update Ehci driver to distinct pci memory address and host address

git-svn-id: https://edk2.svn.sourceforge.net/svnroot/edk2/trunk/edk2@10121 6f19259b-4bc3-4df7-8a09-765794883524
This commit is contained in:
erictian 2010-02-28 13:00:58 +00:00
parent 1ae301da81
commit 592b87a46d
6 changed files with 87 additions and 54 deletions

View File

@ -969,7 +969,8 @@ EhcAsyncInterruptTransfer (
//
// Validate parameters
//
if (!EHCI_IS_DATAIN (EndPointAddress)) {
if (!(EndPointAddress >= 0x01 && EndPointAddress <= 0x0F)
&& !(EndPointAddress >= 0x81 && EndPointAddress <= 0x8F)) {
return EFI_INVALID_PARAMETER;
}
@ -1118,7 +1119,8 @@ EhcSyncInterruptTransfer (
return EFI_INVALID_PARAMETER;
}
if (!EHCI_IS_DATAIN (EndPointAddress)) {
if (!(EndPointAddress >= 0x01 && EndPointAddress <= 0x0F)
&& !(EndPointAddress >= 0x81 && EndPointAddress <= 0x8F)) {
return EFI_INVALID_PARAMETER;
}

View File

@ -139,8 +139,8 @@ struct _USB2_HC_DEV {
//
// Peroidic (interrupt) transfer schedule data:
//
VOID *PeriodFrame; // Mapped as common buffer
VOID *PeriodFrameHost;
VOID *PeriodFrame; // the buffer pointed by this pointer is used to store pci bus address of the QH descriptor.
VOID *PeriodFrameHost; // the buffer pointed by this pointer is used to store host memory address of the QH descriptor.
VOID *PeriodFrameMap;
EHC_QH *PeriodOne;
@ -152,7 +152,6 @@ struct _USB2_HC_DEV {
UINT32 HcStructParams; // Cache of HC structure parameter, EHC_HCSPARAMS_OFFSET
UINT32 HcCapParams; // Cache of HC capability parameter, HCCPARAMS
UINT32 CapLen; // Capability length
UINT32 High32bitAddr;
//
// Misc

View File

@ -564,7 +564,7 @@ EhcInitHC (
// Allocate the periodic frame and associated memeory
// management facilities if not already done.
//
if (Ehc->PeriodFrameHost != NULL) {
if (Ehc->PeriodFrame != NULL) {
EhcFreeSched (Ehc);
}
@ -573,24 +573,20 @@ EhcInitHC (
if (EFI_ERROR (Status)) {
return Status;
}
//
// 1. Program the CTRLDSSEGMENT register with the high 32 bit addr
//
EhcWriteOpReg (Ehc, EHC_CTRLDSSEG_OFFSET, Ehc->High32bitAddr);
//
// 2. Clear USBINTR to disable all the interrupt. UEFI works by polling
// 1. Clear USBINTR to disable all the interrupt. UEFI works by polling
//
EhcWriteOpReg (Ehc, EHC_USBINTR_OFFSET, 0);
//
// 3. Program periodic frame list, already done in EhcInitSched
// 4. Start the Host Controller
// 2. Program periodic frame list, already done in EhcInitSched
// 3. Start the Host Controller
//
EhcSetOpRegBit (Ehc, EHC_USBCMD_OFFSET, USBCMD_RUN);
//
// 5. Set all ports routing to EHC
// 4. Set all ports routing to EHC
//
EhcSetOpRegBit (Ehc, EHC_CONFIG_FLAG_OFFSET, CONFIGFLAG_ROUTE_EHC);

View File

@ -116,7 +116,6 @@ EhcInitSched (
UINTN Pages;
UINTN Bytes;
UINTN Index;
UINT32 *Desc;
EFI_STATUS Status;
EFI_PHYSICAL_ADDRESS PciAddr;
@ -159,10 +158,17 @@ EhcInitSched (
return EFI_OUT_OF_RESOURCES;
}
Ehc->PeriodFrameHost = Buf;
Ehc->PeriodFrame = (VOID *) ((UINTN) PhyAddr);
Ehc->PeriodFrame = Buf;
Ehc->PeriodFrameMap = Map;
Ehc->High32bitAddr = EHC_HIGH_32BIT (PhyAddr);
//
// Program the FRAMELISTBASE register with the low 32 bit addr
//
EhcWriteOpReg (Ehc, EHC_FRAME_BASE_OFFSET, EHC_LOW_32BIT (PhyAddr));
//
// Program the CTRLDSSEGMENT register with the high 32 bit addr
//
EhcWriteOpReg (Ehc, EHC_CTRLDSSEG_OFFSET, EHC_HIGH_32BIT (PhyAddr));
//
// Init memory pool management then create the helper
@ -172,30 +178,40 @@ EhcInitSched (
Ehc->MemPool = UsbHcInitMemPool (
PciIo,
EHC_BIT_IS_SET (Ehc->HcCapParams, HCCP_64BIT),
Ehc->High32bitAddr
EHC_HIGH_32BIT (PhyAddr)
);
if (Ehc->MemPool == NULL) {
return EFI_OUT_OF_RESOURCES;
goto ErrorExit;
}
Status = EhcCreateHelpQ (Ehc);
if (EFI_ERROR (Status)) {
return Status;
goto ErrorExit;
}
//
// Initialize the frame list entries then set the registers
//
Desc = (UINT32 *) Ehc->PeriodFrameHost;
for (Index = 0; Index < EHC_FRAME_LEN; Index++) {
PciAddr = UsbHcGetPciAddressForHostMem (Ehc->MemPool, Ehc->PeriodOne, sizeof (EHC_QH));
Desc[Index] = QH_LINK (PciAddr, EHC_TYPE_QH, FALSE);
Ehc->PeriodFrameHost = AllocateZeroPool (EHC_FRAME_LEN * sizeof (UINTN));
if (Ehc->PeriodFrameHost == NULL) {
Status = EFI_OUT_OF_RESOURCES;
goto ErrorExit;
}
EhcWriteOpReg (Ehc, EHC_FRAME_BASE_OFFSET, EHC_LOW_32BIT (Ehc->PeriodFrame));
PciAddr = UsbHcGetPciAddressForHostMem (Ehc->MemPool, Ehc->PeriodOne, sizeof (EHC_QH));
for (Index = 0; Index < EHC_FRAME_LEN; Index++) {
//
// Store the pci bus address of the QH in period frame list which will be accessed by pci bus master.
//
((UINT32 *)(Ehc->PeriodFrame))[Index] = QH_LINK (PciAddr, EHC_TYPE_QH, FALSE);
//
// Store the host address of the QH in period frame list which will be accessed by host.
//
((UINTN *)(Ehc->PeriodFrameHost))[Index] = (UINTN)Ehc->PeriodOne;
}
//
// Second initialize the asynchronous schedule:
@ -205,6 +221,26 @@ EhcInitSched (
PciAddr = UsbHcGetPciAddressForHostMem (Ehc->MemPool, Ehc->ReclaimHead, sizeof (EHC_QH));
EhcWriteOpReg (Ehc, EHC_ASYNC_HEAD_OFFSET, EHC_LOW_32BIT (PciAddr));
return EFI_SUCCESS;
ErrorExit:
PciIo->FreeBuffer (PciIo, Pages, Buf);
PciIo->Unmap (PciIo, Map);
if (Ehc->PeriodOne != NULL) {
UsbHcFreeMem (Ehc->MemPool, Ehc->PeriodOne, sizeof (EHC_QH));
Ehc->PeriodOne = NULL;
}
if (Ehc->ReclaimHead != NULL) {
UsbHcFreeMem (Ehc->MemPool, Ehc->ReclaimHead, sizeof (EHC_QH));
Ehc->ReclaimHead = NULL;
}
if (Ehc->ShortReadStop != NULL) {
UsbHcFreeMem (Ehc->MemPool, Ehc->ShortReadStop, sizeof (EHC_QTD));
Ehc->ShortReadStop = NULL;
}
return Status;
}
@ -244,7 +280,7 @@ EhcFreeSched (
Ehc->MemPool = NULL;
}
if (Ehc->PeriodFrameHost != NULL) {
if (Ehc->PeriodFrame != NULL) {
PciIo = Ehc->PciIo;
ASSERT (PciIo != NULL);
@ -253,11 +289,15 @@ EhcFreeSched (
PciIo->FreeBuffer (
PciIo,
EFI_SIZE_TO_PAGES (EFI_PAGE_SIZE),
Ehc->PeriodFrameHost
Ehc->PeriodFrame
);
Ehc->PeriodFrame = NULL;
}
if (Ehc->PeriodFrameHost != NULL) {
FreePool (Ehc->PeriodFrameHost);
Ehc->PeriodFrameHost = NULL;
Ehc->PeriodFrame = NULL;
}
}
@ -293,7 +333,7 @@ EhcLinkQhToAsync (
Head->NextQh = Qh;
PciAddr = UsbHcGetPciAddressForHostMem (Ehc->MemPool, Head, sizeof (EHC_QH));
Qh->QhHw.HorizonLink = QH_LINK (PciAddr, EHC_TYPE_QH, FALSE);;
Qh->QhHw.HorizonLink = QH_LINK (PciAddr, EHC_TYPE_QH, FALSE);
PciAddr = UsbHcGetPciAddressForHostMem (Ehc->MemPool, Qh, sizeof (EHC_QH));
Head->QhHw.HorizonLink = QH_LINK (PciAddr, EHC_TYPE_QH, FALSE);
}
@ -358,21 +398,18 @@ EhcLinkQhToPeriod (
IN EHC_QH *Qh
)
{
UINT32 *Frames;
UINTN Index;
EHC_QH *Prev;
EHC_QH *Next;
EFI_PHYSICAL_ADDRESS PciAddr;
Frames = Ehc->PeriodFrameHost;
for (Index = 0; Index < EHC_FRAME_LEN; Index += Qh->Interval) {
//
// First QH can't be NULL because we always keep PeriodOne
// heads on the frame list
//
ASSERT (!EHC_LINK_TERMINATED (Frames[Index]));
Next = EHC_ADDR (Ehc->High32bitAddr, Frames[Index]);
ASSERT (!EHC_LINK_TERMINATED (((UINT32*)Ehc->PeriodFrame)[Index]));
Next = (EHC_QH*)((UINTN*)Ehc->PeriodFrameHost)[Index];
Prev = NULL;
//
@ -439,7 +476,8 @@ EhcLinkQhToPeriod (
PciAddr = UsbHcGetPciAddressForHostMem (Ehc->MemPool, Qh, sizeof (EHC_QH));
if (Prev == NULL) {
Frames[Index] = QH_LINK (PciAddr, EHC_TYPE_QH, FALSE);
((UINT32*)Ehc->PeriodFrame)[Index] = QH_LINK (PciAddr, EHC_TYPE_QH, FALSE);
((UINTN*)Ehc->PeriodFrameHost)[Index] = (UINTN)Qh;
} else {
Prev->NextQh = Qh;
Prev->QhHw.HorizonLink = QH_LINK (PciAddr, EHC_TYPE_QH, FALSE);
@ -462,20 +500,17 @@ EhcUnlinkQhFromPeriod (
IN EHC_QH *Qh
)
{
UINT32 *Frames;
UINTN Index;
EHC_QH *Prev;
EHC_QH *This;
Frames = Ehc->PeriodFrameHost;
for (Index = 0; Index < EHC_FRAME_LEN; Index += Qh->Interval) {
//
// Frame link can't be NULL because we always keep PeroidOne
// on the frame list
//
ASSERT (!EHC_LINK_TERMINATED (Frames[Index]));
This = EHC_ADDR (Ehc->High32bitAddr, Frames[Index]);
ASSERT (!EHC_LINK_TERMINATED (((UINT32*)Ehc->PeriodFrame)[Index]));
This = (EHC_QH*)((UINTN*)Ehc->PeriodFrameHost)[Index];
Prev = NULL;
//
@ -499,7 +534,8 @@ EhcUnlinkQhFromPeriod (
//
// Qh is the first entry in the frame
//
Frames[Index] = Qh->QhHw.HorizonLink;
((UINT32*)Ehc->PeriodFrame)[Index] = Qh->QhHw.HorizonLink;
((UINTN*)Ehc->PeriodFrameHost)[Index] = (UINTN)Qh->NextQh;
} else {
Prev->NextQh = Qh->NextQh;
Prev->QhHw.HorizonLink = Qh->QhHw.HorizonLink;

View File

@ -218,15 +218,15 @@ UsbHcAllocMemFromBlock (
NEXT_BIT (Byte, Bit);
}
return Block->Buf + (StartByte * 8 + StartBit) * USBHC_MEM_UNIT;
return Block->BufHost + (StartByte * 8 + StartBit) * USBHC_MEM_UNIT;
}
/**
Get the pci memory address according to the allocated host memory address.
Calculate the corresponding pci bus address according to the Mem parameter.
@param Pool The memory pool of the host controller.
@param Mem The memory to free.
@param Size The size of the memory to free.
@param Mem The pointer to host memory.
@param Size The size of the memory region.
@return the pci memory address
**/
@ -251,7 +251,7 @@ UsbHcGetPciAddressForHostMem (
// scan the memory block list for the memory block that
// completely contains the allocated memory.
//
if ((Block->Buf <= (UINT8 *) Mem) && (((UINT8 *) Mem + AllocSize) <= (Block->Buf + Block->BufLen))) {
if ((Block->BufHost <= (UINT8 *) Mem) && (((UINT8 *) Mem + AllocSize) <= (Block->BufHost + Block->BufLen))) {
break;
}
}
@ -522,12 +522,12 @@ UsbHcFreeMem (
// scan the memory block list for the memory block that
// completely contains the memory to free.
//
if ((Block->Buf <= ToFree) && ((ToFree + AllocSize) <= (Block->Buf + Block->BufLen))) {
if ((Block->BufHost <= ToFree) && ((ToFree + AllocSize) <= (Block->BufHost + Block->BufLen))) {
//
// compute the start byte and bit in the bit array
//
Byte = ((ToFree - Block->Buf) / USBHC_MEM_UNIT) / 8;
Bit = ((ToFree - Block->Buf) / USBHC_MEM_UNIT) % 8;
Byte = ((ToFree - Block->BufHost) / USBHC_MEM_UNIT) / 8;
Bit = ((ToFree - Block->BufHost) / USBHC_MEM_UNIT) % 8;
//
// reset associated bits in bit arry

View File

@ -139,11 +139,11 @@ UsbHcFreeMem (
);
/**
Get the pci memory address according to the allocated host memory address.
Calculate the corresponding pci bus address according to the Mem parameter.
@param Pool The memory pool of the host controller.
@param Mem The memory to free.
@param Size The size of the memory to free.
@param Mem The pointer to host memory.
@param Size The size of the memory region.
@return the pci memory address
**/