EmbeddedPkg: delete unused HalRuntimeServicesExampleLib

HalRuntimeServicesExampleLib contains no .inf and none of its contents
are included elsewhere - so get rid of it.

Contributed-under: TianoCore Contribution Agreement 1.1
Signed-off-by: Leif Lindholm <leif.lindholm@linaro.org>
Reviewed-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
This commit is contained in:
Leif Lindholm 2018-02-06 15:36:02 +00:00
parent 03823aa3c6
commit 72dd8a53fc
6 changed files with 0 additions and 1943 deletions

View File

@ -1,288 +0,0 @@
/** @file
Generic Capsule services
Copyright (c) 2008 - 2009, Apple Inc. All rights reserved.<BR>
This program and the accompanying materials
are licensed and made available under the terms and conditions of the BSD License
which accompanies this distribution. The full text of the license may be found at
http://opensource.org/licenses/bsd-license.php
THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS,
WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED.
**/
#include <Common/CapsuleName.h>
//
//Max size capsule services support are platform policy,to populate capsules we just need
//memory to maintain them across reset,it is not a problem. And to special capsules ,for
//example,update flash,it is mostly decided by the platform. Here is a sample size for
//different type capsules.
//
#define MAX_SIZE_POPULATE (0)
#define MAX_SIZE_NON_POPULATE (0)
#define MAX_SUPPORT_CAPSULE_NUM 0x10
BOOLEAN
EFIAPI
SupportUpdateCapsuleRest (
VOID
)
{
//
//If the platform has a way to guarantee the memory integrity across a system reset, return
//TRUE, else FALSE.
//
return FALSE;
}
VOID
EFIAPI
SupportCapsuleSize (
IN OUT UINT32 *MaxSizePopulate,
IN OUT UINT32 *MaxSizeNonPopulate
)
{
//
//Here is a sample size, different platforms have different sizes.
//
*MaxSizePopulate = MAX_SIZE_POPULATE;
*MaxSizeNonPopulate = MAX_SIZE_NON_POPULATE;
return;
}
EFI_STATUS
LibUpdateCapsule (
IN UEFI_CAPSULE_HEADER **CapsuleHeaderArray,
IN UINTN CapsuleCount,
IN EFI_PHYSICAL_ADDRESS ScatterGatherList OPTIONAL
)
/*++
Routine Description:
This code finds if the capsule needs reset to update, if no, update immediately.
Arguments:
CapsuleHeaderArray A array of pointers to capsule headers passed in
CapsuleCount The number of capsule
ScatterGatherList Physical address of datablock list points to capsule
Returns:
EFI STATUS
EFI_SUCCESS Valid capsule was passed.If CAPSULE_FLAG_PERSIT_ACROSS_RESET is
not set, the capsule has been successfully processed by the firmware.
If it set, the ScattlerGatherList is successfully to be set.
EFI_INVALID_PARAMETER CapsuleCount is less than 1,CapsuleGuid is not supported.
EFI_DEVICE_ERROR Failed to SetVariable or AllocatePool or ProcessFirmwareVolume.
--*/
{
UINTN CapsuleSize;
UINTN ArrayNumber;
VOID *BufferPtr;
EFI_STATUS Status;
EFI_HANDLE FvHandle;
UEFI_CAPSULE_HEADER *CapsuleHeader;
if ((CapsuleCount < 1) || (CapsuleCount > MAX_SUPPORT_CAPSULE_NUM)){
return EFI_INVALID_PARAMETER;
}
BufferPtr = NULL;
CapsuleHeader = NULL;
//
//Compare GUIDs with EFI_CAPSULE_GUID, if capsule header contains CAPSULE_FLAGS_PERSIST_ACROSS_RESET
//and CAPSULE_FLAGS_POPULATE_SYSTEM_TABLE flags,whatever the GUID is ,the service supports.
//
for (ArrayNumber = 0; ArrayNumber < CapsuleCount; ArrayNumber++) {
CapsuleHeader = CapsuleHeaderArray[ArrayNumber];
if ((CapsuleHeader->Flags & (CAPSULE_FLAGS_PERSIST_ACROSS_RESET | CAPSULE_FLAGS_POPULATE_SYSTEM_TABLE)) == CAPSULE_FLAGS_POPULATE_SYSTEM_TABLE) {
return EFI_INVALID_PARAMETER;
}
if (!CompareGuid (&CapsuleHeader->CapsuleGuid, &gEfiCapsuleGuid)) {
if ((CapsuleHeader->Flags & CAPSULE_FLAGS_POPULATE_SYSTEM_TABLE) == 0) {
return EFI_UNSUPPORTED;
}
}
}
//
//Assume that capsules have the same flags on resetting or not.
//
CapsuleHeader = CapsuleHeaderArray[0];
if ((CapsuleHeader->Flags & CAPSULE_FLAGS_PERSIST_ACROSS_RESET) != 0) {
//
//Check if the platform supports update capsule across a system reset
//
if (!SupportUpdateCapsuleRest()) {
return EFI_UNSUPPORTED;
}
if (ScatterGatherList == 0) {
return EFI_INVALID_PARAMETER;
} else {
Status = EfiSetVariable (
EFI_CAPSULE_VARIABLE_NAME,
&gEfiCapsuleVendorGuid,
EFI_VARIABLE_NON_VOLATILE | EFI_VARIABLE_RUNTIME_ACCESS | EFI_VARIABLE_BOOTSERVICE_ACCESS,
sizeof (UINTN),
(VOID *) &ScatterGatherList
);
if (Status != EFI_SUCCESS) {
return EFI_DEVICE_ERROR;
}
}
return EFI_SUCCESS;
}
//
//The rest occurs in the condition of non-reset mode
//
if (EfiAtRuntime ()) {
return EFI_INVALID_PARAMETER;
}
//
//Here should be in the boot-time
//
for (ArrayNumber = 0; ArrayNumber < CapsuleCount ; ArrayNumber++) {
CapsuleHeader = CapsuleHeaderArray[ArrayNumber];
CapsuleSize = CapsuleHeader->CapsuleImageSize - CapsuleHeader->HeaderSize;
Status = gBS->AllocatePool (EfiBootServicesData, CapsuleSize, &BufferPtr);
if (Status != EFI_SUCCESS) {
goto Done;
}
gBS->CopyMem (BufferPtr, (UINT8*)CapsuleHeader+ CapsuleHeader->HeaderSize, CapsuleSize);
//
//Call DXE service ProcessFirmwareVolume to process immediatelly
//
Status = gDS->ProcessFirmwareVolume (BufferPtr, CapsuleSize, &FvHandle);
if (Status != EFI_SUCCESS) {
gBS->FreePool (BufferPtr);
return EFI_DEVICE_ERROR;
}
gDS->Dispatch ();
gBS->FreePool (BufferPtr);
}
return EFI_SUCCESS;
Done:
if (BufferPtr != NULL) {
gBS->FreePool (BufferPtr);
}
return EFI_DEVICE_ERROR;
}
EFI_STATUS
QueryCapsuleCapabilities (
IN UEFI_CAPSULE_HEADER **CapsuleHeaderArray,
IN UINTN CapsuleCount,
OUT UINT64 *MaxiumCapsuleSize,
OUT EFI_RESET_TYPE *ResetType
)
/*++
Routine Description:
This code is query about capsule capability.
Arguments:
CapsuleHeaderArray A array of pointers to capsule headers passed in
CapsuleCount The number of capsule
MaxiumCapsuleSize Max capsule size is supported
ResetType Reset type the capsule indicates, if reset is not needed,return EfiResetCold.
If reset is needed, return EfiResetWarm.
Returns:
EFI STATUS
EFI_SUCCESS Valid answer returned
EFI_INVALID_PARAMETER MaxiumCapsuleSize is NULL,ResetType is NULL.CapsuleCount is less than 1,CapsuleGuid is not supported.
EFI_UNSUPPORTED The capsule type is not supported.
--*/
{
UINTN ArrayNumber;
UEFI_CAPSULE_HEADER *CapsuleHeader;
UINT32 MaxSizePopulate;
UINT32 MaxSizeNonPopulate;
if ((CapsuleCount < 1) || (CapsuleCount > MAX_SUPPORT_CAPSULE_NUM)){
return EFI_INVALID_PARAMETER;
}
if ((MaxiumCapsuleSize == NULL) ||(ResetType == NULL)) {
return EFI_INVALID_PARAMETER;
}
CapsuleHeader = NULL;
//
//Compare GUIDs with EFI_CAPSULE_GUID, if capsule header contains CAPSULE_FLAGS_PERSIST_ACROSS_RESET
//and CAPSULE_FLAGS_POPULATE_SYSTEM_TABLE flags,whatever the GUID is ,the service supports.
//
for (ArrayNumber = 0; ArrayNumber < CapsuleCount; ArrayNumber++) {
CapsuleHeader = CapsuleHeaderArray[ArrayNumber];
if ((CapsuleHeader->Flags & (CAPSULE_FLAGS_PERSIST_ACROSS_RESET | CAPSULE_FLAGS_POPULATE_SYSTEM_TABLE)) == CAPSULE_FLAGS_POPULATE_SYSTEM_TABLE) {
return EFI_INVALID_PARAMETER;
}
if (!CompareGuid (&CapsuleHeader->CapsuleGuid, &gEfiCapsuleGuid)) {
if ((CapsuleHeader->Flags & CAPSULE_FLAGS_POPULATE_SYSTEM_TABLE) == 0) {
return EFI_UNSUPPORTED;
}
}
}
SupportCapsuleSize(&MaxSizePopulate,&MaxSizeNonPopulate);
//
//Assume that capsules have the same flags on resetting or not.
//
CapsuleHeader = CapsuleHeaderArray[0];
if ((CapsuleHeader->Flags & CAPSULE_FLAGS_PERSIST_ACROSS_RESET) != 0) {
//
//Check if the platform supports update capsule across a system reset
//
if (!SupportUpdateCapsuleRest()) {
return EFI_UNSUPPORTED;
}
*ResetType = EfiResetWarm;
*MaxiumCapsuleSize = MaxSizePopulate;
} else {
*ResetType = EfiResetCold;
*MaxiumCapsuleSize = MaxSizeNonPopulate;
}
return EFI_SUCCESS;
}
VOID
LibCapsuleVirtualAddressChangeEvent (
VOID
)
{
}
VOID
LibCapsuleInitialize (
VOID
)
{
}

View File

@ -1,226 +0,0 @@
/** @file
Generic Monotonic Counter services
Copyright (c) 2007, Intel Corporation. All rights reserved.<BR>
Portions copyright (c) 2008 - 2009, Apple Inc. All rights reserved.<BR>
This program and the accompanying materials
are licensed and made available under the terms and conditions of the BSD License
which accompanies this distribution. The full text of the license may be found at
http://opensource.org/licenses/bsd-license.php
THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS,
WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED.
**/
//
// The current Monotonic count value
//
UINT64 mEfiMtc = 0;
//
// Event to use to update the Mtc's high part when wrapping
//
EFI_EVENT mEfiMtcEvent;
//
// EfiMtcName - Variable name of the MTC value
//
CHAR16 *mEfiMtcName = L"MTC";
//
// EfiMtcGuid - Guid of the MTC value
//
EFI_GUID mEfiMtcGuid = { 0xeb704011, 0x1402, 0x11d3, { 0x8e, 0x77, 0x0, 0xa0, 0xc9, 0x69, 0x72, 0x3b } };
//
// Worker functions
//
VOID
EFIAPI
EfiMtcEventHandler (
IN EFI_EVENT Event,
IN VOID *Context
)
/*++
Routine Description:
Monotonic count event handler. This handler updates the high monotonic count.
Arguments:
Event The event to handle
Context The event context
Returns:
EFI_SUCCESS The event has been handled properly
EFI_NOT_FOUND An error occurred updating the variable.
--*/
{
UINT32 HighCount;
EfiGetNextHighMonotonicCount (&HighCount);
return;
}
VOID
LibMtcVirtualAddressChangeEvent (VOID)
{
}
EFI_STATUS
EFIAPI
LibMtcGetNextHighMonotonicCount (
OUT UINT32 *HighCount
)
{
EFI_STATUS Status;
EFI_TPL OldTpl;
//
// Check input parameters
//
if (HighCount == NULL) {
return EFI_INVALID_PARAMETER;
}
if (!EfiAtRuntime ()) {
// Use a lock if called before ExitBootServices()
OldTpl = gBS->RaiseTPL (EFI_TPL_HIGH_LEVEL);
}
*HighCount = (UINT32) RShiftU64 (mEfiMtc, 32) + 1;
mEfiMtc = LShiftU64 (*HighCount, 32);
if (!EfiAtRuntime ()) {
gBS->RestoreTPL (OldTpl);
}
//
// Update the NvRam store to match the new high part
//
Status = EfiSetVariable (
mEfiMtcName,
&mEfiMtcGuid,
EFI_VARIABLE_NON_VOLATILE | EFI_VARIABLE_RUNTIME_ACCESS | EFI_VARIABLE_BOOTSERVICE_ACCESS,
sizeof (UINT32),
HighCount
);
return Status;
}
EFI_STATUS
LibMtcGetNextMonotonicCount (
OUT UINT64 *Count
)
{
EFI_STATUS Status;
EFI_TPL OldTpl;
UINT32 HighCount;
UINTN BufferSize;
//
// Can not be called after ExitBootServices()
//
if (EfiAtRuntime ()) {
return EFI_UNSUPPORTED;
}
//
// Check input parameters
//
if (Count == NULL) {
return EFI_INVALID_PARAMETER;
}
if (mEfiMtc == 0) {
//
// If the MTC has not been initialized read the variable
//
//
// Read the last high part
//
BufferSize = sizeof (UINT32);
Status = EfiGetVariable (
mEfiMtcName,
&mEfiMtcGuid,
NULL,
&BufferSize,
&HighCount
);
if (EFI_ERROR (Status)) {
HighCount = 0;
}
//
// Set the current value
//
mEfiMtc = LShiftU64 (HighCount, 32);
//
// Increment the upper 32 bits for this boot
// Continue even if it fails. It will only fail if the variable services are
// not functional.
//
Status = EfiGetNextHighMonotonicCount (&HighCount);
}
//
// Update the monotonic counter with a lock
//
OldTpl = gBS->RaiseTPL (EFI_TPL_HIGH_LEVEL);
*Count = mEfiMtc;
mEfiMtc++;
gBS->RestoreTPL (OldTpl);
//
// If the MSB bit of the low part toggled, then signal that the high
// part needs updated now
//
if ((((UINT32) mEfiMtc) ^ ((UINT32) *Count)) & 0x80000000) {
gBS->SignalEvent (mEfiMtcEvent);
}
return EFI_SUCCESS;
}
VOID
LibMtcInitialize (
VOID
)
{
EFI_STATUS Status;
//
// Initialize event to handle overflows
//
Status = gBS->CreateEvent (
EVT_NOTIFY_SIGNAL,
EFI_TPL_CALLBACK,
EfiMtcEventHandler,
NULL,
&mEfiMtcEvent
);
ASSERT_EFI_ERROR (Status);
}

View File

@ -1,198 +0,0 @@
/** @file
Report status code lib on top of either SerialLib and/or EFI Serial Protocol.
Based on PcdStatusCodeUseEfiSerial & PcdStatusCodeUseHardSerial settings
There is just a single runtime memory buffer that contans all the data.
Copyright (c) 2007, Intel Corporation. All rights reserved.<BR>
Portions copyright (c) 2008 - 2009, Apple Inc. All rights reserved.<BR>
This program and the accompanying materials
are licensed and made available under the terms and conditions of the BSD License
which accompanies this distribution. The full text of the license may be found at
http://opensource.org/licenses/bsd-license.php
THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS,
WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED.
**/
//////////#include "DxeStatusCode.h"
EFI_SERIAL_IO_PROTOCOL *mSerialIoProtocol = NULL;
EFI_STATUS
LibReportStatusCode (
IN EFI_STATUS_CODE_TYPE CodeType,
IN EFI_STATUS_CODE_VALUE Value,
IN UINT32 Instance,
IN EFI_GUID *CallerId,
IN EFI_STATUS_CODE_DATA *Data OPTIONAL
)
{
CHAR8 *Filename;
CHAR8 *Description;
CHAR8 *Format;
CHAR8 Buffer[EFI_STATUS_CODE_DATA_MAX_SIZE];
UINT32 ErrorLevel;
UINT32 LineNumber;
UINTN CharCount;
VA_LIST Marker;
EFI_DEBUG_INFO *DebugInfo;
EFI_TPL CurrentTpl;
if (FeaturePcdGet (PcdStatusCodeUseEfiSerial)) {
if (EfiAtRuntime ()) {
return EFI_DEVICE_ERROR;
}
CurrentTpl = gBS->RaiseTPL (EFI_TPL_HIGH_LEVEL);
gBS->RestoreTPL (CurrentTpl);
if (CurrentTpl > EFI_TPL_CALLBACK ) {
return EFI_DEVICE_ERROR;
}
}
Buffer[0] = '\0';
if (Data != NULL &&
ReportStatusCodeExtractAssertInfo (CodeType, Value, Data, &Filename, &Description, &LineNumber)) {
//
// Print ASSERT() information into output buffer.
//
CharCount = AsciiSPrint (
Buffer,
EFI_STATUS_CODE_DATA_MAX_SIZE,
"\n\rDXE_ASSERT!: %a (%d): %a\n\r",
Filename,
LineNumber,
Description
);
} else if (Data != NULL &&
ReportStatusCodeExtractDebugInfo (Data, &ErrorLevel, &Marker, &Format)) {
//
// Print DEBUG() information into output buffer.
//
CharCount = AsciiVSPrint (
Buffer,
EFI_STATUS_CODE_DATA_MAX_SIZE,
Format,
Marker
);
} else if (Data != NULL &&
CompareGuid (&Data->Type, &gEfiStatusCodeSpecificDataGuid) &&
(CodeType & EFI_STATUS_CODE_TYPE_MASK) == EFI_DEBUG_CODE) {
//
// Print specific data into output buffer.
//
DebugInfo = (EFI_DEBUG_INFO *) (Data + 1);
Marker = (VA_LIST) (DebugInfo + 1);
Format = (CHAR8 *) (((UINT64 *) (DebugInfo + 1)) + 12);
CharCount = AsciiVSPrint (Buffer, EFI_STATUS_CODE_DATA_MAX_SIZE, Format, Marker);
} else if ((CodeType & EFI_STATUS_CODE_TYPE_MASK) == EFI_ERROR_CODE) {
//
// Print ERROR information into output buffer.
//
CharCount = AsciiSPrint (
Buffer,
EFI_STATUS_CODE_DATA_MAX_SIZE,
"ERROR: C%x:V%x I%x",
CodeType,
Value,
Instance
);
//
// Make sure we don't try to print values that weren't
// intended to be printed, especially NULL GUID pointers.
//
if (CallerId != NULL) {
CharCount += AsciiSPrint (
&Buffer[CharCount - 1],
(EFI_STATUS_CODE_DATA_MAX_SIZE - (sizeof (Buffer[0]) * CharCount)),
" %g",
CallerId
);
}
if (Data != NULL) {
CharCount += AsciiSPrint (
&Buffer[CharCount - 1],
(EFI_STATUS_CODE_DATA_MAX_SIZE - (sizeof (Buffer[0]) * CharCount)),
" %x",
Data
);
}
CharCount += AsciiSPrint (
&Buffer[CharCount - 1],
(EFI_STATUS_CODE_DATA_MAX_SIZE - (sizeof (Buffer[0]) * CharCount)),
"\n\r"
);
} else if ((CodeType & EFI_STATUS_CODE_TYPE_MASK) == EFI_PROGRESS_CODE) {
CharCount = AsciiSPrint (
Buffer,
EFI_STATUS_CODE_DATA_MAX_SIZE,
"PROGRESS CODE: V%x I%x\n\r",
Value,
Instance
);
} else {
CharCount = AsciiSPrint (
Buffer,
EFI_STATUS_CODE_DATA_MAX_SIZE,
"Undefined: C%x:V%x I%x\n\r",
CodeType,
Value,
Instance
);
}
if (FeaturePcdGet (PcdStatusCodeUseHardSerial)) {
//
// Callout to SerialPort Lib function to do print.
//
SerialPortWrite ((UINT8 *) Buffer, CharCount);
}
if (FeaturePcdGet (PcdStatusCodeUseEfiSerial)) {
if (mSerialIoProtocol == NULL) {
gBS->LocateProtocol (&gEfiSerialIoProtocolGuid, NULL, (VOID **) &mSerialIoProtocol);
}
if (mSerialIoProtocol == NULL) {
mSerialIoProtocol->Write (
mSerialIoProtocol,
&CharCount,
Buffer
);
}
}
return EFI_SUCCESS;
}
VOID
LibReportStatusCodeVirtualAddressChangeEvent (
VOID
)
{
return;
}
VOID
LibReportStatusCodeInitialize (
VOID
)
{
return;
}

View File

@ -1,63 +0,0 @@
/** @file
Simple PC Port 0x92 reset driver
Copyright (c) 2007, Intel Corporation. All rights reserved.<BR>
Portions copyright (c) 2008 - 2009, Apple Inc. All rights reserved.<BR>
This program and the accompanying materials
are licensed and made available under the terms and conditions of the BSD License
which accompanies this distribution. The full text of the license may be found at
http://opensource.org/licenses/bsd-license.php
THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS,
WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED.
**/
VOID
LibResetInitializeReset (
VOID
)
{
}
VOID
LibResetVirtualAddressChangeEvent (
VOID
)
{
}
VOID
LibResetSystem (
IN EFI_RESET_TYPE ResetType,
IN EFI_STATUS ResetStatus,
IN UINTN DataSize,
IN CHAR16 *ResetData OPTIONAL
)
{
UINT8 Data;
switch (ResetType) {
case EfiResetWarm:
case EfiResetCold:
case EfiResetShutdown:
Data = IoRead8 (0x92);
Data |= 1;
IoWrite8 (0x92, Data);
break;
default:
return ;
}
//
// Given we should have reset getting here would be bad
//
ASSERT (FALSE);
}

View File

@ -1,862 +0,0 @@
/** @file
Simple PC RTC
Copyright (c) 2007, Intel Corporation. All rights reserved.<BR>
Portions copyright (c) 2008 - 2009, Apple Inc. All rights reserved.<BR>
Copyright (c) 2014, ARM Ltd. All rights reserved.
This program and the accompanying materials
are licensed and made available under the terms and conditions of the BSD License
which accompanies this distribution. The full text of the license may be found at
http://opensource.org/licenses/bsd-license.php
THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS,
WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED.
**/
typedef struct {
EFI_LOCK RtcLock;
UINT16 SavedTimeZone;
UINT8 Daylight;
} PC_RTC_GLOBALS;
#define PCAT_RTC_ADDRESS_REGISTER 0x70
#define PCAT_RTC_DATA_REGISTER 0x71
//
// Dallas DS12C887 Real Time Clock
//
#define RTC_ADDRESS_SECONDS 0 // R/W Range 0..59
#define RTC_ADDRESS_SECONDS_ALARM 1 // R/W Range 0..59
#define RTC_ADDRESS_MINUTES 2 // R/W Range 0..59
#define RTC_ADDRESS_MINUTES_ALARM 3 // R/W Range 0..59
#define RTC_ADDRESS_HOURS 4 // R/W Range 1..12 or 0..23 Bit 7 is AM/PM
#define RTC_ADDRESS_HOURS_ALARM 5 // R/W Range 1..12 or 0..23 Bit 7 is AM/PM
#define RTC_ADDRESS_DAY_OF_THE_WEEK 6 // R/W Range 1..7
#define RTC_ADDRESS_DAY_OF_THE_MONTH 7 // R/W Range 1..31
#define RTC_ADDRESS_MONTH 8 // R/W Range 1..12
#define RTC_ADDRESS_YEAR 9 // R/W Range 0..99
#define RTC_ADDRESS_REGISTER_A 10 // R/W[0..6] R0[7]
#define RTC_ADDRESS_REGISTER_B 11 // R/W
#define RTC_ADDRESS_REGISTER_C 12 // RO
#define RTC_ADDRESS_REGISTER_D 13 // RO
#define RTC_ADDRESS_CENTURY 50 // R/W Range 19..20 Bit 8 is R/W
//
// Date and time initial values.
// They are used if the RTC values are invalid during driver initialization
//
#define RTC_INIT_SECOND 0
#define RTC_INIT_MINUTE 0
#define RTC_INIT_HOUR 0
#define RTC_INIT_DAY 1
#define RTC_INIT_MONTH 1
#define RTC_INIT_YEAR 2001
//
// Register initial values
//
#define RTC_INIT_REGISTER_A 0x26
#define RTC_INIT_REGISTER_B 0x02
#define RTC_INIT_REGISTER_D 0x0
#pragma pack(1)
//
// Register A
//
typedef struct {
UINT8 RS : 4; // Rate Selection Bits
UINT8 DV : 3; // Divisor
UINT8 UIP : 1; // Update in progress
} RTC_REGISTER_A_BITS;
typedef union {
RTC_REGISTER_A_BITS Bits;
UINT8 Data;
} RTC_REGISTER_A;
//
// Register B
//
typedef struct {
UINT8 DSE : 1; // 0 - Daylight saving disabled 1 - Daylight savings enabled
UINT8 MIL : 1; // 0 - 12 hour mode 1 - 24 hour mode
UINT8 DM : 1; // 0 - BCD Format 1 - Binary Format
UINT8 SQWE : 1; // 0 - Disable SQWE output 1 - Enable SQWE output
UINT8 UIE : 1; // 0 - Update INT disabled 1 - Update INT enabled
UINT8 AIE : 1; // 0 - Alarm INT disabled 1 - Alarm INT Enabled
UINT8 PIE : 1; // 0 - Periodic INT disabled 1 - Periodic INT Enabled
UINT8 SET : 1; // 0 - Normal operation. 1 - Updates inhibited
} RTC_REGISTER_B_BITS;
typedef union {
RTC_REGISTER_B_BITS Bits;
UINT8 Data;
} RTC_REGISTER_B;
//
// Register C
//
typedef struct {
UINT8 Reserved : 4; // Read as zero. Can not be written.
UINT8 UF : 1; // Update End Interrupt Flag
UINT8 AF : 1; // Alarm Interrupt Flag
UINT8 PF : 1; // Periodic Interrupt Flag
UINT8 IRQF : 1; // Iterrupt Request Flag = PF & PIE | AF & AIE | UF & UIE
} RTC_REGISTER_C_BITS;
typedef union {
RTC_REGISTER_C_BITS Bits;
UINT8 Data;
} RTC_REGISTER_C;
//
// Register D
//
typedef struct {
UINT8 Reserved : 7; // Read as zero. Can not be written.
UINT8 VRT : 1; // Valid RAM and Time
} RTC_REGISTER_D_BITS;
typedef union {
RTC_REGISTER_D_BITS Bits;
UINT8 Data;
} RTC_REGISTER_D;
#pragma pack()
PC_RTC_GLOBALS mRtc;
BOOLEAN
IsLeapYear (
IN EFI_TIME *Time
)
{
if (Time->Year % 4 == 0) {
if (Time->Year % 100 == 0) {
if (Time->Year % 400 == 0) {
return TRUE;
} else {
return FALSE;
}
} else {
return TRUE;
}
} else {
return FALSE;
}
}
const INTN mDayOfMonth[12] = { 31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 };
BOOLEAN
DayValid (
IN EFI_TIME *Time
)
{
if (Time->Day < 1 ||
Time->Day > mDayOfMonth[Time->Month - 1] ||
(Time->Month == 2 && (!IsLeapYear (Time) && Time->Day > 28))
) {
return FALSE;
}
return TRUE;
}
UINT8
DecimaltoBcd (
IN UINT8 DecValue
)
{
UINTN High;
UINTN Low;
High = DecValue / 10;
Low = DecValue - (High * 10);
return (UINT8) (Low + (High << 4));
}
UINT8
BcdToDecimal (
IN UINT8 BcdValue
)
{
UINTN High;
UINTN Low;
High = BcdValue >> 4;
Low = BcdValue - (High << 4);
return (UINT8) (Low + (High * 10));
}
VOID
ConvertEfiTimeToRtcTime (
IN EFI_TIME *Time,
IN RTC_REGISTER_B RegisterB,
IN UINT8 *Century
)
{
BOOLEAN PM;
PM = TRUE;
//
// Adjust hour field if RTC in in 12 hour mode
//
if (RegisterB.Bits.MIL == 0) {
if (Time->Hour < 12) {
PM = FALSE;
}
if (Time->Hour >= 13) {
Time->Hour = (UINT8) (Time->Hour - 12);
} else if (Time->Hour == 0) {
Time->Hour = 12;
}
}
//
// Set the Time/Date/Daylight Savings values.
//
*Century = DecimaltoBcd ((UINT8) (Time->Year / 100));
Time->Year = (UINT16) (Time->Year % 100);
if (RegisterB.Bits.DM == 0) {
Time->Year = DecimaltoBcd ((UINT8) Time->Year);
Time->Month = DecimaltoBcd (Time->Month);
Time->Day = DecimaltoBcd (Time->Day);
Time->Hour = DecimaltoBcd (Time->Hour);
Time->Minute = DecimaltoBcd (Time->Minute);
Time->Second = DecimaltoBcd (Time->Second);
}
//
// If we are in 12 hour mode and PM is set, then set bit 7 of the Hour field.
//
if (RegisterB.Bits.MIL == 0 && PM) {
Time->Hour = (UINT8) (Time->Hour | 0x80);
}
}
/**
Check the validity of all the fields of a data structure of type EFI_TIME
@param[in] Time Pointer to a data structure of type EFI_TIME that defines a date and time
@retval EFI_SUCCESS All date and time fields are valid
@retval EFI_INVALID_PARAMETER At least one date or time field is not valid
**/
EFI_STATUS
RtcTimeFieldsValid (
IN EFI_TIME *Time
)
{
if ((Time->Year < 1998 ) ||
(Time->Year > 2099 ) ||
(Time->Month < 1 ) ||
(Time->Month > 12 ) ||
(!DayValid (Time)) ||
(Time->Hour > 23 ) ||
(Time->Minute > 59 ) ||
(Time->Second > 59 ) ||
(Time->Nanosecond > 999999999) ||
((Time->TimeZone != EFI_UNSPECIFIED_TIMEZONE) &&
((Time->TimeZone < -1440) ||
(Time->TimeZone > 1440 ) ) ) ||
(Time->Daylight & (~(EFI_TIME_ADJUST_DAYLIGHT |
EFI_TIME_IN_DAYLIGHT )))
) {
return EFI_INVALID_PARAMETER;
}
return EFI_SUCCESS;
}
UINT8
RtcRead (
IN UINT8 Address
)
{
IoWrite8 (PCAT_RTC_ADDRESS_REGISTER, (UINT8) (Address | (UINT8) (IoRead8 (PCAT_RTC_ADDRESS_REGISTER) & 0x80)));
return IoRead8 (PCAT_RTC_DATA_REGISTER);
}
VOID
RtcWrite (
IN UINT8 Address,
IN UINT8 Data
)
{
IoWrite8 (PCAT_RTC_ADDRESS_REGISTER, (UINT8) (Address | (UINT8) (IoRead8 (PCAT_RTC_ADDRESS_REGISTER) & 0x80)));
IoWrite8 (PCAT_RTC_DATA_REGISTER, Data);
}
EFI_STATUS
RtcTestCenturyRegister (
VOID
)
{
UINT8 Century;
UINT8 Temp;
Century = RtcRead (RTC_ADDRESS_CENTURY);
//
// RtcWrite (RTC_ADDRESS_CENTURY, 0x00);
//
Temp = (UINT8) (RtcRead (RTC_ADDRESS_CENTURY) & 0x7f);
RtcWrite (RTC_ADDRESS_CENTURY, Century);
if (Temp == 0x19 || Temp == 0x20) {
return EFI_SUCCESS;
}
return EFI_DEVICE_ERROR;
}
VOID
ConvertRtcTimeToEfiTime (
IN EFI_TIME *Time,
IN RTC_REGISTER_B RegisterB
)
{
BOOLEAN PM;
if ((Time->Hour) & 0x80) {
PM = TRUE;
} else {
PM = FALSE;
}
Time->Hour = (UINT8) (Time->Hour & 0x7f);
if (RegisterB.Bits.DM == 0) {
Time->Year = BcdToDecimal ((UINT8) Time->Year);
Time->Month = BcdToDecimal (Time->Month);
Time->Day = BcdToDecimal (Time->Day);
Time->Hour = BcdToDecimal (Time->Hour);
Time->Minute = BcdToDecimal (Time->Minute);
Time->Second = BcdToDecimal (Time->Second);
}
//
// If time is in 12 hour format, convert it to 24 hour format
//
if (RegisterB.Bits.MIL == 0) {
if (PM && Time->Hour < 12) {
Time->Hour = (UINT8) (Time->Hour + 12);
}
if (!PM && Time->Hour == 12) {
Time->Hour = 0;
}
}
Time->Nanosecond = 0;
Time->TimeZone = EFI_UNSPECIFIED_TIMEZONE;
Time->Daylight = 0;
}
EFI_STATUS
RtcWaitToUpdate (
UINTN Timeout
)
{
RTC_REGISTER_A RegisterA;
RTC_REGISTER_D RegisterD;
//
// See if the RTC is functioning correctly
//
RegisterD.Data = RtcRead (RTC_ADDRESS_REGISTER_D);
if (RegisterD.Bits.VRT == 0) {
return EFI_DEVICE_ERROR;
}
//
// Wait for up to 0.1 seconds for the RTC to be ready.
//
Timeout = (Timeout / 10) + 1;
RegisterA.Data = RtcRead (RTC_ADDRESS_REGISTER_A);
while (RegisterA.Bits.UIP == 1 && Timeout > 0) {
MicroSecondDelay (10);
RegisterA.Data = RtcRead (RTC_ADDRESS_REGISTER_A);
Timeout--;
}
RegisterD.Data = RtcRead (RTC_ADDRESS_REGISTER_D);
if (Timeout == 0 || RegisterD.Bits.VRT == 0) {
return EFI_DEVICE_ERROR;
}
return EFI_SUCCESS;
}
EFI_STATUS
LibGetTime (
OUT EFI_TIME *Time,
OUT EFI_TIME_CAPABILITIES *Capabilities
)
{
EFI_STATUS Status;
RTC_REGISTER_B RegisterB;
UINT8 Century;
UINTN BufferSize;
//
// Check parameters for null pointer
//
if (Time == NULL) {
return EFI_INVALID_PARAMETER;
}
//
// Acquire RTC Lock to make access to RTC atomic
//
EfiAcquireLock (&mRtc.RtcLock);
//
// Wait for up to 0.1 seconds for the RTC to be updated
//
Status = RtcWaitToUpdate (100000);
if (EFI_ERROR (Status)) {
EfiReleaseLock (&mRtc.RtcLock);
return Status;
}
//
// Read Register B
//
RegisterB.Data = RtcRead (RTC_ADDRESS_REGISTER_B);
//
// Get the Time/Date/Daylight Savings values.
//
Time->Second = RtcRead (RTC_ADDRESS_SECONDS);
Time->Minute = RtcRead (RTC_ADDRESS_MINUTES);
Time->Hour = RtcRead (RTC_ADDRESS_HOURS);
Time->Day = RtcRead (RTC_ADDRESS_DAY_OF_THE_MONTH);
Time->Month = RtcRead (RTC_ADDRESS_MONTH);
Time->Year = RtcRead (RTC_ADDRESS_YEAR);
ConvertRtcTimeToEfiTime (Time, RegisterB);
if (RtcTestCenturyRegister () == EFI_SUCCESS) {
Century = BcdToDecimal ((UINT8) (RtcRead (RTC_ADDRESS_CENTURY) & 0x7f));
} else {
Century = BcdToDecimal (RtcRead (RTC_ADDRESS_CENTURY));
}
Time->Year = (UINT16) (Century * 100 + Time->Year);
//
// Release RTC Lock.
//
EfiReleaseLock (&mRtc.RtcLock);
//
// Get the variable that containts the TimeZone and Daylight fields
//
Time->TimeZone = mRtc.SavedTimeZone;
Time->Daylight = mRtc.Daylight;
BufferSize = sizeof (INT16) + sizeof (UINT8);
//
// Make sure all field values are in correct range
//
Status = RtcTimeFieldsValid (Time);
if (EFI_ERROR (Status)) {
return EFI_DEVICE_ERROR;
}
//
// Fill in Capabilities if it was passed in
//
if (Capabilities) {
Capabilities->Resolution = 1;
//
// 1 hertz
//
Capabilities->Accuracy = 50000000;
//
// 50 ppm
//
Capabilities->SetsToZero = FALSE;
}
return EFI_SUCCESS;
}
EFI_STATUS
LibSetTime (
IN EFI_TIME *Time
)
{
EFI_STATUS Status;
EFI_TIME RtcTime;
RTC_REGISTER_B RegisterB;
UINT8 Century;
if (Time == NULL) {
return EFI_INVALID_PARAMETER;
}
//
// Make sure that the time fields are valid
//
Status = RtcTimeFieldsValid (Time);
if (EFI_ERROR (Status)) {
return Status;
}
CopyMem (&RtcTime, Time, sizeof (EFI_TIME));
//
// Acquire RTC Lock to make access to RTC atomic
//
EfiAcquireLock (&mRtc.RtcLock);
//
// Wait for up to 0.1 seconds for the RTC to be updated
//
Status = RtcWaitToUpdate (100000);
if (EFI_ERROR (Status)) {
EfiReleaseLock (&mRtc.RtcLock);
return Status;
}
//
// Read Register B, and inhibit updates of the RTC
//
RegisterB.Data = RtcRead (RTC_ADDRESS_REGISTER_B);
RegisterB.Bits.SET = 1;
RtcWrite (RTC_ADDRESS_REGISTER_B, RegisterB.Data);
ConvertEfiTimeToRtcTime (&RtcTime, RegisterB, &Century);
RtcWrite (RTC_ADDRESS_SECONDS, RtcTime.Second);
RtcWrite (RTC_ADDRESS_MINUTES, RtcTime.Minute);
RtcWrite (RTC_ADDRESS_HOURS, RtcTime.Hour);
RtcWrite (RTC_ADDRESS_DAY_OF_THE_MONTH, RtcTime.Day);
RtcWrite (RTC_ADDRESS_MONTH, RtcTime.Month);
RtcWrite (RTC_ADDRESS_YEAR, (UINT8) RtcTime.Year);
if (RtcTestCenturyRegister () == EFI_SUCCESS) {
Century = (UINT8) ((Century & 0x7f) | (RtcRead (RTC_ADDRESS_CENTURY) & 0x80));
}
RtcWrite (RTC_ADDRESS_CENTURY, Century);
//
// Allow updates of the RTC registers
//
RegisterB.Bits.SET = 0;
RtcWrite (RTC_ADDRESS_REGISTER_B, RegisterB.Data);
//
// Release RTC Lock.
//
EfiReleaseLock (&mRtc.RtcLock);
//
// Set the variable that containts the TimeZone and Daylight fields
//
mRtc.SavedTimeZone = Time->TimeZone;
mRtc.Daylight = Time->Daylight;
return Status;
}
EFI_STATUS
libGetWakeupTime (
OUT BOOLEAN *Enabled,
OUT BOOLEAN *Pending,
OUT EFI_TIME *Time
)
{
EFI_STATUS Status;
RTC_REGISTER_B RegisterB;
RTC_REGISTER_C RegisterC;
UINT8 Century;
//
// Check parameters for null pointers
//
if ((Enabled == NULL) || (Pending == NULL) || (Time == NULL)) {
return EFI_INVALID_PARAMETER;
}
//
// Acquire RTC Lock to make access to RTC atomic
//
EfiAcquireLock (&mRtc.RtcLock);
//
// Wait for up to 0.1 seconds for the RTC to be updated
//
Status = RtcWaitToUpdate (100000);
if (EFI_ERROR (Status)) {
EfiReleaseLock (&mRtc.RtcLock);
return EFI_DEVICE_ERROR;
}
//
// Read Register B and Register C
//
RegisterB.Data = RtcRead (RTC_ADDRESS_REGISTER_B);
RegisterC.Data = RtcRead (RTC_ADDRESS_REGISTER_C);
//
// Get the Time/Date/Daylight Savings values.
//
*Enabled = RegisterB.Bits.AIE;
if (*Enabled) {
Time->Second = RtcRead (RTC_ADDRESS_SECONDS_ALARM);
Time->Minute = RtcRead (RTC_ADDRESS_MINUTES_ALARM);
Time->Hour = RtcRead (RTC_ADDRESS_HOURS_ALARM);
Time->Day = RtcRead (RTC_ADDRESS_DAY_OF_THE_MONTH);
Time->Month = RtcRead (RTC_ADDRESS_MONTH);
Time->Year = RtcRead (RTC_ADDRESS_YEAR);
} else {
Time->Second = 0;
Time->Minute = 0;
Time->Hour = 0;
Time->Day = RtcRead (RTC_ADDRESS_DAY_OF_THE_MONTH);
Time->Month = RtcRead (RTC_ADDRESS_MONTH);
Time->Year = RtcRead (RTC_ADDRESS_YEAR);
}
ConvertRtcTimeToEfiTime (Time, RegisterB);
if (RtcTestCenturyRegister () == EFI_SUCCESS) {
Century = BcdToDecimal ((UINT8) (RtcRead (RTC_ADDRESS_CENTURY) & 0x7f));
} else {
Century = BcdToDecimal (RtcRead (RTC_ADDRESS_CENTURY));
}
Time->Year = (UINT16) (Century * 100 + Time->Year);
//
// Release RTC Lock.
//
EfiReleaseLock (&mRtc.RtcLock);
//
// Make sure all field values are in correct range
//
Status = RtcTimeFieldsValid (Time);
if (EFI_ERROR (Status)) {
return EFI_DEVICE_ERROR;
}
*Pending = RegisterC.Bits.AF;
return EFI_SUCCESS;
}
EFI_STATUS
LibSetWakeupTime (
IN BOOLEAN Enabled,
OUT EFI_TIME *Time
)
{
EFI_STATUS Status;
EFI_TIME RtcTime;
RTC_REGISTER_B RegisterB;
UINT8 Century;
EFI_TIME_CAPABILITIES Capabilities;
if (Enabled) {
if (Time == NULL) {
return EFI_INVALID_PARAMETER;
}
//
// Make sure that the time fields are valid
//
Status = RtcTimeFieldsValid (Time);
if (EFI_ERROR (Status)) {
return EFI_INVALID_PARAMETER;
}
//
// Just support set alarm time within 24 hours
//
LibGetTime (&RtcTime, &Capabilities);
if (Time->Year != RtcTime.Year ||
Time->Month != RtcTime.Month ||
(Time->Day != RtcTime.Day && Time->Day != (RtcTime.Day + 1))
) {
return EFI_UNSUPPORTED;
}
//
// Make a local copy of the time and date
//
CopyMem (&RtcTime, Time, sizeof (EFI_TIME));
}
//
// Acquire RTC Lock to make access to RTC atomic
//
EfiAcquireLock (&mRtc.RtcLock);
//
// Wait for up to 0.1 seconds for the RTC to be updated
//
Status = RtcWaitToUpdate (100000);
if (EFI_ERROR (Status)) {
EfiReleaseLock (&mRtc.RtcLock);
return EFI_DEVICE_ERROR;
}
//
// Read Register B, and inhibit updates of the RTC
//
RegisterB.Data = RtcRead (RTC_ADDRESS_REGISTER_B);
RegisterB.Bits.SET = 1;
RtcWrite (RTC_ADDRESS_REGISTER_B, RegisterB.Data);
if (Enabled) {
ConvertEfiTimeToRtcTime (&RtcTime, RegisterB, &Century);
//
// Set RTC alarm time
//
RtcWrite (RTC_ADDRESS_SECONDS_ALARM, RtcTime.Second);
RtcWrite (RTC_ADDRESS_MINUTES_ALARM, RtcTime.Minute);
RtcWrite (RTC_ADDRESS_HOURS_ALARM, RtcTime.Hour);
RegisterB.Bits.AIE = 1;
} else {
RegisterB.Bits.AIE = 0;
}
//
// Allow updates of the RTC registers
//
RegisterB.Bits.SET = 0;
RtcWrite (RTC_ADDRESS_REGISTER_B, RegisterB.Data);
//
// Release RTC Lock.
//
EfiReleaseLock (&mRtc.RtcLock);
return EFI_SUCCESS;
}
VOID
LibRtcVirtualAddressChangeEvent (
VOID
)
{
}
VOID
LibRtcInitialize (
VOID
)
{
EFI_STATUS Status;
RTC_REGISTER_A RegisterA;
RTC_REGISTER_B RegisterB;
RTC_REGISTER_C RegisterC;
RTC_REGISTER_D RegisterD;
UINT8 Century;
EFI_TIME Time;
//
// Acquire RTC Lock to make access to RTC atomic
//
EfiAcquireLock (&mRtc.RtcLock);
//
// Initialize RTC Register
//
// Make sure Division Chain is properly configured,
// or RTC clock won't "tick" -- time won't increment
//
RegisterA.Data = RTC_INIT_REGISTER_A;
RtcWrite (RTC_ADDRESS_REGISTER_A, RegisterA.Data);
//
// Read Register B
//
RegisterB.Data = RtcRead (RTC_ADDRESS_REGISTER_B);
//
// Clear RTC flag register
//
RegisterC.Data = RtcRead (RTC_ADDRESS_REGISTER_C);
//
// Clear RTC register D
//
RegisterD.Data = RTC_INIT_REGISTER_D;
RtcWrite (RTC_ADDRESS_REGISTER_D, RegisterD.Data);
//
// Wait for up to 0.1 seconds for the RTC to be updated
//
Status = RtcWaitToUpdate (100000);
if (EFI_ERROR (Status)) {
EfiReleaseLock (&mRtc.RtcLock);
return;
}
//
// Get the Time/Date/Daylight Savings values.
//
Time.Second = RtcRead (RTC_ADDRESS_SECONDS);
Time.Minute = RtcRead (RTC_ADDRESS_MINUTES);
Time.Hour = RtcRead (RTC_ADDRESS_HOURS);
Time.Day = RtcRead (RTC_ADDRESS_DAY_OF_THE_MONTH);
Time.Month = RtcRead (RTC_ADDRESS_MONTH);
Time.Year = RtcRead (RTC_ADDRESS_YEAR);
ConvertRtcTimeToEfiTime (&Time, RegisterB);
if (RtcTestCenturyRegister () == EFI_SUCCESS) {
Century = BcdToDecimal ((UINT8) (RtcRead (RTC_ADDRESS_CENTURY) & 0x7f));
} else {
Century = BcdToDecimal (RtcRead (RTC_ADDRESS_CENTURY));
}
Time.Year = (UINT16) (Century * 100 + Time.Year);
//
// Set RTC configuration after get original time
//
RtcWrite (RTC_ADDRESS_REGISTER_B, RTC_INIT_REGISTER_B);
//
// Release RTC Lock.
//
EfiReleaseLock (&mRtc.RtcLock);
//
// Validate time fields
//
Status = RtcTimeFieldsValid (&Time);
if (EFI_ERROR (Status)) {
Time.Second = RTC_INIT_SECOND;
Time.Minute = RTC_INIT_MINUTE;
Time.Hour = RTC_INIT_HOUR;
Time.Day = RTC_INIT_DAY;
Time.Month = RTC_INIT_MONTH;
Time.Year = RTC_INIT_YEAR;
}
//
// Reset time value according to new RTC configuration
//
LibSetTime (&Time);
return;
}

View File

@ -1,306 +0,0 @@
/** @file
Variable services implemented from system memory
There is just a single runtime memory buffer that contans all the data.
Copyright (c) 2007, Intel Corporation. All rights reserved.<BR>
Portions copyright (c) 2008 - 2009, Apple Inc. All rights reserved.<BR>
This program and the accompanying materials
are licensed and made available under the terms and conditions of the BSD License
which accompanies this distribution. The full text of the license may be found at
http://opensource.org/licenses/bsd-license.php
THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS,
WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED.
**/
UINT64 mMaximumVariableStorageSize;
UINT64 mRemainingVariableStorageSize;
UINT64 mMaximumVariableSize;
typedef struct {
EFI_GUID VendorGuid;
UINT32 Attribute;
UINTN DataSize;
} VARIABLE_ARRAY_ENTRY;
// CHAR16 VariableName[]
// UINT8 Data[]
VARIABLE_ARRAY_ENTRY *mVariableArray = NULL;
VARIABLE_ARRAY_ENTRY *mVariableArrayNextFree = NULL;
VARIABLE_ARRAY_ENTRY *mVariableArrayEnd = NULL;
VARIABLE_ARRAY_ENTRY *
AddEntry (
IN CHAR16 *VariableName,
IN EFI_GUID *VendorGuid,
IN UINT32 Attributes,
IN UINTN DataSize,
IN VOID *Data
)
{
UINTN Size;
UINTN SizeOfString;
VARIABLE_ARRAY_ENTRY *Entry;
EFI_TPL CurrentTpl;
SizeOfString = StrSize (VariableName);
Size = SizeOfString + sizeof (VARIABLE_ARRAY_ENTRY) + DataSize;
if ((VARIABLE_ARRAY_ENTRY *)(((UINT8 *)mVariableArrayNextFree) + Size) > mVariableArrayEnd) {
// ran out of space
return NULL;
}
if (!EfiAtRuntime ()) {
// Enter critical section
CurrentTpl = gBS->RaiseTPL (EFI_TPL_HIGH_LEVEL);
}
Entry = mVariableArrayNextFree;
CopyGuid (&Entry->VendorGuid, VendorGuid);
Entry->Attribute = Attributes;
Entry->DataSize = DataSize;
StrCpy ((CHAR16 *)++mVariableArrayNextFree, VariableName);
mVariableArrayNextFree = (VARIABLE_ARRAY_ENTRY *)(((UINT8 *)mVariableArrayNextFree) + SizeOfString);
CopyMem (mVariableArrayNextFree, Data, DataSize);
mVariableArrayNextFree = (VARIABLE_ARRAY_ENTRY *)(((UINT8 *)mVariableArrayNextFree) + DataSize);
if (!EfiAtRuntime ()) {
// Exit Critical section
gBS->RestoreTPL (CurrentTpl);
}
return Entry;
}
VOID
DeleteEntry (
IN VARIABLE_ARRAY_ENTRY *Entry
)
{
UINTN Size;
UINT8 *Data;
EFI_TPL CurrentTpl;
Size = StrSize ((CHAR16 *)(Entry + 1)) + sizeof (VARIABLE_ARRAY_ENTRY) + Entry->DataSize;
Data = ((UINT8 *)Entry) + Size;
CopyMem (Entry, Data, (UINTN)mVariableArrayNextFree - (UINTN)Data);
if (!EfiAtRuntime ()) {
// Enter critical section
CurrentTpl = gBS->RaiseTPL (EFI_TPL_HIGH_LEVEL);
}
mVariableArrayNextFree = (VARIABLE_ARRAY_ENTRY *)(((UINT8 *)mVariableArrayNextFree) - Size);
if (!EfiAtRuntime ()) {
// Exit Critical section
gBS->RestoreTPL (CurrentTpl);
}
}
VARIABLE_ARRAY_ENTRY *
GetVariableArrayEntry (
IN CHAR16 *VariableName,
IN EFI_GUID *VendorGuid,
OUT VOID **Data OPTIONAL
)
{
VARIABLE_ARRAY_ENTRY *Entry;
UINTN Size;
if (*VariableName == L'\0') {
// by definition first entry is null-terminated string
if (mVariableArray == mVariableArrayNextFree) {
return NULL;
}
return mVariableArray;
}
for (Entry = mVariableArray; Entry < mVariableArrayEnd;) {
if (CompareGuid (VendorGuid, &Entry->VendorGuid)) {
if (StrCmp (VariableName, (CHAR16 *)(Entry + 1))) {
Size = StrSize ((CHAR16 *)(Entry + 1));
if (Data != NULL) {
*Data = (VOID *)(((UINT8 *)Entry) + (Size + sizeof (VARIABLE_ARRAY_ENTRY)));
}
return Entry;
}
}
Size = StrSize ((CHAR16 *)(Entry + 1)) + sizeof (VARIABLE_ARRAY_ENTRY) + Entry->DataSize;
Entry = (VARIABLE_ARRAY_ENTRY *)(((UINT8 *)Entry) + Size);
}
return NULL;
}
EFI_STATUS
LibGetVariable (
IN CHAR16 *VariableName,
IN EFI_GUID *VendorGuid,
OUT UINT32 *Attributes OPTIONAL,
IN OUT UINTN *DataSize,
OUT VOID *Data
)
{
VARIABLE_ARRAY_ENTRY *Entry;
VOID *InternalData;
if (EfiAtRuntime () && (Attributes != NULL)) {
if ((*Attributes & EFI_VARIABLE_RUNTIME_ACCESS) == 0) {
return EFI_NOT_FOUND;
}
}
Entry = GetVariableArrayEntry (VariableName, VendorGuid, &InternalData);
if (Entry == NULL) {
return EFI_NOT_FOUND;
}
if (*DataSize < Entry->DataSize) {
*DataSize = Entry->DataSize;
return EFI_BUFFER_TOO_SMALL;
}
*DataSize = Entry->DataSize;
if (Attributes != NULL) {
*Attributes = Entry->Attribute;
}
CopyMem (Data, InternalData, *DataSize);
return EFI_SUCCESS;
}
EFI_STATUS
LibGetNextVariableName (
IN OUT UINTN *VariableNameSize,
IN OUT CHAR16 *VariableName,
IN OUT EFI_GUID *VendorGuid
)
{
VARIABLE_ARRAY_ENTRY *Entry;
VOID *InternalData;
UINTN StringSize;
BOOLEAN Done;
for (Done = FALSE; !Done; ) {
Entry = GetVariableArrayEntry (VariableName, VendorGuid, &InternalData);
if (Entry == NULL) {
return EFI_NOT_FOUND;
}
// If we are at runtime skip variables that do not have the Runitme attribute set.
Done = (EfiAtRuntime () && ((Entry->Attribute & EFI_VARIABLE_RUNTIME_ACCESS) == 0)) ? FALSE : TRUE;
}
StringSize = StrSize ((CHAR16 *)(Entry + 1));
Entry = (VARIABLE_ARRAY_ENTRY *)(((UINT8 *)Entry) + (StringSize + sizeof (VARIABLE_ARRAY_ENTRY) + Entry->DataSize));
if (Entry >= mVariableArrayEnd) {
return EFI_NOT_FOUND;
}
if (*VariableNameSize < StringSize) {
*VariableNameSize = StringSize;
return EFI_BUFFER_TOO_SMALL;
}
*VariableNameSize = StringSize;
CopyMem (VariableName, (CHAR16 *)(Entry + 1), StringSize);
CopyMem (VendorGuid, &Entry->VendorGuid, sizeof (EFI_GUID));
return EFI_SUCCESS;
}
EFI_STATUS
LibSetVariable (
IN CHAR16 *VariableName,
IN EFI_GUID *VendorGuid,
IN UINT32 Attributes,
IN UINTN DataSize,
IN VOID *Data
)
{
VARIABLE_ARRAY_ENTRY *Entry;
VOID *InternalData;
if (EfiAtRuntime () && ((Attributes & EFI_VARIABLE_RUNTIME_ACCESS) == 0)) {
return EFI_NOT_FOUND;
}
Entry = GetVariableArrayEntry (VariableName, VendorGuid, &InternalData);
if (Entry == NULL) {
if (DataSize == 0) {
return EFI_NOT_FOUND;
}
Entry = AddEntry (VariableName, VendorGuid, Attributes, DataSize, Data);
return (Entry == NULL) ? EFI_OUT_OF_RESOURCES : EFI_SUCCESS;
} else if (DataSize == 0) {
// DataSize is zero so delete
DeleteEntry (Entry);
} else if (DataSize == Entry->DataSize) {
// No change is size so just update the store
Entry->Attribute |= Attributes;
CopyMem (InternalData, Data, DataSize);
} else {
// Grow the entry by deleting and adding back. Don't lose previous Attributes
Attributes |= Entry->Attribute;
DeleteEntry (Entry);
Entry = AddEntry (VariableName, VendorGuid, Attributes, DataSize, Data);
return (Entry == NULL) ? EFI_OUT_OF_RESOURCES : EFI_SUCCESS;
}
}
EFI_STATUS
LibQueryVariableInfo (
IN UINT32 Attributes,
OUT UINT64 *MaximumVariableStorageSize,
OUT UINT64 *RemainingVariableStorageSize,
OUT UINT64 *MaximumVariableSize
)
{
*MaximumVariableStorageSize = mMaximumVariableStorageSize;
*RemainingVariableStorageSize = mRemainingVariableStorageSize;
*MaximumVariableStorageSize = mRemainingVariableStorageSize;
return EFI_SUCCESS;
}
VOID
LibVariableVirtualAddressChangeEvent (VOID)
{
EfiConvertPointer (0, (VOID **)&mVariableArray);
EfiConvertPointer (0, (VOID **)&mVariableArrayNextFree);
EfiConvertPointer (0, (VOID **)&mVariableArrayEnd);
}
VOID
LibVariableInitialize (VOID)
{
UINTN Size;
Size = PcdGet32 (PcdEmbeddedMemVariableStoreSize);
mVariableArray = mVariableArrayNextFree = (VARIABLE_ARRAY_ENTRY *)AllocateRuntimePool (Size);
ASSERT (mVariableArray != NULL);
mVariableArrayEnd = (VARIABLE_ARRAY_ENTRY *)(((UINT8 *)mVariableArray) + Size);
mMaximumVariableStorageSize = Size - sizeof (VARIABLE_ARRAY_ENTRY);
mRemainingVariableStorageSize = mMaximumVariableStorageSize;
mMaximumVariableSize = mMaximumVariableStorageSize;
}