ArmPlatformPkg/ArmJunoPkg: Added PCI support

Added driver for the Juno R1 root complex.

Contributed-under: TianoCore Contribution Agreement 1.0
Signed-off-by: Olivier Martin <olivier.martin@arm.com>
Reviewed-by: Ronald Cron <Ronald.Cron@arm.com>



git-svn-id: https://svn.code.sf.net/p/edk2/code/trunk/edk2@17412 6f19259b-4bc3-4df7-8a09-765794883524
This commit is contained in:
Olivier Martin 2015-05-11 17:48:39 +00:00 committed by oliviermartin
parent f66eab9b9c
commit 4595449b3e
8 changed files with 2272 additions and 0 deletions

View File

@ -31,7 +31,15 @@
[Guids.common]
gArmJunoTokenSpaceGuid = { 0xa1147a20, 0x3144, 0x4f8d, { 0x82, 0x95, 0xb4, 0x83, 0x11, 0xc8, 0xe4, 0xa4 } }
[PcdsFeatureFlag.common]
gArmJunoTokenSpaceGuid.PcdPciMaxPayloadFixup|FALSE|BOOLEAN|0x00000013
[PcdsFixedAtBuild.common]
gArmJunoTokenSpaceGuid.PcdPcieControlBaseAddress|0x7FF20000|UINT64|0x0000000B
gArmJunoTokenSpaceGuid.PcdPcieRootPortBaseAddress|0x7FF30000|UINT64|0x0000000C
gArmJunoTokenSpaceGuid.PcdPciConfigurationSpaceBaseAddress|0x40000000|UINT64|0x00000011
gArmJunoTokenSpaceGuid.PcdPciConfigurationSpaceSize|0x10000000|UINT64|0x00000012
gArmJunoTokenSpaceGuid.PcdSynopsysUsbOhciBaseAddress|0x7FFB0000|UINT32|0x00000004
gArmJunoTokenSpaceGuid.PcdSynopsysUsbEhciBaseAddress|0x7FFC0000|UINT32|0x00000005

View File

@ -0,0 +1,199 @@
/** @file
* Pci Host Bridge support for the Xpress-RICH3 PCIe Root Complex
*
* Copyright (c) 2011-2015, ARM Ltd. All rights reserved.
*
* This program and the accompanying materials
* are licensed and made available under the terms and conditions of the BSD License
* which accompanies this distribution. The full text of the license may be found at
* http://opensource.org/licenses/bsd-license.php
*
* THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS,
* WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED.
*
**/
#include "PciHostBridge.h"
#include <Guid/EventGroup.h>
/**
* PCI Root Bridge Description
*/
typedef struct {
UINT32 AcpiUid;
UINT64 MemAllocAttributes;
} PCI_ROOT_BRIDGE_DESC;
PCI_ROOT_BRIDGE_DESC PciRbDescriptions = {
0, // AcpiUid
PCI_MEMORY_ALLOCATION_ATTRIBUTES // MemAllocAttributes
};
/**
* Template for PCI Host Bridge Instance
**/
STATIC CONST PCI_HOST_BRIDGE_INSTANCE
gPciHostBridgeInstanceTemplate = {
PCI_HOST_BRIDGE_SIGNATURE, //Signature
NULL, // Handle
NULL, // ImageHandle
NULL, // RootBridge
TRUE, // CanRestarted
NULL, // CpuIo
NULL, // Metronome
{ // ResAlloc
PciHbRaNotifyPhase, // ResAlloc.NotifyPhase
PciHbRaGetNextRootBridge, // ResAlloc.GetNextRootBridge
PciHbRaGetAllocAttributes, // ResAlloc.GetAllocAttributes
PciHbRaStartBusEnumeration, // ResAlloc.StartBusEnumeration
PciHbRaSetBusNumbers, // ResAlloc.SetBusNumbers
PciHbRaSubmitResources, // ResAlloc.SubmitResources
PciHbRaGetProposedResources, // ResAlloc.GetProposedResources
PciHbRaPreprocessController // ResAlloc.PreprocessController
}
};
PCI_HOST_BRIDGE_INSTANCE* gpPciHostBridgeInstance;
EFI_STATUS
HostBridgeConstructor (
IN OUT PCI_HOST_BRIDGE_INSTANCE** Instance,
IN EFI_HANDLE ImageHandle
)
{
EFI_STATUS Status;
PCI_HOST_BRIDGE_INSTANCE* HostBridge;
PCI_TRACE ("HostBridgeConstructor()");
if (Instance == NULL) {
return EFI_INVALID_PARAMETER;
}
HostBridge = AllocateCopyPool (sizeof (PCI_HOST_BRIDGE_INSTANCE), &gPciHostBridgeInstanceTemplate);
if (HostBridge == NULL) {
PCI_TRACE ("HostBridgeConstructor(): FAIL to allocate resources");
return EFI_OUT_OF_RESOURCES;
}
// It will also create a device handle for the PCI Host Bridge (as HostBridge->Handle == NULL)
Status = gBS->InstallMultipleProtocolInterfaces (
&HostBridge->Handle,
&gEfiPciHostBridgeResourceAllocationProtocolGuid, &HostBridge->ResAlloc,
NULL
);
if (EFI_ERROR (Status)) {
PCI_TRACE ("HostBridgeConstructor(): FAIL to install resource allocator");
FreePool (HostBridge);
return EFI_DEVICE_ERROR;
} else {
PCI_TRACE ("HostBridgeConstructor(): SUCCEED to install resource allocator");
}
Status = gBS->LocateProtocol (&gEfiCpuIo2ProtocolGuid, NULL, (VOID **)(&(HostBridge->CpuIo)));
ASSERT_EFI_ERROR (Status);
Status = gBS->LocateProtocol (&gEfiMetronomeArchProtocolGuid, NULL, (VOID **)(&(HostBridge->Metronome)));
ASSERT_EFI_ERROR (Status);
HostBridge->ImageHandle = ImageHandle;
*Instance = HostBridge;
return EFI_SUCCESS;
}
EFI_STATUS
HostBridgeDestructor (
IN PCI_HOST_BRIDGE_INSTANCE* HostBridge
)
{
EFI_STATUS Status;
Status = gBS->UninstallMultipleProtocolInterfaces (
HostBridge->Handle,
&gEfiPciHostBridgeResourceAllocationProtocolGuid, &HostBridge->ResAlloc,
NULL
);
if (HostBridge->RootBridge) {
PciRbDestructor (HostBridge->RootBridge);
}
FreePool (HostBridge);
return Status;
}
/**
Entry point of this driver
@param ImageHandle Handle of driver image
@param SystemTable Point to EFI_SYSTEM_TABLE
@retval EFI_OUT_OF_RESOURCES Can not allocate memory resource
@retval EFI_DEVICE_ERROR Can not install the protocol instance
@retval EFI_SUCCESS Success to initialize the Pci host bridge.
**/
EFI_STATUS
EFIAPI
PciHostBridgeEntryPoint (
IN EFI_HANDLE ImageHandle,
IN EFI_SYSTEM_TABLE *SystemTable
)
{
EFI_STATUS Status;
PCI_TRACE ("PciHostBridgeEntryPoint()");
// Creation of the PCI Host Bridge Instance
Status = HostBridgeConstructor (&gpPciHostBridgeInstance, ImageHandle);
if (EFI_ERROR (Status)) {
PCI_TRACE ("PciHostBridgeEntryPoint(): ERROR: Fail to construct PCI Host Bridge.");
return Status;
}
// Creation of the PCIe Root Bridge
Status = PciRbConstructor (gpPciHostBridgeInstance, PciRbDescriptions.AcpiUid, PciRbDescriptions.MemAllocAttributes);
if (EFI_ERROR (Status)) {
PCI_TRACE ("PciHostBridgeEntryPoint(): ERROR: Fail to construct PCI Root Bridge.");
return Status;
}
ASSERT (gpPciHostBridgeInstance->RootBridge->Signature == PCI_ROOT_BRIDGE_SIGNATURE);
// PCI 32bit Memory Space
Status = gDS->AddMemorySpace (
EfiGcdMemoryTypeMemoryMappedIo,
PCI_MEM32_BASE,
PCI_MEM32_SIZE,
0
);
// PCI 64bit Memory Space
Status = gDS->AddMemorySpace (
EfiGcdMemoryTypeMemoryMappedIo,
PCI_MEM64_BASE,
PCI_MEM64_SIZE,
0
);
return EFI_SUCCESS;
}
EFI_STATUS
EFIAPI
PciHostBridgeUnload (
IN EFI_HANDLE ImageHandle
)
{
EFI_STATUS Status;
// Free Reserved memory space in GCD
gDS->RemoveMemorySpace (PCI_MEM32_BASE, PCI_MEM32_SIZE);
gDS->RemoveMemorySpace (PCI_MEM64_BASE, PCI_MEM64_SIZE);
// Free the allocated memory
Status = HostBridgeDestructor (gpPciHostBridgeInstance);
ASSERT_EFI_ERROR (Status);
return Status;
}

View File

@ -0,0 +1,324 @@
/** @file
* Header containing the structure specific to the Xpress-RICH3 PCIe Root Complex
*
* Copyright (c) 2011-2015, ARM Ltd. All rights reserved.
*
* This program and the accompanying materials
* are licensed and made available under the terms and conditions of the BSD License
* which accompanies this distribution. The full text of the license may be found at
* http://opensource.org/licenses/bsd-license.php
*
* THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS,
* WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED.
*
**/
#ifndef __PCIHOSTBRIDGE_H
#define __PCIHOSTBRIDGE_H
#include <PiDxe.h>
#include "XPressRich3.h"
#include <IndustryStandard/Pci.h>
#include <IndustryStandard/Acpi.h>
#include <Library/BaseLib.h>
#include <Library/BaseMemoryLib.h>
#include <Library/DebugLib.h>
#include <Library/DxeServicesTableLib.h>
#include <Library/IoLib.h>
#include <Library/MemoryAllocationLib.h>
#include <Library/PcdLib.h>
#include <Library/UefiBootServicesTableLib.h>
#include <Protocol/PciHostBridgeResourceAllocation.h>
#include <Protocol/PciRootBridgeIo.h>
#include <Protocol/PciIo.h>
#include <Protocol/DevicePath.h>
#include <Protocol/CpuIo2.h>
#include <Protocol/Metronome.h>
#define PCI_TRACE(txt) DEBUG((EFI_D_VERBOSE, "ARM_PCI: " txt "\n"))
#define PCIE_ROOTPORT_WRITE32(Add, Val) { UINT32 Value = (UINT32)(Val); CpuIo->Mem.Write (CpuIo,EfiCpuIoWidthUint32,(UINT64)(PcdGet64 (PcdPcieRootPortBaseAddress)+(Add)),1,&Value); }
#define PCIE_ROOTPORT_READ32(Add, Val) { CpuIo->Mem.Read (CpuIo,EfiCpuIoWidthUint32,(UINT64)(PcdGet64 (PcdPcieRootPortBaseAddress)+(Add)),1,&Val); }
#define PCIE_CONTROL_WRITE32(Add, Val) { UINT32 Value = (UINT32)(Val); CpuIo->Mem.Write (CpuIo,EfiCpuIoWidthUint32,(UINT64)(PcdGet64 (PcdPcieControlBaseAddress)+(Add)),1,&Value); }
#define PCIE_CONTROL_READ32(Add, Val) { CpuIo->Mem.Read (CpuIo,EfiCpuIoWidthUint32,(UINT64)(PcdGet64 (PcdPcieControlBaseAddress)+(Add)),1,&Val); }
/**
* PCI Root Bridge Device Path (ACPI Device Node + End Node)
*/
typedef struct {
ACPI_HID_DEVICE_PATH Acpi;
EFI_DEVICE_PATH_PROTOCOL End;
} EFI_PCI_ROOT_BRIDGE_DEVICE_PATH;
typedef enum {
ResTypeIo = 0,
ResTypeMem32,
ResTypePMem32,
ResTypeMem64,
ResTypePMem64,
ResTypeMax
} PCI_RESOURCE_TYPE;
#define ACPI_SPECFLAG_PREFETCHABLE 0x06
#define EFI_RESOURCE_NONEXISTENT 0xFFFFFFFFFFFFFFFFULL
#define EFI_RESOURCE_LESS 0xFFFFFFFFFFFFFFFEULL
typedef struct {
UINT64 Base;
UINT64 Length;
UINT64 Alignment;
} PCI_RESOURCE_ALLOC;
typedef struct _PCI_HOST_BRIDGE_INSTANCE PCI_HOST_BRIDGE_INSTANCE;
/**
* PCI Root Bridge Instance structure
**/
typedef struct {
UINTN Signature;
EFI_HANDLE Handle;
PCI_HOST_BRIDGE_INSTANCE *HostBridge;
//
// Set Type of memory allocation (could be EFI_PCI_HOST_BRIDGE_COMBINE_MEM_PMEM
// and EFI_PCI_HOST_BRIDGE_MEM64_DECODE).
//
UINT64 MemAllocAttributes;
PCI_RESOURCE_ALLOC ResAlloc[ResTypeMax];
UINTN BusStart;
UINTN BusLength;
UINT64 Supports;
UINT64 Attributes;
EFI_PCI_ROOT_BRIDGE_DEVICE_PATH DevicePath;
EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL Io;
} PCI_ROOT_BRIDGE_INSTANCE;
/**
* PCI Host Bridge Instance structure
**/
struct _PCI_HOST_BRIDGE_INSTANCE {
UINTN Signature;
EFI_HANDLE Handle;
EFI_HANDLE ImageHandle;
PCI_ROOT_BRIDGE_INSTANCE *RootBridge;
//
// The enumeration cannot be restarted after the process goes into the non initial
// enumeration phase.
//
BOOLEAN CanRestarted;
EFI_CPU_IO2_PROTOCOL *CpuIo;
EFI_METRONOME_ARCH_PROTOCOL *Metronome;
EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PROTOCOL ResAlloc;
};
#define PCI_HOST_BRIDGE_SIGNATURE SIGNATURE_32 ('e', 'h', 's', 't')
#define PCI_ROOT_BRIDGE_SIGNATURE SIGNATURE_32 ('e', '2', 'p', 'b')
#define INSTANCE_FROM_RESOURCE_ALLOCATION_THIS(a) CR (a, PCI_HOST_BRIDGE_INSTANCE, ResAlloc, PCI_HOST_BRIDGE_SIGNATURE)
#define INSTANCE_FROM_ROOT_BRIDGE_IO_THIS(a) CR (a, PCI_ROOT_BRIDGE_INSTANCE, Io, PCI_ROOT_BRIDGE_SIGNATURE)
/**
* PCI Host Bridge Resource Allocator Functions
**/
EFI_STATUS PciHbRaNotifyPhase (
IN EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PROTOCOL *This,
IN EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PHASE Phase
);
EFI_STATUS PciHbRaGetNextRootBridge (
IN EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PROTOCOL *This,
IN OUT EFI_HANDLE *RootBridgeHandle
);
EFI_STATUS PciHbRaGetAllocAttributes (
IN EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PROTOCOL *This,
IN EFI_HANDLE RootBridgeHandle,
OUT UINT64 *Attributes
);
EFI_STATUS PciHbRaStartBusEnumeration (
IN EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PROTOCOL *This,
IN EFI_HANDLE RootBridgeHandle,
OUT VOID **Configuration
);
EFI_STATUS PciHbRaSetBusNumbers (
IN EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PROTOCOL *This,
IN EFI_HANDLE RootBridgeHandle,
IN VOID *Configuration
);
EFI_STATUS PciHbRaSubmitResources (
IN EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PROTOCOL *This,
IN EFI_HANDLE RootBridgeHandle,
IN VOID *Configuration
);
EFI_STATUS PciHbRaGetProposedResources (
IN EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PROTOCOL *This,
IN EFI_HANDLE RootBridgeHandle,
OUT VOID **Configuration
);
EFI_STATUS PciHbRaPreprocessController (
IN EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PROTOCOL *This,
IN EFI_HANDLE RootBridgeHandle,
IN EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL_PCI_ADDRESS PciAddress,
IN EFI_PCI_CONTROLLER_RESOURCE_ALLOCATION_PHASE Phase
);
/**
* PCI Root Bridge
**/
EFI_STATUS PciRbPollMem (
IN EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL *This,
IN EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL_WIDTH Width,
IN UINT64 Address,
IN UINT64 Mask,
IN UINT64 Value,
IN UINT64 Delay,
OUT UINT64 *Result
);
EFI_STATUS PciRbPollIo (
IN EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL *This,
IN EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL_WIDTH Width,
IN UINT64 Address,
IN UINT64 Mask,
IN UINT64 Value,
IN UINT64 Delay,
OUT UINT64 *Result
);
EFI_STATUS PciRbMemRead (
IN EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL *This,
IN EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL_WIDTH Width,
IN UINT64 Address,
IN UINTN Count,
IN OUT VOID *Buffer
);
EFI_STATUS PciRbMemWrite (
IN EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL *This,
IN EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL_WIDTH Width,
IN UINT64 Address,
IN UINTN Count,
IN OUT VOID *Buffer
);
EFI_STATUS PciRbIoRead (
IN EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL *This,
IN EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL_WIDTH Width,
IN UINT64 Address,
IN UINTN Count,
IN OUT VOID *Buffer
);
EFI_STATUS PciRbIoWrite (
IN EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL *This,
IN EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL_WIDTH Width,
IN UINT64 Address,
IN UINTN Count,
IN OUT VOID *Buffer
);
EFI_STATUS PciRbPciRead (
IN EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL *This,
IN EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL_WIDTH Width,
IN UINT64 Address,
IN UINTN Count,
IN OUT VOID *Buffer
);
EFI_STATUS PciRbPciWrite (
IN EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL *This,
IN EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL_WIDTH Width,
IN UINT64 Address,
IN UINTN Count,
IN OUT VOID *Buffer
);
EFI_STATUS PciRbCopyMem (
IN EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL *This,
IN EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL_WIDTH Width,
IN UINT64 DestAddress,
IN UINT64 SrcAddress,
IN UINTN Count
);
EFI_STATUS PciRbMap (
IN EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL *This,
IN EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL_OPERATION Operation,
IN VOID *HostAddress,
IN OUT UINTN *NumberOfBytes,
OUT EFI_PHYSICAL_ADDRESS *DeviceAddress,
OUT VOID **Mapping
);
EFI_STATUS PciRbUnMap (
IN EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL *This,
IN VOID *Mapping
);
EFI_STATUS PciRbAllocateBuffer (
IN EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL *This,
IN EFI_ALLOCATE_TYPE Type,
IN EFI_MEMORY_TYPE MemoryType,
IN UINTN Pages,
IN OUT VOID **HostAddress,
IN UINT64 Attributes
);
EFI_STATUS PciRbFreeBuffer (
IN EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL *This,
IN UINTN Pages,
IN VOID *HostAddress
);
EFI_STATUS PciRbFlush (
IN EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL *This
);
EFI_STATUS PciRbSetAttributes (
IN EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL *This,
IN UINT64 Attributes,
IN OUT UINT64 *ResourceBase,
IN OUT UINT64 *ResourceLength
);
EFI_STATUS PciRbGetAttributes (
IN EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL *This,
OUT UINT64 *Supports,
OUT UINT64 *Attributes
);
EFI_STATUS PciRbConfiguration (
IN EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL *This,
OUT VOID **Resources
);
/**
* PCI Root Bridge Functions
**/
EFI_STATUS
PciRbConstructor (
IN PCI_HOST_BRIDGE_INSTANCE *HostBridge,
IN UINT32 PciAcpiUid,
IN UINT64 MemAllocAttributes
);
EFI_STATUS
PciRbDestructor (
IN PCI_ROOT_BRIDGE_INSTANCE* RootBridge
);
EFI_STATUS
HWPciRbInit (
IN EFI_CPU_IO2_PROTOCOL *CpuIo
);
#endif

View File

@ -0,0 +1,76 @@
#/** @file
# INF file for the Xpress-RICH3 PCIe Root Complex
#
# Copyright (c) 2011-2015, ARM Ltd. All rights reserved.
#
# This program and the accompanying materials
# are licensed and made available under the terms and conditions of the BSD License
# which accompanies this distribution. The full text of the license may be found at
# http://opensource.org/licenses/bsd-license.php
#
# THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS,
# WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED.
#
#**/
[Defines]
INF_VERSION = 0x00010005
BASE_NAME = PciHostBridge
FILE_GUID = C62F4B20-681E-11DF-8F0D-0002A5D5C51B
MODULE_TYPE = DXE_DRIVER
VERSION_STRING = 1.0
ENTRY_POINT = PciHostBridgeEntryPoint
UNLOAD_IMAGE = PciHostBridgeUnload
[Packages]
MdePkg/MdePkg.dec
ArmPkg/ArmPkg.dec
EmbeddedPkg/EmbeddedPkg.dec
ArmPlatformPkg/ArmPlatformPkg.dec
ArmPlatformPkg/ArmJunoPkg/ArmJuno.dec
[LibraryClasses]
UefiDriverEntryPoint
UefiBootServicesTableLib
MemoryAllocationLib
DxeServicesTableLib
CacheMaintenanceLib
DmaLib
[Sources]
PciHostBridge.c
PciHostBridgeResourceAllocation.c
PciRootBridge.c
XPressRich3.c
[Protocols]
gEfiPciHostBridgeResourceAllocationProtocolGuid # Produced
gEfiPciRootBridgeIoProtocolGuid # Produced
gEfiDevicePathProtocolGuid # Produced
gEfiCpuIo2ProtocolGuid # Consumed
gEfiMetronomeArchProtocolGuid # Consumed
[FeaturePcd]
gArmJunoTokenSpaceGuid.PcdPciMaxPayloadFixup
[Pcd.common]
gArmTokenSpaceGuid.PcdSystemMemoryBase
gArmTokenSpaceGuid.PcdSystemMemorySize
gArmPlatformTokenSpaceGuid.PcdPciBusMin
gArmPlatformTokenSpaceGuid.PcdPciBusMax
gArmPlatformTokenSpaceGuid.PcdPciIoBase
gArmPlatformTokenSpaceGuid.PcdPciIoSize
gArmPlatformTokenSpaceGuid.PcdPciMmio32Base
gArmPlatformTokenSpaceGuid.PcdPciMmio32Size
gArmPlatformTokenSpaceGuid.PcdPciMmio64Base
gArmPlatformTokenSpaceGuid.PcdPciMmio64Size
gArmJunoTokenSpaceGuid.PcdPcieControlBaseAddress
gArmJunoTokenSpaceGuid.PcdPcieRootPortBaseAddress
gArmJunoTokenSpaceGuid.PcdPciConfigurationSpaceBaseAddress
gArmJunoTokenSpaceGuid.PcdPciConfigurationSpaceSize
[Depex]
gEfiCpuIo2ProtocolGuid AND gEfiMetronomeArchProtocolGuid

View File

@ -0,0 +1,642 @@
/** @file
* Implementation of the Pci Host Bridge Resource Allocation for the Xpress-RICH3 PCIe Root Complex
*
* Copyright (c) 2011-2015, ARM Ltd. All rights reserved.
*
* This program and the accompanying materials
* are licensed and made available under the terms and conditions of the BSD License
* which accompanies this distribution. The full text of the license may be found at
* http://opensource.org/licenses/bsd-license.php
*
* THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS,
* WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED.
*
**/
#include "PciHostBridge.h"
EFI_STATUS
PciHbRaNotifyPhase (
IN EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PROTOCOL *This,
IN EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PHASE Phase
)
{
PCI_HOST_BRIDGE_INSTANCE *HostBridgeInstance;
PCI_ROOT_BRIDGE_INSTANCE *RootBridgeInstance;
EFI_STATUS Status;
EFI_PHYSICAL_ADDRESS BaseAddress;
UINT64 AddrLen;
UINTN BitsOfAlignment;
HostBridgeInstance = INSTANCE_FROM_RESOURCE_ALLOCATION_THIS (This);
PCI_TRACE ("PciHbRaNotifyPhase()");
// Check RootBridge Signature
ASSERT (HostBridgeInstance->RootBridge->Signature == PCI_ROOT_BRIDGE_SIGNATURE);
// The enumeration cannot be restarted after the process has been further than the first phase
if (Phase == EfiPciHostBridgeBeginEnumeration) {
if (!HostBridgeInstance->CanRestarted) {
return EFI_NOT_READY;
}
} else {
HostBridgeInstance->CanRestarted = FALSE;
}
switch (Phase) {
case EfiPciHostBridgeBeginEnumeration:
PCI_TRACE ("PciHbRaNotifyPhase(EfiPciHostBridgeBeginEnumeration)");
// Resets the host bridge PCI apertures and internal data structures
Status = HWPciRbInit (HostBridgeInstance->CpuIo);
if (EFI_ERROR (Status)) {
return Status;
}
break;
case EfiPciHostBridgeBeginBusAllocation:
PCI_TRACE ("PciHbRaNotifyPhase(EfiPciHostBridgeBeginBusAllocation)");
// The bus allocation phase is about to begin
break;
case EfiPciHostBridgeEndBusAllocation:
PCI_TRACE ("PciHbRaNotifyPhase(EfiPciHostBridgeEndBusAllocation)");
// The bus allocation and bus programming phase is complete. All the PCI-to-PCI bridges have been given and written back
// a bus number range into their configuration
break;
case EfiPciHostBridgeBeginResourceAllocation:
PCI_TRACE ("PciHbRaNotifyPhase(EfiPciHostBridgeBeginResourceAllocation)");
// The resource allocation phase is about to begin.
break;
case EfiPciHostBridgeAllocateResources:
PCI_TRACE ("PciHbRaNotifyPhase(EfiPciHostBridgeAllocateResources)");
// Allocates resources per previously submitted requests for all the PCI root bridges. The resources have been submitted to
// PciHbRaSubmitResources() before.
RootBridgeInstance = HostBridgeInstance->RootBridge;
if (RootBridgeInstance->ResAlloc[ResTypeIo].Length != 0) {
BitsOfAlignment = HighBitSet64 (RootBridgeInstance->ResAlloc[ResTypeIo].Alignment) + 1; // Get the number of '1' in Alignment
AddrLen = RootBridgeInstance->ResAlloc[ResTypeIo].Length;
Status = gDS->AllocateIoSpace (
EfiGcdAllocateAnySearchBottomUp,
EfiGcdIoTypeIo,
BitsOfAlignment,
AddrLen,
&BaseAddress,
HostBridgeInstance->ImageHandle,
NULL
);
// If error then ResAlloc[n].Base ==0
if (!EFI_ERROR (Status)) {
RootBridgeInstance->ResAlloc[ResTypeIo].Base = (UINTN)BaseAddress;
}
}
if (RootBridgeInstance->ResAlloc[ResTypeMem32].Length != 0) {
BitsOfAlignment = HighBitSet64 (RootBridgeInstance->ResAlloc[ResTypeMem32].Alignment) + 1; // Get the number of '1' in Alignment
AddrLen = RootBridgeInstance->ResAlloc[ResTypeMem32].Length;
// Top of the 32bit PCI Memory space
BaseAddress = FixedPcdGet64 (PcdPciMmio32Base) + FixedPcdGet64 (PcdPciMmio32Size);
Status = gDS->AllocateMemorySpace (
EfiGcdAllocateMaxAddressSearchTopDown,
EfiGcdMemoryTypeMemoryMappedIo,
BitsOfAlignment,
AddrLen,
&BaseAddress,
HostBridgeInstance->ImageHandle,
NULL
);
// Ensure the allocation is in the 32bit PCI memory space
if (!EFI_ERROR (Status) && (BaseAddress >= FixedPcdGet64 (PcdPciMmio32Base))) {
RootBridgeInstance->ResAlloc[ResTypeMem32].Base = (UINTN)BaseAddress;
}
}
if (RootBridgeInstance->ResAlloc[ResTypePMem32].Length != 0) {
BitsOfAlignment = HighBitSet64 (RootBridgeInstance->ResAlloc[ResTypePMem32].Alignment) + 1; // Get the number of '1' in Alignment
AddrLen = RootBridgeInstance->ResAlloc[ResTypePMem32].Length;
// Top of the 32bit PCI Memory space
BaseAddress = FixedPcdGet64 (PcdPciMmio32Base) + FixedPcdGet64 (PcdPciMmio32Size);
Status = gDS->AllocateMemorySpace (
EfiGcdAllocateMaxAddressSearchTopDown,
EfiGcdMemoryTypeMemoryMappedIo,
BitsOfAlignment,
AddrLen,
&BaseAddress,
HostBridgeInstance->ImageHandle,
NULL
);
// Ensure the allocation is in the 32bit PCI memory space
if (!EFI_ERROR (Status) && (BaseAddress >= FixedPcdGet64 (PcdPciMmio32Base))) {
RootBridgeInstance->ResAlloc[ResTypePMem32].Base = (UINTN)BaseAddress;
}
}
if (RootBridgeInstance->ResAlloc[ResTypeMem64].Length != 0) {
BitsOfAlignment = HighBitSet64 (RootBridgeInstance->ResAlloc[ResTypeMem64].Alignment) + 1; // Get the number of '1' in Alignment
AddrLen = RootBridgeInstance->ResAlloc[ResTypeMem64].Length;
// Top of the 64bit PCI Memory space
BaseAddress = FixedPcdGet64 (PcdPciMmio64Base) + FixedPcdGet64 (PcdPciMmio64Size);
Status = gDS->AllocateMemorySpace (
EfiGcdAllocateMaxAddressSearchTopDown,
EfiGcdMemoryTypeMemoryMappedIo,
BitsOfAlignment,
AddrLen,
&BaseAddress,
HostBridgeInstance->ImageHandle,
NULL
);
// Ensure the allocation is in the 64bit PCI memory space
if (!EFI_ERROR (Status) && (BaseAddress >= FixedPcdGet64 (PcdPciMmio64Base))) {
RootBridgeInstance->ResAlloc[ResTypeMem64].Base = (UINTN)BaseAddress;
}
}
if (RootBridgeInstance->ResAlloc[ResTypePMem64].Length != 0) {
BitsOfAlignment = HighBitSet64 (RootBridgeInstance->ResAlloc[ResTypePMem64].Alignment) + 1; //Get the number of '1' in Alignment
AddrLen = RootBridgeInstance->ResAlloc[ResTypePMem64].Length;
// Top of the 64bit PCI Memory space
BaseAddress = FixedPcdGet64 (PcdPciMmio64Base) + FixedPcdGet64 (PcdPciMmio64Size);
Status = gDS->AllocateMemorySpace (
EfiGcdAllocateMaxAddressSearchTopDown,
EfiGcdMemoryTypeMemoryMappedIo,
BitsOfAlignment,
AddrLen,
&BaseAddress,
HostBridgeInstance->ImageHandle,
NULL
);
// Ensure the allocation is in the 64bit PCI memory space
if (!EFI_ERROR (Status) && (BaseAddress >= FixedPcdGet64 (PcdPciMmio64Base))) {
RootBridgeInstance->ResAlloc[ResTypePMem64].Base = (UINTN)BaseAddress;
}
}
break;
case EfiPciHostBridgeSetResources:
PCI_TRACE ("PciHbRaNotifyPhase(EfiPciHostBridgeSetResources)");
// Programs the host bridge hardware to decode previously allocated resources (proposed resources)
// for all the PCI root bridges. The PCI bus driver will now program the resources
break;
case EfiPciHostBridgeFreeResources:
PCI_TRACE ("PciHbRaNotifyPhase(EfiPciHostBridgeFreeResources)");
// Deallocates resources that were previously allocated for all the PCI root bridges and resets the
// I/O and memory apertures to their initial state.*/
break;
case EfiPciHostBridgeEndResourceAllocation:
PCI_TRACE ("PciHbRaNotifyPhase(EfiPciHostBridgeEndResourceAllocation)");
break;
case EfiPciHostBridgeEndEnumeration:
PCI_TRACE ("PciHbRaNotifyPhase(EfiPciHostBridgeEndEnumeration)");
break;
default:
DEBUG ((EFI_D_INFO, "PciHbRaNotifyPhase(Phase:%d)\n", Phase));
ASSERT (0);
}
return EFI_SUCCESS;
}
/**
* PciHbRaGetNextRootBridge() returns the next root bridge attached to the 'This' PCI Host Bridge.
* As we have only got one PCI Root Bridge in this PCI interface, we return either this root bridge
* if it the first time we call this function (*RootBridgeHandle == NULL) or we return EFI_NOT_FOUND
**/
EFI_STATUS
PciHbRaGetNextRootBridge (
IN EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PROTOCOL *This,
IN OUT EFI_HANDLE *RootBridgeHandle
)
{
PCI_HOST_BRIDGE_INSTANCE *HostBridgeInstance;
PCI_TRACE ("PciHbRaGetNextRootBridge()");
HostBridgeInstance = INSTANCE_FROM_RESOURCE_ALLOCATION_THIS (This);
ASSERT (HostBridgeInstance->RootBridge != NULL);
//Check RootBridge Signature
ASSERT (HostBridgeInstance->RootBridge->Signature == PCI_ROOT_BRIDGE_SIGNATURE);
if (*RootBridgeHandle == NULL) {
*RootBridgeHandle = HostBridgeInstance->RootBridge->Handle;
return EFI_SUCCESS;
} else if (*RootBridgeHandle == HostBridgeInstance->RootBridge->Handle) {
return EFI_NOT_FOUND;
} else {
return EFI_INVALID_PARAMETER;
}
}
/** PciHbRaGetAllocAttributes() returns the resource allocation attributes supported by this PCI Root Bridge.
* A PCI Root bridge could support these types :
* - EFI_PCI_HOST_BRIDGE_COMBINE_MEM_PMEM : does not support separate windows for nonprefetchable and prefetchable memory.
* - EFI_PCI_HOST_BRIDGE_MEM64_DECODE : supports 64-bit memory windows
**/
EFI_STATUS
PciHbRaGetAllocAttributes (
IN EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PROTOCOL *This,
IN EFI_HANDLE RootBridgeHandle,
OUT UINT64 *Attributes
)
{
PCI_HOST_BRIDGE_INSTANCE *HostBridgeInstance;
PCI_TRACE ("PciHbRaGetAllocAttributes()");
HostBridgeInstance = INSTANCE_FROM_RESOURCE_ALLOCATION_THIS (This);
// Check if the RootBridgeHandle is the one managed by this PCI Host Bridge
ASSERT (HostBridgeInstance->RootBridge != NULL);
if (HostBridgeInstance->RootBridge->Handle != RootBridgeHandle) {
return EFI_INVALID_PARAMETER;
}
*Attributes = HostBridgeInstance->RootBridge->MemAllocAttributes;
return EFI_SUCCESS;
}
EFI_STATUS
PciHbRaStartBusEnumeration (
IN EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PROTOCOL *This,
IN EFI_HANDLE RootBridgeHandle,
OUT VOID **Configuration
)
{
VOID *Buffer;
UINT8 *Ptr;
PCI_HOST_BRIDGE_INSTANCE *HostBridgeInstance;
// Fill an ACPI descriptor table with the Bus Number Range. This information will be used by the PCI Bus driver
// to set bus numbers to PCI-to-PCI bridge.
PCI_TRACE ("PciHbRaStartBusEnumeration()");
HostBridgeInstance = INSTANCE_FROM_RESOURCE_ALLOCATION_THIS (This);
Buffer = AllocateZeroPool (sizeof (EFI_ACPI_ADDRESS_SPACE_DESCRIPTOR) + sizeof (EFI_ACPI_END_TAG_DESCRIPTOR));
if (Buffer == NULL) {
return EFI_OUT_OF_RESOURCES;
}
Ptr = (UINT8 *)Buffer;
((EFI_ACPI_ADDRESS_SPACE_DESCRIPTOR *)Ptr)->Desc = ACPI_ADDRESS_SPACE_DESCRIPTOR; // QWORD Address space Descriptor
((EFI_ACPI_ADDRESS_SPACE_DESCRIPTOR *)Ptr)->Len = 0x2B; // Length of this descriptor in bytes not including the first two fields
((EFI_ACPI_ADDRESS_SPACE_DESCRIPTOR *)Ptr)->ResType = ACPI_ADDRESS_SPACE_TYPE_BUS; // Resource Type Bus Number Range
((EFI_ACPI_ADDRESS_SPACE_DESCRIPTOR *)Ptr)->GenFlag = 0;
((EFI_ACPI_ADDRESS_SPACE_DESCRIPTOR *)Ptr)->SpecificFlag = 0;
((EFI_ACPI_ADDRESS_SPACE_DESCRIPTOR *)Ptr)->AddrSpaceGranularity = 0;
((EFI_ACPI_ADDRESS_SPACE_DESCRIPTOR *)Ptr)->AddrRangeMin = HostBridgeInstance->RootBridge->BusStart; // Bus Start
((EFI_ACPI_ADDRESS_SPACE_DESCRIPTOR *)Ptr)->AddrRangeMax = 0; // Bus Max
((EFI_ACPI_ADDRESS_SPACE_DESCRIPTOR *)Ptr)->AddrTranslationOffset = 0;
((EFI_ACPI_ADDRESS_SPACE_DESCRIPTOR *)Ptr)->AddrLen = FixedPcdGet32 (PcdPciBusMax) - FixedPcdGet32 (PcdPciBusMin) + 1;
Ptr = Ptr + sizeof (EFI_ACPI_ADDRESS_SPACE_DESCRIPTOR);
((EFI_ACPI_END_TAG_DESCRIPTOR *)Ptr)->Desc = ACPI_END_TAG_DESCRIPTOR;
((EFI_ACPI_END_TAG_DESCRIPTOR *)Ptr)->Checksum = 0x0;
*Configuration = Buffer;
return EFI_SUCCESS;
}
EFI_STATUS
PciHbRaSetBusNumbers (
IN EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PROTOCOL *This,
IN EFI_HANDLE RootBridgeHandle,
IN VOID *Configuration
)
{
PCI_HOST_BRIDGE_INSTANCE *HostBridgeInstance;
UINT8 *Ptr;
UINTN BusStart;
UINTN BusEnd;
UINTN BusLen;
PCI_TRACE ("PciHbRaSetBusNumbers()");
Ptr = Configuration;
if (*Ptr != ACPI_ADDRESS_SPACE_DESCRIPTOR) {
return EFI_INVALID_PARAMETER;
}
// Check if the passed ACPI descriptor table define a Bus Number Range
if (((EFI_ACPI_ADDRESS_SPACE_DESCRIPTOR *)Ptr)->ResType != ACPI_ADDRESS_SPACE_TYPE_BUS) {
return EFI_INVALID_PARAMETER;
}
// Check if the Configuration only passed one ACPI Descriptor (+ End Descriptor)
if (*((UINT8*)(Ptr + sizeof (EFI_ACPI_ADDRESS_SPACE_DESCRIPTOR))) != ACPI_END_TAG_DESCRIPTOR) {
return EFI_INVALID_PARAMETER;
}
HostBridgeInstance = INSTANCE_FROM_RESOURCE_ALLOCATION_THIS (This);
ASSERT (HostBridgeInstance->RootBridge != NULL);
if (HostBridgeInstance->RootBridge->Handle != RootBridgeHandle) {
return EFI_INVALID_PARAMETER;
}
BusStart = (UINTN)((EFI_ACPI_ADDRESS_SPACE_DESCRIPTOR *)Ptr)->AddrRangeMin;
BusLen = (UINTN)((EFI_ACPI_ADDRESS_SPACE_DESCRIPTOR *)Ptr)->AddrLen;
BusEnd = BusStart + BusLen - 1;
ASSERT (BusStart <= BusEnd); // We should at least have PCI_BUS_ROOT and PCI_SWITCH_BUS
ASSERT ((BusStart >= HostBridgeInstance->RootBridge->BusStart) && (BusLen <= HostBridgeInstance->RootBridge->BusLength));
HostBridgeInstance->RootBridge->BusStart = BusStart;
HostBridgeInstance->RootBridge->BusLength = BusLen;
return EFI_SUCCESS;
}
/**
* This function is used to submit all the I/O and memory resources that are required by the specified
* PCI root bridge.
**/
EFI_STATUS
PciHbRaSubmitResources (
IN EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PROTOCOL *This,
IN EFI_HANDLE RootBridgeHandle,
IN VOID *Configuration
)
{
PCI_HOST_BRIDGE_INSTANCE *HostBridgeInstance;
PCI_ROOT_BRIDGE_INSTANCE *RootBridgeInstance;
UINT8 *Ptr;
EFI_ACPI_ADDRESS_SPACE_DESCRIPTOR *Desc;
PCI_RESOURCE_TYPE ResType;
PCI_TRACE ("PciHbRaSubmitResources()");
HostBridgeInstance = INSTANCE_FROM_RESOURCE_ALLOCATION_THIS (This);
if (Configuration == NULL) {
return EFI_INVALID_PARAMETER;
}
// Check if the ACPI Descriptor tables is conformed
Ptr = (UINT8 *)Configuration;
while (*Ptr == ACPI_ADDRESS_SPACE_DESCRIPTOR) { // QWORD Address Space descriptor
Ptr += sizeof (EFI_ACPI_ADDRESS_SPACE_DESCRIPTOR) ;
}
if (*Ptr != ACPI_END_TAG_DESCRIPTOR) { // End tag
return EFI_INVALID_PARAMETER;
}
// Check the RootBridgeHandle
RootBridgeInstance = HostBridgeInstance->RootBridge;
ASSERT (RootBridgeInstance != NULL);
if (RootBridgeHandle != HostBridgeInstance->RootBridge->Handle) {
return EFI_INVALID_PARAMETER;
}
Ptr = (UINT8 *)Configuration;
while ( *Ptr == ACPI_ADDRESS_SPACE_DESCRIPTOR) { // While the entry is an ACPI Descriptor Table
Desc = (EFI_ACPI_ADDRESS_SPACE_DESCRIPTOR *)Ptr;
// Check if the description is valid
if (Desc->AddrLen > 0xffffffff) {
return EFI_INVALID_PARAMETER;
}
if ((Desc->AddrRangeMax >= 0xffffffff) || (Desc->AddrRangeMax != (GetPowerOfTwo64 (Desc->AddrRangeMax + 1) - 1))) {
return EFI_INVALID_PARAMETER;
}
switch (Desc->ResType) {
case ACPI_ADDRESS_SPACE_TYPE_MEM:
// Check invalid Address Space Granularity
if ((Desc->AddrSpaceGranularity != 32) && (Desc->AddrSpaceGranularity != 64)) {
return EFI_INVALID_PARAMETER;
}
// check the memory resource request is supported by PCI root bridge
if (RootBridgeInstance->MemAllocAttributes == EFI_PCI_HOST_BRIDGE_COMBINE_MEM_PMEM && Desc->SpecificFlag == 0x06) {
return EFI_INVALID_PARAMETER;
}
if (Desc->AddrSpaceGranularity == 32) {
if (Desc->SpecificFlag == ACPI_SPECFLAG_PREFETCHABLE) {
ResType = ResTypePMem32;
} else {
ResType = ResTypeMem32;
}
} else {
if (Desc->SpecificFlag == ACPI_SPECFLAG_PREFETCHABLE) {
ResType = ResTypePMem64;
} else {
ResType = ResTypeMem64;
}
}
RootBridgeInstance->ResAlloc[ResType].Length = Desc->AddrLen;
RootBridgeInstance->ResAlloc[ResType].Alignment = Desc->AddrRangeMax;
RootBridgeInstance->ResAlloc[ResType].Base = Desc->AddrRangeMin;
break;
case ACPI_ADDRESS_SPACE_TYPE_IO:
RootBridgeInstance->ResAlloc[ResTypeIo].Length = Desc->AddrLen;
RootBridgeInstance->ResAlloc[ResTypeIo].Alignment = Desc->AddrRangeMax;
RootBridgeInstance->ResAlloc[ResTypeIo].Base = 0;
break;
default:
ASSERT (0); // Could be the case Desc->ResType == ACPI_ADDRESS_SPACE_TYPE_BUS
break;
}
Ptr += sizeof (EFI_ACPI_ADDRESS_SPACE_DESCRIPTOR);
}
return EFI_SUCCESS;
}
/** Returns the proposed resource settings for the specified PCI root bridge. The resources have been submitted by
* PciHbRaSubmitResources() before
**/
EFI_STATUS
PciHbRaGetProposedResources (
IN EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PROTOCOL *This,
IN EFI_HANDLE RootBridgeHandle,
OUT VOID **Configuration
)
{
PCI_HOST_BRIDGE_INSTANCE *HostBridgeInstance;
PCI_ROOT_BRIDGE_INSTANCE *RootBridgeInstance;
UINT32 i;
UINT32 ResAllocCount;
VOID *Buffer;
UINT8 *Ptr;
EFI_ACPI_ADDRESS_SPACE_DESCRIPTOR *Desc;
PCI_TRACE ("PciHbRaGetProposedResources()");
HostBridgeInstance = INSTANCE_FROM_RESOURCE_ALLOCATION_THIS (This);
// Check the RootBridgeHandle
RootBridgeInstance = HostBridgeInstance->RootBridge;
ASSERT (RootBridgeInstance != NULL);
if (RootBridgeHandle != HostBridgeInstance->RootBridge->Handle) {
return EFI_INVALID_PARAMETER;
}
// Count the number of Resource Allocated for this Root Bridge
ResAllocCount = 0;
for (i = 0; i < ResTypeMax; i++) {
if (RootBridgeInstance->ResAlloc[i].Length != 0) ResAllocCount++;
}
if (ResAllocCount == 0) {
return EFI_INVALID_PARAMETER;
}
Buffer = AllocateZeroPool (ResAllocCount * sizeof (EFI_ACPI_ADDRESS_SPACE_DESCRIPTOR) + sizeof (EFI_ACPI_END_TAG_DESCRIPTOR));
if (Buffer == NULL) {
return EFI_OUT_OF_RESOURCES;
}
Ptr = Buffer;
for (i = 0; i < ResTypeMax; i++) {
if (RootBridgeInstance->ResAlloc[i].Length != 0) { // Base != 0 if the resource has been allocated
Desc = (EFI_ACPI_ADDRESS_SPACE_DESCRIPTOR *)Ptr;
Desc->Desc = ACPI_ADDRESS_SPACE_DESCRIPTOR;
Desc->Len = 0x2B;
Desc->GenFlag = 0;
Desc->AddrRangeMax = 0;
switch (i) {
case ResTypeIo:
Desc->ResType = ACPI_ADDRESS_SPACE_TYPE_IO;
Desc->SpecificFlag = 0;
Desc->AddrSpaceGranularity = 0;
break;
case ResTypeMem32:
Desc->ResType = ACPI_ADDRESS_SPACE_TYPE_MEM;
Desc->SpecificFlag = 0;
Desc->AddrSpaceGranularity = 32;
break;
case ResTypePMem32:
Desc->ResType = ACPI_ADDRESS_SPACE_TYPE_MEM;
Desc->SpecificFlag = ACPI_SPECFLAG_PREFETCHABLE;
Desc->AddrSpaceGranularity = 32;
break;
case ResTypeMem64:
Desc->ResType = ACPI_ADDRESS_SPACE_TYPE_MEM;
Desc->SpecificFlag = 0;
Desc->AddrSpaceGranularity = 64;
break;
case ResTypePMem64:
Desc->ResType = ACPI_ADDRESS_SPACE_TYPE_MEM;
Desc->SpecificFlag = ACPI_SPECFLAG_PREFETCHABLE;
Desc->AddrSpaceGranularity = 64;
break;
}
Desc->AddrRangeMin = RootBridgeInstance->ResAlloc[i].Base;
Desc->AddrTranslationOffset = (RootBridgeInstance->ResAlloc[i].Base != 0) ? EFI_RESOURCE_SATISFIED : EFI_RESOURCE_LESS;
Desc->AddrLen = RootBridgeInstance->ResAlloc[i].Length;
Ptr += sizeof (EFI_ACPI_ADDRESS_SPACE_DESCRIPTOR);
}
}
((EFI_ACPI_END_TAG_DESCRIPTOR *)Ptr)->Desc = ACPI_END_TAG_DESCRIPTOR;
((EFI_ACPI_END_TAG_DESCRIPTOR *)Ptr)->Checksum = 0x0;
*Configuration = Buffer;
return EFI_SUCCESS;
}
EFI_STATUS
PciHbRaPreprocessController (
IN EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PROTOCOL *This,
IN EFI_HANDLE RootBridgeHandle,
IN EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL_PCI_ADDRESS PciAddress,
IN EFI_PCI_CONTROLLER_RESOURCE_ALLOCATION_PHASE Phase
)
{
PCI_HOST_BRIDGE_INSTANCE* HostBridge;
PCI_ROOT_BRIDGE_INSTANCE* RootBridge;
UINT32 CapabilityPtr;
UINT32 CapabilityEntry;
UINT16 CapabilityID;
UINT32 DeviceCapability;
PCI_TRACE ("PciHbRaPreprocessController()");
if (FeaturePcdGet (PcdPciMaxPayloadFixup)) {
// Do Max payload fixup for every devices
if (Phase == EfiPciBeforeResourceCollection) {
// Get RootBridge Instance from Host Bridge Instance
HostBridge = INSTANCE_FROM_RESOURCE_ALLOCATION_THIS (This);
RootBridge = HostBridge->RootBridge;
// Get the first PCI Capability
CapabilityPtr = PCI_CAPBILITY_POINTER_OFFSET;
RootBridge->Io.Pci.Read (
&RootBridge->Io,
EfiPciWidthUint8,
EFI_PCI_ADDRESS (PciAddress.Bus, PciAddress.Device, PciAddress.Function, CapabilityPtr),
1,
&CapabilityPtr
);
CapabilityPtr &= 0x1FF;
// Get Pci Express Capability
while (CapabilityPtr != 0) {
RootBridge->Io.Pci.Read (
&RootBridge->Io,
EfiPciWidthUint16,
EFI_PCI_ADDRESS (PciAddress.Bus, PciAddress.Device, PciAddress.Function, CapabilityPtr),
1,
&CapabilityEntry
);
CapabilityID = (UINT8)CapabilityEntry;
// Is PCIe capability ?
if (CapabilityID == EFI_PCI_CAPABILITY_ID_PCIEXP) {
// Get PCIe Device Capabilities
RootBridge->Io.Pci.Read (
&RootBridge->Io,
EfiPciWidthUint32,
EFI_PCI_ADDRESS (PciAddress.Bus, PciAddress.Device, PciAddress.Function, CapabilityPtr + 0x8),
1,
&DeviceCapability
);
// Force the Max Payload to 128 Bytes (128 Bytes Max Payload Size = 0)
DeviceCapability &= ~ ((UINT32)(0x7 << 5 ));
// Max Read Request Size to 128 Bytes (128 Bytes Max Read Request Size = 0)
DeviceCapability &= ~ ((UINT32)(0x7 << 12));
// Enable all error reporting
DeviceCapability |= 0xF;
RootBridge->Io.Pci.Write (
&RootBridge->Io,
EfiPciWidthUint32,
EFI_PCI_ADDRESS (PciAddress.Bus, PciAddress.Device, PciAddress.Function, CapabilityPtr + 0x8),
1,
&DeviceCapability
);
return EFI_SUCCESS;
}
CapabilityPtr = (CapabilityEntry >> 8) & 0xFF;
}
}
}
return EFI_SUCCESS;
}

View File

@ -0,0 +1,745 @@
/** @file
* Implementation of the PCI Root Bridge Protocol for XPress-RICH3 PCIe Root Complex
*
* Copyright (c) 2011-2015, ARM Ltd. All rights reserved.
*
* This program and the accompanying materials
* are licensed and made available under the terms and conditions of the BSD License
* which accompanies this distribution. The full text of the license may be found at
* http://opensource.org/licenses/bsd-license.php
*
* THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS,
* WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED.
*
**/
#include "PciHostBridge.h"
#include <Library/DevicePathLib.h>
#include <Library/DmaLib.h>
#define CPUIO_FROM_ROOT_BRIDGE_INSTANCE(Instance) (Instance->HostBridge->CpuIo)
#define METRONOME_FROM_ROOT_BRIDGE_INSTANCE(Instance) (Instance->HostBridge->Metronome)
/**
* PCI Root Bridge Instance Templates
*/
STATIC CONST EFI_PCI_ROOT_BRIDGE_DEVICE_PATH gDevicePathTemplate = {
{
{ ACPI_DEVICE_PATH,
ACPI_DP,
{ (UINT8) (sizeof (ACPI_HID_DEVICE_PATH)),
(UINT8) ((sizeof (ACPI_HID_DEVICE_PATH)) >> 8) }
},
EISA_PNP_ID (0x0A03),
0
},
{
END_DEVICE_PATH_TYPE,
END_ENTIRE_DEVICE_PATH_SUBTYPE,
{ END_DEVICE_PATH_LENGTH, 0 }
}
};
STATIC CONST EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL gIoTemplate = {
0,
PciRbPollMem,
PciRbPollIo,
{
PciRbMemRead,
PciRbMemWrite
},
{
PciRbIoRead,
PciRbIoWrite
},
{
PciRbPciRead,
PciRbPciWrite
},
PciRbCopyMem,
PciRbMap,
PciRbUnMap,
PciRbAllocateBuffer,
PciRbFreeBuffer,
PciRbFlush,
PciRbGetAttributes,
PciRbSetAttributes,
PciRbConfiguration,
0
};
typedef struct {
EFI_ACPI_ADDRESS_SPACE_DESCRIPTOR SpaceDesp[ResTypeMax+1];
EFI_ACPI_END_TAG_DESCRIPTOR EndDesp;
} RESOURCE_CONFIGURATION;
RESOURCE_CONFIGURATION Configuration = {
{{ACPI_ADDRESS_SPACE_DESCRIPTOR, 0x2B, ACPI_ADDRESS_SPACE_TYPE_IO , 0, 0, 0, 0, 0, 0, 0},
{ACPI_ADDRESS_SPACE_DESCRIPTOR, 0x2B, ACPI_ADDRESS_SPACE_TYPE_MEM, 0, 0, 32, 0, 0, 0, 0},
{ACPI_ADDRESS_SPACE_DESCRIPTOR, 0x2B, ACPI_ADDRESS_SPACE_TYPE_MEM, 0, 6, 32, 0, 0, 0, 0},
{ACPI_ADDRESS_SPACE_DESCRIPTOR, 0x2B, ACPI_ADDRESS_SPACE_TYPE_MEM, 0, 0, 64, 0, 0, 0, 0},
{ACPI_ADDRESS_SPACE_DESCRIPTOR, 0x2B, ACPI_ADDRESS_SPACE_TYPE_MEM, 0, 6, 64, 0, 0, 0, 0},
{ACPI_ADDRESS_SPACE_DESCRIPTOR, 0x2B, ACPI_ADDRESS_SPACE_TYPE_BUS, 0, 0, 0, 0, 255, 0, 255}},
{ACPI_END_TAG_DESCRIPTOR, 0}
};
EFI_STATUS
PciRbPollMem (
IN EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL *This,
IN EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL_WIDTH Width,
IN UINT64 Address,
IN UINT64 Mask,
IN UINT64 Value,
IN UINT64 Delay,
OUT UINT64 *Result
)
{
EFI_STATUS Status;
UINT64 NumberOfTicks;
UINT32 Remainder;
PCI_ROOT_BRIDGE_INSTANCE *RootBridgeInstance;
EFI_METRONOME_ARCH_PROTOCOL *Metronome;
PCI_TRACE ("PciRbPollMem()");
RootBridgeInstance = INSTANCE_FROM_ROOT_BRIDGE_IO_THIS (This);
Metronome = METRONOME_FROM_ROOT_BRIDGE_INSTANCE (RootBridgeInstance);
if (Result == NULL) {
return EFI_INVALID_PARAMETER;
}
if (Width > EfiPciWidthUint64) {
return EFI_INVALID_PARAMETER;
}
// No matter what, always do a single poll.
Status = This->Mem.Read (This, Width, Address, 1, Result);
if (EFI_ERROR (Status)) {
return Status;
}
if ((*Result & Mask) == Value) {
return EFI_SUCCESS;
}
if (Delay == 0) {
return EFI_SUCCESS;
}
NumberOfTicks = DivU64x32Remainder (Delay, (UINT32) Metronome->TickPeriod, &Remainder);
if (Remainder != 0) {
NumberOfTicks += 1;
}
NumberOfTicks += 1;
while (NumberOfTicks) {
Metronome->WaitForTick (Metronome, 1);
Status = This->Mem.Read (This, Width, Address, 1, Result);
if (EFI_ERROR (Status)) {
return Status;
}
if ((*Result & Mask) == Value) {
return EFI_SUCCESS;
}
NumberOfTicks -= 1;
}
return EFI_TIMEOUT;
}
EFI_STATUS
PciRbPollIo (
IN EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL *This,
IN EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL_WIDTH Width,
IN UINT64 Address,
IN UINT64 Mask,
IN UINT64 Value,
IN UINT64 Delay,
OUT UINT64 *Result
)
{
EFI_STATUS Status;
UINT64 NumberOfTicks;
UINT32 Remainder;
PCI_ROOT_BRIDGE_INSTANCE *RootBridgeInstance;
EFI_METRONOME_ARCH_PROTOCOL *Metronome;
PCI_TRACE ("PciRbPollIo()");
RootBridgeInstance = INSTANCE_FROM_ROOT_BRIDGE_IO_THIS (This);
Metronome = METRONOME_FROM_ROOT_BRIDGE_INSTANCE (RootBridgeInstance);
if (Result == NULL) {
return EFI_INVALID_PARAMETER;
}
if (Width > EfiPciWidthUint64) {
return EFI_INVALID_PARAMETER;
}
// No matter what, always do a single poll.
Status = This->Io.Read (This, Width, Address, 1, Result);
if (EFI_ERROR (Status)) {
return Status;
}
if ((*Result & Mask) == Value) {
return EFI_SUCCESS;
}
if (Delay == 0) {
return EFI_SUCCESS;
}
NumberOfTicks = DivU64x32Remainder (Delay, (UINT32) Metronome->TickPeriod, &Remainder);
if (Remainder != 0) {
NumberOfTicks += 1;
}
NumberOfTicks += 1;
while (NumberOfTicks) {
Metronome->WaitForTick (Metronome, 1);
Status = This->Io.Read (This, Width, Address, 1, Result);
if (EFI_ERROR (Status)) {
return Status;
}
if ((*Result & Mask) == Value) {
return EFI_SUCCESS;
}
NumberOfTicks -= 1;
}
return EFI_TIMEOUT;
}
EFI_STATUS
PciRbMemRead (
IN EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL *This,
IN EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL_WIDTH Width,
IN UINT64 Address,
IN UINTN Count,
IN OUT VOID *Buffer
)
{
PCI_ROOT_BRIDGE_INSTANCE *RootBridgeInstance;
EFI_CPU_IO2_PROTOCOL *CpuIo;
PCI_TRACE ("PciRbMemRead()");
RootBridgeInstance = INSTANCE_FROM_ROOT_BRIDGE_IO_THIS (This);
CpuIo = CPUIO_FROM_ROOT_BRIDGE_INSTANCE (RootBridgeInstance);
if (Buffer == NULL) {
return EFI_INVALID_PARAMETER;
}
if (Width >= EfiPciWidthMaximum) {
return EFI_INVALID_PARAMETER;
}
if (((Address < PCI_MEM32_BASE) || (Address > (PCI_MEM32_BASE + PCI_MEM32_SIZE))) &&
((Address < PCI_MEM64_BASE) || (Address > (PCI_MEM64_BASE + PCI_MEM64_SIZE)))) {
return EFI_INVALID_PARAMETER;
}
return CpuIo->Mem.Read (CpuIo, (EFI_CPU_IO_PROTOCOL_WIDTH)Width, Address, Count, Buffer);
}
EFI_STATUS
PciRbMemWrite (
IN EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL *This,
IN EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL_WIDTH Width,
IN UINT64 Address,
IN UINTN Count,
IN OUT VOID *Buffer
)
{
PCI_ROOT_BRIDGE_INSTANCE *RootBridgeInstance;
EFI_CPU_IO2_PROTOCOL *CpuIo;
PCI_TRACE ("PciRbMemWrite()");
RootBridgeInstance = INSTANCE_FROM_ROOT_BRIDGE_IO_THIS (This);
CpuIo = CPUIO_FROM_ROOT_BRIDGE_INSTANCE (RootBridgeInstance);
if (Buffer == NULL) {
return EFI_INVALID_PARAMETER;
}
if (Width >= EfiPciWidthMaximum) {
return EFI_INVALID_PARAMETER;
}
if (((Address < PCI_MEM32_BASE) || (Address > (PCI_MEM32_BASE + PCI_MEM32_SIZE))) &&
((Address < PCI_MEM64_BASE) || (Address > (PCI_MEM64_BASE + PCI_MEM64_SIZE)))) {
return EFI_INVALID_PARAMETER;
}
return CpuIo->Mem.Write (CpuIo, (EFI_CPU_IO_PROTOCOL_WIDTH)Width, Address, Count, Buffer);
}
EFI_STATUS
PciRbIoRead (
IN EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL *This,
IN EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL_WIDTH Width,
IN UINT64 Address,
IN UINTN Count,
IN OUT VOID *Buffer
)
{
PCI_TRACE ("PciRbIoRead()");
if (Buffer == NULL) {
return EFI_INVALID_PARAMETER;
}
if (Width >= EfiPciWidthMaximum) {
return EFI_INVALID_PARAMETER;
}
// IO currently unsupported
return EFI_INVALID_PARAMETER;
}
EFI_STATUS
PciRbIoWrite (
IN EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL *This,
IN EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL_WIDTH Width,
IN UINT64 Address,
IN UINTN Count,
IN OUT VOID *Buffer
)
{
PCI_TRACE ("PciRbIoWrite()");
if (Buffer == NULL) {
return EFI_INVALID_PARAMETER;
}
if (Width >= EfiPciWidthMaximum) {
return EFI_INVALID_PARAMETER;
}
// IO currently unsupported
return EFI_INVALID_PARAMETER;
}
EFI_STATUS
PciRbPciRead (
IN EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL *This,
IN EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL_WIDTH Width,
IN UINT64 EfiAddress,
IN UINTN Count,
IN OUT VOID *Buffer
)
{
UINT32 Offset;
PCI_ROOT_BRIDGE_INSTANCE *RootBridgeInstance;
EFI_CPU_IO2_PROTOCOL *CpuIo;
EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL_PCI_ADDRESS *EfiPciAddress;
UINT64 Address;
EfiPciAddress = (EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL_PCI_ADDRESS *)&EfiAddress;
RootBridgeInstance = INSTANCE_FROM_ROOT_BRIDGE_IO_THIS (This);
CpuIo = CPUIO_FROM_ROOT_BRIDGE_INSTANCE (RootBridgeInstance);
if (Buffer == NULL) {
return EFI_INVALID_PARAMETER;
}
if (Width >= EfiPciWidthMaximum) {
return EFI_INVALID_PARAMETER;
}
if (EfiPciAddress->ExtendedRegister) {
Offset = EfiPciAddress->ExtendedRegister;
} else {
Offset = EfiPciAddress->Register;
}
// The UEFI PCI enumerator scans for devices at all possible addresses,
// and ignores some PCI rules - this results in some hardware being
// detected multiple times. We work around this by faking absent
// devices
if ((EfiPciAddress->Bus == 0) && ((EfiPciAddress->Device != 0) || (EfiPciAddress->Function != 0))) {
*((UINT32 *)Buffer) = 0xffffffff;
return EFI_SUCCESS;
}
if ((EfiPciAddress->Bus == 1) && ((EfiPciAddress->Device != 0) || (EfiPciAddress->Function != 0))) {
*((UINT32 *)Buffer) = 0xffffffff;
return EFI_SUCCESS;
}
// Work around incorrect class ID in the root bridge
if ((EfiPciAddress->Bus == 0) && (EfiPciAddress->Device == 0) && (EfiPciAddress->Function == 0) && (Offset == 8)) {
*((UINT32 *)Buffer) = 0x06040001;
return EFI_SUCCESS;
}
Address = PCI_ECAM_BASE + ((EfiPciAddress->Bus << 20) |
(EfiPciAddress->Device << 15) |
(EfiPciAddress->Function << 12) | Offset);
if ((Address < PCI_ECAM_BASE) || (Address > PCI_ECAM_BASE + PCI_ECAM_SIZE)) {
return EFI_INVALID_PARAMETER;
}
return CpuIo->Mem.Read (CpuIo, (EFI_CPU_IO_PROTOCOL_WIDTH)Width, Address, Count, Buffer);
}
EFI_STATUS
PciRbPciWrite (
IN EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL *This,
IN EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL_WIDTH Width,
IN UINT64 EfiAddress,
IN UINTN Count,
IN OUT VOID *Buffer
)
{
UINT32 Offset;
PCI_ROOT_BRIDGE_INSTANCE *RootBridgeInstance;
EFI_CPU_IO2_PROTOCOL *CpuIo;
EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL_PCI_ADDRESS *EfiPciAddress;
UINT64 Address;
EfiPciAddress = (EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL_PCI_ADDRESS *)&EfiAddress;
RootBridgeInstance = INSTANCE_FROM_ROOT_BRIDGE_IO_THIS (This);
CpuIo = CPUIO_FROM_ROOT_BRIDGE_INSTANCE (RootBridgeInstance);
if (Buffer == NULL) {
return EFI_INVALID_PARAMETER;
}
if (Width >= EfiPciWidthMaximum) {
return EFI_INVALID_PARAMETER;
}
if (EfiPciAddress->ExtendedRegister)
Offset = EfiPciAddress->ExtendedRegister;
else
Offset = EfiPciAddress->Register;
Address = PCI_ECAM_BASE + ((EfiPciAddress->Bus << 20) |
(EfiPciAddress->Device << 15) |
(EfiPciAddress->Function << 12) | Offset);
if (Address < PCI_ECAM_BASE || Address > PCI_ECAM_BASE + PCI_ECAM_SIZE) {
return EFI_INVALID_PARAMETER;
}
return CpuIo->Mem.Write (CpuIo, (EFI_CPU_IO_PROTOCOL_WIDTH)Width, Address, Count, Buffer);
}
EFI_STATUS
PciRbCopyMem (
IN EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL *This,
IN EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL_WIDTH Width,
IN UINT64 DestAddress,
IN UINT64 SrcAddress,
IN UINTN Count
)
{
EFI_STATUS Status;
BOOLEAN Direction;
UINTN Stride;
UINTN Index;
UINT64 Result;
PCI_TRACE ("PciRbCopyMem()");
if (Width > EfiPciWidthUint64) {
return EFI_INVALID_PARAMETER;
}
if (DestAddress == SrcAddress) {
return EFI_SUCCESS;
}
Stride = (UINTN)(1 << Width);
Direction = TRUE;
if ((DestAddress > SrcAddress) && (DestAddress < (SrcAddress + Count * Stride))) {
Direction = FALSE;
SrcAddress = SrcAddress + (Count-1) * Stride;
DestAddress = DestAddress + (Count-1) * Stride;
}
for (Index = 0; Index < Count; Index++) {
Status = PciRbMemRead (
This,
Width,
SrcAddress,
1,
&Result
);
if (EFI_ERROR (Status)) {
return Status;
}
Status = PciRbMemWrite (
This,
Width,
DestAddress,
1,
&Result
);
if (EFI_ERROR (Status)) {
return Status;
}
if (Direction) {
SrcAddress += Stride;
DestAddress += Stride;
} else {
SrcAddress -= Stride;
DestAddress -= Stride;
}
}
return EFI_SUCCESS;
}
EFI_STATUS
PciRbMap (
IN EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL *This,
IN EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL_OPERATION Operation,
IN VOID *HostAddress,
IN OUT UINTN *NumberOfBytes,
OUT EFI_PHYSICAL_ADDRESS *DeviceAddress,
OUT VOID **Mapping
)
{
DMA_MAP_OPERATION DmaOperation;
PCI_TRACE ("PciRbMap()");
if (Operation == EfiPciOperationBusMasterRead) {
DmaOperation = MapOperationBusMasterRead;
} else if (Operation == EfiPciOperationBusMasterWrite) {
DmaOperation = MapOperationBusMasterWrite;
} else if (Operation == EfiPciOperationBusMasterCommonBuffer) {
DmaOperation = MapOperationBusMasterCommonBuffer;
} else {
return EFI_INVALID_PARAMETER;
}
return DmaMap (DmaOperation, HostAddress, NumberOfBytes, DeviceAddress, Mapping);
}
EFI_STATUS
PciRbUnMap (
IN EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL *This,
IN VOID *Mapping
)
{
PCI_TRACE ("PciRbUnMap()");
return DmaUnmap (Mapping);
}
EFI_STATUS
PciRbAllocateBuffer (
IN EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL *This,
IN EFI_ALLOCATE_TYPE Type,
IN EFI_MEMORY_TYPE MemoryType,
IN UINTN Pages,
IN OUT VOID **HostAddress,
IN UINT64 Attributes
)
{
PCI_TRACE ("PciRbAllocateBuffer()");
if (Attributes & EFI_PCI_ATTRIBUTE_INVALID_FOR_ALLOCATE_BUFFER) {
return EFI_UNSUPPORTED;
}
return DmaAllocateBuffer (MemoryType, Pages, HostAddress);
}
EFI_STATUS
PciRbFreeBuffer (
IN EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL *This,
IN UINTN Pages,
IN VOID *HostAddress
)
{
PCI_TRACE ("PciRbFreeBuffer()");
return DmaFreeBuffer (Pages, HostAddress);
}
EFI_STATUS
PciRbFlush (
IN EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL *This
)
{
PCI_TRACE ("PciRbFlush()");
//TODO: Not supported yet
return EFI_SUCCESS;
}
EFI_STATUS
PciRbSetAttributes (
IN EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL *This,
IN UINT64 Attributes,
IN OUT UINT64 *ResourceBase,
IN OUT UINT64 *ResourceLength
)
{
PCI_ROOT_BRIDGE_INSTANCE *RootBridgeInstance;
PCI_TRACE ("PciRbSetAttributes()");
RootBridgeInstance = INSTANCE_FROM_ROOT_BRIDGE_IO_THIS (This);
if (Attributes) {
if ((Attributes & (~(RootBridgeInstance->Supports))) != 0) {
return EFI_UNSUPPORTED;
}
}
//TODO: Cannot allowed to change attributes
if (Attributes & ~RootBridgeInstance->Attributes) {
return EFI_UNSUPPORTED;
}
return EFI_SUCCESS;
}
EFI_STATUS
PciRbGetAttributes (
IN EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL *This,
OUT UINT64 *Supported,
OUT UINT64 *Attributes
)
{
PCI_ROOT_BRIDGE_INSTANCE *RootBridgeInstance;
PCI_TRACE ("PciRbGetAttributes()");
RootBridgeInstance = INSTANCE_FROM_ROOT_BRIDGE_IO_THIS (This);
if (Attributes == NULL && Supported == NULL) {
return EFI_INVALID_PARAMETER;
}
// Set the return value for Supported and Attributes
if (Supported) {
*Supported = RootBridgeInstance->Supports;
}
if (Attributes) {
*Attributes = RootBridgeInstance->Attributes;
}
return EFI_SUCCESS;
}
EFI_STATUS
PciRbConfiguration (
IN EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL *This,
OUT VOID **Resources
)
{
PCI_ROOT_BRIDGE_INSTANCE *RootBridge;
UINTN Index;
PCI_TRACE ("PciRbConfiguration()");
RootBridge = INSTANCE_FROM_ROOT_BRIDGE_IO_THIS (This);
for (Index = 0; Index < ResTypeMax; Index++) {
//if (ResAlloc[Index].Length != 0) => Resource allocated
if (RootBridge->ResAlloc[Index].Length != 0) {
Configuration.SpaceDesp[Index].AddrRangeMin = RootBridge->ResAlloc[Index].Base;
Configuration.SpaceDesp[Index].AddrRangeMax = RootBridge->ResAlloc[Index].Base + RootBridge->ResAlloc[Index].Length - 1;
Configuration.SpaceDesp[Index].AddrLen = RootBridge->ResAlloc[Index].Length;
}
}
// Set up Configuration for the bus
Configuration.SpaceDesp[Index].AddrRangeMin = RootBridge->BusStart;
Configuration.SpaceDesp[Index].AddrLen = RootBridge->BusLength;
*Resources = &Configuration;
return EFI_SUCCESS;
}
EFI_STATUS
PciRbConstructor (
IN PCI_HOST_BRIDGE_INSTANCE *HostBridge,
IN UINT32 PciAcpiUid,
IN UINT64 MemAllocAttributes
)
{
PCI_ROOT_BRIDGE_INSTANCE* RootBridge;
EFI_STATUS Status;
PCI_TRACE ("PciRbConstructor()");
// Allocate Memory for the Instance from a Template
RootBridge = AllocateZeroPool (sizeof (PCI_ROOT_BRIDGE_INSTANCE));
if (RootBridge == NULL) {
PCI_TRACE ("PciRbConstructor(): ERROR: Out of Resources");
return EFI_OUT_OF_RESOURCES;
}
RootBridge->Signature = PCI_ROOT_BRIDGE_SIGNATURE;
CopyMem (&(RootBridge->DevicePath), &gDevicePathTemplate, sizeof (EFI_PCI_ROOT_BRIDGE_DEVICE_PATH));
CopyMem (&(RootBridge->Io), &gIoTemplate, sizeof (EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL));
// Set Parent Handle
RootBridge->Io.ParentHandle = HostBridge->Handle;
// Attach the Root Bridge to the PCI Host Bridge Instance
RootBridge->HostBridge = HostBridge;
// Set Device Path for this Root Bridge
RootBridge->DevicePath.Acpi.UID = PciAcpiUid;
RootBridge->BusStart = FixedPcdGet32 (PcdPciBusMin);
RootBridge->BusLength = FixedPcdGet32 (PcdPciBusMax) - FixedPcdGet32 (PcdPciBusMin) + 1;
// PCI Attributes
RootBridge->Supports = 0;
RootBridge->Attributes = 0;
// Install Protocol Instances. It will also generate a device handle for the PCI Root Bridge
Status = gBS->InstallMultipleProtocolInterfaces (
&RootBridge->Handle,
&gEfiDevicePathProtocolGuid, &RootBridge->DevicePath,
&gEfiPciRootBridgeIoProtocolGuid, &RootBridge->Io,
NULL
);
ASSERT (RootBridge->Signature == PCI_ROOT_BRIDGE_SIGNATURE);
if (EFI_ERROR (Status)) {
PCI_TRACE ("PciRbConstructor(): ERROR: Fail to install Protocol Interfaces");
FreePool (RootBridge);
return EFI_DEVICE_ERROR;
}
HostBridge->RootBridge = RootBridge;
return EFI_SUCCESS;
}
EFI_STATUS
PciRbDestructor (
IN PCI_ROOT_BRIDGE_INSTANCE* RootBridge
)
{
EFI_STATUS Status;
Status = gBS->UninstallMultipleProtocolInterfaces (
RootBridge->Handle,
&gEfiDevicePathProtocolGuid, &RootBridge->DevicePath,
&gEfiPciRootBridgeIoProtocolGuid, &RootBridge->Io,
NULL
);
FreePool (RootBridge);
return Status;
}

View File

@ -0,0 +1,167 @@
/** @file
* Initialize the XPress-RICH3 PCIe Root complex
*
* Copyright (c) 2011-2015, ARM Ltd. All rights reserved.
*
* This program and the accompanying materials
* are licensed and made available under the terms and conditions of the BSD License
* which accompanies this distribution. The full text of the license may be found at
* http://opensource.org/licenses/bsd-license.php
*
* THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS,
* WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED.
*
**/
#include "PciHostBridge.h"
#include <Protocol/Cpu.h>
#include "ArmPlatform.h"
EFI_CPU_ARCH_PROTOCOL *mCpu;
#define PCI_BRIDGE_REVISION_ID 1
#define CLASS_CODE_REGISTER(Class, SubClass, ProgIf) ((Class << 16) | (SubClass << 8) | ProgIf)
#define PLDA_BRIDGE_CCR CLASS_CODE_REGISTER(PCI_CLASS_BRIDGE, \
PCI_CLASS_BRIDGE_P2P, \
PCI_IF_BRIDGE_P2P)
STATIC
VOID
SetTranslationAddressEntry (
IN EFI_CPU_IO2_PROTOCOL *CpuIo,
IN UINTN Entry,
IN UINT64 SourceAddress,
IN UINT64 TranslatedAddress,
IN UINT64 TranslationSize,
IN UINT64 TranslationParameter
)
{
UINTN Log2Size = HighBitSet64 (TranslationSize);
// Ensure the size is a power of two. Restriction form the AXI Translation logic
// Othwerwise we increase the translation size
if (TranslationSize != (1ULL << Log2Size)) {
DEBUG ((EFI_D_WARN, "PCI: The size 0x%lX of the region 0x%lx has been increased to "
"be a power of two for the AXI translation table.\n",
TranslationSize, SourceAddress));
Log2Size++;
}
PCIE_ROOTPORT_WRITE32 (Entry + PCI_ATR_SRC_ADDR_LOW_SIZE,
(UINT32)SourceAddress | ((Log2Size - 1) << 1) | 0x1);
PCIE_ROOTPORT_WRITE32 (Entry + PCI_ATR_SRC_ADDR_HI, SourceAddress >> 32);
PCIE_ROOTPORT_WRITE32 (Entry + PCI_ATR_TRSL_ADDR_LOW, (UINT32)TranslatedAddress);
PCIE_ROOTPORT_WRITE32 (Entry + PCI_ATR_TRSL_ADDR_HI, TranslatedAddress >> 32);
PCIE_ROOTPORT_WRITE32 (Entry + PCI_ATR_TRSL_PARAM, TranslationParameter);
}
EFI_STATUS
HWPciRbInit (
IN EFI_CPU_IO2_PROTOCOL *CpuIo
)
{
UINT32 Value;
UINT32 Index;
UINTN TranslationTable;
PCI_TRACE ("VExpressPciRbInit()");
PCI_TRACE ("PCIe Setting up Address Translation");
PCIE_ROOTPORT_WRITE32 (PCIE_BAR_WIN, PCIE_BAR_WIN_SUPPORT_IO | PCIE_BAR_WIN_SUPPORT_MEM | PCIE_BAR_WIN_SUPPORT_MEM64);
// Setup the PCI Configuration Registers
// Offset 0a: SubClass 04 PCI-PCI Bridge
// Offset 0b: BaseClass 06 Bridge Device
// The Class Code register is a 24 bit and can be configured by setting up the PCIE_PCI_IDS
// Refer [1] Chapter 13
PCIE_ROOTPORT_WRITE32 (PCIE_PCI_IDS + PCIE_PCI_IDS_CLASSCODE_OFFSET, ((PLDA_BRIDGE_CCR << 8) | PCI_BRIDGE_REVISION_ID));
//
// PCIE Window 0 -> AXI4 Slave 0 Address Translations
//
TranslationTable = VEXPRESS_ATR_PCIE_WIN0;
// MSI Support
SetTranslationAddressEntry (CpuIo, TranslationTable, ARM_JUNO_GIV2M_MSI_BASE, ARM_JUNO_GIV2M_MSI_BASE,
ARM_JUNO_GIV2M_MSI_SZ, PCI_ATR_TRSLID_AXIDEVICE);
TranslationTable += PCI_ATR_ENTRY_SIZE;
// System Memory Support
SetTranslationAddressEntry (CpuIo, TranslationTable, PcdGet64 (PcdSystemMemoryBase), PcdGet64 (PcdSystemMemoryBase),
PcdGet64 (PcdSystemMemorySize), PCI_ATR_TRSLID_AXIMEMORY);
TranslationTable += PCI_ATR_ENTRY_SIZE;
SetTranslationAddressEntry (CpuIo, TranslationTable, ARM_JUNO_EXTRA_SYSTEM_MEMORY_BASE, ARM_JUNO_EXTRA_SYSTEM_MEMORY_BASE,
ARM_JUNO_EXTRA_SYSTEM_MEMORY_SZ, PCI_ATR_TRSLID_AXIMEMORY);
//
// PCIE Window 0 -> AXI4 Slave 0 Address Translations
//
TranslationTable = VEXPRESS_ATR_AXI4_SLV1;
// PCI ECAM Support
SetTranslationAddressEntry (CpuIo, TranslationTable, PCI_ECAM_BASE, PCI_ECAM_BASE, PCI_ECAM_SIZE, PCI_ATR_TRSLID_PCIE_CONF);
TranslationTable += PCI_ATR_ENTRY_SIZE;
// PCI IO Support
SetTranslationAddressEntry (CpuIo, TranslationTable, PCI_IO_BASE, PCI_IO_BASE, PCI_IO_SIZE, PCI_ATR_TRSLID_PCIE_IO);
TranslationTable += PCI_ATR_ENTRY_SIZE;
// PCI MEM32 Support
SetTranslationAddressEntry (CpuIo, TranslationTable, PCI_MEM32_BASE, PCI_MEM32_BASE, PCI_MEM32_SIZE, PCI_ATR_TRSLID_PCIE_MEMORY);
TranslationTable += PCI_ATR_ENTRY_SIZE;
// PCI MEM64 Support
SetTranslationAddressEntry (CpuIo, TranslationTable, PCI_MEM64_BASE, PCI_MEM64_BASE, PCI_MEM64_SIZE, PCI_ATR_TRSLID_PCIE_MEMORY);
// Add credits
PCIE_ROOTPORT_WRITE32 (PCIE_VC_CRED, 0x00f0b818);
PCIE_ROOTPORT_WRITE32 (PCIE_VC_CRED + 4, 0x1);
// Allow ECRC
PCIE_ROOTPORT_WRITE32 (PCIE_PEX_SPC2, 0x6006);
// Reset controller
PCIE_CONTROL_WRITE32 (PCIE_CONTROL_RST_CTL, PCIE_CONTROL_RST_CTL_RCPHY_REL);
// Wait for reset
for (Index = 0; Index < 1000; Index++) {
gBS->Stall (1000);
PCIE_CONTROL_READ32 (PCIE_CONTROL_RST_STS, Value);
if ((Value & PCIE_CONTROL_RST_STS_RCPHYPLL_OUT) == PCIE_CONTROL_RST_STS_RCPHYPLL_OUT) {
break;
}
}
// Check for reset
if (!(Value & PCIE_CONTROL_RST_STS_RCPHYPLL_OUT)) {
DEBUG ((EFI_D_ERROR, "PCIe failed to come out of reset: %x.\n", Value));
return EFI_NOT_READY;
}
gBS->Stall (1000);
PCI_TRACE ("Checking link Status...");
// Wait for Link Up
for (Index = 0; Index < 1000; Index++) {
gBS->Stall (1000);
PCIE_ROOTPORT_READ32 (VEXPRESS_BASIC_STATUS, Value);
if (Value & LINK_UP) {
break;
}
}
// Check for link up
if (!(Value & LINK_UP)) {
DEBUG ((EFI_D_ERROR, "PCIe link not up: %x.\n", Value));
return EFI_NOT_READY;
}
PCIE_ROOTPORT_WRITE32 (PCIE_IMASK_LOCAL, PCIE_INT_MSI | PCIE_INT_INTx);
return EFI_SUCCESS;
}

View File

@ -0,0 +1,111 @@
/** @file
* Header containing the Xpress-RICH3 PCIe Root Complex specific values
*
* Copyright (c) 2011-2015, ARM Ltd. All rights reserved.
*
* This program and the accompanying materials
* are licensed and made available under the terms and conditions of the BSD License
* which accompanies this distribution. The full text of the license may be found at
* http://opensource.org/licenses/bsd-license.php
*
* THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS,
* WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED.
*
**/
#ifndef __XPRESS_RICH3_H__
#define __XPRESS_RICH3_H__
#include <Protocol/CpuIo2.h>
#include <Library/PcdLib.h>
#define PCI_ECAM_BASE FixedPcdGet64 (PcdPciConfigurationSpaceBaseAddress)
#define PCI_ECAM_SIZE FixedPcdGet64 (PcdPciConfigurationSpaceSize)
#define PCI_IO_BASE FixedPcdGet64 (PcdPciIoBase)
#define PCI_IO_SIZE FixedPcdGet64 (PcdPciIoSize)
#define PCI_MEM32_BASE FixedPcdGet64 (PcdPciMmio32Base)
#define PCI_MEM32_SIZE FixedPcdGet64 (PcdPciMmio32Size)
#define PCI_MEM64_BASE FixedPcdGet64 (PcdPciMmio64Base)
#define PCI_MEM64_SIZE FixedPcdGet64 (PcdPciMmio64Size)
/*
* Bridge Internal Registers
*/
// PCIe Available Credit Settings
#define PCIE_VC_CRED 0x090
// PCIe PCI Standard Configuration Identification Settings registers
#define PCIE_PCI_IDS 0x098
#define PCIE_PCI_IDS_CLASSCODE_OFFSET 0x4
// PCIe Specific 2 Capabilities Settings
#define PCIE_PEX_SPC2 0x0d8
// PCIe Windows Settings register
#define PCIE_BAR_WIN 0x0FC
// Local Processor Interrupt Mask
#define PCIE_IMASK_LOCAL 0x180
#define PCIE_BAR_WIN_SUPPORT_IO BIT0
#define PCIE_BAR_WIN_SUPPORT_IO32 BIT1
#define PCIE_BAR_WIN_SUPPORT_MEM BIT2
#define PCIE_BAR_WIN_SUPPORT_MEM64 BIT3
#define PCIE_INT_MSI BIT28
#define PCIE_INT_A BIT24
#define PCIE_INT_B BIT25
#define PCIE_INT_C BIT26
#define PCIE_INT_D BIT27
#define PCIE_INT_INTx (PCIE_INT_A | PCIE_INT_B |\
PCIE_INT_C | PCIE_INT_D)
/*
* PCIe Control Registers
*/
#define PCIE_CONTROL_RST_CTL 0x1004
#define PCIE_CONTROL_RST_STS 0x1008
/*
* PCI Express Address Translation registers
* All are offsets from PcdPcieControlBaseAddress
*/
#define VEXPRESS_ATR_PCIE_WIN0 0x600
#define VEXPRESS_ATR_AXI4_SLV0 0x800
#define VEXPRESS_ATR_AXI4_SLV1 0x820
#define PCI_ATR_ENTRY_SIZE 0x20
#define PCI_ATR_SRC_ADDR_LOW_SIZE 0
#define PCI_ATR_SRC_ADDR_HI 0x4
#define PCI_ATR_TRSL_ADDR_LOW 0x8
#define PCI_ATR_TRSL_ADDR_HI 0xc
#define PCI_ATR_TRSL_PARAM 0x10
#define PCI_ATR_TRSLID_AXIDEVICE 0x420004
#define PCI_ATR_TRSLID_AXIMEMORY 0x4e0004
#define PCI_ATR_TRSLID_PCIE_CONF 0x000001
#define PCI_ATR_TRSLID_PCIE_IO 0x020000
#define PCI_ATR_TRSLID_PCIE_MEMORY 0x000000
#define PCIE_CONTROL_RST_CTL_RC_REL (1 << 1)
#define PCIE_CONTROL_RST_CTL_PHY_REL (1 << 0)
#define PCIE_CONTROL_RST_CTL_RCPHY_REL (PCIE_CONTROL_RST_CTL_RC_REL | PCIE_CONTROL_RST_CTL_PHY_REL)
#define PCIE_CONTROL_RST_STS_RC_ST (1 << 2)
#define PCIE_CONTROL_RST_STS_PHY_ST (1 << 1)
#define PCIE_CONTROL_RST_STS_PLL_ST (1 << 0)
#define PCIE_CONTROL_RST_STS_RCPHYPLL_OUT (PCIE_CONTROL_RST_STS_RC_ST | PCIE_CONTROL_RST_STS_PHY_ST | PCIE_CONTROL_RST_STS_PLL_ST)
#define VEXPRESS_BASIC_STATUS 0x18
#define LINK_UP 0xff
/*
* Initialize Versatile Express PCIe Host Bridge
*/
EFI_STATUS
VExpressPciRbInit (
IN EFI_CPU_IO2_PROTOCOL *CpuIo
);
// Does not support neither EFI_PCI_HOST_BRIDGE_COMBINE_MEM_PMEM
// nor EFI_PCI_HOST_BRIDGE_MEM64_DECODE
#define PCI_MEMORY_ALLOCATION_ATTRIBUTES 0
#endif