Clean up FaultTolerantWriteDxe for Doxygen comments requirement.

git-svn-id: https://edk2.svn.sourceforge.net/svnroot/edk2/trunk/edk2@5463 6f19259b-4bc3-4df7-8a09-765794883524
This commit is contained in:
qwang12 2008-07-14 08:19:45 +00:00
parent b414ea4b21
commit 6aab82140b
7 changed files with 787 additions and 971 deletions

View File

@ -32,6 +32,30 @@ WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED.
//
// Fault Tolerant Write Protocol API
//
/**
Starts a target block update. This function will record data about write
in fault tolerant storage and will complete the write in a recoverable
manner, ensuring at all times that either the original contents or
the modified contents are available.
@param This Calling context
@param FvbHandle The handle of FVB protocol that provides services for
reading, writing, and erasing the target block.
@param Lba The logical block address of the target block.
@param Offset The offset within the target block to place the data.
@param NumBytes The number of bytes to write to the target block.
@param Buffer The data to write.
@retval EFI_SUCCESS The function completed successfully
@retval EFI_BAD_BUFFER_SIZE The write would span a target block, which is not
a valid action.
@retval EFI_ACCESS_DENIED No writes have been allocated.
@retval EFI_NOT_FOUND Cannot find FVB by handle.
@retval EFI_OUT_OF_RESOURCES Cannot allocate memory.
@retval EFI_ABORTED The function could not complete successfully.
**/
EFI_STATUS
EFIAPI
FtwLiteWrite (
@ -42,33 +66,6 @@ FtwLiteWrite (
IN OUT UINTN *NumBytes,
IN VOID *Buffer
)
/*++
Routine Description:
Starts a target block update. This function will record data about write
in fault tolerant storage and will complete the write in a recoverable
manner, ensuring at all times that either the original contents or
the modified contents are available.
Arguments:
This - Calling context
FvbHandle - The handle of FVB protocol that provides services for
reading, writing, and erasing the target block.
Lba - The logical block address of the target block.
Offset - The offset within the target block to place the data.
NumBytes - The number of bytes to write to the target block.
Buffer - The data to write.
Returns:
EFI_SUCCESS - The function completed successfully
EFI_BAD_BUFFER_SIZE - The write would span a target block, which is not
a valid action.
EFI_ACCESS_DENIED - No writes have been allocated.
EFI_NOT_FOUND - Cannot find FVB by handle.
EFI_OUT_OF_RESOURCES - Cannot allocate memory.
EFI_ABORTED - The function could not complete successfully.
--*/
{
EFI_STATUS Status;
EFI_FTW_LITE_DEVICE *FtwLiteDevice;
@ -385,28 +382,25 @@ Returns:
}
/**
Write a record with fault tolerant mannaer.
Since the content has already backuped in spare block, the write is
guaranteed to be completed with fault tolerant manner.
@param FtwLiteDevice The private data of FTW_LITE driver
@param Fvb The FVB protocol that provides services for
reading, writing, and erasing the target block.
@retval EFI_SUCCESS The function completed successfully
@retval EFI_ABORTED The function could not complete successfully
**/
EFI_STATUS
FtwWriteRecord (
IN EFI_FTW_LITE_DEVICE *FtwLiteDevice,
IN EFI_FIRMWARE_VOLUME_BLOCK_PROTOCOL *Fvb
)
/*++
Routine Description:
Write a record with fault tolerant mannaer.
Since the content has already backuped in spare block, the write is
guaranteed to be completed with fault tolerant manner.
Arguments:
FtwLiteDevice - The private data of FTW_LITE driver
Fvb - The FVB protocol that provides services for
reading, writing, and erasing the target block.
Returns:
EFI_SUCCESS - The function completed successfully
EFI_ABORTED - The function could not complete successfully
--*/
{
EFI_STATUS Status;
EFI_FTW_LITE_RECORD *Record;
@ -471,28 +465,25 @@ Returns:
}
/**
Restarts a previously interrupted write. The caller must provide the
block protocol needed to complete the interrupted write.
@param FtwLiteDevice The private data of FTW_LITE driver
FvbHandle - The handle of FVB protocol that provides services for
reading, writing, and erasing the target block.
@retval EFI_SUCCESS The function completed successfully
@retval EFI_ACCESS_DENIED No pending writes exist
@retval EFI_NOT_FOUND FVB protocol not found by the handle
@retval EFI_ABORTED The function could not complete successfully
**/
EFI_STATUS
FtwRestart (
IN EFI_FTW_LITE_DEVICE *FtwLiteDevice
)
/*++
Routine Description:
Restarts a previously interrupted write. The caller must provide the
block protocol needed to complete the interrupted write.
Arguments:
FtwLiteDevice - The private data of FTW_LITE driver
FvbHandle - The handle of FVB protocol that provides services for
reading, writing, and erasing the target block.
Returns:
EFI_SUCCESS - The function completed successfully
EFI_ACCESS_DENIED - No pending writes exist
EFI_NOT_FOUND - FVB protocol not found by the handle
EFI_ABORTED - The function could not complete successfully
--*/
{
EFI_STATUS Status;
EFI_FTW_LITE_RECORD *Record;
@ -539,24 +530,21 @@ Returns:
}
/**
Aborts all previous allocated writes.
@param FtwLiteDevice The private data of FTW_LITE driver
@retval EFI_SUCCESS The function completed successfully
@retval EFI_ABORTED The function could not complete successfully.
@retval EFI_NOT_FOUND No allocated writes exist.
**/
EFI_STATUS
FtwAbort (
IN EFI_FTW_LITE_DEVICE *FtwLiteDevice
)
/*++
Routine Description:
Aborts all previous allocated writes.
Arguments:
FtwLiteDevice - The private data of FTW_LITE driver
Returns:
EFI_SUCCESS - The function completed successfully
EFI_ABORTED - The function could not complete successfully.
EFI_NOT_FOUND - No allocated writes exist.
--*/
{
EFI_STATUS Status;
UINTN Offset;
@ -591,26 +579,24 @@ Returns:
return EFI_SUCCESS;
}
/**
This function is the entry point of the Fault Tolerant Write driver.
@param ImageHandle EFI_HANDLE: A handle for the image that is initializing
this driver
@param SystemTable EFI_SYSTEM_TABLE: A pointer to the EFI system table
@retval EFI_SUCCESS FTW has finished the initialization
@retval EFI_ABORTED FTW initialization error
**/
EFI_STATUS
EFIAPI
InitializeFtwLite (
IN EFI_HANDLE ImageHandle,
IN EFI_SYSTEM_TABLE *SystemTable
)
/*++
Routine Description:
This function is the entry point of the Fault Tolerant Write driver.
Arguments:
ImageHandle - EFI_HANDLE: A handle for the image that is initializing
this driver
SystemTable - EFI_SYSTEM_TABLE: A pointer to the EFI system table
Returns:
EFI_SUCCESS - FTW has finished the initialization
EFI_ABORTED - FTW initialization error
--*/
{
EFI_FIRMWARE_VOLUME_BLOCK_PROTOCOL *Fvb;
UINTN Index;

View File

@ -133,366 +133,344 @@ typedef struct {
//
// Driver entry point
//
/**
This function is the entry point of the Fault Tolerant Write driver.
@param ImageHandle EFI_HANDLE: A handle for the image that is initializing
this driver
@param SystemTable EFI_SYSTEM_TABLE: A pointer to the EFI system table
@retval EFI_SUCCESS FTW has finished the initialization
@retval EFI_ABORTED FTW initialization error
**/
EFI_STATUS
EFIAPI
InitializeFtwLite (
IN EFI_HANDLE ImageHandle,
IN EFI_SYSTEM_TABLE *SystemTable
)
/*++
Routine Description:
This function is the entry point of the Fault Tolerant Write driver.
Arguments:
ImageHandle - EFI_HANDLE: A handle for the image that is initializing
this driver
SystemTable - EFI_SYSTEM_TABLE: A pointer to the EFI system table
Returns:
EFI_SUCCESS - FTW has finished the initialization
EFI_ABORTED - FTW initialization error
--*/
;
//
// Fault Tolerant Write Protocol API
//
/**
Starts a target block update. This function will record data about write
in fault tolerant storage and will complete the write in a recoverable
manner, ensuring at all times that either the original contents or
the modified contents are available.
@param This Calling context
@param FvbHandle The handle of FVB protocol that provides services for
reading, writing, and erasing the target block.
@param Lba The logical block address of the target block.
@param Offset The offset within the target block to place the data.
@param NumBytes The number of bytes to write to the target block.
@param Buffer The data to write.
@retval EFI_SUCCESS The function completed successfully
@retval EFI_BAD_BUFFER_SIZE The write would span a target block, which is not
a valid action.
@retval EFI_ACCESS_DENIED No writes have been allocated.
@retval EFI_NOT_FOUND Cannot find FVB by handle.
@retval EFI_OUT_OF_RESOURCES Cannot allocate memory.
@retval EFI_ABORTED The function could not complete successfully.
**/
EFI_STATUS
EFIAPI
FtwLiteWrite (
IN EFI_FTW_LITE_PROTOCOL *This,
IN EFI_HANDLE FvbHandle,
IN EFI_LBA Lba,
IN UINTN Offset,
IN UINTN *NumBytes,
IN VOID *Buffer
IN EFI_FTW_LITE_PROTOCOL *This,
IN EFI_HANDLE FvbHandle,
IN EFI_LBA Lba,
IN UINTN Offset,
IN OUT UINTN *NumBytes,
IN VOID *Buffer
)
/*++
Routine Description:
Starts a target block update. This function will record data about write
in fault tolerant storage and will complete the write in a recoverable
manner, ensuring at all times that either the original contents or
the modified contents are available.
Arguments:
This - Calling context
FvbHandle - The handle of FVB protocol that provides services for
reading, writing, and erasing the target block.
Lba - The logical block address of the target block.
Offset - The offset within the target block to place the data.
NumBytes - The number of bytes to write to the target block.
Buffer - The data to write.
Returns:
EFI_SUCCESS - The function completed successfully
EFI_BAD_BUFFER_SIZE - The write would span a target block, which is not
a valid action.
EFI_ACCESS_DENIED - No writes have been allocated.
EFI_NOT_FOUND - Cannot find FVB by handle.
EFI_OUT_OF_RESOURCES - Cannot allocate memory.
EFI_ABORTED - The function could not complete successfully.
--*/
;
//
// Internal functions
//
/**
Restarts a previously interrupted write. The caller must provide the
block protocol needed to complete the interrupted write.
@param FtwLiteDevice The private data of FTW_LITE driver
FvbHandle - The handle of FVB protocol that provides services for
reading, writing, and erasing the target block.
@retval EFI_SUCCESS The function completed successfully
@retval EFI_ACCESS_DENIED No pending writes exist
@retval EFI_NOT_FOUND FVB protocol not found by the handle
@retval EFI_ABORTED The function could not complete successfully
**/
EFI_STATUS
FtwRestart (
IN EFI_FTW_LITE_DEVICE *FtwLiteDevice
)
/*++
Routine Description:
Restarts a previously interrupted write. The caller must provide the
block protocol needed to complete the interrupted write.
Arguments:
FtwLiteDevice - The private data of FTW_LITE driver
FvbHandle - The handle of FVB protocol that provides services for
reading, writing, and erasing the target block.
Returns:
EFI_SUCCESS - The function completed successfully
EFI_ACCESS_DENIED - No pending writes exist
EFI_NOT_FOUND - FVB protocol not found by the handle
EFI_ABORTED - The function could not complete successfully
--*/
;
/**
Aborts all previous allocated writes.
@param FtwLiteDevice The private data of FTW_LITE driver
@retval EFI_SUCCESS The function completed successfully
@retval EFI_ABORTED The function could not complete successfully.
@retval EFI_NOT_FOUND No allocated writes exist.
**/
EFI_STATUS
FtwAbort (
IN EFI_FTW_LITE_DEVICE *FtwLiteDevice
)
/*++
Routine Description:
Aborts all previous allocated writes.
Arguments:
FtwLiteDevice - The private data of FTW_LITE driver
Returns:
EFI_SUCCESS - The function completed successfully
EFI_ABORTED - The function could not complete successfully.
EFI_NOT_FOUND - No allocated writes exist.
--*/
;
/**
Write a record with fault tolerant mannaer.
Since the content has already backuped in spare block, the write is
guaranteed to be completed with fault tolerant manner.
@param FtwLiteDevice The private data of FTW_LITE driver
@param Fvb The FVB protocol that provides services for
reading, writing, and erasing the target block.
@retval EFI_SUCCESS The function completed successfully
@retval EFI_ABORTED The function could not complete successfully
**/
EFI_STATUS
FtwWriteRecord (
IN EFI_FTW_LITE_DEVICE *FtwLiteDevice,
IN EFI_FIRMWARE_VOLUME_BLOCK_PROTOCOL *Fvb
)
/*++
Routine Description:
Write a record with fault tolerant mannaer.
Since the content has already backuped in spare block, the write is
guaranteed to be completed with fault tolerant manner.
Arguments:
FtwLiteDevice - The private data of FTW_LITE driver
Fvb - The FVB protocol that provides services for
reading, writing, and erasing the target block.
Returns:
EFI_SUCCESS - The function completed successfully
EFI_ABORTED - The function could not complete successfully
--*/
;
/**
To Erase one block. The size is FTW_BLOCK_SIZE
@param FtwLiteDevice Calling context
@param FvBlock FVB Protocol interface
@param Lba Lba of the firmware block
@retval EFI_SUCCESS Block LBA is Erased successfully
@retval Others Error occurs
**/
EFI_STATUS
FtwEraseBlock (
IN EFI_FTW_LITE_DEVICE *FtwLiteDevice,
EFI_FIRMWARE_VOLUME_BLOCK_PROTOCOL *FvBlock,
EFI_LBA Lba
)
/*++
Routine Description:
To Erase one block. The size is FTW_BLOCK_SIZE
Arguments:
FtwLiteDevice - Calling context
FvBlock - FVB Protocol interface
Lba - Lba of the firmware block
Returns:
EFI_SUCCESS - Block LBA is Erased successfully
Others - Error occurs
--*/
;
/**
Erase spare block.
@param FtwLiteDevice Calling context
@retval EFI_SUCCESS The erase request was successfully
completed.
@retval EFI_ACCESS_DENIED The firmware volume is in the
WriteDisabled state.
@retval EFI_DEVICE_ERROR The block device is not functioning
correctly and could not be written.
The firmware device may have been
partially erased.
@retval EFI_INVALID_PARAMETER One or more of the LBAs listed
in the variable argument list do
not exist in the firmware volume.
**/
EFI_STATUS
FtwEraseSpareBlock (
IN EFI_FTW_LITE_DEVICE *FtwLiteDevice
)
/*++
Routine Description:
Erase spare block.
Arguments:
FtwLiteDevice - Calling context
Returns:
Status code
--*/
;
/**
Retrive the proper FVB protocol interface by HANDLE.
@param FvBlockHandle The handle of FVB protocol that provides services for
reading, writing, and erasing the target block.
@param FvBlock The interface of FVB protocol
@retval EFI_SUCCESS The function completed successfully
@retval EFI_ABORTED The function could not complete successfully
**/
EFI_STATUS
FtwGetFvbByHandle (
IN EFI_HANDLE FvBlockHandle,
OUT EFI_FIRMWARE_VOLUME_BLOCK_PROTOCOL **FvBlock
)
/*++
Routine Description:
Retrive the proper FVB protocol interface by HANDLE.
Arguments:
FvBlockHandle - The handle of FVB protocol that provides services for
reading, writing, and erasing the target block.
FvBlock - The interface of FVB protocol
Returns:
EFI_SUCCESS - The function completed successfully
EFI_ABORTED - The function could not complete successfully
--*/
;
/**
Get firmware block by address.
@param Address Address specified the block
@param FvBlock The block caller wanted
@retval EFI_SUCCESS The protocol instance if found.
@retval EFI_NOT_FOUND Block not found
**/
EFI_STATUS
GetFvbByAddress (
IN EFI_PHYSICAL_ADDRESS Address,
OUT EFI_FIRMWARE_VOLUME_BLOCK_PROTOCOL **FvBlock
)
/*++
Routine Description:
Get firmware block by address.
Arguments:
Address - Address specified the block
FvBlock - The block caller wanted
Returns:
Status code
EFI_NOT_FOUND - Block not found
--*/
;
/**
Is it in working block?
@param FtwLiteDevice Calling context
@param FvBlock Fvb protocol instance
@param Lba The block specified
@return A BOOLEAN value indicating in working block or not.
**/
BOOLEAN
IsInWorkingBlock (
EFI_FTW_LITE_DEVICE *FtwLiteDevice,
EFI_FIRMWARE_VOLUME_BLOCK_PROTOCOL *FvBlock,
EFI_LBA Lba
)
/*++
Routine Description:
Is it in working block?
Arguments:
FtwLiteDevice - Calling context
FvBlock - Fvb protocol instance
Lba - The block specified
Returns:
In working block or not
--*/
;
/**
Check whether the block is a boot block.
@param FtwLiteDevice Calling context
@param FvBlock Fvb protocol instance
@param Lba Lba value
@retval FALSE This is a boot block.
@retval TRUE This is not a boot block.
**/
BOOLEAN
IsBootBlock (
EFI_FTW_LITE_DEVICE *FtwLiteDevice,
EFI_FIRMWARE_VOLUME_BLOCK_PROTOCOL *FvBlock,
EFI_LBA Lba
)
/*++
Routine Description:
Check whether the block is a boot block.
Arguments:
FtwLiteDevice - Calling context
FvBlock - Fvb protocol instance
Lba - Lba value
Returns:
Is a boot block or not
--*/
;
/**
Copy the content of spare block to a target block. Size is FTW_BLOCK_SIZE.
Spare block is accessed by FTW backup FVB protocol interface. LBA is
FtwLiteDevice->FtwSpareLba.
Target block is accessed by FvBlock protocol interface. LBA is Lba.
@param FtwLiteDevice The private data of FTW_LITE driver
@param FvBlock FVB Protocol interface to access target block
@param Lba Lba of the target block
@retval EFI_SUCCESS Spare block content is copied to target block
@retval EFI_INVALID_PARAMETER Input parameter error
@retval EFI_OUT_OF_RESOURCES Allocate memory error
@retval EFI_ABORTED The function could not complete successfully
**/
EFI_STATUS
FlushSpareBlockToTargetBlock (
EFI_FTW_LITE_DEVICE *FtwLiteDevice,
EFI_FIRMWARE_VOLUME_BLOCK_PROTOCOL *FvBlock,
EFI_LBA Lba
)
/*++
Routine Description:
Copy the content of spare block to a target block. Size is FTW_BLOCK_SIZE.
Spare block is accessed by FTW backup FVB protocol interface. LBA is
FtwLiteDevice->FtwSpareLba.
Target block is accessed by FvBlock protocol interface. LBA is Lba.
Arguments:
FtwLiteDevice - The private data of FTW_LITE driver
FvBlock - FVB Protocol interface to access target block
Lba - Lba of the target block
Returns:
EFI_SUCCESS - Spare block content is copied to target block
EFI_INVALID_PARAMETER - Input parameter error
EFI_OUT_OF_RESOURCES - Allocate memory error
EFI_ABORTED - The function could not complete successfully
--*/
;
/**
Copy the content of spare block to working block. Size is FTW_BLOCK_SIZE.
Spare block is accessed by FTW backup FVB protocol interface. LBA is
FtwLiteDevice->FtwSpareLba.
Working block is accessed by FTW working FVB protocol interface. LBA is
FtwLiteDevice->FtwWorkBlockLba.
@param FtwLiteDevice The private data of FTW_LITE driver
@retval EFI_SUCCESS Spare block content is copied to target block
@retval EFI_OUT_OF_RESOURCES Allocate memory error
@retval EFI_ABORTED The function could not complete successfully
Notes:
Since the working block header is important when FTW initializes, the
state of the operation should be handled carefully. The Crc value is
calculated without STATE element.
**/
EFI_STATUS
FlushSpareBlockToWorkingBlock (
EFI_FTW_LITE_DEVICE *FtwLiteDevice
)
/*++
Routine Description:
Copy the content of spare block to working block. Size is FTW_BLOCK_SIZE.
Spare block is accessed by FTW backup FVB protocol interface. LBA is
FtwLiteDevice->FtwSpareLba.
Working block is accessed by FTW working FVB protocol interface. LBA is
FtwLiteDevice->FtwWorkBlockLba.
Arguments:
FtwLiteDevice - The private data of FTW_LITE driver
Returns:
EFI_SUCCESS - Spare block content is copied to target block
EFI_OUT_OF_RESOURCES - Allocate memory error
EFI_ABORTED - The function could not complete successfully
Notes:
Since the working block header is important when FTW initializes, the
state of the operation should be handled carefully. The Crc value is
calculated without STATE element.
--*/
;
/**
Copy the content of spare block to a boot block. Size is FTW_BLOCK_SIZE.
Spare block is accessed by FTW backup FVB protocol interface. LBA is
FtwLiteDevice->FtwSpareLba.
Boot block is accessed by BootFvb protocol interface. LBA is 0.
@param FtwLiteDevice The private data of FTW_LITE driver
@retval EFI_SUCCESS Spare block content is copied to boot block
@retval EFI_INVALID_PARAMETER Input parameter error
@retval EFI_OUT_OF_RESOURCES Allocate memory error
@retval EFI_ABORTED The function could not complete successfully
Notes:
**/
EFI_STATUS
FlushSpareBlockToBootBlock (
EFI_FTW_LITE_DEVICE *FtwLiteDevice
)
/*++
Routine Description:
Copy the content of spare block to a boot block. Size is FTW_BLOCK_SIZE.
Spare block is accessed by FTW backup FVB protocol interface. LBA is
FtwLiteDevice->FtwSpareLba.
Boot block is accessed by BootFvb protocol interface. LBA is 0.
Arguments:
FtwLiteDevice - The private data of FTW_LITE driver
Returns:
EFI_SUCCESS - Spare block content is copied to boot block
EFI_INVALID_PARAMETER - Input parameter error
EFI_OUT_OF_RESOURCES - Allocate memory error
EFI_ABORTED - The function could not complete successfully
Notes:
--*/
;
/**
Update a bit of state on a block device. The location of the bit is
calculated by the (Lba, Offset, bit). Here bit is determined by the
the name of a certain bit.
@param FvBlock FVB Protocol interface to access SrcBlock and DestBlock
@param Lba Lba of a block
@param Offset Offset on the Lba
@param NewBit New value that will override the old value if it can be change
@retval EFI_SUCCESS A state bit has been updated successfully
@retval Others Access block device error.
Notes:
Assume all bits of State are inside the same BYTE.
@retval EFI_ABORTED Read block fail
**/
EFI_STATUS
FtwUpdateFvState (
IN EFI_FIRMWARE_VOLUME_BLOCK_PROTOCOL *FvBlock,
@ -500,178 +478,134 @@ FtwUpdateFvState (
IN UINTN Offset,
IN UINT8 NewBit
)
/*++
Routine Description:
Update a bit of state on a block device. The location of the bit is
calculated by the (Lba, Offset, bit). Here bit is determined by the
the name of a certain bit.
Arguments:
FvBlock - FVB Protocol interface to access SrcBlock and DestBlock
Lba - Lba of a block
Offset - Offset on the Lba
NewBit - New value that will override the old value if it can be change
Returns:
EFI_SUCCESS - A state bit has been updated successfully
Others - Access block device error.
Notes:
Assume all bits of State are inside the same BYTE.
EFI_ABORTED - Read block fail
--*/
;
/**
Get the last Write record pointer.
The last record is the record whose 'complete' state hasn't been set.
After all, this header may be a EMPTY header entry for next Allocate.
@param FtwLiteDevice Private data of this driver
@param FtwLastRecord Pointer to retrieve the last write record
@retval EFI_SUCCESS Get the last write record successfully
@retval EFI_ABORTED The FTW work space is damaged
**/
EFI_STATUS
FtwGetLastRecord (
IN EFI_FTW_LITE_DEVICE *FtwLiteDevice,
OUT EFI_FTW_LITE_RECORD **FtwLastRecord
)
/*++
Routine Description:
Get the last Write record pointer.
The last record is the record whose 'complete' state hasn't been set.
After all, this header may be a EMPTY header entry for next Allocate.
Arguments:
FtwLiteDevice - Private data of this driver
FtwLastRecord - Pointer to retrieve the last write record
Returns:
EFI_SUCCESS - Get the last write record successfully
EFI_ABORTED - The FTW work space is damaged
--*/
;
/**
Check whether a flash buffer is erased.
@param Polarity All 1 or all 0
@param Buffer Buffer to check
@param BufferSize Size of the buffer
@return A BOOLEAN value indicating erased or not.
**/
BOOLEAN
IsErasedFlashBuffer (
IN BOOLEAN Polarity,
IN UINT8 *Buffer,
IN UINTN BufferSize
)
/*++
Routine Description:
Check whether a flash buffer is erased.
Arguments:
Polarity - All 1 or all 0
Buffer - Buffer to check
BufferSize - Size of the buffer
Returns:
Erased or not.
--*/
;
/**
Initialize a work space when there is no work space.
@param WorkingHeader Pointer of working block header
@retval EFI_SUCCESS The function completed successfully
@retval EFI_ABORTED The function could not complete successfully.
**/
EFI_STATUS
InitWorkSpaceHeader (
IN EFI_FAULT_TOLERANT_WORKING_BLOCK_HEADER *WorkingHeader
)
/*++
Routine Description:
Initialize a work space when there is no work space.
Arguments:
WorkingHeader - Pointer of working block header
Returns:
EFI_SUCCESS - The function completed successfully
EFI_ABORTED - The function could not complete successfully.
--*/
;
/**
Read from working block to refresh the work space in memory.
@param FtwLiteDevice Point to private data of FTW driver
@retval EFI_SUCCESS The function completed successfully
@retval EFI_ABORTED The function could not complete successfully.
**/
EFI_STATUS
WorkSpaceRefresh (
IN EFI_FTW_LITE_DEVICE *FtwLiteDevice
)
/*++
Routine Description:
Read from working block to refresh the work space in memory.
Arguments:
FtwLiteDevice - Point to private data of FTW driver
Returns:
EFI_SUCCESS - The function completed successfully
EFI_ABORTED - The function could not complete successfully.
--*/
;
/**
Check to see if it is a valid work space.
@param WorkingHeader Pointer of working block header
@retval EFI_SUCCESS The function completed successfully
@retval EFI_ABORTED The function could not complete successfully.
**/
BOOLEAN
IsValidWorkSpace (
IN EFI_FAULT_TOLERANT_WORKING_BLOCK_HEADER *WorkingHeader
)
/*++
Routine Description:
Check to see if it is a valid work space.
Arguments:
WorkingHeader - Pointer of working block header
Returns:
EFI_SUCCESS - The function completed successfully
EFI_ABORTED - The function could not complete successfully.
--*/
;
/**
Reclaim the work space. Get rid of all the completed write records
and write records in the Fault Tolerant work space.
@param FtwLiteDevice Point to private data of FTW driver
FtwSpaceBuffer - Buffer to contain the reclaimed clean data
@param BlockBuffer The data buffer for the block.
@param BufferSize Size of the FtwSpaceBuffer
@retval EFI_SUCCESS The function completed successfully
@retval EFI_BUFFER_TOO_SMALL The FtwSpaceBuffer is too small
@retval EFI_ABORTED The function could not complete successfully.
**/
EFI_STATUS
CleanupWorkSpace (
IN EFI_FTW_LITE_DEVICE *FtwLiteDevice,
IN OUT UINT8 *BlockBuffer,
IN UINTN BufferSize
)
/*++
Routine Description:
Reclaim the work space. Get rid of all the completed write records
and write records in the Fault Tolerant work space.
Arguments:
FtwLiteDevice - Point to private data of FTW driver
FtwSpaceBuffer - Buffer to contain the reclaimed clean data
BufferSize - Size of the FtwSpaceBuffer
Returns:
EFI_SUCCESS - The function completed successfully
EFI_BUFFER_TOO_SMALL - The FtwSpaceBuffer is too small
EFI_ABORTED - The function could not complete successfully.
--*/
;
/**
Reclaim the work space on the working block.
@param FtwLiteDevice Point to private data of FTW driver
@retval EFI_SUCCESS The function completed successfully
@retval EFI_OUT_OF_RESOURCES Allocate memory error
@retval EFI_ABORTED The function could not complete successfully
**/
EFI_STATUS
FtwReclaimWorkSpace (
IN EFI_FTW_LITE_DEVICE *FtwLiteDevice
)
/*++
Routine Description:
Reclaim the work space on the working block.
Arguments:
FtwLiteDevice - Point to private data of FTW driver
Returns:
EFI_SUCCESS - The function completed successfully
EFI_OUT_OF_RESOURCES - Allocate memory error
EFI_ABORTED - The function could not complete successfully
--*/
;
#endif

View File

@ -15,29 +15,24 @@ WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED.
#include <FtwLite.h>
/**
Check whether a flash buffer is erased.
@param Polarity All 1 or all 0
@param Buffer Buffer to check
@param BufferSize Size of the buffer
@return A BOOLEAN value indicating erased or not.
**/
BOOLEAN
IsErasedFlashBuffer (
IN BOOLEAN Polarity,
IN UINT8 *Buffer,
IN UINTN BufferSize
)
/*++
Routine Description:
Check whether a flash buffer is erased.
Arguments:
Polarity - All 1 or all 0
Buffer - Buffer to check
BufferSize - Size of the buffer
Returns:
Erased or not.
--*/
{
UINT8 ErasedValue;
UINT8 *Ptr;
@ -49,7 +44,7 @@ Returns:
}
Ptr = Buffer;
while (BufferSize--) {
while ((BufferSize--) != 0) {
if (*Ptr++ != ErasedValue) {
return FALSE;
}
@ -58,27 +53,24 @@ Returns:
return TRUE;
}
/**
To Erase one block. The size is FTW_BLOCK_SIZE
@param FtwLiteDevice Calling context
@param FvBlock FVB Protocol interface
@param Lba Lba of the firmware block
@retval EFI_SUCCESS Block LBA is Erased successfully
@retval Others Error occurs
**/
EFI_STATUS
FtwEraseBlock (
IN EFI_FTW_LITE_DEVICE *FtwLiteDevice,
EFI_FIRMWARE_VOLUME_BLOCK_PROTOCOL *FvBlock,
EFI_LBA Lba
)
/*++
Routine Description:
To Erase one block. The size is FTW_BLOCK_SIZE
Arguments:
FtwLiteDevice - Calling context
FvBlock - FVB Protocol interface
Lba - Lba of the firmware block
Returns:
EFI_SUCCESS - Block LBA is Erased successfully
Others - Error occurs
--*/
{
return FvBlock->EraseBlocks (
FvBlock,
@ -88,25 +80,32 @@ Returns:
);
}
/**
Erase spare block.
@param FtwLiteDevice Calling context
@retval EFI_SUCCESS The erase request was successfully
completed.
@retval EFI_ACCESS_DENIED The firmware volume is in the
WriteDisabled state.
@retval EFI_DEVICE_ERROR The block device is not functioning
correctly and could not be written.
The firmware device may have been
partially erased.
@retval EFI_INVALID_PARAMETER One or more of the LBAs listed
in the variable argument list do
not exist in the firmware volume.
**/
EFI_STATUS
FtwEraseSpareBlock (
IN EFI_FTW_LITE_DEVICE *FtwLiteDevice
)
/*++
Routine Description:
Erase spare block.
Arguments:
FtwLiteDevice - Calling context
Returns:
Status code
--*/
{
return FtwLiteDevice->FtwBackupFvb->EraseBlocks (
FtwLiteDevice->FtwBackupFvb,
@ -116,25 +115,23 @@ Returns:
);
}
/**
Retrive the proper FVB protocol interface by HANDLE.
@param FvBlockHandle The handle of FVB protocol that provides services for
reading, writing, and erasing the target block.
@param FvBlock The interface of FVB protocol
@retval EFI_SUCCESS The function completed successfully
@retval EFI_ABORTED The function could not complete successfully
**/
EFI_STATUS
FtwGetFvbByHandle (
IN EFI_HANDLE FvBlockHandle,
OUT EFI_FIRMWARE_VOLUME_BLOCK_PROTOCOL **FvBlock
)
/*++
Routine Description:
Retrive the proper FVB protocol interface by HANDLE.
Arguments:
FvBlockHandle - The handle of FVB protocol that provides services for
reading, writing, and erasing the target block.
FvBlock - The interface of FVB protocol
Returns:
EFI_SUCCESS - The function completed successfully
EFI_ABORTED - The function could not complete successfully
--*/
{
//
// To get the FVB protocol interface on the handle
@ -146,29 +143,23 @@ Returns:
);
}
/**
Get firmware block by address.
@param Address Address specified the block
@param FvBlock The block caller wanted
@retval EFI_SUCCESS The protocol instance if found.
@retval EFI_NOT_FOUND Block not found
**/
EFI_STATUS
GetFvbByAddress (
IN EFI_PHYSICAL_ADDRESS Address,
OUT EFI_FIRMWARE_VOLUME_BLOCK_PROTOCOL **FvBlock
)
/*++
Routine Description:
Get firmware block by address.
Arguments:
Address - Address specified the block
FvBlock - The block caller wanted
Returns:
Status code
EFI_NOT_FOUND - Block not found
--*/
{
EFI_STATUS Status;
EFI_HANDLE *HandleBuffer;
@ -225,29 +216,24 @@ Returns:
return Status;
}
/**
Is it in working block?
@param FtwLiteDevice Calling context
@param FvBlock Fvb protocol instance
@param Lba The block specified
@return A BOOLEAN value indicating in working block or not.
**/
BOOLEAN
IsInWorkingBlock (
EFI_FTW_LITE_DEVICE *FtwLiteDevice,
EFI_FIRMWARE_VOLUME_BLOCK_PROTOCOL *FvBlock,
EFI_LBA Lba
)
/*++
Routine Description:
Is it in working block?
Arguments:
FtwLiteDevice - Calling context
FvBlock - Fvb protocol instance
Lba - The block specified
Returns:
In working block or not
--*/
{
//
// If matching the following condition, the target block is in working block.
@ -262,32 +248,29 @@ Returns:
);
}
/**
Copy the content of spare block to a target block. Size is FTW_BLOCK_SIZE.
Spare block is accessed by FTW backup FVB protocol interface. LBA is
FtwLiteDevice->FtwSpareLba.
Target block is accessed by FvBlock protocol interface. LBA is Lba.
@param FtwLiteDevice The private data of FTW_LITE driver
@param FvBlock FVB Protocol interface to access target block
@param Lba Lba of the target block
@retval EFI_SUCCESS Spare block content is copied to target block
@retval EFI_INVALID_PARAMETER Input parameter error
@retval EFI_OUT_OF_RESOURCES Allocate memory error
@retval EFI_ABORTED The function could not complete successfully
**/
EFI_STATUS
FlushSpareBlockToTargetBlock (
EFI_FTW_LITE_DEVICE *FtwLiteDevice,
EFI_FIRMWARE_VOLUME_BLOCK_PROTOCOL *FvBlock,
EFI_LBA Lba
)
/*++
Routine Description:
Copy the content of spare block to a target block. Size is FTW_BLOCK_SIZE.
Spare block is accessed by FTW backup FVB protocol interface. LBA is
FtwLiteDevice->FtwSpareLba.
Target block is accessed by FvBlock protocol interface. LBA is Lba.
Arguments:
FtwLiteDevice - The private data of FTW_LITE driver
FvBlock - FVB Protocol interface to access target block
Lba - Lba of the target block
Returns:
EFI_SUCCESS - Spare block content is copied to target block
EFI_INVALID_PARAMETER - Input parameter error
EFI_OUT_OF_RESOURCES - Allocate memory error
EFI_ABORTED - The function could not complete successfully
--*/
{
EFI_STATUS Status;
UINTN Length;
@ -356,33 +339,29 @@ Returns:
return Status;
}
/**
Copy the content of spare block to working block. Size is FTW_BLOCK_SIZE.
Spare block is accessed by FTW backup FVB protocol interface. LBA is
FtwLiteDevice->FtwSpareLba.
Working block is accessed by FTW working FVB protocol interface. LBA is
FtwLiteDevice->FtwWorkBlockLba.
@param FtwLiteDevice The private data of FTW_LITE driver
@retval EFI_SUCCESS Spare block content is copied to target block
@retval EFI_OUT_OF_RESOURCES Allocate memory error
@retval EFI_ABORTED The function could not complete successfully
Notes:
Since the working block header is important when FTW initializes, the
state of the operation should be handled carefully. The Crc value is
calculated without STATE element.
**/
EFI_STATUS
FlushSpareBlockToWorkingBlock (
EFI_FTW_LITE_DEVICE *FtwLiteDevice
)
/*++
Routine Description:
Copy the content of spare block to working block. Size is FTW_BLOCK_SIZE.
Spare block is accessed by FTW backup FVB protocol interface. LBA is
FtwLiteDevice->FtwSpareLba.
Working block is accessed by FTW working FVB protocol interface. LBA is
FtwLiteDevice->FtwWorkBlockLba.
Arguments:
FtwLiteDevice - The private data of FTW_LITE driver
Returns:
EFI_SUCCESS - Spare block content is copied to target block
EFI_OUT_OF_RESOURCES - Allocate memory error
EFI_ABORTED - The function could not complete successfully
Notes:
Since the working block header is important when FTW initializes, the
state of the operation should be handled carefully. The Crc value is
calculated without STATE element.
--*/
{
EFI_STATUS Status;
UINTN Length;

View File

@ -16,23 +16,20 @@ WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED.
#include <FtwLite.h>
/**
Check to see if it is a valid work space.
@param WorkingHeader Pointer of working block header
@retval EFI_SUCCESS The function completed successfully
@retval EFI_ABORTED The function could not complete successfully.
**/
BOOLEAN
IsValidWorkSpace (
IN EFI_FAULT_TOLERANT_WORKING_BLOCK_HEADER *WorkingHeader
)
/*++
Routine Description:
Check to see if it is a valid work space.
Arguments:
WorkingHeader - Pointer of working block header
Returns:
EFI_SUCCESS - The function completed successfully
EFI_ABORTED - The function could not complete successfully.
--*/
{
EFI_STATUS Status;
EFI_FAULT_TOLERANT_WORKING_BLOCK_HEADER WorkingBlockHeader;
@ -85,23 +82,20 @@ Returns:
return TRUE;
}
/**
Initialize a work space when there is no work space.
@param WorkingHeader Pointer of working block header
@retval EFI_SUCCESS The function completed successfully
@retval EFI_ABORTED The function could not complete successfully.
**/
EFI_STATUS
InitWorkSpaceHeader (
IN EFI_FAULT_TOLERANT_WORKING_BLOCK_HEADER *WorkingHeader
)
/*++
Routine Description:
Initialize a work space when there is no work space.
Arguments:
WorkingHeader - Pointer of working block header
Returns:
EFI_SUCCESS - The function completed successfully
EFI_ABORTED - The function could not complete successfully.
--*/
{
EFI_STATUS Status;
@ -143,6 +137,24 @@ Returns:
return EFI_SUCCESS;
}
/**
Update a bit of state on a block device. The location of the bit is
calculated by the (Lba, Offset, bit). Here bit is determined by the
the name of a certain bit.
@param FvBlock FVB Protocol interface to access SrcBlock and DestBlock
@param Lba Lba of a block
@param Offset Offset on the Lba
@param NewBit New value that will override the old value if it can be change
@retval EFI_SUCCESS A state bit has been updated successfully
@retval Others Access block device error.
Notes:
Assume all bits of State are inside the same BYTE.
@retval EFI_ABORTED Read block fail
**/
EFI_STATUS
FtwUpdateFvState (
IN EFI_FIRMWARE_VOLUME_BLOCK_PROTOCOL *FvBlock,
@ -150,28 +162,6 @@ FtwUpdateFvState (
IN UINTN Offset,
IN UINT8 NewBit
)
/*++
Routine Description:
Update a bit of state on a block device. The location of the bit is
calculated by the (Lba, Offset, bit). Here bit is determined by the
the name of a certain bit.
Arguments:
FvBlock - FVB Protocol interface to access SrcBlock and DestBlock
Lba - Lba of a block
Offset - Offset on the Lba
NewBit - New value that will override the old value if it can be change
Returns:
EFI_SUCCESS - A state bit has been updated successfully
Others - Access block device error.
Notes:
Assume all bits of State are inside the same BYTE.
EFI_ABORTED - Read block fail
--*/
{
EFI_STATUS Status;
UINT8 State;
@ -199,27 +189,24 @@ Notes:
return Status;
}
/**
Get the last Write record pointer.
The last record is the record whose 'complete' state hasn't been set.
After all, this header may be a EMPTY header entry for next Allocate.
@param FtwLiteDevice Private data of this driver
@param FtwLastRecord Pointer to retrieve the last write record
@retval EFI_SUCCESS Get the last write record successfully
@retval EFI_ABORTED The FTW work space is damaged
**/
EFI_STATUS
FtwGetLastRecord (
IN EFI_FTW_LITE_DEVICE *FtwLiteDevice,
OUT EFI_FTW_LITE_RECORD **FtwLastRecord
)
/*++
Routine Description:
Get the last Write record pointer.
The last record is the record whose 'complete' state hasn't been set.
After all, this header may be a EMPTY header entry for next Allocate.
Arguments:
FtwLiteDevice - Private data of this driver
FtwLastRecord - Pointer to retrieve the last write record
Returns:
EFI_SUCCESS - Get the last write record successfully
EFI_ABORTED - The FTW work space is damaged
--*/
{
EFI_FTW_LITE_RECORD *Record;
@ -241,23 +228,20 @@ Returns:
return EFI_SUCCESS;
}
/**
Read from working block to refresh the work space in memory.
@param FtwLiteDevice Point to private data of FTW driver
@retval EFI_SUCCESS The function completed successfully
@retval EFI_ABORTED The function could not complete successfully.
**/
EFI_STATUS
WorkSpaceRefresh (
IN EFI_FTW_LITE_DEVICE *FtwLiteDevice
)
/*++
Routine Description:
Read from working block to refresh the work space in memory.
Arguments:
FtwLiteDevice - Point to private data of FTW driver
Returns:
EFI_SUCCESS - The function completed successfully
EFI_ABORTED - The function could not complete successfully.
--*/
{
EFI_STATUS Status;
UINTN Length;
@ -313,29 +297,26 @@ Returns:
return EFI_SUCCESS;
}
/**
Reclaim the work space. Get rid of all the completed write records
and write records in the Fault Tolerant work space.
@param FtwLiteDevice Point to private data of FTW driver
@param FtwSpaceBuffer Buffer to contain the reclaimed clean data
@param BufferSize Size of the FtwSpaceBuffer
@retval EFI_SUCCESS The function completed successfully
@retval EFI_BUFFER_TOO_SMALL The FtwSpaceBuffer is too small
@retval EFI_ABORTED The function could not complete successfully.
**/
EFI_STATUS
CleanupWorkSpace (
IN EFI_FTW_LITE_DEVICE *FtwLiteDevice,
IN OUT UINT8 *FtwSpaceBuffer,
IN UINTN BufferSize
)
/*++
Routine Description:
Reclaim the work space. Get rid of all the completed write records
and write records in the Fault Tolerant work space.
Arguments:
FtwLiteDevice - Point to private data of FTW driver
FtwSpaceBuffer - Buffer to contain the reclaimed clean data
BufferSize - Size of the FtwSpaceBuffer
Returns:
EFI_SUCCESS - The function completed successfully
EFI_BUFFER_TOO_SMALL - The FtwSpaceBuffer is too small
EFI_ABORTED - The function could not complete successfully.
--*/
{
UINTN Length;
EFI_FTW_LITE_RECORD *Record;
@ -376,24 +357,21 @@ Returns:
return EFI_SUCCESS;
}
/**
Reclaim the work space on the working block.
@param FtwLiteDevice Point to private data of FTW driver
@retval EFI_SUCCESS The function completed successfully
@retval EFI_OUT_OF_RESOURCES Allocate memory error
@retval EFI_ABORTED The function could not complete successfully
**/
EFI_STATUS
FtwReclaimWorkSpace (
IN EFI_FTW_LITE_DEVICE *FtwLiteDevice
)
/*++
Routine Description:
Reclaim the work space on the working block.
Arguments:
FtwLiteDevice - Point to private data of FTW driver
Returns:
EFI_SUCCESS - The function completed successfully
EFI_OUT_OF_RESOURCES - Allocate memory error
EFI_ABORTED - The function could not complete successfully
--*/
{
EFI_STATUS Status;
UINT8 *TempBuffer;

View File

@ -33,26 +33,21 @@ WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED.
#define GEN_STATUS 0xD4
#define TOP_SWAP_BIT (1 << 13)
STATIC
/**
Read PCI register value.
This is a internal function.
@param Offset Offset of the register
@return The pci register value.
**/
UINT32
ReadPciRegister (
IN UINT32 Offset
)
/*++
Routine Description:
Read PCI register value.
Arguments:
Offset - Offset of the register
Returns:
The value.
--*/
{
EFI_STATUS Status;
UINT32 Value;
@ -82,28 +77,23 @@ Returns:
return Value;
}
STATIC
/**
Get swap state
This is a internal function.
@param FtwLiteDevice Calling context
@param SwapState Swap state
@retval EFI_SUCCESS State successfully got
**/
EFI_STATUS
GetSwapState (
IN EFI_FTW_LITE_DEVICE *FtwLiteDevice,
OUT BOOLEAN *SwapState
)
/*++
Routine Description:
Get swap state
Arguments:
FtwLiteDevice - Calling context
SwapState - Swap state
Returns:
EFI_SUCCESS - State successfully got
--*/
{
//
// Top swap status is 13 bit
@ -113,30 +103,26 @@ Returns:
return EFI_SUCCESS;
}
STATIC
/**
Set swap state.
This is a internal function.
@param FtwLiteDevice Indicates a pointer to the calling context.
@param TopSwap New swap state
@retval EFI_SUCCESS The function completed successfully
Note:
the Top-Swap bit (bit 13, D31: F0, Offset D4h). Note that
software will not be able to clear the Top-Swap bit until the system is
rebooted without GNT[A]# being pulled down.
**/
EFI_STATUS
SetSwapState (
IN EFI_FTW_LITE_DEVICE *FtwLiteDevice,
IN BOOLEAN TopSwap
)
/*++
Routine Description:
Set swap state.
Arguments:
FtwLiteDevice - Indicates a pointer to the calling context.
TopSwap - New swap state
Returns:
EFI_SUCCESS - The function completed successfully
Note:
the Top-Swap bit (bit 13, D31: F0, Offset D4h). Note that
software will not be able to clear the Top-Swap bit until the system is
rebooted without GNT[A]# being pulled down.
--*/
{
UINT32 GenStatus;
EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL *PciRootBridgeIo;
@ -188,29 +174,25 @@ Note:
return EFI_SUCCESS;
}
/**
Check whether the block is a boot block.
@param FtwLiteDevice Calling context
@param FvBlock Fvb protocol instance
@param Lba Lba value
@retval FALSE This is a boot block.
@retval TRUE This is not a boot block.
**/
BOOLEAN
IsBootBlock (
EFI_FTW_LITE_DEVICE *FtwLiteDevice,
EFI_FIRMWARE_VOLUME_BLOCK_PROTOCOL *FvBlock,
EFI_LBA Lba
)
/*++
Routine Description:
Check whether the block is a boot block.
Arguments:
FtwLiteDevice - Calling context
FvBlock - Fvb protocol instance
Lba - Lba value
Returns:
Is a boot block or not
--*/
{
EFI_STATUS Status;
EFI_FIRMWARE_VOLUME_BLOCK_PROTOCOL *BootFvb;
@ -225,46 +207,40 @@ Returns:
return (BOOLEAN) (FvBlock == BootFvb);
}
/**
Copy the content of spare block to a boot block. Size is FTW_BLOCK_SIZE.
Spare block is accessed by FTW backup FVB protocol interface. LBA is
FtwLiteDevice->FtwSpareLba.
Boot block is accessed by BootFvb protocol interface. LBA is 0.
@param FtwLiteDevice The private data of FTW_LITE driver
@retval EFI_SUCCESS Spare block content is copied to boot block
@retval EFI_INVALID_PARAMETER Input parameter error
@retval EFI_OUT_OF_RESOURCES Allocate memory error
@retval EFI_ABORTED The function could not complete successfully
Notes:
FTW will do extra work on boot block update.
FTW should depend on a protocol of EFI_ADDRESS_RANGE_SWAP_PROTOCOL,
which is produced by a chipset driver.
FTW updating boot block steps:
1. Erase top swap block (0xFFFE-0xFFFEFFFF) and write data to it ready
2. Read data from top swap block to memory buffer
3. SetSwapState(EFI_SWAPPED)
4. Erasing boot block (0xFFFF-0xFFFFFFFF)
5. Programming boot block until the boot block is ok.
6. SetSwapState(UNSWAPPED)
Notes:
1. Since the SwapState bit is saved in CMOS, FTW can restore and continue
even in the scenario of power failure.
2. FTW shall not allow to update boot block when battery state is error.
**/
EFI_STATUS
FlushSpareBlockToBootBlock (
EFI_FTW_LITE_DEVICE *FtwLiteDevice
)
/*++
Routine Description:
Copy the content of spare block to a boot block. Size is FTW_BLOCK_SIZE.
Spare block is accessed by FTW backup FVB protocol interface. LBA is
FtwLiteDevice->FtwSpareLba.
Boot block is accessed by BootFvb protocol interface. LBA is 0.
Arguments:
FtwLiteDevice - The private data of FTW_LITE driver
Returns:
EFI_SUCCESS - Spare block content is copied to boot block
EFI_INVALID_PARAMETER - Input parameter error
EFI_OUT_OF_RESOURCES - Allocate memory error
EFI_ABORTED - The function could not complete successfully
Notes:
FTW will do extra work on boot block update.
FTW should depend on a protocol of EFI_ADDRESS_RANGE_SWAP_PROTOCOL,
which is produced by a chipset driver.
FTW updating boot block steps:
1. Erase top swap block (0xFFFE-0xFFFEFFFF) and write data to it ready
2. Read data from top swap block to memory buffer
3. SetSwapState(EFI_SWAPPED)
4. Erasing boot block (0xFFFF-0xFFFFFFFF)
5. Programming boot block until the boot block is ok.
6. SetSwapState(UNSWAPPED)
Notes:
1. Since the SwapState bit is saved in CMOS, FTW can restore and continue
even in the scenario of power failure.
2. FTW shall not allow to update boot block when battery state is error.
--*/
{
EFI_STATUS Status;
UINTN Length;

View File

@ -21,83 +21,69 @@ WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED.
//
#define BOOT_BLOCK_BASE
STATIC
/**
Get swap state
This is a internal function.
@param FtwLiteDevice Calling context
@param SwapState Swap state
@retval EFI_SUCCESS State successfully got
**/
EFI_STATUS
GetSwapState (
IN EFI_FTW_LITE_DEVICE *FtwLiteDevice,
OUT BOOLEAN *SwapState
)
/*++
Routine Description:
Get swap state
Arguments:
FtwLiteDevice - Calling context
SwapState - Swap state
Returns:
EFI_SUCCESS - State successfully got
--*/
{
return EFI_SUCCESS;
}
STATIC
/**
Set swap state.
This is a internal function.
@param FtwLiteDevice Indicates a pointer to the calling context.
@param TopSwap New swap state
@retval EFI_SUCCESS The function completed successfully
Note:
the Top-Swap bit (bit 13, D31: F0, Offset D4h). Note that
software will not be able to clear the Top-Swap bit until the system is
rebooted without GNT[A]# being pulled down.
**/
EFI_STATUS
SetSwapState (
IN EFI_FTW_LITE_DEVICE *FtwLiteDevice,
IN BOOLEAN TopSwap
)
/*++
Routine Description:
Set swap state.
Arguments:
FtwLiteDevice - Indicates a pointer to the calling context.
TopSwap - New swap state
Returns:
EFI_SUCCESS - The function completed successfully
Note:
the Top-Swap bit (bit 13, D31: F0, Offset D4h). Note that
software will not be able to clear the Top-Swap bit until the system is
rebooted without GNT[A]# being pulled down.
--*/
{
return EFI_SUCCESS;
}
/**
Check whether the block is a boot block.
@param FtwLiteDevice Calling context
@param FvBlock Fvb protocol instance
@param Lba Lba value
@retval FALSE This is a boot block.
@retval TRUE This is not a boot block.
**/
BOOLEAN
IsBootBlock (
EFI_FTW_LITE_DEVICE *FtwLiteDevice,
EFI_FIRMWARE_VOLUME_BLOCK_PROTOCOL *FvBlock,
EFI_LBA Lba
)
/*++
Routine Description:
Check whether the block is a boot block.
Arguments:
FtwLiteDevice - Calling context
FvBlock - Fvb protocol instance
Lba - Lba value
Returns:
Is a boot block or not
--*/
{
//
// IPF doesn't support safe bootblock update
@ -106,30 +92,26 @@ Returns:
return FALSE;
}
/**
Copy the content of spare block to a boot block. Size is FTW_BLOCK_SIZE.
Spare block is accessed by FTW backup FVB protocol interface. LBA is
FtwLiteDevice->FtwSpareLba.
Boot block is accessed by BootFvb protocol interface. LBA is 0.
@param FtwLiteDevice The private data of FTW_LITE driver
@retval EFI_SUCCESS Spare block content is copied to boot block
@retval EFI_INVALID_PARAMETER Input parameter error
@retval EFI_OUT_OF_RESOURCES Allocate memory error
@retval EFI_ABORTED The function could not complete successfully
Notes:
**/
EFI_STATUS
FlushSpareBlockToBootBlock (
EFI_FTW_LITE_DEVICE *FtwLiteDevice
)
/*++
Routine Description:
Copy the content of spare block to a boot block. Size is FTW_BLOCK_SIZE.
Spare block is accessed by FTW backup FVB protocol interface. LBA is
FtwLiteDevice->FtwSpareLba.
Boot block is accessed by BootFvb protocol interface. LBA is 0.
Arguments:
FtwLiteDevice - The private data of FTW_LITE driver
Returns:
EFI_SUCCESS - Spare block content is copied to boot block
EFI_INVALID_PARAMETER - Input parameter error
EFI_OUT_OF_RESOURCES - Allocate memory error
EFI_ABORTED - The function could not complete successfully
Notes:
--*/
{
return EFI_SUCCESS;
}

View File

@ -1,4 +1,4 @@
/**
/** @file
X64 platform related code to support FtwLite.
@ -21,111 +21,92 @@ WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED.
//
#define BOOT_BLOCK_BASE
// STATIC
/**
Get swap state.
@param FtwLiteDevice Calling context
@param SwapState Swap state
@retval EFI_SUCCESS State successfully read.
**/
EFI_STATUS
GetSwapState (
IN EFI_FTW_LITE_DEVICE *FtwLiteDevice,
OUT BOOLEAN *SwapState
)
/*++
Routine Description:
Get swap state
Arguments:
FtwLiteDevice - Calling context
SwapState - Swap state
Returns:
EFI_SUCCESS - State successfully got
--*/
{
return EFI_SUCCESS;
}
// STATIC
/**
Set swap state.
@param FtwLiteDevice Indicates a pointer to the calling context.
@param TopSwap New swap state
@retval EFI_SUCCESS The function completed successfully
Note:
the Top-Swap bit (bit 13, D31: F0, Offset D4h). Note that
software will not be able to clear the Top-Swap bit until the system is
rebooted without GNT[A]# being pulled down.
**/
EFI_STATUS
SetSwapState (
IN EFI_FTW_LITE_DEVICE *FtwLiteDevice,
IN BOOLEAN TopSwap
)
/*++
Routine Description:
Set swap state.
Arguments:
FtwLiteDevice - Indicates a pointer to the calling context.
TopSwap - New swap state
Returns:
EFI_SUCCESS - The function completed successfully
Note:
the Top-Swap bit (bit 13, D31: F0, Offset D4h). Note that
software will not be able to clear the Top-Swap bit until the system is
rebooted without GNT[A]# being pulled down.
--*/
{
return EFI_SUCCESS;
}
/**
Check whether the block is a boot block.
@param FtwLiteDevice Calling context
@param FvBlock Fvb protocol instance
@param Lba Lba value
@retval FALSE This is a boot block.
@retval TRUE This is not a boot block.
**/
BOOLEAN
IsBootBlock (
EFI_FTW_LITE_DEVICE *FtwLiteDevice,
EFI_FIRMWARE_VOLUME_BLOCK_PROTOCOL *FvBlock,
EFI_LBA Lba
)
/*++
Routine Description:
Check whether the block is a boot block.
Arguments:
FtwLiteDevice - Calling context
FvBlock - Fvb protocol instance
Lba - Lba value
Returns:
Is a boot block or not
--*/
{
return FALSE;
}
/**
Copy the content of spare block to a boot block. Size is FTW_BLOCK_SIZE.
Spare block is accessed by FTW backup FVB protocol interface. LBA is
FtwLiteDevice->FtwSpareLba.
Boot block is accessed by BootFvb protocol interface. LBA is 0.
@param FtwLiteDevice The private data of FTW_LITE driver
@retval EFI_SUCCESS Spare block content is copied to boot block
@retval EFI_INVALID_PARAMETER Input parameter error
@retval EFI_OUT_OF_RESOURCES Allocate memory error
@retval EFI_ABORTED The function could not complete successfully
Notes:
**/
EFI_STATUS
FlushSpareBlockToBootBlock (
EFI_FTW_LITE_DEVICE *FtwLiteDevice
)
/*++
Routine Description:
Copy the content of spare block to a boot block. Size is FTW_BLOCK_SIZE.
Spare block is accessed by FTW backup FVB protocol interface. LBA is
FtwLiteDevice->FtwSpareLba.
Boot block is accessed by BootFvb protocol interface. LBA is 0.
Arguments:
FtwLiteDevice - The private data of FTW_LITE driver
Returns:
EFI_SUCCESS - Spare block content is copied to boot block
EFI_INVALID_PARAMETER - Input parameter error
EFI_OUT_OF_RESOURCES - Allocate memory error
EFI_ABORTED - The function could not complete successfully
Notes:
--*/
{
return EFI_SUCCESS;
}