UefiCpuPkg: Add GenSmmPageTable() to create smm page table

This commit is code refinement to current smm pagetable generation
code. Add a new GenSmmPageTable() API to create smm page table
based on the PageTableMap() API in CpuPageTableLib. Caller only
needs to specify the paging mode and the PhysicalAddressBits to map.
This function can be used to create both IA32 pae paging and X64
5level, 4level paging.

Signed-off-by: Dun Tan <dun.tan@intel.com>
Cc: Eric Dong <eric.dong@intel.com>
Reviewed-by: Ray Ni <ray.ni@intel.com>
Cc: Rahul Kumar <rahul1.kumar@intel.com>
Cc: Gerd Hoffmann <kraxel@redhat.com>
This commit is contained in:
Dun Tan 2023-05-15 15:47:54 +08:00 committed by Ray Ni
parent d706d9c64a
commit 701b5797b2
4 changed files with 107 additions and 195 deletions

View File

@ -63,7 +63,7 @@ SmmInitPageTable (
InitializeIDTSmmStackGuard ();
}
return Gen4GPageTable (TRUE);
return GenSmmPageTable (PagingPae, mPhysicalAddressBits);
}
/**

View File

@ -555,6 +555,21 @@ Gen4GPageTable (
IN BOOLEAN Is32BitPageTable
);
/**
Create page table based on input PagingMode and PhysicalAddressBits in smm.
@param[in] PagingMode The paging mode.
@param[in] PhysicalAddressBits The bits of physical address to map.
@retval PageTable Address
**/
UINTN
GenSmmPageTable (
IN PAGING_MODE PagingMode,
IN UINT8 PhysicalAddressBits
);
/**
Initialize global data for MP synchronization.

View File

@ -1646,6 +1646,71 @@ EdkiiSmmClearMemoryAttributes (
return SmmClearMemoryAttributes (BaseAddress, Length, Attributes);
}
/**
Create page table based on input PagingMode and PhysicalAddressBits in smm.
@param[in] PagingMode The paging mode.
@param[in] PhysicalAddressBits The bits of physical address to map.
@retval PageTable Address
**/
UINTN
GenSmmPageTable (
IN PAGING_MODE PagingMode,
IN UINT8 PhysicalAddressBits
)
{
UINTN PageTableBufferSize;
UINTN PageTable;
VOID *PageTableBuffer;
IA32_MAP_ATTRIBUTE MapAttribute;
IA32_MAP_ATTRIBUTE MapMask;
RETURN_STATUS Status;
UINTN GuardPage;
UINTN Index;
UINT64 Length;
Length = LShiftU64 (1, PhysicalAddressBits);
PageTable = 0;
PageTableBufferSize = 0;
MapMask.Uint64 = MAX_UINT64;
MapAttribute.Uint64 = mAddressEncMask;
MapAttribute.Bits.Present = 1;
MapAttribute.Bits.ReadWrite = 1;
MapAttribute.Bits.UserSupervisor = 1;
MapAttribute.Bits.Accessed = 1;
MapAttribute.Bits.Dirty = 1;
Status = PageTableMap (&PageTable, PagingMode, NULL, &PageTableBufferSize, 0, Length, &MapAttribute, &MapMask, NULL);
ASSERT (Status == RETURN_BUFFER_TOO_SMALL);
DEBUG ((DEBUG_INFO, "GenSMMPageTable: 0x%x bytes needed for initial SMM page table\n", PageTableBufferSize));
PageTableBuffer = AllocatePageTableMemory (EFI_SIZE_TO_PAGES (PageTableBufferSize));
ASSERT (PageTableBuffer != NULL);
Status = PageTableMap (&PageTable, PagingMode, PageTableBuffer, &PageTableBufferSize, 0, Length, &MapAttribute, &MapMask, NULL);
ASSERT (Status == RETURN_SUCCESS);
ASSERT (PageTableBufferSize == 0);
if (FeaturePcdGet (PcdCpuSmmStackGuard)) {
//
// Mark the 4KB guard page between known good stack and smm stack as non-present
//
for (Index = 0; Index < gSmmCpuPrivate->SmmCoreEntryContext.NumberOfCpus; Index++) {
GuardPage = mSmmStackArrayBase + EFI_PAGE_SIZE + Index * (mSmmStackSize + mSmmShadowStackSize);
Status = ConvertMemoryPageAttributes (PageTable, PagingMode, GuardPage, SIZE_4KB, EFI_MEMORY_RP, TRUE, NULL);
}
}
if ((PcdGet8 (PcdNullPointerDetectionPropertyMask) & BIT1) != 0) {
//
// Mark [0, 4k] as non-present
//
Status = ConvertMemoryPageAttributes (PageTable, PagingMode, 0, SIZE_4KB, EFI_MEMORY_RP, TRUE, NULL);
}
return (UINTN)PageTable;
}
/**
This function retrieves the attributes of the memory region specified by
BaseAddress and Length. If different attributes are got from different part

View File

@ -167,160 +167,6 @@ CalculateMaximumSupportAddress (
return PhysicalAddressBits;
}
/**
Set static page table.
@param[in] PageTable Address of page table.
@param[in] PhysicalAddressBits The maximum physical address bits supported.
**/
VOID
SetStaticPageTable (
IN UINTN PageTable,
IN UINT8 PhysicalAddressBits
)
{
UINT64 PageAddress;
UINTN NumberOfPml5EntriesNeeded;
UINTN NumberOfPml4EntriesNeeded;
UINTN NumberOfPdpEntriesNeeded;
UINTN IndexOfPml5Entries;
UINTN IndexOfPml4Entries;
UINTN IndexOfPdpEntries;
UINTN IndexOfPageDirectoryEntries;
UINT64 *PageMapLevel5Entry;
UINT64 *PageMapLevel4Entry;
UINT64 *PageMap;
UINT64 *PageDirectoryPointerEntry;
UINT64 *PageDirectory1GEntry;
UINT64 *PageDirectoryEntry;
//
// IA-32e paging translates 48-bit linear addresses to 52-bit physical addresses
// when 5-Level Paging is disabled.
//
ASSERT (PhysicalAddressBits <= 52);
if (!m5LevelPagingNeeded && (PhysicalAddressBits > 48)) {
PhysicalAddressBits = 48;
}
NumberOfPml5EntriesNeeded = 1;
if (PhysicalAddressBits > 48) {
NumberOfPml5EntriesNeeded = (UINTN)LShiftU64 (1, PhysicalAddressBits - 48);
PhysicalAddressBits = 48;
}
NumberOfPml4EntriesNeeded = 1;
if (PhysicalAddressBits > 39) {
NumberOfPml4EntriesNeeded = (UINTN)LShiftU64 (1, PhysicalAddressBits - 39);
PhysicalAddressBits = 39;
}
NumberOfPdpEntriesNeeded = 1;
ASSERT (PhysicalAddressBits > 30);
NumberOfPdpEntriesNeeded = (UINTN)LShiftU64 (1, PhysicalAddressBits - 30);
//
// By architecture only one PageMapLevel4 exists - so lets allocate storage for it.
//
PageMap = (VOID *)PageTable;
PageMapLevel4Entry = PageMap;
PageMapLevel5Entry = NULL;
if (m5LevelPagingNeeded) {
//
// By architecture only one PageMapLevel5 exists - so lets allocate storage for it.
//
PageMapLevel5Entry = PageMap;
}
PageAddress = 0;
for ( IndexOfPml5Entries = 0
; IndexOfPml5Entries < NumberOfPml5EntriesNeeded
; IndexOfPml5Entries++, PageMapLevel5Entry++)
{
//
// Each PML5 entry points to a page of PML4 entires.
// So lets allocate space for them and fill them in in the IndexOfPml4Entries loop.
// When 5-Level Paging is disabled, below allocation happens only once.
//
if (m5LevelPagingNeeded) {
PageMapLevel4Entry = (UINT64 *)((*PageMapLevel5Entry) & ~mAddressEncMask & gPhyMask);
if (PageMapLevel4Entry == NULL) {
PageMapLevel4Entry = AllocatePageTableMemory (1);
ASSERT (PageMapLevel4Entry != NULL);
ZeroMem (PageMapLevel4Entry, EFI_PAGES_TO_SIZE (1));
*PageMapLevel5Entry = (UINT64)(UINTN)PageMapLevel4Entry | mAddressEncMask | PAGE_ATTRIBUTE_BITS;
}
}
for (IndexOfPml4Entries = 0; IndexOfPml4Entries < (NumberOfPml5EntriesNeeded == 1 ? NumberOfPml4EntriesNeeded : 512); IndexOfPml4Entries++, PageMapLevel4Entry++) {
//
// Each PML4 entry points to a page of Page Directory Pointer entries.
//
PageDirectoryPointerEntry = (UINT64 *)((*PageMapLevel4Entry) & ~mAddressEncMask & gPhyMask);
if (PageDirectoryPointerEntry == NULL) {
PageDirectoryPointerEntry = AllocatePageTableMemory (1);
ASSERT (PageDirectoryPointerEntry != NULL);
ZeroMem (PageDirectoryPointerEntry, EFI_PAGES_TO_SIZE (1));
*PageMapLevel4Entry = (UINT64)(UINTN)PageDirectoryPointerEntry | mAddressEncMask | PAGE_ATTRIBUTE_BITS;
}
if (m1GPageTableSupport) {
PageDirectory1GEntry = PageDirectoryPointerEntry;
for (IndexOfPageDirectoryEntries = 0; IndexOfPageDirectoryEntries < 512; IndexOfPageDirectoryEntries++, PageDirectory1GEntry++, PageAddress += SIZE_1GB) {
if ((IndexOfPml4Entries == 0) && (IndexOfPageDirectoryEntries < 4)) {
//
// Skip the < 4G entries
//
continue;
}
//
// Fill in the Page Directory entries
//
*PageDirectory1GEntry = PageAddress | mAddressEncMask | IA32_PG_PS | PAGE_ATTRIBUTE_BITS;
}
} else {
PageAddress = BASE_4GB;
for (IndexOfPdpEntries = 0; IndexOfPdpEntries < (NumberOfPml4EntriesNeeded == 1 ? NumberOfPdpEntriesNeeded : 512); IndexOfPdpEntries++, PageDirectoryPointerEntry++) {
if ((IndexOfPml4Entries == 0) && (IndexOfPdpEntries < 4)) {
//
// Skip the < 4G entries
//
continue;
}
//
// Each Directory Pointer entries points to a page of Page Directory entires.
// So allocate space for them and fill them in in the IndexOfPageDirectoryEntries loop.
//
PageDirectoryEntry = (UINT64 *)((*PageDirectoryPointerEntry) & ~mAddressEncMask & gPhyMask);
if (PageDirectoryEntry == NULL) {
PageDirectoryEntry = AllocatePageTableMemory (1);
ASSERT (PageDirectoryEntry != NULL);
ZeroMem (PageDirectoryEntry, EFI_PAGES_TO_SIZE (1));
//
// Fill in a Page Directory Pointer Entries
//
*PageDirectoryPointerEntry = (UINT64)(UINTN)PageDirectoryEntry | mAddressEncMask | PAGE_ATTRIBUTE_BITS;
}
for (IndexOfPageDirectoryEntries = 0; IndexOfPageDirectoryEntries < 512; IndexOfPageDirectoryEntries++, PageDirectoryEntry++, PageAddress += SIZE_2MB) {
//
// Fill in the Page Directory entries
//
*PageDirectoryEntry = PageAddress | mAddressEncMask | IA32_PG_PS | PAGE_ATTRIBUTE_BITS;
}
}
}
}
}
}
/**
Create PageTable for SMM use.
@ -332,15 +178,16 @@ SmmInitPageTable (
VOID
)
{
EFI_PHYSICAL_ADDRESS Pages;
UINT64 *PTEntry;
UINTN PageTable;
LIST_ENTRY *FreePage;
UINTN Index;
UINTN PageFaultHandlerHookAddress;
IA32_IDT_GATE_DESCRIPTOR *IdtEntry;
EFI_STATUS Status;
UINT64 *PdptEntry;
UINT64 *Pml4Entry;
UINT64 *Pml5Entry;
UINT8 PhysicalAddressBits;
//
// Initialize spin lock
@ -357,59 +204,44 @@ SmmInitPageTable (
} else {
mPagingMode = m1GPageTableSupport ? Paging4Level1GB : Paging4Level;
}
DEBUG ((DEBUG_INFO, "5LevelPaging Needed - %d\n", m5LevelPagingNeeded));
DEBUG ((DEBUG_INFO, "1GPageTable Support - %d\n", m1GPageTableSupport));
DEBUG ((DEBUG_INFO, "PcdCpuSmmRestrictedMemoryAccess - %d\n", mCpuSmmRestrictedMemoryAccess));
DEBUG ((DEBUG_INFO, "PhysicalAddressBits - %d\n", mPhysicalAddressBits));
//
// Generate PAE page table for the first 4GB memory space
//
Pages = Gen4GPageTable (FALSE);
//
// Set IA32_PG_PMNT bit to mask this entry
// Generate initial SMM page table.
// Only map [0, 4G] when PcdCpuSmmRestrictedMemoryAccess is FALSE.
//
PTEntry = (UINT64 *)(UINTN)Pages;
for (Index = 0; Index < 4; Index++) {
PTEntry[Index] |= IA32_PG_PMNT;
}
//
// Fill Page-Table-Level4 (PML4) entry
//
Pml4Entry = (UINT64 *)AllocatePageTableMemory (1);
ASSERT (Pml4Entry != NULL);
*Pml4Entry = Pages | mAddressEncMask | PAGE_ATTRIBUTE_BITS;
ZeroMem (Pml4Entry + 1, EFI_PAGE_SIZE - sizeof (*Pml4Entry));
//
// Set sub-entries number
//
SetSubEntriesNum (Pml4Entry, 3);
PTEntry = Pml4Entry;
PhysicalAddressBits = mCpuSmmRestrictedMemoryAccess ? mPhysicalAddressBits : 32;
PageTable = GenSmmPageTable (mPagingMode, PhysicalAddressBits);
if (m5LevelPagingNeeded) {
Pml5Entry = (UINT64 *)PageTable;
//
// Fill PML5 entry
//
Pml5Entry = (UINT64 *)AllocatePageTableMemory (1);
ASSERT (Pml5Entry != NULL);
*Pml5Entry = (UINTN)Pml4Entry | mAddressEncMask | PAGE_ATTRIBUTE_BITS;
ZeroMem (Pml5Entry + 1, EFI_PAGE_SIZE - sizeof (*Pml5Entry));
//
// Set sub-entries number
// Set Pml5Entry sub-entries number for smm PF handler usage.
//
SetSubEntriesNum (Pml5Entry, 1);
PTEntry = Pml5Entry;
Pml4Entry = (UINT64 *)((*Pml5Entry) & ~mAddressEncMask & gPhyMask);
} else {
Pml4Entry = (UINT64 *)PageTable;
}
if (mCpuSmmRestrictedMemoryAccess) {
//
// Set IA32_PG_PMNT bit to mask first 4 PdptEntry.
//
PdptEntry = (UINT64 *)((*Pml4Entry) & ~mAddressEncMask & gPhyMask);
for (Index = 0; Index < 4; Index++) {
PdptEntry[Index] |= IA32_PG_PMNT;
}
if (!mCpuSmmRestrictedMemoryAccess) {
//
// When access to non-SMRAM memory is restricted, create page table
// that covers all memory space.
// Set Pml4Entry sub-entries number for smm PF handler usage.
//
SetStaticPageTable ((UINTN)PTEntry, mPhysicalAddressBits);
} else {
SetSubEntriesNum (Pml4Entry, 3);
//
// Add pages to page pool
//
@ -466,7 +298,7 @@ SmmInitPageTable (
//
// Return the address of PML4/PML5 (to set CR3)
//
return (UINT32)(UINTN)PTEntry;
return (UINT32)PageTable;
}
/**