CryptoPkg: Add EC APIs to DXE and protocol

REF: https://bugzilla.tianocore.org/show_bug.cgi?id=3828

The implementation provides CryptEc library functions
for EFI Driveer and EFI BaseCrypt Protocol.

Cc: Jiewen Yao <jiewen.yao@intel.com>
Cc: Jian J Wang <jian.j.wang@intel.com>
Cc: Xiaoyu Lu <xiaoyu1.lu@intel.com>
Cc: Guomin Jiang <guomin.jiang@intel.com>

Signed-off-by: Yi Li <yi1.li@intel.com>
Reviewed-by: Jiewen Yao <jiewen.yao@intel.com>
This commit is contained in:
Yi Li 2022-09-25 17:26:19 +08:00 committed by mergify[bot]
parent 988e4d8f5e
commit 3b382f5b38
5 changed files with 1622 additions and 200 deletions

View File

@ -172,6 +172,7 @@
gEfiCryptoPkgTokenSpaceGuid.PcdCryptoServiceFamilyEnable.ParallelHash.Family | PCD_CRYPTO_SERVICE_ENABLE_FAMILY
gEfiCryptoPkgTokenSpaceGuid.PcdCryptoServiceFamilyEnable.AeadAesGcm.Family | PCD_CRYPTO_SERVICE_ENABLE_FAMILY
gEfiCryptoPkgTokenSpaceGuid.PcdCryptoServiceFamilyEnable.Bn.Family | PCD_CRYPTO_SERVICE_ENABLE_FAMILY
gEfiCryptoPkgTokenSpaceGuid.PcdCryptoServiceFamilyEnable.Ec.Family | 0
!endif
!if $(CRYPTO_SERVICES) == MIN_PEI

View File

@ -5519,6 +5519,481 @@ CryptoServiceBigNumAddMod (
return CALL_BASECRYPTLIB (Bn.Services.AddMod, BigNumAddMod, (BnA, BnB, BnM, BnRes), FALSE);
}
// =====================================================================================
// Basic Elliptic Curve Primitives
// =====================================================================================
/**
Initialize new opaque EcGroup object. This object represents an EC curve and
and is used for calculation within this group. This object should be freed
using EcGroupFree() function.
@param[in] CryptoNid Identifying number for the ECC curve (Defined in
BaseCryptLib.h).
@retval EcGroup object On success.
@retval NULL On failure.
**/
VOID *
EFIAPI
CryptoServiceEcGroupInit (
IN UINTN CryptoNid
)
{
return CALL_BASECRYPTLIB (Ec.Services.GroupInit, EcGroupInit, (CryptoNid), NULL);
}
/**
Get EC curve parameters. While elliptic curve equation is Y^2 mod P = (X^3 + AX + B) Mod P.
This function will set the provided Big Number objects to the corresponding
values. The caller needs to make sure all the "out" BigNumber parameters
are properly initialized.
@param[in] EcGroup EC group object.
@param[out] BnPrime Group prime number.
@param[out] BnA A coefficient.
@param[out] BnB B coefficient.
@param[in] BnCtx BN context.
@retval TRUE On success.
@retval FALSE Otherwise.
**/
BOOLEAN
EFIAPI
CryptoServiceEcGroupGetCurve (
IN CONST VOID *EcGroup,
OUT VOID *BnPrime,
OUT VOID *BnA,
OUT VOID *BnB,
IN VOID *BnCtx
)
{
return CALL_BASECRYPTLIB (Ec.Services.GroupGetCurve, EcGroupGetCurve, (EcGroup, BnPrime, BnA, BnB, BnCtx), FALSE);
}
/**
Get EC group order.
This function will set the provided Big Number object to the corresponding
value. The caller needs to make sure that the "out" BigNumber parameter
is properly initialized.
@param[in] EcGroup EC group object.
@param[out] BnOrder Group prime number.
@retval TRUE On success.
@retval FALSE Otherwise.
**/
BOOLEAN
EFIAPI
CryptoServiceEcGroupGetOrder (
IN VOID *EcGroup,
OUT VOID *BnOrder
)
{
return CALL_BASECRYPTLIB (Ec.Services.GroupGetOrder, EcGroupGetOrder, (EcGroup, BnOrder), FALSE);
}
/**
Free previously allocated EC group object using EcGroupInit().
@param[in] EcGroup EC group object to free.
**/
VOID
EFIAPI
CryptoServiceEcGroupFree (
IN VOID *EcGroup
)
{
CALL_VOID_BASECRYPTLIB (Ec.Services.GroupFree, EcGroupFree, (EcGroup));
}
/**
Initialize new opaque EC Point object. This object represents an EC point
within the given EC group (curve).
@param[in] EC Group, properly initialized using EcGroupInit().
@retval EC Point object On success.
@retval NULL On failure.
**/
VOID *
EFIAPI
CryptoServiceEcPointInit (
IN CONST VOID *EcGroup
)
{
return CALL_BASECRYPTLIB (Ec.Services.PointInit, EcPointInit, (EcGroup), NULL);
}
/**
Free previously allocated EC Point object using EcPointInit().
@param[in] EcPoint EC Point to free.
@param[in] Clear TRUE iff the memory should be cleared.
**/
VOID
EFIAPI
CryptoServiceEcPointDeInit (
IN VOID *EcPoint,
IN BOOLEAN Clear
)
{
CALL_VOID_BASECRYPTLIB (Ec.Services.PointDeInit, EcPointDeInit, (EcPoint, Clear));
}
/**
Get EC point affine (x,y) coordinates.
This function will set the provided Big Number objects to the corresponding
values. The caller needs to make sure all the "out" BigNumber parameters
are properly initialized.
@param[in] EcGroup EC group object.
@param[in] EcPoint EC point object.
@param[out] BnX X coordinate.
@param[out] BnY Y coordinate.
@param[in] BnCtx BN context, created with BigNumNewContext().
@retval TRUE On success.
@retval FALSE Otherwise.
**/
BOOLEAN
EFIAPI
CryptoServiceEcPointGetAffineCoordinates (
IN CONST VOID *EcGroup,
IN CONST VOID *EcPoint,
OUT VOID *BnX,
OUT VOID *BnY,
IN VOID *BnCtx
)
{
return CALL_BASECRYPTLIB (Ec.Services.PointGetAffineCoordinates, EcPointGetAffineCoordinates, (EcGroup, EcPoint, BnX, BnY, BnCtx), FALSE);
}
/**
Set EC point affine (x,y) coordinates.
@param[in] EcGroup EC group object.
@param[in] EcPoint EC point object.
@param[in] BnX X coordinate.
@param[in] BnY Y coordinate.
@param[in] BnCtx BN context, created with BigNumNewContext().
@retval TRUE On success.
@retval FALSE Otherwise.
**/
BOOLEAN
EFIAPI
CryptoServiceEcPointSetAffineCoordinates (
IN CONST VOID *EcGroup,
IN VOID *EcPoint,
IN CONST VOID *BnX,
IN CONST VOID *BnY,
IN VOID *BnCtx
)
{
return CALL_BASECRYPTLIB (Ec.Services.PointSetAffineCoordinates, EcPointSetAffineCoordinates, (EcGroup, EcPoint, BnX, BnY, BnCtx), FALSE);
}
/**
EC Point addition. EcPointResult = EcPointA + EcPointB.
@param[in] EcGroup EC group object.
@param[out] EcPointResult EC point to hold the result. The point should
be properly initialized.
@param[in] EcPointA EC Point.
@param[in] EcPointB EC Point.
@param[in] BnCtx BN context, created with BigNumNewContext().
@retval TRUE On success.
@retval FALSE Otherwise.
**/
BOOLEAN
EFIAPI
CryptoServiceEcPointAdd (
IN CONST VOID *EcGroup,
OUT VOID *EcPointResult,
IN CONST VOID *EcPointA,
IN CONST VOID *EcPointB,
IN VOID *BnCtx
)
{
return CALL_BASECRYPTLIB (Ec.Services.PointAdd, EcPointAdd, (EcGroup, EcPointResult, EcPointA, EcPointB, BnCtx), FALSE);
}
/**
Variable EC point multiplication. EcPointResult = EcPoint * BnPScalar.
@param[in] EcGroup EC group object.
@param[out] EcPointResult EC point to hold the result. The point should
be properly initialized.
@param[in] EcPoint EC Point.
@param[in] BnPScalar P Scalar.
@param[in] BnCtx BN context, created with BigNumNewContext().
@retval TRUE On success.
@retval FALSE Otherwise.
**/
BOOLEAN
EFIAPI
CryptoServiceEcPointMul (
IN CONST VOID *EcGroup,
OUT VOID *EcPointResult,
IN CONST VOID *EcPoint,
IN CONST VOID *BnPScalar,
IN VOID *BnCtx
)
{
return CALL_BASECRYPTLIB (Ec.Services.PointMul, EcPointMul, (EcGroup, EcPointResult, EcPoint, BnPScalar, BnCtx), FALSE);
}
/**
Calculate the inverse of the supplied EC point.
@param[in] EcGroup EC group object.
@param[in,out] EcPoint EC point to invert.
@param[in] BnCtx BN context, created with BigNumNewContext().
@retval TRUE On success.
@retval FALSE Otherwise.
**/
BOOLEAN
EFIAPI
CryptoServiceEcPointInvert (
IN CONST VOID *EcGroup,
IN OUT VOID *EcPoint,
IN VOID *BnCtx
)
{
return CALL_BASECRYPTLIB (Ec.Services.PointInvert, EcPointInvert, (EcGroup, EcPoint, BnCtx), FALSE);
}
/**
Check if the supplied point is on EC curve.
@param[in] EcGroup EC group object.
@param[in] EcPoint EC point to check.
@param[in] BnCtx BN context, created with BigNumNewContext().
@retval TRUE On curve.
@retval FALSE Otherwise.
**/
BOOLEAN
EFIAPI
CryptoServiceEcPointIsOnCurve (
IN CONST VOID *EcGroup,
IN CONST VOID *EcPoint,
IN VOID *BnCtx
)
{
return CALL_BASECRYPTLIB (Ec.Services.PointIsOnCurve, EcPointIsOnCurve, (EcGroup, EcPoint, BnCtx), FALSE);
}
/**
Check if the supplied point is at infinity.
@param[in] EcGroup EC group object.
@param[in] EcPoint EC point to check.
@retval TRUE At infinity.
@retval FALSE Otherwise.
**/
BOOLEAN
EFIAPI
CryptoServiceEcPointIsAtInfinity (
IN CONST VOID *EcGroup,
IN CONST VOID *EcPoint
)
{
return CALL_BASECRYPTLIB (Ec.Services.PointIsAtInfinity, EcPointIsAtInfinity, (EcGroup, EcPoint), FALSE);
}
/**
Check if EC points are equal.
@param[in] EcGroup EC group object.
@param[in] EcPointA EC point A.
@param[in] EcPointB EC point B.
@param[in] BnCtx BN context, created with BigNumNewContext().
@retval TRUE A == B.
@retval FALSE Otherwise.
**/
BOOLEAN
EFIAPI
CryptoServiceEcPointEqual (
IN CONST VOID *EcGroup,
IN CONST VOID *EcPointA,
IN CONST VOID *EcPointB,
IN VOID *BnCtx
)
{
return CALL_BASECRYPTLIB (Ec.Services.PointEqual, EcPointEqual, (EcGroup, EcPointA, EcPointB, BnCtx), FALSE);
}
/**
Set EC point compressed coordinates. Points can be described in terms of
their compressed coordinates. For a point (x, y), for any given value for x
such that the point is on the curve there will only ever be two possible
values for y. Therefore, a point can be set using this function where BnX is
the x coordinate and YBit is a value 0 or 1 to identify which of the two
possible values for y should be used.
@param[in] EcGroup EC group object.
@param[in] EcPoint EC Point.
@param[in] BnX X coordinate.
@param[in] YBit 0 or 1 to identify which Y value is used.
@param[in] BnCtx BN context, created with BigNumNewContext().
@retval TRUE On success.
@retval FALSE Otherwise.
**/
BOOLEAN
EFIAPI
CryptoServiceEcPointSetCompressedCoordinates (
IN CONST VOID *EcGroup,
IN VOID *EcPoint,
IN CONST VOID *BnX,
IN UINT8 YBit,
IN VOID *BnCtx
)
{
return CALL_BASECRYPTLIB (Ec.Services.PointSetCompressedCoordinates, EcPointSetCompressedCoordinates, (EcGroup, EcPoint, BnX, YBit, BnCtx), FALSE);
}
// =====================================================================================
// Elliptic Curve Diffie Hellman Primitives
// =====================================================================================
/**
Allocates and Initializes one Elliptic Curve Context for subsequent use
with the NID.
@param[in] Nid cipher NID
@return Pointer to the Elliptic Curve Context that has been initialized.
If the allocations fails, EcNewByNid() returns NULL.
**/
VOID *
EFIAPI
CryptoServiceEcNewByNid (
IN UINTN Nid
)
{
return CALL_BASECRYPTLIB (Ec.Services.NewByNid, EcNewByNid, (Nid), NULL);
}
/**
Release the specified EC context.
@param[in] EcContext Pointer to the EC context to be released.
**/
VOID
EFIAPI
CryptoServiceEcFree (
IN VOID *EcContext
)
{
CALL_VOID_BASECRYPTLIB (Ec.Services.Free, EcFree, (EcContext));
}
/**
Generates EC key and returns EC public key (X, Y), Please note, this function uses
pseudo random number generator. The caller must make sure RandomSeed()
function was properly called before.
The Ec context should be correctly initialized by EcNewByNid.
This function generates random secret, and computes the public key (X, Y), which is
returned via parameter Public, PublicSize.
X is the first half of Public with size being PublicSize / 2,
Y is the second half of Public with size being PublicSize / 2.
EC context is updated accordingly.
If the Public buffer is too small to hold the public X, Y, FALSE is returned and
PublicSize is set to the required buffer size to obtain the public X, Y.
For P-256, the PublicSize is 64. First 32-byte is X, Second 32-byte is Y.
For P-384, the PublicSize is 96. First 48-byte is X, Second 48-byte is Y.
For P-521, the PublicSize is 132. First 66-byte is X, Second 66-byte is Y.
If EcContext is NULL, then return FALSE.
If PublicSize is NULL, then return FALSE.
If PublicSize is large enough but Public is NULL, then return FALSE.
@param[in, out] EcContext Pointer to the EC context.
@param[out] PublicKey Pointer to t buffer to receive generated public X,Y.
@param[in, out] PublicKeySize On input, the size of Public buffer in bytes.
On output, the size of data returned in Public buffer in bytes.
@retval TRUE EC public X,Y generation succeeded.
@retval FALSE EC public X,Y generation failed.
@retval FALSE PublicKeySize is not large enough.
**/
BOOLEAN
EFIAPI
CryptoServiceEcGenerateKey (
IN OUT VOID *EcContext,
OUT UINT8 *PublicKey,
IN OUT UINTN *PublicKeySize
)
{
return CALL_BASECRYPTLIB (Ec.Services.GenerateKey, EcGenerateKey, (EcContext, PublicKey, PublicKeySize), FALSE);
}
/**
Gets the public key component from the established EC context.
The Ec context should be correctly initialized by EcNewByNid, and successfully
generate key pair from EcGenerateKey().
For P-256, the PublicSize is 64. First 32-byte is X, Second 32-byte is Y.
For P-384, the PublicSize is 96. First 48-byte is X, Second 48-byte is Y.
For P-521, the PublicSize is 132. First 66-byte is X, Second 66-byte is Y.
@param[in, out] EcContext Pointer to EC context being set.
@param[out] PublicKey Pointer to t buffer to receive generated public X,Y.
@param[in, out] PublicKeySize On input, the size of Public buffer in bytes.
On output, the size of data returned in Public buffer in bytes.
@retval TRUE EC key component was retrieved successfully.
@retval FALSE Invalid EC key component.
**/
BOOLEAN
EFIAPI
CryptoServiceEcGetPubKey (
IN OUT VOID *EcContext,
OUT UINT8 *PublicKey,
IN OUT UINTN *PublicKeySize
)
{
return CALL_BASECRYPTLIB (Ec.Services.GetPubKey, EcGetPubKey, (EcContext, PublicKey, PublicKeySize), FALSE);
}
/**
Computes exchanged common key.
Given peer's public key (X, Y), this function computes the exchanged common key,
based on its own context including value of curve parameter and random secret.
X is the first half of PeerPublic with size being PeerPublicSize / 2,
Y is the second half of PeerPublic with size being PeerPublicSize / 2.
If EcContext is NULL, then return FALSE.
If PeerPublic is NULL, then return FALSE.
If PeerPublicSize is 0, then return FALSE.
If Key is NULL, then return FALSE.
If KeySize is not large enough, then return FALSE.
For P-256, the PeerPublicSize is 64. First 32-byte is X, Second 32-byte is Y.
For P-384, the PeerPublicSize is 96. First 48-byte is X, Second 48-byte is Y.
For P-521, the PeerPublicSize is 132. First 66-byte is X, Second 66-byte is Y.
@param[in, out] EcContext Pointer to the EC context.
@param[in] PeerPublic Pointer to the peer's public X,Y.
@param[in] PeerPublicSize Size of peer's public X,Y in bytes.
@param[in] CompressFlag Flag of PeerPublic is compressed or not.
@param[out] Key Pointer to the buffer to receive generated key.
@param[in, out] KeySize On input, the size of Key buffer in bytes.
On output, the size of data returned in Key buffer in bytes.
@retval TRUE EC exchanged key generation succeeded.
@retval FALSE EC exchanged key generation failed.
@retval FALSE KeySize is not large enough.
**/
BOOLEAN
EFIAPI
CryptoServiceEcDhComputeKey (
IN OUT VOID *EcContext,
IN CONST UINT8 *PeerPublic,
IN UINTN PeerPublicSize,
IN CONST INT32 *CompressFlag,
OUT UINT8 *Key,
IN OUT UINTN *KeySize
)
{
return CALL_BASECRYPTLIB (Ec.Services.DhComputeKey, EcDhComputeKey, (EcContext, PeerPublic, PeerPublicSize, CompressFlag, Key, KeySize), FALSE);
}
const EDKII_CRYPTO_PROTOCOL mEdkiiCrypto = {
/// Version
CryptoServiceGetCryptoVersion,
@ -5770,4 +6245,25 @@ const EDKII_CRYPTO_PROTOCOL mEdkiiCrypto = {
CryptoServiceBigNumContextFree,
CryptoServiceBigNumSetUint,
CryptoServiceBigNumAddMod,
/// EC
CryptoServiceEcGroupInit,
CryptoServiceEcGroupGetCurve,
CryptoServiceEcGroupGetOrder,
CryptoServiceEcGroupFree,
CryptoServiceEcPointInit,
CryptoServiceEcPointDeInit,
CryptoServiceEcPointGetAffineCoordinates,
CryptoServiceEcPointSetAffineCoordinates,
CryptoServiceEcPointAdd,
CryptoServiceEcPointMul,
CryptoServiceEcPointInvert,
CryptoServiceEcPointIsOnCurve,
CryptoServiceEcPointIsAtInfinity,
CryptoServiceEcPointEqual,
CryptoServiceEcPointSetCompressedCoordinates,
CryptoServiceEcNewByNid,
CryptoServiceEcFree,
CryptoServiceEcGenerateKey,
CryptoServiceEcGetPubKey,
CryptoServiceEcDhComputeKey,
};

View File

@ -356,6 +356,31 @@ typedef struct {
} Services;
UINT32 Family;
} Bn;
union {
struct {
UINT8 GroupInit : 1;
UINT8 GroupGetCurve : 1;
UINT8 GroupGetOrder : 1;
UINT8 GroupFree : 1;
UINT8 PointInit : 1;
UINT8 PointDeInit : 1;
UINT8 PointGetAffineCoordinates : 1;
UINT8 PointSetAffineCoordinates : 1;
UINT8 PointAdd : 1;
UINT8 PointMul : 1;
UINT8 PointInvert : 1;
UINT8 PointIsOnCurve : 1;
UINT8 PointIsAtInfinity : 1;
UINT8 PointEqual : 1;
UINT8 PointSetCompressedCoordinates : 1;
UINT8 NewByNid : 1;
UINT8 Free : 1;
UINT8 GenerateKey : 1;
UINT8 GetPubKey : 1;
UINT8 DhComputeKey : 1;
} Services;
UINT32 Family;
} Ec;
} PCD_CRYPTO_SERVICE_FAMILY_ENABLE;
#endif

View File

@ -4553,3 +4553,472 @@ BigNumAddMod (
{
CALL_CRYPTO_SERVICE (BigNumAddMod, (BnA, BnB, BnM, BnRes), FALSE);
}
/**
Initialize new opaque EcGroup object. This object represents an EC curve and
and is used for calculation within this group. This object should be freed
using EcGroupFree() function.
@param[in] CryptoNid Identifying number for the ECC curve (Defined in
BaseCryptLib.h).
@retval EcGroup object On success.
@retval NULL On failure.
**/
VOID *
EFIAPI
EcGroupInit (
IN UINTN CryptoNid
)
{
CALL_CRYPTO_SERVICE (EcGroupInit, (CryptoNid), NULL);
}
/**
Get EC curve parameters. While elliptic curve equation is Y^2 mod P = (X^3 + AX + B) Mod P.
This function will set the provided Big Number objects to the corresponding
values. The caller needs to make sure all the "out" BigNumber parameters
are properly initialized.
@param[in] EcGroup EC group object.
@param[out] BnPrime Group prime number.
@param[out] BnA A coefficient.
@param[out] BnB B coefficient.
@param[in] BnCtx BN context.
@retval TRUE On success.
@retval FALSE Otherwise.
**/
BOOLEAN
EFIAPI
EcGroupGetCurve (
IN CONST VOID *EcGroup,
OUT VOID *BnPrime,
OUT VOID *BnA,
OUT VOID *BnB,
IN VOID *BnCtx
)
{
CALL_CRYPTO_SERVICE (EcGroupGetCurve, (EcGroup, BnPrime, BnA, BnB, BnCtx), FALSE);
}
/**
Get EC group order.
This function will set the provided Big Number object to the corresponding
value. The caller needs to make sure that the "out" BigNumber parameter
is properly initialized.
@param[in] EcGroup EC group object.
@param[out] BnOrder Group prime number.
@retval TRUE On success.
@retval FALSE Otherwise.
**/
BOOLEAN
EFIAPI
EcGroupGetOrder (
IN VOID *EcGroup,
OUT VOID *BnOrder
)
{
CALL_CRYPTO_SERVICE (EcGroupGetOrder, (EcGroup, BnOrder), FALSE);
}
/**
Free previously allocated EC group object using EcGroupInit().
@param[in] EcGroup EC group object to free.
**/
VOID
EFIAPI
EcGroupFree (
IN VOID *EcGroup
)
{
CALL_VOID_CRYPTO_SERVICE (EcGroupFree, (EcGroup));
}
/**
Initialize new opaque EC Point object. This object represents an EC point
within the given EC group (curve).
@param[in] EC Group, properly initialized using EcGroupInit().
@retval EC Point object On success.
@retval NULL On failure.
**/
VOID *
EFIAPI
EcPointInit (
IN CONST VOID *EcGroup
)
{
CALL_CRYPTO_SERVICE (EcPointInit, (EcGroup), NULL);
}
/**
Free previously allocated EC Point object using EcPointInit().
@param[in] EcPoint EC Point to free.
@param[in] Clear TRUE iff the memory should be cleared.
**/
VOID
EFIAPI
EcPointDeInit (
IN VOID *EcPoint,
IN BOOLEAN Clear
)
{
CALL_VOID_CRYPTO_SERVICE (EcPointDeInit, (EcPoint, Clear));
}
/**
Get EC point affine (x,y) coordinates.
This function will set the provided Big Number objects to the corresponding
values. The caller needs to make sure all the "out" BigNumber parameters
are properly initialized.
@param[in] EcGroup EC group object.
@param[in] EcPoint EC point object.
@param[out] BnX X coordinate.
@param[out] BnY Y coordinate.
@param[in] BnCtx BN context, created with BigNumNewContext().
@retval TRUE On success.
@retval FALSE Otherwise.
**/
BOOLEAN
EFIAPI
EcPointGetAffineCoordinates (
IN CONST VOID *EcGroup,
IN CONST VOID *EcPoint,
OUT VOID *BnX,
OUT VOID *BnY,
IN VOID *BnCtx
)
{
CALL_CRYPTO_SERVICE (EcPointGetAffineCoordinates, (EcGroup, EcPoint, BnX, BnY, BnCtx), FALSE);
}
/**
Set EC point affine (x,y) coordinates.
@param[in] EcGroup EC group object.
@param[in] EcPoint EC point object.
@param[in] BnX X coordinate.
@param[in] BnY Y coordinate.
@param[in] BnCtx BN context, created with BigNumNewContext().
@retval TRUE On success.
@retval FALSE Otherwise.
**/
BOOLEAN
EFIAPI
EcPointSetAffineCoordinates (
IN CONST VOID *EcGroup,
IN VOID *EcPoint,
IN CONST VOID *BnX,
IN CONST VOID *BnY,
IN VOID *BnCtx
)
{
CALL_CRYPTO_SERVICE (EcPointSetAffineCoordinates, (EcGroup, EcPoint, BnX, BnY, BnCtx), FALSE);
}
/**
EC Point addition. EcPointResult = EcPointA + EcPointB.
@param[in] EcGroup EC group object.
@param[out] EcPointResult EC point to hold the result. The point should
be properly initialized.
@param[in] EcPointA EC Point.
@param[in] EcPointB EC Point.
@param[in] BnCtx BN context, created with BigNumNewContext().
@retval TRUE On success.
@retval FALSE Otherwise.
**/
BOOLEAN
EFIAPI
EcPointAdd (
IN CONST VOID *EcGroup,
OUT VOID *EcPointResult,
IN CONST VOID *EcPointA,
IN CONST VOID *EcPointB,
IN VOID *BnCtx
)
{
CALL_CRYPTO_SERVICE (EcPointAdd, (EcGroup, EcPointResult, EcPointA, EcPointB, BnCtx), FALSE);
}
/**
Variable EC point multiplication. EcPointResult = EcPoint * BnPScalar.
@param[in] EcGroup EC group object.
@param[out] EcPointResult EC point to hold the result. The point should
be properly initialized.
@param[in] EcPoint EC Point.
@param[in] BnPScalar P Scalar.
@param[in] BnCtx BN context, created with BigNumNewContext().
@retval TRUE On success.
@retval FALSE Otherwise.
**/
BOOLEAN
EFIAPI
EcPointMul (
IN CONST VOID *EcGroup,
OUT VOID *EcPointResult,
IN CONST VOID *EcPoint,
IN CONST VOID *BnPScalar,
IN VOID *BnCtx
)
{
CALL_CRYPTO_SERVICE (EcPointMul, (EcGroup, EcPointResult, EcPoint, BnPScalar, BnCtx), FALSE);
}
/**
Calculate the inverse of the supplied EC point.
@param[in] EcGroup EC group object.
@param[in,out] EcPoint EC point to invert.
@param[in] BnCtx BN context, created with BigNumNewContext().
@retval TRUE On success.
@retval FALSE Otherwise.
**/
BOOLEAN
EFIAPI
EcPointInvert (
IN CONST VOID *EcGroup,
IN OUT VOID *EcPoint,
IN VOID *BnCtx
)
{
CALL_CRYPTO_SERVICE (EcPointInvert, (EcGroup, EcPoint, BnCtx), FALSE);
}
/**
Check if the supplied point is on EC curve.
@param[in] EcGroup EC group object.
@param[in] EcPoint EC point to check.
@param[in] BnCtx BN context, created with BigNumNewContext().
@retval TRUE On curve.
@retval FALSE Otherwise.
**/
BOOLEAN
EFIAPI
EcPointIsOnCurve (
IN CONST VOID *EcGroup,
IN CONST VOID *EcPoint,
IN VOID *BnCtx
)
{
CALL_CRYPTO_SERVICE (EcPointIsOnCurve, (EcGroup, EcPoint, BnCtx), FALSE);
}
/**
Check if the supplied point is at infinity.
@param[in] EcGroup EC group object.
@param[in] EcPoint EC point to check.
@retval TRUE At infinity.
@retval FALSE Otherwise.
**/
BOOLEAN
EFIAPI
EcPointIsAtInfinity (
IN CONST VOID *EcGroup,
IN CONST VOID *EcPoint
)
{
CALL_CRYPTO_SERVICE (EcPointIsAtInfinity, (EcGroup, EcPoint), FALSE);
}
/**
Check if EC points are equal.
@param[in] EcGroup EC group object.
@param[in] EcPointA EC point A.
@param[in] EcPointB EC point B.
@param[in] BnCtx BN context, created with BigNumNewContext().
@retval TRUE A == B.
@retval FALSE Otherwise.
**/
BOOLEAN
EFIAPI
EcPointEqual (
IN CONST VOID *EcGroup,
IN CONST VOID *EcPointA,
IN CONST VOID *EcPointB,
IN VOID *BnCtx
)
{
CALL_CRYPTO_SERVICE (EcPointEqual, (EcGroup, EcPointA, EcPointB, BnCtx), FALSE);
}
/**
Set EC point compressed coordinates. Points can be described in terms of
their compressed coordinates. For a point (x, y), for any given value for x
such that the point is on the curve there will only ever be two possible
values for y. Therefore, a point can be set using this function where BnX is
the x coordinate and YBit is a value 0 or 1 to identify which of the two
possible values for y should be used.
@param[in] EcGroup EC group object.
@param[in] EcPoint EC Point.
@param[in] BnX X coordinate.
@param[in] YBit 0 or 1 to identify which Y value is used.
@param[in] BnCtx BN context, created with BigNumNewContext().
@retval TRUE On success.
@retval FALSE Otherwise.
**/
BOOLEAN
EFIAPI
EcPointSetCompressedCoordinates (
IN CONST VOID *EcGroup,
IN VOID *EcPoint,
IN CONST VOID *BnX,
IN UINT8 YBit,
IN VOID *BnCtx
)
{
CALL_CRYPTO_SERVICE (EcPointSetCompressedCoordinates, (EcGroup, EcPoint, BnX, YBit, BnCtx), FALSE);
}
/**
Allocates and Initializes one Elliptic Curve Context for subsequent use
with the NID.
@param[in] Nid cipher NID
@return Pointer to the Elliptic Curve Context that has been initialized.
If the allocations fails, EcNewByNid() returns NULL.
**/
VOID *
EFIAPI
EcNewByNid (
IN UINTN Nid
)
{
CALL_CRYPTO_SERVICE (EcNewByNid, (Nid), NULL);
}
/**
Release the specified EC context.
@param[in] EcContext Pointer to the EC context to be released.
**/
VOID
EFIAPI
EcFree (
IN VOID *EcContext
)
{
CALL_VOID_CRYPTO_SERVICE (EcFree, (EcContext));
}
/**
Generates EC key and returns EC public key (X, Y), Please note, this function uses
pseudo random number generator. The caller must make sure RandomSeed()
function was properly called before.
The Ec context should be correctly initialized by EcNewByNid.
This function generates random secret, and computes the public key (X, Y), which is
returned via parameter Public, PublicSize.
X is the first half of Public with size being PublicSize / 2,
Y is the second half of Public with size being PublicSize / 2.
EC context is updated accordingly.
If the Public buffer is too small to hold the public X, Y, FALSE is returned and
PublicSize is set to the required buffer size to obtain the public X, Y.
For P-256, the PublicSize is 64. First 32-byte is X, Second 32-byte is Y.
For P-384, the PublicSize is 96. First 48-byte is X, Second 48-byte is Y.
For P-521, the PublicSize is 132. First 66-byte is X, Second 66-byte is Y.
If EcContext is NULL, then return FALSE.
If PublicSize is NULL, then return FALSE.
If PublicSize is large enough but Public is NULL, then return FALSE.
@param[in, out] EcContext Pointer to the EC context.
@param[out] PublicKey Pointer to the buffer to receive generated public X,Y.
@param[in, out] PublicKeySize On input, the size of Public buffer in bytes.
On output, the size of data returned in Public buffer in bytes.
@retval TRUE EC public X,Y generation succeeded.
@retval FALSE EC public X,Y generation failed.
@retval FALSE PublicKeySize is not large enough.
**/
BOOLEAN
EFIAPI
EcGenerateKey (
IN OUT VOID *EcContext,
OUT UINT8 *PublicKey,
IN OUT UINTN *PublicKeySize
)
{
CALL_CRYPTO_SERVICE (EcGenerateKey, (EcContext, PublicKey, PublicKeySize), FALSE);
}
/**
Gets the public key component from the established EC context.
The Ec context should be correctly initialized by EcNewByNid, and successfully
generate key pair from EcGenerateKey().
For P-256, the PublicSize is 64. First 32-byte is X, Second 32-byte is Y.
For P-384, the PublicSize is 96. First 48-byte is X, Second 48-byte is Y.
For P-521, the PublicSize is 132. First 66-byte is X, Second 66-byte is Y.
@param[in, out] EcContext Pointer to EC context being set.
@param[out] PublicKey Pointer to t buffer to receive generated public X,Y.
@param[in, out] PublicKeySize On input, the size of Public buffer in bytes.
On output, the size of data returned in Public buffer in bytes.
@retval TRUE EC key component was retrieved successfully.
@retval FALSE Invalid EC key component.
**/
BOOLEAN
EFIAPI
EcGetPubKey (
IN OUT VOID *EcContext,
OUT UINT8 *PublicKey,
IN OUT UINTN *PublicKeySize
)
{
CALL_CRYPTO_SERVICE (EcGetPubKey, (EcContext, PublicKey, PublicKeySize), FALSE);
}
/**
Computes exchanged common key.
Given peer's public key (X, Y), this function computes the exchanged common key,
based on its own context including value of curve parameter and random secret.
X is the first half of PeerPublic with size being PeerPublicSize / 2,
Y is the second half of PeerPublic with size being PeerPublicSize / 2.
If EcContext is NULL, then return FALSE.
If PeerPublic is NULL, then return FALSE.
If PeerPublicSize is 0, then return FALSE.
If Key is NULL, then return FALSE.
If KeySize is not large enough, then return FALSE.
For P-256, the PeerPublicSize is 64. First 32-byte is X, Second 32-byte is Y.
For P-384, the PeerPublicSize is 96. First 48-byte is X, Second 48-byte is Y.
For P-521, the PeerPublicSize is 132. First 66-byte is X, Second 66-byte is Y.
@param[in, out] EcContext Pointer to the EC context.
@param[in] PeerPublic Pointer to the peer's public X,Y.
@param[in] PeerPublicSize Size of peer's public X,Y in bytes.
@param[in] CompressFlag Flag of PeerPublic is compressed or not.
@param[out] Key Pointer to the buffer to receive generated key.
@param[in, out] KeySize On input, the size of Key buffer in bytes.
On output, the size of data returned in Key buffer in bytes.
@retval TRUE EC exchanged key generation succeeded.
@retval FALSE EC exchanged key generation failed.
@retval FALSE KeySize is not large enough.
**/
BOOLEAN
EFIAPI
EcDhComputeKey (
IN OUT VOID *EcContext,
IN CONST UINT8 *PeerPublic,
IN UINTN PeerPublicSize,
IN CONST INT32 *CompressFlag,
OUT UINT8 *Key,
IN OUT UINTN *KeySize
)
{
CALL_CRYPTO_SERVICE (EcDhComputeKey, (EcContext, PeerPublic, PeerPublicSize, CompressFlag, Key, KeySize), FALSE);
}

View File

@ -21,7 +21,7 @@
/// the EDK II Crypto Protocol is extended, this version define must be
/// increased.
///
#define EDKII_CRYPTO_VERSION 12
#define EDKII_CRYPTO_VERSION 13
///
/// EDK II Crypto Protocol forward declaration
@ -4289,6 +4289,416 @@ BOOLEAN
OUT VOID *BnRes
);
/**
Initialize new opaque EcGroup object. This object represents an EC curve and
and is used for calculation within this group. This object should be freed
using EcGroupFree() function.
@param[in] CryptoNid Identifying number for the ECC curve (Defined in
BaseCryptLib.h).
@retval EcGroup object On success
@retval NULL On failure
**/
typedef
VOID *
(EFIAPI *EDKII_CRYPTO_EC_GROUP_INIT)(
IN UINTN CryptoNid
);
/**
Get EC curve parameters. While elliptic curve equation is Y^2 mod P = (X^3 + AX + B) Mod P.
This function will set the provided Big Number objects to the corresponding
values. The caller needs to make sure all the "out" BigNumber parameters
are properly initialized.
@param[in] EcGroup EC group object.
@param[out] BnPrime Group prime number.
@param[out] BnA A coefficient.
@param[out] BnB B coefficient.
@param[in] BnCtx BN context.
@retval TRUE On success.
@retval FALSE Otherwise.
**/
typedef
BOOLEAN
(EFIAPI *EDKII_CRYPTO_EC_GROUP_GET_CURVE)(
IN CONST VOID *EcGroup,
OUT VOID *BnPrime,
OUT VOID *BnA,
OUT VOID *BnB,
IN VOID *BnCtx
);
/**
Get EC group order.
This function will set the provided Big Number object to the corresponding
value. The caller needs to make sure that the "out" BigNumber parameter
is properly initialized.
@param[in] EcGroup EC group object
@param[out] BnOrder Group prime number
@retval TRUE On success.
@retval FALSE Otherwise.
**/
typedef
BOOLEAN
(EFIAPI *EDKII_CRYPTO_EC_GROUP_GET_ORDER)(
IN VOID *EcGroup,
OUT VOID *BnOrder
);
/**
Free previously allocated EC group object using EcGroupInit()
@param[in] EcGroup EC group object to free
**/
typedef
VOID
(EFIAPI *EDKII_CRYPTO_EC_GROUP_FREE)(
IN VOID *EcGroup
);
/**
Initialize new opaque EC Point object. This object represents an EC point
within the given EC group (curve).
@param[in] EC Group, properly initialized using EcGroupInit()
@retval EC Point object On success
@retval NULL On failure
**/
typedef
VOID *
(EFIAPI *EDKII_CRYPTO_EC_POINT_INIT)(
IN CONST VOID *EcGroup
);
/**
Free previously allocated EC Point object using EcPointInit()
@param[in] EcPoint EC Point to free
@param[in] Clear TRUE iff the memory should be cleared
**/
typedef
VOID
(EFIAPI *EDKII_CRYPTO_EC_POINT_DE_INIT)(
IN VOID *EcPoint,
IN BOOLEAN Clear
);
/**
Get EC point affine (x,y) coordinates.
This function will set the provided Big Number objects to the corresponding
values. The caller needs to make sure all the "out" BigNumber parameters
are properly initialized.
@param[in] EcGroup EC group object
@param[in] EcPoint EC point object
@param[out] BnX X coordinate
@param[out] BnY Y coordinate
@param[in] BnCtx BN context, created with BigNumNewContext()
@retval TRUE On success.
@retval FALSE Otherwise.
**/
typedef
BOOLEAN
(EFIAPI *EDKII_CRYPTO_EC_POINT_GET_AFFINE_COORDINATES)(
IN CONST VOID *EcGroup,
IN CONST VOID *EcPoint,
OUT VOID *BnX,
OUT VOID *BnY,
IN VOID *BnCtx
);
/**
Set EC point affine (x,y) coordinates.
@param[in] EcGroup EC group object
@param[in] EcPoint EC point object
@param[in] BnX X coordinate
@param[in] BnY Y coordinate
@param[in] BnCtx BN context, created with BigNumNewContext()
@retval TRUE On success.
@retval FALSE Otherwise.
**/
typedef
BOOLEAN
(EFIAPI *EDKII_CRYPTO_EC_POINT_SET_AFFINE_COORDINATES)(
IN CONST VOID *EcGroup,
IN VOID *EcPoint,
IN CONST VOID *BnX,
IN CONST VOID *BnY,
IN VOID *BnCtx
);
/**
EC Point addition. EcPointResult = EcPointA + EcPointB
@param[in] EcGroup EC group object
@param[out] EcPointResult EC point to hold the result. The point should
be properly initialized.
@param[in] EcPointA EC Point
@param[in] EcPointB EC Point
@param[in] BnCtx BN context, created with BigNumNewContext()
@retval TRUE On success.
@retval FALSE Otherwise.
**/
typedef
BOOLEAN
(EFIAPI *EDKII_CRYPTO_EC_POINT_ADD)(
IN CONST VOID *EcGroup,
OUT VOID *EcPointResult,
IN CONST VOID *EcPointA,
IN CONST VOID *EcPointB,
IN VOID *BnCtx
);
/**
Variable EC point multiplication. EcPointResult = EcPoint * BnPScalar
@param[in] EcGroup EC group object
@param[out] EcPointResult EC point to hold the result. The point should
be properly initialized.
@param[in] EcPoint EC Point
@param[in] BnPScalar P Scalar
@param[in] BnCtx BN context, created with BigNumNewContext()
@retval TRUE On success.
@retval FALSE Otherwise.
**/
typedef
BOOLEAN
(EFIAPI *EDKII_CRYPTO_EC_POINT_MUL)(
IN CONST VOID *EcGroup,
OUT VOID *EcPointResult,
IN CONST VOID *EcPoint,
IN CONST VOID *BnPScalar,
IN VOID *BnCtx
);
/**
Calculate the inverse of the supplied EC point.
@param[in] EcGroup EC group object
@param[in,out] EcPoint EC point to invert
@param[in] BnCtx BN context, created with BigNumNewContext()
@retval TRUE On success.
@retval FALSE Otherwise.
**/
typedef
BOOLEAN
(EFIAPI *EDKII_CRYPTO_EC_POINT_INVERT)(
IN CONST VOID *EcGroup,
IN OUT VOID *EcPoint,
IN VOID *BnCtx
);
/**
Check if the supplied point is on EC curve
@param[in] EcGroup EC group object
@param[in] EcPoint EC point to check
@param[in] BnCtx BN context, created with BigNumNewContext()
@retval TRUE On curve
@retval FALSE Otherwise
**/
typedef
BOOLEAN
(EFIAPI *EDKII_CRYPTO_EC_POINT_IS_ON_CURVE)(
IN CONST VOID *EcGroup,
IN CONST VOID *EcPoint,
IN VOID *BnCtx
);
/**
Check if the supplied point is at infinity
@param[in] EcGroup EC group object
@param[in] EcPoint EC point to check
@param[in] BnCtx BN context, created with BigNumNewContext()
@retval TRUE At infinity
@retval FALSE Otherwise
**/
typedef
BOOLEAN
(EFIAPI *EDKII_CRYPTO_EC_POINT_IS_AT_INFINITY)(
IN CONST VOID *EcGroup,
IN CONST VOID *EcPoint
);
/**
Check if EC points are equal
@param[in] EcGroup EC group object
@param[in] EcPointA EC point A
@param[in] EcPointB EC point B
@param[in] BnCtx BN context, created with BigNumNewContext()
@retval TRUE A == B
@retval FALSE Otherwise
**/
typedef
BOOLEAN
(EFIAPI *EDKII_CRYPTO_EC_POINT_EQUAL)(
IN CONST VOID *EcGroup,
IN CONST VOID *EcPointA,
IN CONST VOID *EcPointB,
IN VOID *BnCtx
);
/**
Set EC point compressed coordinates. Points can be described in terms of
their compressed coordinates. For a point (x, y), for any given value for x
such that the point is on the curve there will only ever be two possible
values for y. Therefore, a point can be set using this function where BnX is
the x coordinate and YBit is a value 0 or 1 to identify which of the two
possible values for y should be used.
@param[in] EcGroup EC group object
@param[in] EcPoint EC Point
@param[in] BnX X coordinate
@param[in] YBit 0 or 1 to identify which Y value is used
@param[in] BnCtx BN context, created with BigNumNewContext()
@retval TRUE On success.
@retval FALSE Otherwise.
**/
typedef
BOOLEAN
(EFIAPI *EDKII_CRYPTO_EC_POINT_SET_COMPRESSED_COORDINATES)(
IN CONST VOID *EcGroup,
IN VOID *EcPoint,
IN CONST VOID *BnX,
IN UINT8 YBit,
IN VOID *BnCtx
);
/**
Allocates and Initializes one Elliptic Curve Context for subsequent use
with the NID.
@param[in] Nid cipher NID
@return Pointer to the Elliptic Curve Context that has been initialized.
If the allocations fails, EcNewByNid() returns NULL.
**/
typedef
VOID *
(EFIAPI *EDKII_CRYPTO_EC_NEW_BY_NID)(
IN UINTN Nid
);
/**
Release the specified EC context.
@param[in] EcContext Pointer to the EC context to be released.
**/
typedef
VOID
(EFIAPI *EDKII_CRYPTO_EC_FREE)(
IN VOID *EcContext
);
/**
Generates EC key and returns EC public key (X, Y), Please note, this function uses
pseudo random number generator. The caller must make sure RandomSeed()
function was properly called before.
The Ec context should be correctly initialized by EcNewByNid.
This function generates random secret, and computes the public key (X, Y), which is
returned via parameter Public, PublicSize.
X is the first half of Public with size being PublicSize / 2,
Y is the second half of Public with size being PublicSize / 2.
EC context is updated accordingly.
If the Public buffer is too small to hold the public X, Y, FALSE is returned and
PublicSize is set to the required buffer size to obtain the public X, Y.
For P-256, the PublicSize is 64. First 32-byte is X, Second 32-byte is Y.
For P-384, the PublicSize is 96. First 48-byte is X, Second 48-byte is Y.
For P-521, the PublicSize is 132. First 66-byte is X, Second 66-byte is Y.
If EcContext is NULL, then return FALSE.
If PublicSize is NULL, then return FALSE.
If PublicSize is large enough but Public is NULL, then return FALSE.
@param[in, out] EcContext Pointer to the EC context.
@param[out] PublicKey Pointer to t buffer to receive generated public X,Y.
@param[in, out] PublicKeySize On input, the size of Public buffer in bytes.
On output, the size of data returned in Public buffer in bytes.
@retval TRUE EC public X,Y generation succeeded.
@retval FALSE EC public X,Y generation failed.
@retval FALSE PublicKeySize is not large enough.
**/
typedef
BOOLEAN
(EFIAPI *EDKII_CRYPTO_EC_GENERATE_KEY)(
IN OUT VOID *EcContext,
OUT UINT8 *PublicKey,
IN OUT UINTN *PublicKeySize
);
/**
Gets the public key component from the established EC context.
The Ec context should be correctly initialized by EcNewByNid, and successfully
generate key pair from EcGenerateKey().
For P-256, the PublicSize is 64. First 32-byte is X, Second 32-byte is Y.
For P-384, the PublicSize is 96. First 48-byte is X, Second 48-byte is Y.
For P-521, the PublicSize is 132. First 66-byte is X, Second 66-byte is Y.
@param[in, out] EcContext Pointer to EC context being set.
@param[out] PublicKey Pointer to t buffer to receive generated public X,Y.
@param[in, out] PublicKeySize On input, the size of Public buffer in bytes.
On output, the size of data returned in Public buffer in bytes.
@retval TRUE EC key component was retrieved successfully.
@retval FALSE Invalid EC key component.
**/
typedef
BOOLEAN
(EFIAPI *EDKII_CRYPTO_EC_GET_PUB_KEY)(
IN OUT VOID *EcContext,
OUT UINT8 *PublicKey,
IN OUT UINTN *PublicKeySize
);
/**
Computes exchanged common key.
Given peer's public key (X, Y), this function computes the exchanged common key,
based on its own context including value of curve parameter and random secret.
X is the first half of PeerPublic with size being PeerPublicSize / 2,
Y is the second half of PeerPublic with size being PeerPublicSize / 2.
If EcContext is NULL, then return FALSE.
If PeerPublic is NULL, then return FALSE.
If PeerPublicSize is 0, then return FALSE.
If Key is NULL, then return FALSE.
If KeySize is not large enough, then return FALSE.
For P-256, the PeerPublicSize is 64. First 32-byte is X, Second 32-byte is Y.
For P-384, the PeerPublicSize is 96. First 48-byte is X, Second 48-byte is Y.
For P-521, the PeerPublicSize is 132. First 66-byte is X, Second 66-byte is Y.
@param[in, out] EcContext Pointer to the EC context.
@param[in] PeerPublic Pointer to the peer's public X,Y.
@param[in] PeerPublicSize Size of peer's public X,Y in bytes.
@param[in] CompressFlag Flag of PeerPublic is compressed or not.
@param[out] Key Pointer to the buffer to receive generated key.
@param[in, out] KeySize On input, the size of Key buffer in bytes.
On output, the size of data returned in Key buffer in bytes.
@retval TRUE EC exchanged key generation succeeded.
@retval FALSE EC exchanged key generation failed.
@retval FALSE KeySize is not large enough.
**/
typedef
BOOLEAN
(EFIAPI *EDKII_CRYPTO_EC_DH_COMPUTE_KEY)(
IN OUT VOID *EcContext,
IN CONST UINT8 *PeerPublic,
IN UINTN PeerPublicSize,
IN CONST INT32 *CompressFlag,
OUT UINT8 *Key,
IN OUT UINTN *KeySize
);
///
/// EDK II Crypto Protocol
///
@ -4523,6 +4933,27 @@ struct _EDKII_CRYPTO_PROTOCOL {
EDKII_CRYPTO_BIGNUM_CONTEXT_FREE BigNumContextFree;
EDKII_CRYPTO_BIGNUM_SET_UINT BigNumSetUint;
EDKII_CRYPTO_BIGNUM_ADD_MOD BigNumAddMod;
/// EC
EDKII_CRYPTO_EC_GROUP_INIT EcGroupInit;
EDKII_CRYPTO_EC_GROUP_GET_CURVE EcGroupGetCurve;
EDKII_CRYPTO_EC_GROUP_GET_ORDER EcGroupGetOrder;
EDKII_CRYPTO_EC_GROUP_FREE EcGroupFree;
EDKII_CRYPTO_EC_POINT_INIT EcPointInit;
EDKII_CRYPTO_EC_POINT_DE_INIT EcPointDeInit;
EDKII_CRYPTO_EC_POINT_GET_AFFINE_COORDINATES EcPointGetAffineCoordinates;
EDKII_CRYPTO_EC_POINT_SET_AFFINE_COORDINATES EcPointSetAffineCoordinates;
EDKII_CRYPTO_EC_POINT_ADD EcPointAdd;
EDKII_CRYPTO_EC_POINT_MUL EcPointMul;
EDKII_CRYPTO_EC_POINT_INVERT EcPointInvert;
EDKII_CRYPTO_EC_POINT_IS_ON_CURVE EcPointIsOnCurve;
EDKII_CRYPTO_EC_POINT_IS_AT_INFINITY EcPointIsAtInfinity;
EDKII_CRYPTO_EC_POINT_EQUAL EcPointEqual;
EDKII_CRYPTO_EC_POINT_SET_COMPRESSED_COORDINATES EcPointSetCompressedCoordinates;
EDKII_CRYPTO_EC_NEW_BY_NID EcNewByNid;
EDKII_CRYPTO_EC_FREE EcFree;
EDKII_CRYPTO_EC_GENERATE_KEY EcGenerateKey;
EDKII_CRYPTO_EC_GET_PUB_KEY EcGetPubKey;
EDKII_CRYPTO_EC_DH_COMPUTE_KEY EcDhComputeKey;
};
extern GUID gEdkiiCryptoProtocolGuid;