATUS Status;
INTN OptionIndex;
EFI_BOOT_MANAGER_LOAD_OPTION NewOption;
EFI_BOOT_MANAGER_LOAD_OPTION *BootOptions;
UINTN BootOptionCount;
MEDIA_FW_VOL_FILEPATH_DEVICE_PATH FileNode;
EFI_LOADED_IMAGE_PROTOCOL *LoadedImage;
EFI_DEVICE_PATH_PROTOCOL *DevicePath;
Status = gBS->HandleProtocol (
gImageHandle,
&gEfiLoadedImageProtocolGuid,
(VOID **) &LoadedImage
(VOID **)&LoadedImage
);
ASSERT_EFI_ERROR (Status);
@ -464,7 +531,7 @@ PlatformRegisterFvBootOption (
ASSERT (DevicePath != NULL);
DevicePath = AppendDevicePathNode (
DevicePath,
(EFI_DEVICE_PATH_PROTOCOL *) &FileNode
(EFI_DEVICE_PATH_PROTOCOL *)&FileNode
);
ASSERT (DevicePath != NULL);
@ -482,22 +549,25 @@ PlatformRegisterFvBootOption (
FreePool (DevicePath);
BootOptions = EfiBootManagerGetLoadOptions (
&BootOptionCount, LoadOptionTypeBoot
&BootOptionCount,
LoadOptionTypeBoot
);
OptionIndex = EfiBootManagerFindLoadOption (
&NewOption, BootOptions, BootOptionCount
&NewOption,
BootOptions,
BootOptionCount
);
if (OptionIndex == -1) {
Status = EfiBootManagerAddLoadOptionVariable (&NewOption, MAX_UINTN);
ASSERT_EFI_ERROR (Status);
}
EfiBootManagerFreeLoadOption (&NewOption);
EfiBootManagerFreeLoadOptions (BootOptions, BootOptionCount);
}
/**
Remove all MemoryMapped(...)/FvFile(...) and Fv(...)/FvFile(...) boot options
whose device paths do not resolve exactly to an FvFile in the system.
@ -518,27 +588,30 @@ RemoveStaleFvFileOptions (
VOID
)
{
EFI_BOOT_MANAGER_LOAD_OPTION *BootOptions;
UINTN BootOptionCount;
UINTN Index;
EFI_BOOT_MANAGER_LOAD_OPTION *BootOptions;
UINTN BootOptionCount;
UINTN Index;
BootOptions = EfiBootManagerGetLoadOptions (&BootOptionCount,
LoadOptionTypeBoot);
BootOptions = EfiBootManagerGetLoadOptions (
&BootOptionCount,
LoadOptionTypeBoot
);
for (Index = 0; Index < BootOptionCount; ++Index) {
EFI_DEVICE_PATH_PROTOCOL *Node1, *Node2, *SearchNode;
EFI_STATUS Status;
EFI_HANDLE FvHandle;
EFI_DEVICE_PATH_PROTOCOL *Node1, *Node2, *SearchNode;
EFI_STATUS Status;
EFI_HANDLE FvHandle;
//
// If the device path starts with neither MemoryMapped(...) nor Fv(...),
// then keep the boot option.
//
Node1 = BootOptions[Index].FilePath;
if (!(DevicePathType (Node1) == HARDWARE_DEVICE_PATH &&
DevicePathSubType (Node1) == HW_MEMMAP_DP) &&
!(DevicePathType (Node1) == MEDIA_DEVICE_PATH &&
DevicePathSubType (Node1) == MEDIA_PIWG_FW_VOL_DP)) {
if (!((DevicePathType (Node1) == HARDWARE_DEVICE_PATH) &&
(DevicePathSubType (Node1) == HW_MEMMAP_DP)) &&
!((DevicePathType (Node1) == MEDIA_DEVICE_PATH) &&
(DevicePathSubType (Node1) == MEDIA_PIWG_FW_VOL_DP)))
{
continue;
}
@ -547,8 +620,9 @@ RemoveStaleFvFileOptions (
// option.
//
Node2 = NextDevicePathNode (Node1);
if (DevicePathType (Node2) != MEDIA_DEVICE_PATH ||
DevicePathSubType (Node2) != MEDIA_PIWG_FW_FILE_DP) {
if ((DevicePathType (Node2) != MEDIA_DEVICE_PATH) ||
(DevicePathSubType (Node2) != MEDIA_PIWG_FW_FILE_DP))
{
continue;
}
@ -559,23 +633,29 @@ RemoveStaleFvFileOptions (
// boot option.
//
SearchNode = Node1;
Status = gBS->LocateDevicePath (&gEfiFirmwareVolume2ProtocolGuid,
&SearchNode, &FvHandle);
Status = gBS->LocateDevicePath (
&gEfiFirmwareVolume2ProtocolGuid,
&SearchNode,
&FvHandle
);
if (!EFI_ERROR (Status)) {
//
// The firmware volume was found; now let's see if it contains the FvFile
// identified by GUID.
//
EFI_FIRMWARE_VOLUME2_PROTOCOL *FvProtocol;
MEDIA_FW_VOL_FILEPATH_DEVICE_PATH *FvFileNode;
UINTN BufferSize;
EFI_FV_FILETYPE FoundType;
EFI_FV_FILE_ATTRIBUTES FileAttributes;
UINT32 AuthenticationStatus;
EFI_FIRMWARE_VOLUME2_PROTOCOL *FvProtocol;
MEDIA_FW_VOL_FILEPATH_DEVICE_PATH *FvFileNode;
UINTN BufferSize;
EFI_FV_FILETYPE FoundType;
EFI_FV_FILE_ATTRIBUTES FileAttributes;
UINT32 AuthenticationStatus;
Status = gBS->HandleProtocol (FvHandle, &gEfiFirmwareVolume2ProtocolGuid,
(VOID **)&FvProtocol);
Status = gBS->HandleProtocol (
FvHandle,
&gEfiFirmwareVolume2ProtocolGuid,
(VOID **)&FvProtocol
);
ASSERT_EFI_ERROR (Status);
FvFileNode = (MEDIA_FW_VOL_FILEPATH_DEVICE_PATH *)Node2;
@ -604,48 +684,53 @@ RemoveStaleFvFileOptions (
// Delete the boot option.
//
Status = EfiBootManagerDeleteLoadOptionVariable (
BootOptions[Index].OptionNumber, LoadOptionTypeBoot);
BootOptions[Index].OptionNumber,
LoadOptionTypeBoot
);
DEBUG_CODE_BEGIN ();
CHAR16 *DevicePathString;
CHAR16 *DevicePathString;
DevicePathString = ConvertDevicePathToText (
BootOptions[Index].FilePath,
FALSE,
FALSE
);
DEBUG ((
EFI_ERROR (Status) ? DEBUG_WARN : DEBUG_VERBOSE,
"%a: removing stale Boot#%04x %s: %r\n",
__FUNCTION__,
(UINT32)BootOptions[Index].OptionNumber,
DevicePathString == NULL ? L"<unavailable>" : DevicePathString,
Status
));
if (DevicePathString != NULL) {
FreePool (DevicePathString);
}
DevicePathString = ConvertDevicePathToText(BootOptions[Index].FilePath,
FALSE, FALSE);
DEBUG ((
EFI_ERROR (Status) ? DEBUG_WARN : DEBUG_VERBOSE,
"%a: removing stale Boot#%04x %s: %r\n",
__FUNCTION__,
(UINT32)BootOptions[Index].OptionNumber,
DevicePathString == NULL ? L"<unavailable>" : DevicePathString,
Status
));
if (DevicePathString != NULL) {
FreePool (DevicePathString);
}
DEBUG_CODE_END ();
}
EfiBootManagerFreeLoadOptions (BootOptions, BootOptionCount);
}
STATIC
VOID
PlatformRegisterOptionsAndKeys (
VOID
)
{
EFI_STATUS Status;
EFI_INPUT_KEY Enter;
EFI_INPUT_KEY F2;
EFI_INPUT_KEY Esc;
EFI_BOOT_MANAGER_LOAD_OPTION BootOption;
EFI_STATUS Status;
EFI_INPUT_KEY Enter;
EFI_INPUT_KEY F2;
EFI_INPUT_KEY Esc;
EFI_BOOT_MANAGER_LOAD_OPTION BootOption;
//
// Register ENTER as CONTINUE key
//
Enter.ScanCode = SCAN_NULL;
Enter.UnicodeChar = CHAR_CARRIAGE_RETURN;
Status = EfiBootManagerRegisterContinueKeyOption (0, &Enter, NULL);
Status = EfiBootManagerRegisterContinueKeyOption (0, &Enter, NULL);
ASSERT_EFI_ERROR (Status);
//
@ -655,22 +740,30 @@ PlatformRegisterOptionsAndKeys (
F2.UnicodeChar = CHAR_NULL;
Esc.ScanCode = SCAN_ESC;
Esc.UnicodeChar = CHAR_NULL;
Status = EfiBootManagerGetBootManagerMenu (&BootOption);
Status = EfiBootManagerGetBootManagerMenu (&BootOption);
ASSERT_EFI_ERROR (Status);
Status = EfiBootManagerAddKeyOptionVariable (
NULL, (UINT16) BootOption.OptionNumber, 0, &F2, NULL
NULL,
(UINT16)BootOption.OptionNumber,
0,
&F2,
NULL
);
ASSERT (Status == EFI_SUCCESS || Status == EFI_ALREADY_STARTED);
Status = EfiBootManagerAddKeyOptionVariable (
NULL, (UINT16) BootOption.OptionNumber, 0, &Esc, NULL
NULL,
(UINT16)BootOption.OptionNumber,
0,
&Esc,
NULL
);
ASSERT (Status == EFI_SUCCESS || Status == EFI_ALREADY_STARTED);
}
//
// BDS Platform Functions
//
/**
Do the platform init, can be customized by OEM/IBV
Possible things that can be done in PlatformBootManagerBeforeConsole:
@ -688,9 +781,9 @@ PlatformBootManagerBeforeConsole (
VOID
)
{
UINT16 FrontPageTimeout;
RETURN_STATUS PcdStatus;
EFI_STATUS Status;
UINT16 FrontPageTimeout;
RETURN_STATUS PcdStatus;
EFI_STATUS Status;
//
// Signal EndOfDxe PI Event
@ -735,26 +828,40 @@ PlatformBootManagerBeforeConsole (
//
// Add the hardcoded short-form USB keyboard device path to ConIn.
//
EfiBootManagerUpdateConsoleVariable (ConIn,
(EFI_DEVICE_PATH_PROTOCOL *)&mUsbKeyboard, NULL);
EfiBootManagerUpdateConsoleVariable (
ConIn,
(EFI_DEVICE_PATH_PROTOCOL *)&mUsbKeyboard,
NULL
);
//
// Add the hardcoded serial console device path to ConIn, ConOut, ErrOut.
//
CopyGuid (&mSerialConsole.TermType.Guid,
PcdGetPtr (PcdTerminalTypeGuidBuffer));
EfiBootManagerUpdateConsoleVariable (ConIn,
(EFI_DEVICE_PATH_PROTOCOL *)&mSerialConsole, NULL);
EfiBootManagerUpdateConsoleVariable (ConOut,
(EFI_DEVICE_PATH_PROTOCOL *)&mSerialConsole, NULL);
EfiBootManagerUpdateConsoleVariable (ErrOut,
(EFI_DEVICE_PATH_PROTOCOL *)&mSerialConsole, NULL);
CopyGuid (
&mSerialConsole.TermType.Guid,
PcdGetPtr (PcdTerminalTypeGuidBuffer)
);
EfiBootManagerUpdateConsoleVariable (
ConIn,
(EFI_DEVICE_PATH_PROTOCOL *)&mSerialConsole,
NULL
);
EfiBootManagerUpdateConsoleVariable (
ConOut,
(EFI_DEVICE_PATH_PROTOCOL *)&mSerialConsole,
NULL
);
EfiBootManagerUpdateConsoleVariable (
ErrOut,
(EFI_DEVICE_PATH_PROTOCOL *)&mSerialConsole,
NULL
);
//
// Set the front page timeout from the QEMU configuration.
//
FrontPageTimeout = GetFrontPageTimeoutFromQemu ();
PcdStatus = PcdSet16S (PcdPlatformBootTimeOut, FrontPageTimeout);
PcdStatus = PcdSet16S (PcdPlatformBootTimeOut, FrontPageTimeout);
ASSERT_RETURN_ERROR (PcdStatus);
//
// Reflect the PCD in the standard Timeout variable.
@ -812,7 +919,7 @@ PlatformBootManagerAfterConsole (
VOID
)
{
RETURN_STATUS Status;
RETURN_STATUS Status;
//
// Show the splash screen.
@ -848,7 +955,9 @@ PlatformBootManagerAfterConsole (
// Register UEFI Shell
//
PlatformRegisterFvBootOption (
&gUefiShellFileGuid, L"EFI Internal Shell", LOAD_OPTION_ACTIVE
&gUefiShellFileGuid,
L"EFI Internal Shell",
LOAD_OPTION_ACTIVE
);
RemoveStaleFvFileOptions ();
@ -866,12 +975,12 @@ PlatformBootManagerAfterConsole (
VOID
EFIAPI
PlatformBootManagerWaitCallback (
UINT16 TimeoutRemain
UINT16 TimeoutRemain
)
{
EFI_GRAPHICS_OUTPUT_BLT_PIXEL_UNION Black;
EFI_GRAPHICS_OUTPUT_BLT_PIXEL_UNION White;
UINT16 TimeoutInitial;
EFI_GRAPHICS_OUTPUT_BLT_PIXEL_UNION Black;
EFI_GRAPHICS_OUTPUT_BLT_PIXEL_UNION White;
UINT16 TimeoutInitial;
TimeoutInitial = PcdGet16 (PcdPlatformBootTimeOut);
@ -909,10 +1018,10 @@ PlatformBootManagerUnableToBoot (
VOID
)
{
EFI_STATUS Status;
EFI_INPUT_KEY Key;
EFI_BOOT_MANAGER_LOAD_OPTION BootManagerMenu;
UINTN Index;
EFI_STATUS Status;
EFI_INPUT_KEY Key;
EFI_BOOT_MANAGER_LOAD_OPTION BootManagerMenu;
UINTN Index;
//
// BootManagerMenu doesn't contain the correct information when return status
@ -922,6 +1031,7 @@ PlatformBootManagerUnableToBoot (
if (EFI_ERROR (Status)) {
return;
}
//
// Normally BdsDxe does not print anything to the system console, but this is
// a last resort -- the end-user will likely not see any DEBUG messages
@ -951,7 +1061,7 @@ PlatformBootManagerUnableToBoot (
}
}
for (;;) {
for ( ; ;) {
EfiBootManagerBoot (&BootManagerMenu);
}
}

View File

@ -40,8 +40,8 @@ TryRunningQemuKernel (
VOID
)
{
EFI_STATUS Status;
EFI_HANDLE KernelImageHandle;
EFI_STATUS Status;
EFI_HANDLE KernelImageHandle;
Status = QemuLoadKernelImage (&KernelImageHandle);
if (EFI_ERROR (Status)) {
@ -51,18 +51,24 @@ TryRunningQemuKernel (
//
// Signal the EFI_EVENT_GROUP_READY_TO_BOOT event.
//
EfiSignalEventReadyToBoot();
EfiSignalEventReadyToBoot ();
REPORT_STATUS_CODE (EFI_PROGRESS_CODE,
(EFI_SOFTWARE_DXE_BS_DRIVER | EFI_SW_DXE_BS_PC_READY_TO_BOOT_EVENT));
REPORT_STATUS_CODE (
EFI_PROGRESS_CODE,
(EFI_SOFTWARE_DXE_BS_DRIVER | EFI_SW_DXE_BS_PC_READY_TO_BOOT_EVENT)
);
//
// Start the image.
//
Status = QemuStartKernelImage (&KernelImageHandle);
if (EFI_ERROR (Status)) {
DEBUG ((DEBUG_ERROR, "%a: QemuStartKernelImage(): %r\n", __FUNCTION__,
Status));
DEBUG ((
DEBUG_ERROR,
"%a: QemuStartKernelImage(): %r\n",
__FUNCTION__,
Status
));
}
QemuUnloadKernelImage (KernelImageHandle);

View File

@ -19,13 +19,13 @@
#include <Guid/EarlyPL011BaseAddress.h>
#include <Guid/FdtHob.h>
STATIC CONST EFI_PEI_PPI_DESCRIPTOR mTpm2DiscoveredPpi = {
STATIC CONST EFI_PEI_PPI_DESCRIPTOR mTpm2DiscoveredPpi = {
EFI_PEI_PPI_DESCRIPTOR_PPI | EFI_PEI_PPI_DESCRIPTOR_TERMINATE_LIST,
&gOvmfTpmDiscoveredPpiGuid,
NULL
};
STATIC CONST EFI_PEI_PPI_DESCRIPTOR mTpm2InitializationDonePpi = {
STATIC CONST EFI_PEI_PPI_DESCRIPTOR mTpm2InitializationDonePpi = {
EFI_PEI_PPI_DESCRIPTOR_PPI | EFI_PEI_PPI_DESCRIPTOR_TERMINATE_LIST,
&gPeiTpmInitializationDonePpiGuid,
NULL
@ -37,33 +37,33 @@ PlatformPeim (
VOID
)
{
VOID *Base;
VOID *NewBase;
UINTN FdtSize;
UINTN FdtPages;
UINT64 *FdtHobData;
UINT64 *UartHobData;
INT32 Node, Prev;
INT32 Parent, Depth;
CONST CHAR8 *Compatible;
CONST CHAR8 *CompItem;
CONST CHAR8 *NodeStatus;
INT32 Len;
INT32 RangesLen;
INT32 StatusLen;
CONST UINT64 *RegProp;
CONST UINT32 *RangesProp;
UINT64 UartBase;
UINT64 TpmBase;
EFI_STATUS Status;
VOID *Base;
VOID *NewBase;
UINTN FdtSize;
UINTN FdtPages;
UINT64 *FdtHobData;
UINT64 *UartHobData;
INT32 Node, Prev;
INT32 Parent, Depth;
CONST CHAR8 *Compatible;
CONST CHAR8 *CompItem;
CONST CHAR8 *NodeStatus;
INT32 Len;
INT32 RangesLen;
INT32 StatusLen;
CONST UINT64 *RegProp;
CONST UINT32 *RangesProp;
UINT64 UartBase;
UINT64 TpmBase;
EFI_STATUS Status;
Base = (VOID*)(UINTN)PcdGet64 (PcdDeviceTreeInitialBaseAddress);
Base = (VOID *)(UINTN)PcdGet64 (PcdDeviceTreeInitialBaseAddress);
ASSERT (Base != NULL);
ASSERT (fdt_check_header (Base) == 0);
FdtSize = fdt_totalsize (Base) + PcdGet32 (PcdDeviceTreeAllocationPadding);
FdtSize = fdt_totalsize (Base) + PcdGet32 (PcdDeviceTreeAllocationPadding);
FdtPages = EFI_SIZE_TO_PAGES (FdtSize);
NewBase = AllocatePages (FdtPages);
NewBase = AllocatePages (FdtPages);
ASSERT (NewBase != NULL);
fdt_open_into (Base, NewBase, EFI_PAGES_TO_SIZE (FdtPages));
@ -82,7 +82,7 @@ PlatformPeim (
//
Parent = 0;
for (Prev = Depth = 0;; Prev = Node) {
for (Prev = Depth = 0; ; Prev = Node) {
Node = fdt_next_node (Base, Prev, &Depth);
if (Node < 0) {
break;
@ -98,11 +98,11 @@ PlatformPeim (
// Iterate over the NULL-separated items in the compatible string
//
for (CompItem = Compatible; CompItem != NULL && CompItem < Compatible + Len;
CompItem += 1 + AsciiStrLen (CompItem)) {
CompItem += 1 + AsciiStrLen (CompItem))
{
if (AsciiStrCmp (CompItem, "arm,pl011") == 0) {
NodeStatus = fdt_getprop (Base, Node, "status", &StatusLen);
if (NodeStatus != NULL && AsciiStrCmp (NodeStatus, "okay") != 0) {
if ((NodeStatus != NULL) && (AsciiStrCmp (NodeStatus, "okay") != 0)) {
continue;
}
@ -116,8 +116,8 @@ PlatformPeim (
*UartHobData = UartBase;
break;
} else if (FeaturePcdGet (PcdTpm2SupportEnabled) &&
AsciiStrCmp (CompItem, "tcg,tpm-tis-mmio") == 0) {
(AsciiStrCmp (CompItem, "tcg,tpm-tis-mmio") == 0))
{
RegProp = fdt_getprop (Base, Node, "reg", &Len);
ASSERT (Len == 8 || Len == 16);
if (Len == 8) {
@ -145,9 +145,12 @@ PlatformPeim (
// assume a single translated range with 2 cells for the parent base
//
if (RangesLen != Len + 2 * sizeof (UINT32)) {
DEBUG ((DEBUG_WARN,
DEBUG ((
DEBUG_WARN,
"%a: 'ranges' property has unexpected size %d\n",
__FUNCTION__, RangesLen));
__FUNCTION__,
RangesLen
));
break;
}
@ -161,9 +164,10 @@ PlatformPeim (
// advance RangesProp to the parent bus address
//
RangesProp = (UINT32 *)((UINT8 *)RangesProp + Len / 2);
TpmBase += fdt64_to_cpu (ReadUnaligned64 ((UINT64 *)RangesProp));
TpmBase += fdt64_to_cpu (ReadUnaligned64 ((UINT64 *)RangesProp));
}
}
break;
}
}
@ -180,6 +184,7 @@ PlatformPeim (
} else {
Status = PeiServicesInstallPpi (&mTpm2InitializationDonePpi);
}
ASSERT_EFI_ERROR (Status);
}

View File

@ -13,7 +13,7 @@
#include <Library/MemoryAllocationLib.h>
// Number of Virtual Memory Map Descriptors
#define MAX_VIRTUAL_MEMORY_MAP_DESCRIPTORS 5
#define MAX_VIRTUAL_MEMORY_MAP_DESCRIPTORS 5
//
// mach-virt's core peripherals such as the UART, the GIC and the RTC are
@ -21,8 +21,8 @@
// in its entirety rather than device by device. Note that it does not
// cover any of the NOR flash banks or PCI resource windows.
//
#define MACH_VIRT_PERIPH_BASE 0x08000000
#define MACH_VIRT_PERIPH_SIZE SIZE_128MB
#define MACH_VIRT_PERIPH_BASE 0x08000000
#define MACH_VIRT_PERIPH_SIZE SIZE_128MB
/**
Return the Virtual Memory Map of your platform
@ -39,15 +39,17 @@
**/
VOID
ArmVirtGetMemoryMap (
OUT ARM_MEMORY_REGION_DESCRIPTOR **VirtualMemoryMap
OUT ARM_MEMORY_REGION_DESCRIPTOR **VirtualMemoryMap
)
{
ARM_MEMORY_REGION_DESCRIPTOR *VirtualMemoryTable;
ASSERT (VirtualMemoryMap != NULL);
VirtualMemoryTable = AllocatePool (sizeof (ARM_MEMORY_REGION_DESCRIPTOR) *
MAX_VIRTUAL_MEMORY_MAP_DESCRIPTORS);
VirtualMemoryTable = AllocatePool (
sizeof (ARM_MEMORY_REGION_DESCRIPTOR) *
MAX_VIRTUAL_MEMORY_MAP_DESCRIPTORS
);
if (VirtualMemoryTable == NULL) {
DEBUG ((DEBUG_ERROR, "%a: Error: Failed AllocatePool()\n", __FUNCTION__));
@ -60,14 +62,17 @@ ArmVirtGetMemoryMap (
VirtualMemoryTable[0].Length = PcdGet64 (PcdSystemMemorySize);
VirtualMemoryTable[0].Attributes = ARM_MEMORY_REGION_ATTRIBUTE_WRITE_BACK;
DEBUG ((DEBUG_INFO, "%a: Dumping System DRAM Memory Map:\n"
"\tPhysicalBase: 0x%lX\n"
"\tVirtualBase: 0x%lX\n"
"\tLength: 0x%lX\n",
__FUNCTION__,
VirtualMemoryTable[0].PhysicalBase,
VirtualMemoryTable[0].VirtualBase,
VirtualMemoryTable[0].Length));
DEBUG ((
DEBUG_INFO,
"%a: Dumping System DRAM Memory Map:\n"
"\tPhysicalBase: 0x%lX\n"
"\tVirtualBase: 0x%lX\n"
"\tLength: 0x%lX\n",
__FUNCTION__,
VirtualMemoryTable[0].PhysicalBase,
VirtualMemoryTable[0].VirtualBase,
VirtualMemoryTable[0].Length
));
// Memory mapped peripherals (UART, RTC, GIC, virtio-mmio, etc)
VirtualMemoryTable[1].PhysicalBase = MACH_VIRT_PERIPH_BASE;

View File

@ -17,14 +17,14 @@ QemuVirtMemInfoPeiLibConstructor (
VOID
)
{
VOID *DeviceTreeBase;
INT32 Node, Prev;
UINT64 NewBase, CurBase;
UINT64 NewSize, CurSize;
CONST CHAR8 *Type;
INT32 Len;
CONST UINT64 *RegProp;
RETURN_STATUS PcdStatus;
VOID *DeviceTreeBase;
INT32 Node, Prev;
UINT64 NewBase, CurBase;
UINT64 NewSize, CurSize;
CONST CHAR8 *Type;
INT32 Len;
CONST UINT64 *RegProp;
RETURN_STATUS PcdStatus;
NewBase = 0;
NewSize = 0;
@ -40,7 +40,7 @@ QemuVirtMemInfoPeiLibConstructor (
//
// Look for the lowest memory node
//
for (Prev = 0;; Prev = Node) {
for (Prev = 0; ; Prev = Node) {
Node = fdt_next_node (DeviceTreeBase, Prev, NULL);
if (Node < 0) {
break;
@ -50,27 +50,34 @@ QemuVirtMemInfoPeiLibConstructor (
// Check for memory node
//
Type = fdt_getprop (DeviceTreeBase, Node, "device_type", &Len);
if (Type && AsciiStrnCmp (Type, "memory", Len) == 0) {
if (Type && (AsciiStrnCmp (Type, "memory", Len) == 0)) {
//
// Get the 'reg' property of this node. For now, we will assume
// two 8 byte quantities for base and size, respectively.
//
RegProp = fdt_getprop (DeviceTreeBase, Node, "reg", &Len);
if (RegProp != 0 && Len == (2 * sizeof (UINT64))) {
if ((RegProp != 0) && (Len == (2 * sizeof (UINT64)))) {
CurBase = fdt64_to_cpu (ReadUnaligned64 (RegProp));
CurSize = fdt64_to_cpu (ReadUnaligned64 (RegProp + 1));
DEBUG ((DEBUG_INFO, "%a: System RAM @ 0x%lx - 0x%lx\n",
__FUNCTION__, CurBase, CurBase + CurSize - 1));
DEBUG ((
DEBUG_INFO,
"%a: System RAM @ 0x%lx - 0x%lx\n",
__FUNCTION__,
CurBase,
CurBase + CurSize - 1
));
if (NewBase > CurBase || NewBase == 0) {
if ((NewBase > CurBase) || (NewBase == 0)) {
NewBase = CurBase;
NewSize = CurSize;
}
} else {
DEBUG ((DEBUG_ERROR, "%a: Failed to parse FDT memory node\n",
__FUNCTION__));
DEBUG ((
DEBUG_ERROR,
"%a: Failed to parse FDT memory node\n",
__FUNCTION__
));
}
}
}
@ -94,7 +101,8 @@ QemuVirtMemInfoPeiLibConstructor (
ASSERT (
(((UINT64)PcdGet64 (PcdFdBaseAddress) +
(UINT64)PcdGet32 (PcdFdSize)) <= NewBase) ||
((UINT64)PcdGet64 (PcdFdBaseAddress) >= (NewBase + NewSize)));
((UINT64)PcdGet64 (PcdFdBaseAddress) >= (NewBase + NewSize))
);
return RETURN_SUCCESS;
}

View File

@ -16,9 +16,9 @@ ArmGenericTimerEnableTimer (
VOID
)
{
UINTN TimerCtrlReg;
UINTN TimerCtrlReg;
TimerCtrlReg = ArmReadCntvCtl ();
TimerCtrlReg = ArmReadCntvCtl ();
TimerCtrlReg |= ARM_ARCH_TIMER_ENABLE;
ArmWriteCntvCtl (TimerCtrlReg);
}
@ -29,9 +29,9 @@ ArmGenericTimerReenableTimer (
VOID
)
{
UINTN TimerCtrlReg;
UINTN TimerCtrlReg;
TimerCtrlReg = ArmReadCntvCtl ();
TimerCtrlReg = ArmReadCntvCtl ();
TimerCtrlReg |= ARM_ARCH_TIMER_ENABLE;
//
@ -50,9 +50,9 @@ ArmGenericTimerDisableTimer (
VOID
)
{
UINTN TimerCtrlReg;
UINTN TimerCtrlReg;
TimerCtrlReg = ArmReadCntvCtl ();
TimerCtrlReg = ArmReadCntvCtl ();
TimerCtrlReg &= ~ARM_ARCH_TIMER_ENABLE;
ArmWriteCntvCtl (TimerCtrlReg);
}
@ -84,11 +84,10 @@ ArmGenericTimerGetTimerVal (
return ArmReadCntvTval ();
}
VOID
EFIAPI
ArmGenericTimerSetTimerVal (
IN UINTN Value
IN UINTN Value
)
{
ArmWriteCntvTval (Value);
@ -115,7 +114,7 @@ ArmGenericTimerGetTimerCtrlReg (
VOID
EFIAPI
ArmGenericTimerSetTimerCtrlReg (
UINTN Value
UINTN Value
)
{
ArmWriteCntvCtl (Value);
@ -133,7 +132,7 @@ ArmGenericTimerGetCompareVal (
VOID
EFIAPI
ArmGenericTimerSetCompareVal (
IN UINT64 Value
IN UINT64 Value
)
{
ArmWriteCntvCval (Value);

View File

@ -29,10 +29,10 @@ STATIC ARM_MEMORY_REGION_DESCRIPTOR mVirtualMemoryTable[2];
VOID
EFIAPI
ArmVirtGetMemoryMap (
OUT ARM_MEMORY_REGION_DESCRIPTOR **VirtualMemoryMap
OUT ARM_MEMORY_REGION_DESCRIPTOR **VirtualMemoryMap
)
{
EFI_PHYSICAL_ADDRESS TopOfAddressSpace;
EFI_PHYSICAL_ADDRESS TopOfAddressSpace;
ASSERT (VirtualMemoryMap != NULL);

View File

@ -18,20 +18,20 @@
EFI_STATUS
EFIAPI
PlatformHasAcpiDt (
IN EFI_HANDLE ImageHandle,
IN EFI_SYSTEM_TABLE *SystemTable
IN EFI_HANDLE ImageHandle,
IN EFI_SYSTEM_TABLE *SystemTable
)
{
EFI_STATUS Status;
FIRMWARE_CONFIG_ITEM FwCfgItem;
UINTN FwCfgSize;
EFI_STATUS Status;
FIRMWARE_CONFIG_ITEM FwCfgItem;
UINTN FwCfgSize;
//
// If we fail to install any of the necessary protocols below, the OS will be
// unbootable anyway (due to lacking hardware description), so tolerate no
// errors here.
//
if (MAX_UINTN == MAX_UINT64 &&
if ((MAX_UINTN == MAX_UINT64) &&
!PcdGetBool (PcdForceNoAcpi) &&
!EFI_ERROR (
QemuFwCfgFindFile (
@ -39,7 +39,8 @@ PlatformHasAcpiDt (
&FwCfgItem,
&FwCfgSize
)
)) {
))
{
//
// Only make ACPI available on 64-bit systems, and only if QEMU generates
// (a subset of) the ACPI tables.

View File

@ -14,11 +14,11 @@ FindMemnode (
OUT UINT64 *SystemMemorySize
)
{
INT32 MemoryNode;
INT32 AddressCells;
INT32 SizeCells;
INT32 Length;
CONST INT32 *Prop;
INT32 MemoryNode;
INT32 AddressCells;
INT32 SizeCells;
INT32 Length;
CONST INT32 *Prop;
if (fdt_check_header (DeviceTreeBlob) != 0) {
return FALSE;
@ -37,7 +37,7 @@ FindMemnode (
// from the root node, or use the default if not provided.
//
AddressCells = 1;
SizeCells = 1;
SizeCells = 1;
Prop = fdt_getprop (DeviceTreeBlob, 0, "#address-cells", &Length);
if (Length == 4) {
@ -63,6 +63,7 @@ FindMemnode (
if (AddressCells > 1) {
*SystemMemoryBase = (*SystemMemoryBase << 32) | fdt32_to_cpu (Prop[1]);
}
Prop += AddressCells;
*SystemMemorySize = fdt32_to_cpu (Prop[0]);
@ -75,10 +76,10 @@ FindMemnode (
VOID
CopyFdt (
IN VOID *FdtDest,
IN VOID *FdtSource
IN VOID *FdtDest,
IN VOID *FdtSource
)
{
fdt_pack(FdtSource);
fdt_pack (FdtSource);
CopyMem (FdtDest, FdtSource, fdt_totalsize (FdtSource));
}

View File

@ -30,27 +30,27 @@ ProcessLibraryConstructorList (
VOID
PrePiMain (
IN UINTN UefiMemoryBase,
IN UINTN StacksBase,
IN UINT64 StartTimeStamp
IN UINTN UefiMemoryBase,
IN UINTN StacksBase,
IN UINT64 StartTimeStamp
)
{
EFI_HOB_HANDOFF_INFO_TABLE* HobList;
EFI_STATUS Status;
CHAR8 Buffer[100];
UINTN CharCount;
UINTN StacksSize;
EFI_HOB_HANDOFF_INFO_TABLE *HobList;
EFI_STATUS Status;
CHAR8 Buffer[100];
UINTN CharCount;
UINTN StacksSize;
// Initialize the architecture specific bits
ArchInitialize ();
// Declare the PI/UEFI memory region
HobList = HobConstructor (
(VOID*)UefiMemoryBase,
FixedPcdGet32 (PcdSystemMemoryUefiRegionSize),
(VOID*)UefiMemoryBase,
(VOID*)StacksBase // The top of the UEFI Memory is reserved for the stacks
);
(VOID *)UefiMemoryBase,
FixedPcdGet32 (PcdSystemMemoryUefiRegionSize),
(VOID *)UefiMemoryBase,
(VOID *)StacksBase // The top of the UEFI Memory is reserved for the stacks
);
PrePeiSetHobList (HobList);
//
@ -58,7 +58,7 @@ PrePiMain (
// modifications we made with the caches and MMU off (such as the applied
// relocations) don't become invisible once we turn them on.
//
InvalidateDataCacheRange((VOID *)(UINTN)PcdGet64 (PcdFdBaseAddress), PcdGet32 (PcdFdSize));
InvalidateDataCacheRange ((VOID *)(UINTN)PcdGet64 (PcdFdBaseAddress), PcdGet32 (PcdFdSize));
// Initialize MMU and Memory HOBs (Resource Descriptor HOBs)
Status = MemoryPeim (UefiMemoryBase, FixedPcdGet32 (PcdSystemMemoryUefiRegionSize));
@ -66,15 +66,21 @@ PrePiMain (
// Initialize the Serial Port
SerialPortInitialize ();
CharCount = AsciiSPrint (Buffer,sizeof (Buffer),"UEFI firmware (version %s built at %a on %a)\n\r",
(CHAR16*)PcdGetPtr(PcdFirmwareVersionString), __TIME__, __DATE__);
SerialPortWrite ((UINT8 *) Buffer, CharCount);
CharCount = AsciiSPrint (
Buffer,
sizeof (Buffer),
"UEFI firmware (version %s built at %a on %a)\n\r",
(CHAR16 *)PcdGetPtr (PcdFirmwareVersionString),
__TIME__,
__DATE__
);
SerialPortWrite ((UINT8 *)Buffer, CharCount);
// Create the Stacks HOB (reserve the memory for all stacks)
StacksSize = PcdGet32 (PcdCPUCorePrimaryStackSize);
BuildStackHob (StacksBase, StacksSize);
//TODO: Call CpuPei as a library
// TODO: Call CpuPei as a library
BuildCpuHob (ArmGetPhysicalAddressBits (), PcdGet8 (PcdPrePiCpuIoSize));
// Set the Boot Mode
@ -101,12 +107,12 @@ PrePiMain (
VOID
CEntryPoint (
IN UINTN MpId,
IN UINTN UefiMemoryBase,
IN UINTN StacksBase
IN UINTN MpId,
IN UINTN UefiMemoryBase,
IN UINTN StacksBase
)
{
UINT64 StartTimeStamp;
UINT64 StartTimeStamp;
if (PerformanceMeasurementEnabled ()) {
// Initialize the Timer Library to setup the Timer HW controller
@ -132,8 +138,8 @@ CEntryPoint (
VOID
RelocatePeCoffImage (
IN EFI_PEI_FV_HANDLE FwVolHeader,
IN PE_COFF_LOADER_READ_FILE ImageRead
IN EFI_PEI_FV_HANDLE FwVolHeader,
IN PE_COFF_LOADER_READ_FILE ImageRead
)
{
EFI_PEI_FILE_HANDLE FileHandle;
@ -142,20 +148,24 @@ RelocatePeCoffImage (
EFI_STATUS Status;
FileHandle = NULL;
Status = FfsFindNextFile (EFI_FV_FILETYPE_SECURITY_CORE, FwVolHeader,
&FileHandle);
Status = FfsFindNextFile (
EFI_FV_FILETYPE_SECURITY_CORE,
FwVolHeader,
&FileHandle
);
ASSERT_EFI_ERROR (Status);
Status = FfsFindSectionData (EFI_SECTION_PE32, FileHandle, &SectionData);
if (EFI_ERROR (Status)) {
Status = FfsFindSectionData (EFI_SECTION_TE, FileHandle, &SectionData);
}
ASSERT_EFI_ERROR (Status);
ZeroMem (&ImageContext, sizeof ImageContext);
ImageContext.Handle = (EFI_HANDLE)SectionData;
ImageContext.ImageRead = ImageRead;
ImageContext.Handle = (EFI_HANDLE)SectionData;
ImageContext.ImageRead = ImageRead;
PeCoffLoaderGetImageInfo (&ImageContext);
if (ImageContext.ImageAddress != (UINTN)SectionData) {

View File

@ -30,16 +30,16 @@ TimerConstructor (
VOID
PrePiMain (
IN UINTN UefiMemoryBase,
IN UINTN StacksBase,
IN UINT64 StartTimeStamp
IN UINTN UefiMemoryBase,
IN UINTN StacksBase,
IN UINT64 StartTimeStamp
);
EFI_STATUS
EFIAPI
MemoryPeim (
IN EFI_PHYSICAL_ADDRESS UefiMemoryBase,
IN UINT64 UefiMemorySize
IN EFI_PHYSICAL_ADDRESS UefiMemoryBase,
IN UINT64 UefiMemorySize
);
EFI_STATUS

View File

@ -32,33 +32,44 @@ STATIC
EFI_STATUS
EFIAPI
GetXenArmAcpiRsdp (
OUT EFI_ACPI_2_0_ROOT_SYSTEM_DESCRIPTION_POINTER **RsdpPtr
OUT EFI_ACPI_2_0_ROOT_SYSTEM_DESCRIPTION_POINTER **RsdpPtr
)
{
EFI_ACPI_2_0_ROOT_SYSTEM_DESCRIPTION_POINTER *RsdpStructurePtr;
EFI_STATUS Status;
FDT_CLIENT_PROTOCOL *FdtClient;
CONST UINT64 *Reg;
UINT32 RegSize;
UINTN AddressCells, SizeCells;
UINT64 RegBase;
UINT8 Sum;
EFI_ACPI_2_0_ROOT_SYSTEM_DESCRIPTION_POINTER *RsdpStructurePtr;
EFI_STATUS Status;
FDT_CLIENT_PROTOCOL *FdtClient;
CONST UINT64 *Reg;
UINT32 RegSize;
UINTN AddressCells, SizeCells;
UINT64 RegBase;
UINT8 Sum;
RsdpStructurePtr = NULL;
FdtClient = NULL;
FdtClient = NULL;
//
// Get the RSDP structure address from DeviceTree
//
Status = gBS->LocateProtocol (&gFdtClientProtocolGuid, NULL,
(VOID **)&FdtClient);
Status = gBS->LocateProtocol (
&gFdtClientProtocolGuid,
NULL,
(VOID **)&FdtClient
);
ASSERT_EFI_ERROR (Status);
Status = FdtClient->FindCompatibleNodeReg (FdtClient, "xen,guest-acpi",
(CONST VOID **)&Reg, &AddressCells, &SizeCells,
&RegSize);
Status = FdtClient->FindCompatibleNodeReg (
FdtClient,
"xen,guest-acpi",
(CONST VOID **)&Reg,
&AddressCells,
&SizeCells,
&RegSize
);
if (EFI_ERROR (Status)) {
DEBUG ((DEBUG_WARN, "%a: No 'xen,guest-acpi' compatible DT node found\n",
__FUNCTION__));
DEBUG ((
DEBUG_WARN,
"%a: No 'xen,guest-acpi' compatible DT node found\n",
__FUNCTION__
));
return EFI_NOT_FOUND;
}
@ -66,13 +77,15 @@ GetXenArmAcpiRsdp (
ASSERT (SizeCells == 2);
ASSERT (RegSize == 2 * sizeof (UINT64));
RegBase = SwapBytes64(Reg[0]);
RegBase = SwapBytes64 (Reg[0]);
RsdpStructurePtr =
(EFI_ACPI_2_0_ROOT_SYSTEM_DESCRIPTION_POINTER *)(UINTN)RegBase;
if (RsdpStructurePtr && RsdpStructurePtr->Revision >= 2) {
Sum = CalculateSum8 ((CONST UINT8 *)RsdpStructurePtr,
sizeof (EFI_ACPI_2_0_ROOT_SYSTEM_DESCRIPTION_POINTER));
if (RsdpStructurePtr && (RsdpStructurePtr->Revision >= 2)) {
Sum = CalculateSum8 (
(CONST UINT8 *)RsdpStructurePtr,
sizeof (EFI_ACPI_2_0_ROOT_SYSTEM_DESCRIPTION_POINTER)
);
if (Sum != 0) {
return EFI_ABORTED;
}
@ -101,26 +114,26 @@ STATIC
EFI_STATUS
EFIAPI
InstallXenArmTables (
IN EFI_ACPI_TABLE_PROTOCOL *AcpiProtocol
IN EFI_ACPI_TABLE_PROTOCOL *AcpiProtocol
)
{
EFI_STATUS Status;
UINTN TableHandle;
VOID *CurrentTableEntry;
UINTN CurrentTablePointer;
EFI_ACPI_DESCRIPTION_HEADER *CurrentTable;
UINTN Index;
UINTN NumberOfTableEntries;
EFI_ACPI_2_0_ROOT_SYSTEM_DESCRIPTION_POINTER *XenAcpiRsdpStructurePtr;
EFI_ACPI_DESCRIPTION_HEADER *Xsdt;
EFI_ACPI_2_0_FIXED_ACPI_DESCRIPTION_TABLE *FadtTable;
EFI_ACPI_DESCRIPTION_HEADER *DsdtTable;
EFI_STATUS Status;
UINTN TableHandle;
VOID *CurrentTableEntry;
UINTN CurrentTablePointer;
EFI_ACPI_DESCRIPTION_HEADER *CurrentTable;
UINTN Index;
UINTN NumberOfTableEntries;
EFI_ACPI_2_0_ROOT_SYSTEM_DESCRIPTION_POINTER *XenAcpiRsdpStructurePtr;
EFI_ACPI_DESCRIPTION_HEADER *Xsdt;
EFI_ACPI_2_0_FIXED_ACPI_DESCRIPTION_TABLE *FadtTable;
EFI_ACPI_DESCRIPTION_HEADER *DsdtTable;
XenAcpiRsdpStructurePtr = NULL;
FadtTable = NULL;
DsdtTable = NULL;
TableHandle = 0;
NumberOfTableEntries = 0;
FadtTable = NULL;
DsdtTable = NULL;
TableHandle = 0;
NumberOfTableEntries = 0;
//
// Try to find Xen ARM ACPI tables
@ -139,11 +152,11 @@ InstallXenArmTables (
// Retrieve the addresses of XSDT and
// calculate the number of its table entries.
//
Xsdt = (EFI_ACPI_DESCRIPTION_HEADER *) (UINTN)
XenAcpiRsdpStructurePtr->XsdtAddress;
Xsdt = (EFI_ACPI_DESCRIPTION_HEADER *)(UINTN)
XenAcpiRsdpStructurePtr->XsdtAddress;
NumberOfTableEntries = (Xsdt->Length -
sizeof (EFI_ACPI_DESCRIPTION_HEADER)) /
sizeof (UINT64);
sizeof (EFI_ACPI_DESCRIPTION_HEADER)) /
sizeof (UINT64);
//
// Install ACPI tables found in XSDT.
//
@ -151,21 +164,21 @@ InstallXenArmTables (
//
// Get the table entry from XSDT
//
CurrentTableEntry = (VOID *) ((UINT8 *) Xsdt +
sizeof (EFI_ACPI_DESCRIPTION_HEADER) +
Index * sizeof (UINT64));
CurrentTablePointer = (UINTN) *(UINT64 *)CurrentTableEntry;
CurrentTable = (EFI_ACPI_DESCRIPTION_HEADER *) CurrentTablePointer;
CurrentTableEntry = (VOID *)((UINT8 *)Xsdt +
sizeof (EFI_ACPI_DESCRIPTION_HEADER) +
Index * sizeof (UINT64));
CurrentTablePointer = (UINTN)*(UINT64 *)CurrentTableEntry;
CurrentTable = (EFI_ACPI_DESCRIPTION_HEADER *)CurrentTablePointer;
//
// Install the XSDT tables
//
Status = AcpiProtocol->InstallAcpiTable (
AcpiProtocol,
CurrentTable,
CurrentTable->Length,
&TableHandle
);
AcpiProtocol,
CurrentTable,
CurrentTable->Length,
&TableHandle
);
if (EFI_ERROR (Status)) {
return Status;
@ -174,10 +187,10 @@ InstallXenArmTables (
//
// Get the FACS and DSDT table address from the table FADT
//
if (!AsciiStrnCmp ((CHAR8 *) &CurrentTable->Signature, "FACP", 4)) {
if (!AsciiStrnCmp ((CHAR8 *)&CurrentTable->Signature, "FACP", 4)) {
FadtTable = (EFI_ACPI_2_0_FIXED_ACPI_DESCRIPTION_TABLE *)
(UINTN) CurrentTablePointer;
DsdtTable = (EFI_ACPI_DESCRIPTION_HEADER *) (UINTN) FadtTable->Dsdt;
(UINTN)CurrentTablePointer;
DsdtTable = (EFI_ACPI_DESCRIPTION_HEADER *)(UINTN)FadtTable->Dsdt;
}
}
}
@ -186,11 +199,11 @@ InstallXenArmTables (
// Install DSDT table.
//
Status = AcpiProtocol->InstallAcpiTable (
AcpiProtocol,
DsdtTable,
DsdtTable->Length,
&TableHandle
);
AcpiProtocol,
DsdtTable,
DsdtTable->Length,
&TableHandle
);
if (EFI_ERROR (Status)) {
return Status;
}
@ -204,15 +217,15 @@ FindAcpiTableProtocol (
VOID
)
{
EFI_STATUS Status;
EFI_ACPI_TABLE_PROTOCOL *AcpiTable;
EFI_STATUS Status;
EFI_ACPI_TABLE_PROTOCOL *AcpiTable;
AcpiTable = NULL;
Status = gBS->LocateProtocol (
&gEfiAcpiTableProtocolGuid,
NULL,
(VOID**)&AcpiTable
);
Status = gBS->LocateProtocol (
&gEfiAcpiTableProtocolGuid,
NULL,
(VOID **)&AcpiTable
);
ASSERT_EFI_ERROR (Status);
return AcpiTable;
}
@ -228,15 +241,14 @@ FindAcpiTableProtocol (
@return EFI_OUT_OF_RESOURCES
**/
EFI_STATUS
EFIAPI
XenAcpiPlatformEntryPoint (
IN EFI_HANDLE ImageHandle,
IN EFI_SYSTEM_TABLE *SystemTable
IN EFI_HANDLE ImageHandle,
IN EFI_SYSTEM_TABLE *SystemTable
)
{
EFI_STATUS Status;
EFI_STATUS Status;
Status = InstallXenArmTables (FindAcpiTableProtocol ());
return Status;

View File

@ -16,11 +16,11 @@
EFI_STATUS
EFIAPI
XenPlatformHasAcpiDt (
IN EFI_HANDLE ImageHandle,
IN EFI_SYSTEM_TABLE *SystemTable
IN EFI_HANDLE ImageHandle,
IN EFI_SYSTEM_TABLE *SystemTable
)
{
EFI_STATUS Status;
EFI_STATUS Status;
//
// If we fail to install any of the necessary protocols below, the OS will be

View File

@ -18,28 +18,39 @@
EFI_STATUS
EFIAPI
InitializeXenioFdtDxe (
IN EFI_HANDLE ImageHandle,
IN EFI_SYSTEM_TABLE *SystemTable
IN EFI_HANDLE ImageHandle,
IN EFI_SYSTEM_TABLE *SystemTable
)
{
EFI_STATUS Status;
FDT_CLIENT_PROTOCOL *FdtClient;
CONST UINT64 *Reg;
UINT32 RegSize;
UINTN AddressCells, SizeCells;
EFI_HANDLE Handle;
UINT64 RegBase;
EFI_STATUS Status;
FDT_CLIENT_PROTOCOL *FdtClient;
CONST UINT64 *Reg;
UINT32 RegSize;
UINTN AddressCells, SizeCells;
EFI_HANDLE Handle;
UINT64 RegBase;
Status = gBS->LocateProtocol (&gFdtClientProtocolGuid, NULL,
(VOID **)&FdtClient);
Status = gBS->LocateProtocol (
&gFdtClientProtocolGuid,
NULL,
(VOID **)&FdtClient
);
ASSERT_EFI_ERROR (Status);
Status = FdtClient->FindCompatibleNodeReg (FdtClient, "xen,xen",
(CONST VOID **)&Reg, &AddressCells, &SizeCells,
&RegSize);
Status = FdtClient->FindCompatibleNodeReg (
FdtClient,
"xen,xen",
(CONST VOID **)&Reg,
&AddressCells,
&SizeCells,
&RegSize
);
if (EFI_ERROR (Status)) {
DEBUG ((DEBUG_WARN, "%a: No 'xen,xen' compatible DT node found\n",
__FUNCTION__));
DEBUG ((
DEBUG_WARN,
"%a: No 'xen,xen' compatible DT node found\n",
__FUNCTION__
));
return EFI_UNSUPPORTED;
}
@ -52,11 +63,16 @@ InitializeXenioFdtDxe (
// MMIO flavor of the XenBus root device I/O protocol
//
RegBase = SwapBytes64 (Reg[0]);
Handle = NULL;
Status = XenIoMmioInstall (&Handle, RegBase);
Handle = NULL;
Status = XenIoMmioInstall (&Handle, RegBase);
if (EFI_ERROR (Status)) {
DEBUG ((DEBUG_ERROR, "%a: XenIoMmioInstall () failed on a new handle "
"(Status == %r)\n", __FUNCTION__, Status));
DEBUG ((
DEBUG_ERROR,
"%a: XenIoMmioInstall () failed on a new handle "
"(Status == %r)\n",
__FUNCTION__,
Status
));
return Status;
}