UefiCpuPkg/PiSmmCpu: Enable 5 level paging when CPU supports

REF:https://bugzilla.tianocore.org/show_bug.cgi?id=1946

The patch changes SMM environment to use 5 level paging when CPU
supports it.

Signed-off-by: Ray Ni <ray.ni@intel.com>
Cc: Eric Dong <eric.dong@intel.com>
Regression-tested-by: Laszlo Ersek <lersek@redhat.com>
Reviewed-by: Eric Dong <eric.dong@intel.com>
This commit is contained in:
Ray Ni 2019-06-12 17:26:45 +08:00
parent 7c5010c7f8
commit 7365eb2c8c
5 changed files with 568 additions and 307 deletions

View File

@ -125,18 +125,36 @@ GetPageTableEntry (
UINTN Index2;
UINTN Index3;
UINTN Index4;
UINTN Index5;
UINT64 *L1PageTable;
UINT64 *L2PageTable;
UINT64 *L3PageTable;
UINT64 *L4PageTable;
UINT64 *L5PageTable;
IA32_CR4 Cr4;
BOOLEAN Enable5LevelPaging;
Index5 = ((UINTN)RShiftU64 (Address, 48)) & PAGING_PAE_INDEX_MASK;
Index4 = ((UINTN)RShiftU64 (Address, 39)) & PAGING_PAE_INDEX_MASK;
Index3 = ((UINTN)Address >> 30) & PAGING_PAE_INDEX_MASK;
Index2 = ((UINTN)Address >> 21) & PAGING_PAE_INDEX_MASK;
Index1 = ((UINTN)Address >> 12) & PAGING_PAE_INDEX_MASK;
Cr4.UintN = AsmReadCr4 ();
Enable5LevelPaging = (BOOLEAN) (Cr4.Bits.LA57 == 1);
if (sizeof(UINTN) == sizeof(UINT64)) {
L4PageTable = (UINT64 *)GetPageTableBase ();
if (Enable5LevelPaging) {
L5PageTable = (UINT64 *)GetPageTableBase ();
if (L5PageTable[Index5] == 0) {
*PageAttribute = PageNone;
return NULL;
}
L4PageTable = (UINT64 *)(UINTN)(L5PageTable[Index5] & ~mAddressEncMask & PAGING_4K_ADDRESS_MASK_64);
} else {
L4PageTable = (UINT64 *)GetPageTableBase ();
}
if (L4PageTable[Index4] == 0) {
*PageAttribute = PageNone;
return NULL;

View File

@ -534,43 +534,78 @@ InitPaging (
VOID
)
{
UINT64 Pml5Entry;
UINT64 Pml4Entry;
UINT64 *Pml5;
UINT64 *Pml4;
UINT64 *Pdpt;
UINT64 *Pd;
UINT64 *Pt;
UINTN Address;
UINTN Pml5Index;
UINTN Pml4Index;
UINTN PdptIndex;
UINTN PdIndex;
UINTN PtIndex;
UINTN NumberOfPdptEntries;
UINTN NumberOfPml4Entries;
UINTN NumberOfPml5Entries;
UINTN SizeOfMemorySpace;
BOOLEAN Nx;
IA32_CR4 Cr4;
BOOLEAN Enable5LevelPaging;
Cr4.UintN = AsmReadCr4 ();
Enable5LevelPaging = (BOOLEAN) (Cr4.Bits.LA57 == 1);
if (sizeof (UINTN) == sizeof (UINT64)) {
Pml4 = (UINT64*)(UINTN)mSmmProfileCr3;
if (!Enable5LevelPaging) {
Pml5Entry = (UINTN) mSmmProfileCr3 | IA32_PG_P;
Pml5 = &Pml5Entry;
} else {
Pml5 = (UINT64*) (UINTN) mSmmProfileCr3;
}
SizeOfMemorySpace = HighBitSet64 (gPhyMask) + 1;
//
// Calculate the table entries of PML4E and PDPTE.
//
if (SizeOfMemorySpace <= 39 ) {
NumberOfPml4Entries = 1;
NumberOfPdptEntries = (UINT32)LShiftU64 (1, (SizeOfMemorySpace - 30));
} else {
NumberOfPml4Entries = (UINT32)LShiftU64 (1, (SizeOfMemorySpace - 39));
NumberOfPdptEntries = 512;
NumberOfPml5Entries = 1;
if (SizeOfMemorySpace > 48) {
NumberOfPml5Entries = (UINTN) LShiftU64 (1, SizeOfMemorySpace - 48);
SizeOfMemorySpace = 48;
}
} else {
NumberOfPml4Entries = 1;
if (SizeOfMemorySpace > 39) {
NumberOfPml4Entries = (UINTN) LShiftU64 (1, SizeOfMemorySpace - 39);
SizeOfMemorySpace = 39;
}
NumberOfPdptEntries = 1;
ASSERT (SizeOfMemorySpace > 30);
NumberOfPdptEntries = (UINTN) LShiftU64 (1, SizeOfMemorySpace - 30);
} else {
Pml4Entry = (UINTN) mSmmProfileCr3 | IA32_PG_P;
Pml4 = &Pml4Entry;
Pml5Entry = (UINTN) Pml4 | IA32_PG_P;
Pml5 = &Pml5Entry;
NumberOfPml5Entries = 1;
NumberOfPml4Entries = 1;
NumberOfPdptEntries = 4;
}
//
// Go through page table and change 2MB-page into 4KB-page.
//
for (Pml4Index = 0; Pml4Index < NumberOfPml4Entries; Pml4Index++) {
if (sizeof (UINTN) == sizeof (UINT64)) {
for (Pml5Index = 0; Pml5Index < NumberOfPml5Entries; Pml5Index++) {
if ((Pml5[Pml5Index] & IA32_PG_P) == 0) {
//
// If PML5 entry does not exist, skip it
//
continue;
}
Pml4 = (UINT64 *) (UINTN) (Pml5[Pml5Index] & PHYSICAL_ADDRESS_MASK);
for (Pml4Index = 0; Pml4Index < NumberOfPml4Entries; Pml4Index++) {
if ((Pml4[Pml4Index] & IA32_PG_P) == 0) {
//
// If PML4 entry does not exist, skip it
@ -578,63 +613,76 @@ InitPaging (
continue;
}
Pdpt = (UINT64 *)(UINTN)(Pml4[Pml4Index] & ~mAddressEncMask & PHYSICAL_ADDRESS_MASK);
} else {
Pdpt = (UINT64*)(UINTN)mSmmProfileCr3;
}
for (PdptIndex = 0; PdptIndex < NumberOfPdptEntries; PdptIndex++, Pdpt++) {
if ((*Pdpt & IA32_PG_P) == 0) {
//
// If PDPT entry does not exist, skip it
//
continue;
}
if ((*Pdpt & IA32_PG_PS) != 0) {
//
// This is 1G entry, skip it
//
continue;
}
Pd = (UINT64 *)(UINTN)(*Pdpt & ~mAddressEncMask & PHYSICAL_ADDRESS_MASK);
if (Pd == 0) {
continue;
}
for (PdIndex = 0; PdIndex < SIZE_4KB / sizeof (*Pd); PdIndex++, Pd++) {
if ((*Pd & IA32_PG_P) == 0) {
for (PdptIndex = 0; PdptIndex < NumberOfPdptEntries; PdptIndex++, Pdpt++) {
if ((*Pdpt & IA32_PG_P) == 0) {
//
// If PD entry does not exist, skip it
// If PDPT entry does not exist, skip it
//
continue;
}
Address = (((PdptIndex << 9) + PdIndex) << 21);
//
// If it is 2M page, check IsAddressSplit()
//
if (((*Pd & IA32_PG_PS) != 0) && IsAddressSplit (Address)) {
if ((*Pdpt & IA32_PG_PS) != 0) {
//
// Based on current page table, create 4KB page table for split area.
// This is 1G entry, skip it
//
ASSERT (Address == (*Pd & PHYSICAL_ADDRESS_MASK));
continue;
}
Pd = (UINT64 *)(UINTN)(*Pdpt & ~mAddressEncMask & PHYSICAL_ADDRESS_MASK);
if (Pd == 0) {
continue;
}
for (PdIndex = 0; PdIndex < SIZE_4KB / sizeof (*Pd); PdIndex++, Pd++) {
if ((*Pd & IA32_PG_P) == 0) {
//
// If PD entry does not exist, skip it
//
continue;
}
Address = (UINTN) LShiftU64 (
LShiftU64 (
LShiftU64 ((Pml5Index << 9) + Pml4Index, 9) + PdptIndex,
9
) + PdIndex,
21
);
Pt = AllocatePageTableMemory (1);
ASSERT (Pt != NULL);
//
// If it is 2M page, check IsAddressSplit()
//
if (((*Pd & IA32_PG_PS) != 0) && IsAddressSplit (Address)) {
//
// Based on current page table, create 4KB page table for split area.
//
ASSERT (Address == (*Pd & PHYSICAL_ADDRESS_MASK));
// Split it
for (PtIndex = 0; PtIndex < SIZE_4KB / sizeof(*Pt); PtIndex++) {
Pt[PtIndex] = Address + ((PtIndex << 12) | mAddressEncMask | PAGE_ATTRIBUTE_BITS);
} // end for PT
*Pd = (UINT64)(UINTN)Pt | mAddressEncMask | PAGE_ATTRIBUTE_BITS;
} // end if IsAddressSplit
} // end for PD
} // end for PDPT
} // end for PML4
Pt = AllocatePageTableMemory (1);
ASSERT (Pt != NULL);
*Pd = (UINTN) Pt | IA32_PG_RW | IA32_PG_P;
// Split it
for (PtIndex = 0; PtIndex < SIZE_4KB / sizeof(*Pt); PtIndex++, Pt++) {
*Pt = Address + ((PtIndex << 12) | mAddressEncMask | PAGE_ATTRIBUTE_BITS);
} // end for PT
*Pd = (UINT64)(UINTN)Pt | mAddressEncMask | PAGE_ATTRIBUTE_BITS;
} // end if IsAddressSplit
} // end for PD
} // end for PDPT
} // end for PML4
} // end for PML5
//
// Go through page table and set several page table entries to absent or execute-disable.
//
DEBUG ((EFI_D_INFO, "Patch page table start ...\n"));
for (Pml4Index = 0; Pml4Index < NumberOfPml4Entries; Pml4Index++) {
if (sizeof (UINTN) == sizeof (UINT64)) {
for (Pml5Index = 0; Pml5Index < NumberOfPml5Entries; Pml5Index++) {
if ((Pml5[Pml5Index] & IA32_PG_P) == 0) {
//
// If PML5 entry does not exist, skip it
//
continue;
}
Pml4 = (UINT64 *) (UINTN) (Pml5[Pml5Index] & PHYSICAL_ADDRESS_MASK);
for (Pml4Index = 0; Pml4Index < NumberOfPml4Entries; Pml4Index++) {
if ((Pml4[Pml4Index] & IA32_PG_P) == 0) {
//
// If PML4 entry does not exist, skip it
@ -642,69 +690,73 @@ InitPaging (
continue;
}
Pdpt = (UINT64 *)(UINTN)(Pml4[Pml4Index] & ~mAddressEncMask & PHYSICAL_ADDRESS_MASK);
} else {
Pdpt = (UINT64*)(UINTN)mSmmProfileCr3;
}
for (PdptIndex = 0; PdptIndex < NumberOfPdptEntries; PdptIndex++, Pdpt++) {
if ((*Pdpt & IA32_PG_P) == 0) {
//
// If PDPT entry does not exist, skip it
//
continue;
}
if ((*Pdpt & IA32_PG_PS) != 0) {
//
// This is 1G entry, set NX bit and skip it
//
if (mXdSupported) {
*Pdpt = *Pdpt | IA32_PG_NX;
}
continue;
}
Pd = (UINT64 *)(UINTN)(*Pdpt & ~mAddressEncMask & PHYSICAL_ADDRESS_MASK);
if (Pd == 0) {
continue;
}
for (PdIndex = 0; PdIndex < SIZE_4KB / sizeof (*Pd); PdIndex++, Pd++) {
if ((*Pd & IA32_PG_P) == 0) {
for (PdptIndex = 0; PdptIndex < NumberOfPdptEntries; PdptIndex++, Pdpt++) {
if ((*Pdpt & IA32_PG_P) == 0) {
//
// If PD entry does not exist, skip it
// If PDPT entry does not exist, skip it
//
continue;
}
Address = (((PdptIndex << 9) + PdIndex) << 21);
if ((*Pd & IA32_PG_PS) != 0) {
// 2MB page
if (!IsAddressValid (Address, &Nx)) {
//
// Patch to remove Present flag and RW flag
//
*Pd = *Pd & (INTN)(INT32)(~PAGE_ATTRIBUTE_BITS);
if ((*Pdpt & IA32_PG_PS) != 0) {
//
// This is 1G entry, set NX bit and skip it
//
if (mXdSupported) {
*Pdpt = *Pdpt | IA32_PG_NX;
}
if (Nx && mXdSupported) {
*Pd = *Pd | IA32_PG_NX;
}
} else {
// 4KB page
Pt = (UINT64 *)(UINTN)(*Pd & ~mAddressEncMask & PHYSICAL_ADDRESS_MASK);
if (Pt == 0) {
continue;
}
Pd = (UINT64 *)(UINTN)(*Pdpt & ~mAddressEncMask & PHYSICAL_ADDRESS_MASK);
if (Pd == 0) {
continue;
}
for (PdIndex = 0; PdIndex < SIZE_4KB / sizeof (*Pd); PdIndex++, Pd++) {
if ((*Pd & IA32_PG_P) == 0) {
//
// If PD entry does not exist, skip it
//
continue;
}
for (PtIndex = 0; PtIndex < SIZE_4KB / sizeof(*Pt); PtIndex++, Pt++) {
Address = (UINTN) LShiftU64 (
LShiftU64 (
LShiftU64 ((Pml5Index << 9) + Pml4Index, 9) + PdptIndex,
9
) + PdIndex,
21
);
if ((*Pd & IA32_PG_PS) != 0) {
// 2MB page
if (!IsAddressValid (Address, &Nx)) {
*Pt = *Pt & (INTN)(INT32)(~PAGE_ATTRIBUTE_BITS);
//
// Patch to remove Present flag and RW flag
//
*Pd = *Pd & (INTN)(INT32)(~PAGE_ATTRIBUTE_BITS);
}
if (Nx && mXdSupported) {
*Pt = *Pt | IA32_PG_NX;
*Pd = *Pd | IA32_PG_NX;
}
Address += SIZE_4KB;
} // end for PT
} // end if PS
} // end for PD
} // end for PDPT
} // end for PML4
} else {
// 4KB page
Pt = (UINT64 *)(UINTN)(*Pd & ~mAddressEncMask & PHYSICAL_ADDRESS_MASK);
if (Pt == 0) {
continue;
}
for (PtIndex = 0; PtIndex < SIZE_4KB / sizeof(*Pt); PtIndex++, Pt++) {
if (!IsAddressValid (Address, &Nx)) {
*Pt = *Pt & (INTN)(INT32)(~PAGE_ATTRIBUTE_BITS);
}
if (Nx && mXdSupported) {
*Pt = *Pt | IA32_PG_NX;
}
Address += SIZE_4KB;
} // end for PT
} // end if PS
} // end for PD
} // end for PDPT
} // end for PML4
} // end for PML5
//
// Flush TLB
@ -1156,6 +1208,20 @@ RestorePageTableBelow4G (
{
UINTN PTIndex;
UINTN PFIndex;
IA32_CR4 Cr4;
BOOLEAN Enable5LevelPaging;
Cr4.UintN = AsmReadCr4 ();
Enable5LevelPaging = (BOOLEAN) (Cr4.Bits.LA57 == 1);
//
// PML5
//
if (Enable5LevelPaging) {
PTIndex = (UINTN)BitFieldRead64 (PFAddress, 48, 56);
ASSERT (PageTable[PTIndex] != 0);
PageTable = (UINT64*)(UINTN)(PageTable[PTIndex] & PHYSICAL_ADDRESS_MASK);
}
//
// PML4

View File

@ -16,6 +16,8 @@ SPDX-License-Identifier: BSD-2-Clause-Patent
LIST_ENTRY mPagePool = INITIALIZE_LIST_HEAD_VARIABLE (mPagePool);
BOOLEAN m1GPageTableSupport = FALSE;
BOOLEAN mCpuSmmStaticPageTable;
BOOLEAN m5LevelPagingSupport;
X86_ASSEMBLY_PATCH_LABEL gPatch5LevelPagingSupport;
/**
Disable CET.
@ -60,6 +62,31 @@ Is1GPageSupport (
return FALSE;
}
/**
Check if 5-level paging is supported by processor or not.
@retval TRUE 5-level paging is supported.
@retval FALSE 5-level paging is not supported.
**/
BOOLEAN
Is5LevelPagingSupport (
VOID
)
{
CPUID_STRUCTURED_EXTENDED_FEATURE_FLAGS_ECX EcxFlags;
AsmCpuidEx (
CPUID_STRUCTURED_EXTENDED_FEATURE_FLAGS,
CPUID_STRUCTURED_EXTENDED_FEATURE_FLAGS_SUB_LEAF_INFO,
NULL,
NULL,
&EcxFlags.Uint32,
NULL
);
return (BOOLEAN) (EcxFlags.Bits.FiveLevelPage != 0);
}
/**
Set sub-entries number in entry.
@ -130,14 +157,6 @@ CalculateMaximumSupportAddress (
PhysicalAddressBits = 36;
}
}
//
// IA-32e paging translates 48-bit linear addresses to 52-bit physical addresses.
//
ASSERT (PhysicalAddressBits <= 52);
if (PhysicalAddressBits > 48) {
PhysicalAddressBits = 48;
}
return PhysicalAddressBits;
}
@ -152,89 +171,137 @@ SetStaticPageTable (
)
{
UINT64 PageAddress;
UINTN NumberOfPml5EntriesNeeded;
UINTN NumberOfPml4EntriesNeeded;
UINTN NumberOfPdpEntriesNeeded;
UINTN IndexOfPml5Entries;
UINTN IndexOfPml4Entries;
UINTN IndexOfPdpEntries;
UINTN IndexOfPageDirectoryEntries;
UINT64 *PageMapLevel5Entry;
UINT64 *PageMapLevel4Entry;
UINT64 *PageMap;
UINT64 *PageDirectoryPointerEntry;
UINT64 *PageDirectory1GEntry;
UINT64 *PageDirectoryEntry;
if (mPhysicalAddressBits <= 39 ) {
NumberOfPml4EntriesNeeded = 1;
NumberOfPdpEntriesNeeded = (UINT32)LShiftU64 (1, (mPhysicalAddressBits - 30));
} else {
NumberOfPml4EntriesNeeded = (UINT32)LShiftU64 (1, (mPhysicalAddressBits - 39));
NumberOfPdpEntriesNeeded = 512;
//
// IA-32e paging translates 48-bit linear addresses to 52-bit physical addresses
// when 5-Level Paging is disabled.
//
ASSERT (mPhysicalAddressBits <= 52);
if (!m5LevelPagingSupport && mPhysicalAddressBits > 48) {
mPhysicalAddressBits = 48;
}
NumberOfPml5EntriesNeeded = 1;
if (mPhysicalAddressBits > 48) {
NumberOfPml5EntriesNeeded = (UINTN) LShiftU64 (1, mPhysicalAddressBits - 48);
mPhysicalAddressBits = 48;
}
NumberOfPml4EntriesNeeded = 1;
if (mPhysicalAddressBits > 39) {
NumberOfPml4EntriesNeeded = (UINTN) LShiftU64 (1, mPhysicalAddressBits - 39);
mPhysicalAddressBits = 39;
}
NumberOfPdpEntriesNeeded = 1;
ASSERT (mPhysicalAddressBits > 30);
NumberOfPdpEntriesNeeded = (UINTN) LShiftU64 (1, mPhysicalAddressBits - 30);
//
// By architecture only one PageMapLevel4 exists - so lets allocate storage for it.
//
PageMap = (VOID *) PageTable;
PageMapLevel4Entry = PageMap;
PageMapLevel5Entry = NULL;
if (m5LevelPagingSupport) {
//
// By architecture only one PageMapLevel5 exists - so lets allocate storage for it.
//
PageMapLevel5Entry = PageMap;
}
PageAddress = 0;
for (IndexOfPml4Entries = 0; IndexOfPml4Entries < NumberOfPml4EntriesNeeded; IndexOfPml4Entries++, PageMapLevel4Entry++) {
//
// Each PML4 entry points to a page of Page Directory Pointer entries.
//
PageDirectoryPointerEntry = (UINT64 *) ((*PageMapLevel4Entry) & ~mAddressEncMask & gPhyMask);
if (PageDirectoryPointerEntry == NULL) {
PageDirectoryPointerEntry = AllocatePageTableMemory (1);
ASSERT(PageDirectoryPointerEntry != NULL);
ZeroMem (PageDirectoryPointerEntry, EFI_PAGES_TO_SIZE(1));
*PageMapLevel4Entry = (UINT64)(UINTN)PageDirectoryPointerEntry | mAddressEncMask | PAGE_ATTRIBUTE_BITS;
for ( IndexOfPml5Entries = 0
; IndexOfPml5Entries < NumberOfPml5EntriesNeeded
; IndexOfPml5Entries++, PageMapLevel5Entry++) {
//
// Each PML5 entry points to a page of PML4 entires.
// So lets allocate space for them and fill them in in the IndexOfPml4Entries loop.
// When 5-Level Paging is disabled, below allocation happens only once.
//
if (m5LevelPagingSupport) {
PageMapLevel4Entry = (UINT64 *) ((*PageMapLevel5Entry) & ~mAddressEncMask & gPhyMask);
if (PageMapLevel4Entry == NULL) {
PageMapLevel4Entry = AllocatePageTableMemory (1);
ASSERT(PageMapLevel4Entry != NULL);
ZeroMem (PageMapLevel4Entry, EFI_PAGES_TO_SIZE(1));
*PageMapLevel5Entry = (UINT64)(UINTN)PageMapLevel4Entry | mAddressEncMask | PAGE_ATTRIBUTE_BITS;
}
}
if (m1GPageTableSupport) {
PageDirectory1GEntry = PageDirectoryPointerEntry;
for (IndexOfPageDirectoryEntries = 0; IndexOfPageDirectoryEntries < 512; IndexOfPageDirectoryEntries++, PageDirectory1GEntry++, PageAddress += SIZE_1GB) {
if (IndexOfPml4Entries == 0 && IndexOfPageDirectoryEntries < 4) {
//
// Skip the < 4G entries
//
continue;
}
//
// Fill in the Page Directory entries
//
*PageDirectory1GEntry = PageAddress | mAddressEncMask | IA32_PG_PS | PAGE_ATTRIBUTE_BITS;
for (IndexOfPml4Entries = 0; IndexOfPml4Entries < (NumberOfPml5EntriesNeeded == 1 ? NumberOfPml4EntriesNeeded : 512); IndexOfPml4Entries++, PageMapLevel4Entry++) {
//
// Each PML4 entry points to a page of Page Directory Pointer entries.
//
PageDirectoryPointerEntry = (UINT64 *) ((*PageMapLevel4Entry) & ~mAddressEncMask & gPhyMask);
if (PageDirectoryPointerEntry == NULL) {
PageDirectoryPointerEntry = AllocatePageTableMemory (1);
ASSERT(PageDirectoryPointerEntry != NULL);
ZeroMem (PageDirectoryPointerEntry, EFI_PAGES_TO_SIZE(1));
*PageMapLevel4Entry = (UINT64)(UINTN)PageDirectoryPointerEntry | mAddressEncMask | PAGE_ATTRIBUTE_BITS;
}
} else {
PageAddress = BASE_4GB;
for (IndexOfPdpEntries = 0; IndexOfPdpEntries < NumberOfPdpEntriesNeeded; IndexOfPdpEntries++, PageDirectoryPointerEntry++) {
if (IndexOfPml4Entries == 0 && IndexOfPdpEntries < 4) {
//
// Skip the < 4G entries
//
continue;
}
//
// Each Directory Pointer entries points to a page of Page Directory entires.
// So allocate space for them and fill them in in the IndexOfPageDirectoryEntries loop.
//
PageDirectoryEntry = (UINT64 *) ((*PageDirectoryPointerEntry) & ~mAddressEncMask & gPhyMask);
if (PageDirectoryEntry == NULL) {
PageDirectoryEntry = AllocatePageTableMemory (1);
ASSERT(PageDirectoryEntry != NULL);
ZeroMem (PageDirectoryEntry, EFI_PAGES_TO_SIZE(1));
//
// Fill in a Page Directory Pointer Entries
//
*PageDirectoryPointerEntry = (UINT64)(UINTN)PageDirectoryEntry | mAddressEncMask | PAGE_ATTRIBUTE_BITS;
}
for (IndexOfPageDirectoryEntries = 0; IndexOfPageDirectoryEntries < 512; IndexOfPageDirectoryEntries++, PageDirectoryEntry++, PageAddress += SIZE_2MB) {
if (m1GPageTableSupport) {
PageDirectory1GEntry = PageDirectoryPointerEntry;
for (IndexOfPageDirectoryEntries = 0; IndexOfPageDirectoryEntries < 512; IndexOfPageDirectoryEntries++, PageDirectory1GEntry++, PageAddress += SIZE_1GB) {
if (IndexOfPml4Entries == 0 && IndexOfPageDirectoryEntries < 4) {
//
// Skip the < 4G entries
//
continue;
}
//
// Fill in the Page Directory entries
//
*PageDirectoryEntry = PageAddress | mAddressEncMask | IA32_PG_PS | PAGE_ATTRIBUTE_BITS;
*PageDirectory1GEntry = PageAddress | mAddressEncMask | IA32_PG_PS | PAGE_ATTRIBUTE_BITS;
}
} else {
PageAddress = BASE_4GB;
for (IndexOfPdpEntries = 0; IndexOfPdpEntries < (NumberOfPml4EntriesNeeded == 1 ? NumberOfPdpEntriesNeeded : 512); IndexOfPdpEntries++, PageDirectoryPointerEntry++) {
if (IndexOfPml4Entries == 0 && IndexOfPdpEntries < 4) {
//
// Skip the < 4G entries
//
continue;
}
//
// Each Directory Pointer entries points to a page of Page Directory entires.
// So allocate space for them and fill them in in the IndexOfPageDirectoryEntries loop.
//
PageDirectoryEntry = (UINT64 *) ((*PageDirectoryPointerEntry) & ~mAddressEncMask & gPhyMask);
if (PageDirectoryEntry == NULL) {
PageDirectoryEntry = AllocatePageTableMemory (1);
ASSERT(PageDirectoryEntry != NULL);
ZeroMem (PageDirectoryEntry, EFI_PAGES_TO_SIZE(1));
//
// Fill in a Page Directory Pointer Entries
//
*PageDirectoryPointerEntry = (UINT64)(UINTN)PageDirectoryEntry | mAddressEncMask | PAGE_ATTRIBUTE_BITS;
}
for (IndexOfPageDirectoryEntries = 0; IndexOfPageDirectoryEntries < 512; IndexOfPageDirectoryEntries++, PageDirectoryEntry++, PageAddress += SIZE_2MB) {
//
// Fill in the Page Directory entries
//
*PageDirectoryEntry = PageAddress | mAddressEncMask | IA32_PG_PS | PAGE_ATTRIBUTE_BITS;
}
}
}
}
@ -259,6 +326,8 @@ SmmInitPageTable (
UINTN PageFaultHandlerHookAddress;
IA32_IDT_GATE_DESCRIPTOR *IdtEntry;
EFI_STATUS Status;
UINT64 *Pml4Entry;
UINT64 *Pml5Entry;
//
// Initialize spin lock
@ -266,12 +335,14 @@ SmmInitPageTable (
InitializeSpinLock (mPFLock);
mCpuSmmStaticPageTable = PcdGetBool (PcdCpuSmmStaticPageTable);
m1GPageTableSupport = Is1GPageSupport ();
DEBUG ((DEBUG_INFO, "1GPageTableSupport - 0x%x\n", m1GPageTableSupport));
DEBUG ((DEBUG_INFO, "PcdCpuSmmStaticPageTable - 0x%x\n", mCpuSmmStaticPageTable));
mPhysicalAddressBits = CalculateMaximumSupportAddress ();
DEBUG ((DEBUG_INFO, "PhysicalAddressBits - 0x%x\n", mPhysicalAddressBits));
m1GPageTableSupport = Is1GPageSupport ();
m5LevelPagingSupport = Is5LevelPagingSupport ();
mPhysicalAddressBits = CalculateMaximumSupportAddress ();
PatchInstructionX86 (gPatch5LevelPagingSupport, m5LevelPagingSupport, 1);
DEBUG ((DEBUG_INFO, "5LevelPaging Support - %d\n", m5LevelPagingSupport));
DEBUG ((DEBUG_INFO, "1GPageTable Support - %d\n", m1GPageTableSupport));
DEBUG ((DEBUG_INFO, "PcdCpuSmmStaticPageTable - %d\n", mCpuSmmStaticPageTable));
DEBUG ((DEBUG_INFO, "PhysicalAddressBits - %d\n", mPhysicalAddressBits));
//
// Generate PAE page table for the first 4GB memory space
//
@ -288,15 +359,30 @@ SmmInitPageTable (
//
// Fill Page-Table-Level4 (PML4) entry
//
PTEntry = (UINT64*)AllocatePageTableMemory (1);
ASSERT (PTEntry != NULL);
*PTEntry = Pages | mAddressEncMask | PAGE_ATTRIBUTE_BITS;
ZeroMem (PTEntry + 1, EFI_PAGE_SIZE - sizeof (*PTEntry));
Pml4Entry = (UINT64*)AllocatePageTableMemory (1);
ASSERT (Pml4Entry != NULL);
*Pml4Entry = Pages | mAddressEncMask | PAGE_ATTRIBUTE_BITS;
ZeroMem (Pml4Entry + 1, EFI_PAGE_SIZE - sizeof (*Pml4Entry));
//
// Set sub-entries number
//
SetSubEntriesNum (PTEntry, 3);
SetSubEntriesNum (Pml4Entry, 3);
PTEntry = Pml4Entry;
if (m5LevelPagingSupport) {
//
// Fill PML5 entry
//
Pml5Entry = (UINT64*)AllocatePageTableMemory (1);
*Pml5Entry = (UINTN) Pml4Entry | mAddressEncMask | PAGE_ATTRIBUTE_BITS;
ZeroMem (Pml5Entry + 1, EFI_PAGE_SIZE - sizeof (*Pml5Entry));
//
// Set sub-entries number
//
SetSubEntriesNum (Pml5Entry, 1);
PTEntry = Pml5Entry;
}
if (mCpuSmmStaticPageTable) {
SetStaticPageTable ((UINTN)PTEntry);
@ -344,7 +430,7 @@ SmmInitPageTable (
}
//
// Return the address of PML4 (to set CR3)
// Return the address of PML4/PML5 (to set CR3)
//
return (UINT32)(UINTN)PTEntry;
}
@ -436,12 +522,16 @@ ReclaimPages (
VOID
)
{
UINT64 Pml5Entry;
UINT64 *Pml5;
UINT64 *Pml4;
UINT64 *Pdpt;
UINT64 *Pdt;
UINTN Pml5Index;
UINTN Pml4Index;
UINTN PdptIndex;
UINTN PdtIndex;
UINTN MinPml5;
UINTN MinPml4;
UINTN MinPdpt;
UINTN MinPdt;
@ -451,120 +541,147 @@ ReclaimPages (
BOOLEAN PML4EIgnore;
BOOLEAN PDPTEIgnore;
UINT64 *ReleasePageAddress;
IA32_CR4 Cr4;
BOOLEAN Enable5LevelPaging;
Pml4 = NULL;
Pdpt = NULL;
Pdt = NULL;
MinAcc = (UINT64)-1;
MinPml4 = (UINTN)-1;
MinPml5 = (UINTN)-1;
MinPdpt = (UINTN)-1;
MinPdt = (UINTN)-1;
Acc = 0;
ReleasePageAddress = 0;
Cr4.UintN = AsmReadCr4 ();
Enable5LevelPaging = (BOOLEAN) (Cr4.Bits.LA57 == 1);
Pml5 = (UINT64*)(UINTN)(AsmReadCr3 () & gPhyMask);
if (!Enable5LevelPaging) {
//
// Create one fake PML5 entry for 4-Level Paging
// so that the page table parsing logic only handles 5-Level page structure.
//
Pml5Entry = (UINTN) Pml5 | IA32_PG_P;
Pml5 = &Pml5Entry;
}
//
// First, find the leaf entry has the smallest access record value
//
Pml4 = (UINT64*)(UINTN)(AsmReadCr3 () & gPhyMask);
for (Pml4Index = 0; Pml4Index < EFI_PAGE_SIZE / sizeof (*Pml4); Pml4Index++) {
if ((Pml4[Pml4Index] & IA32_PG_P) == 0 || (Pml4[Pml4Index] & IA32_PG_PMNT) != 0) {
for (Pml5Index = 0; Pml5Index < Enable5LevelPaging ? (EFI_PAGE_SIZE / sizeof (*Pml4)) : 1; Pml5Index++) {
if ((Pml5[Pml5Index] & IA32_PG_P) == 0 || (Pml5[Pml5Index] & IA32_PG_PMNT) != 0) {
//
// If the PML4 entry is not present or is masked, skip it
// If the PML5 entry is not present or is masked, skip it
//
continue;
}
Pdpt = (UINT64*)(UINTN)(Pml4[Pml4Index] & ~mAddressEncMask & gPhyMask);
PML4EIgnore = FALSE;
for (PdptIndex = 0; PdptIndex < EFI_PAGE_SIZE / sizeof (*Pdpt); PdptIndex++) {
if ((Pdpt[PdptIndex] & IA32_PG_P) == 0 || (Pdpt[PdptIndex] & IA32_PG_PMNT) != 0) {
Pml4 = (UINT64*)(UINTN)(Pml5[Pml5Index] & gPhyMask);
for (Pml4Index = 0; Pml4Index < EFI_PAGE_SIZE / sizeof (*Pml4); Pml4Index++) {
if ((Pml4[Pml4Index] & IA32_PG_P) == 0 || (Pml4[Pml4Index] & IA32_PG_PMNT) != 0) {
//
// If the PDPT entry is not present or is masked, skip it
// If the PML4 entry is not present or is masked, skip it
//
if ((Pdpt[PdptIndex] & IA32_PG_PMNT) != 0) {
//
// If the PDPT entry is masked, we will ignore checking the PML4 entry
//
PML4EIgnore = TRUE;
}
continue;
}
if ((Pdpt[PdptIndex] & IA32_PG_PS) == 0) {
//
// It's not 1-GByte pages entry, it should be a PDPT entry,
// we will not check PML4 entry more
//
PML4EIgnore = TRUE;
Pdt = (UINT64*)(UINTN)(Pdpt[PdptIndex] & ~mAddressEncMask & gPhyMask);
PDPTEIgnore = FALSE;
for (PdtIndex = 0; PdtIndex < EFI_PAGE_SIZE / sizeof(*Pdt); PdtIndex++) {
if ((Pdt[PdtIndex] & IA32_PG_P) == 0 || (Pdt[PdtIndex] & IA32_PG_PMNT) != 0) {
Pdpt = (UINT64*)(UINTN)(Pml4[Pml4Index] & ~mAddressEncMask & gPhyMask);
PML4EIgnore = FALSE;
for (PdptIndex = 0; PdptIndex < EFI_PAGE_SIZE / sizeof (*Pdpt); PdptIndex++) {
if ((Pdpt[PdptIndex] & IA32_PG_P) == 0 || (Pdpt[PdptIndex] & IA32_PG_PMNT) != 0) {
//
// If the PDPT entry is not present or is masked, skip it
//
if ((Pdpt[PdptIndex] & IA32_PG_PMNT) != 0) {
//
// If the PD entry is not present or is masked, skip it
// If the PDPT entry is masked, we will ignore checking the PML4 entry
//
if ((Pdt[PdtIndex] & IA32_PG_PMNT) != 0) {
PML4EIgnore = TRUE;
}
continue;
}
if ((Pdpt[PdptIndex] & IA32_PG_PS) == 0) {
//
// It's not 1-GByte pages entry, it should be a PDPT entry,
// we will not check PML4 entry more
//
PML4EIgnore = TRUE;
Pdt = (UINT64*)(UINTN)(Pdpt[PdptIndex] & ~mAddressEncMask & gPhyMask);
PDPTEIgnore = FALSE;
for (PdtIndex = 0; PdtIndex < EFI_PAGE_SIZE / sizeof(*Pdt); PdtIndex++) {
if ((Pdt[PdtIndex] & IA32_PG_P) == 0 || (Pdt[PdtIndex] & IA32_PG_PMNT) != 0) {
//
// If the PD entry is masked, we will not PDPT entry more
// If the PD entry is not present or is masked, skip it
//
if ((Pdt[PdtIndex] & IA32_PG_PMNT) != 0) {
//
// If the PD entry is masked, we will not PDPT entry more
//
PDPTEIgnore = TRUE;
}
continue;
}
if ((Pdt[PdtIndex] & IA32_PG_PS) == 0) {
//
// It's not 2 MByte page table entry, it should be PD entry
// we will find the entry has the smallest access record value
//
PDPTEIgnore = TRUE;
Acc = GetAndUpdateAccNum (Pdt + PdtIndex);
if (Acc < MinAcc) {
//
// If the PD entry has the smallest access record value,
// save the Page address to be released
//
MinAcc = Acc;
MinPml5 = Pml5Index;
MinPml4 = Pml4Index;
MinPdpt = PdptIndex;
MinPdt = PdtIndex;
ReleasePageAddress = Pdt + PdtIndex;
}
}
continue;
}
if ((Pdt[PdtIndex] & IA32_PG_PS) == 0) {
if (!PDPTEIgnore) {
//
// It's not 2 MByte page table entry, it should be PD entry
// we will find the entry has the smallest access record value
// If this PDPT entry has no PDT entries pointer to 4 KByte pages,
// it should only has the entries point to 2 MByte Pages
//
PDPTEIgnore = TRUE;
Acc = GetAndUpdateAccNum (Pdt + PdtIndex);
Acc = GetAndUpdateAccNum (Pdpt + PdptIndex);
if (Acc < MinAcc) {
//
// If the PD entry has the smallest access record value,
// If the PDPT entry has the smallest access record value,
// save the Page address to be released
//
MinAcc = Acc;
MinPml5 = Pml5Index;
MinPml4 = Pml4Index;
MinPdpt = PdptIndex;
MinPdt = PdtIndex;
ReleasePageAddress = Pdt + PdtIndex;
MinPdt = (UINTN)-1;
ReleasePageAddress = Pdpt + PdptIndex;
}
}
}
if (!PDPTEIgnore) {
//
// If this PDPT entry has no PDT entries pointer to 4 KByte pages,
// it should only has the entries point to 2 MByte Pages
//
Acc = GetAndUpdateAccNum (Pdpt + PdptIndex);
if (Acc < MinAcc) {
//
// If the PDPT entry has the smallest access record value,
// save the Page address to be released
//
MinAcc = Acc;
MinPml4 = Pml4Index;
MinPdpt = PdptIndex;
MinPdt = (UINTN)-1;
ReleasePageAddress = Pdpt + PdptIndex;
}
}
}
}
if (!PML4EIgnore) {
//
// If PML4 entry has no the PDPT entry pointer to 2 MByte pages,
// it should only has the entries point to 1 GByte Pages
//
Acc = GetAndUpdateAccNum (Pml4 + Pml4Index);
if (Acc < MinAcc) {
if (!PML4EIgnore) {
//
// If the PML4 entry has the smallest access record value,
// save the Page address to be released
// If PML4 entry has no the PDPT entry pointer to 2 MByte pages,
// it should only has the entries point to 1 GByte Pages
//
MinAcc = Acc;
MinPml4 = Pml4Index;
MinPdpt = (UINTN)-1;
MinPdt = (UINTN)-1;
ReleasePageAddress = Pml4 + Pml4Index;
Acc = GetAndUpdateAccNum (Pml4 + Pml4Index);
if (Acc < MinAcc) {
//
// If the PML4 entry has the smallest access record value,
// save the Page address to be released
//
MinAcc = Acc;
MinPml5 = Pml5Index;
MinPml4 = Pml4Index;
MinPdpt = (UINTN)-1;
MinPdt = (UINTN)-1;
ReleasePageAddress = Pml4 + Pml4Index;
}
}
}
}
@ -588,6 +705,7 @@ ReclaimPages (
//
// If 4 KByte Page Table is released, check the PDPT entry
//
Pml4 = (UINT64 *) (UINTN) (Pml5[MinPml5] & gPhyMask);
Pdpt = (UINT64*)(UINTN)(Pml4[MinPml4] & ~mAddressEncMask & gPhyMask);
SubEntriesNum = GetSubEntriesNum(Pdpt + MinPdpt);
if (SubEntriesNum == 0) {
@ -679,7 +797,7 @@ SmiDefaultPFHandler (
)
{
UINT64 *PageTable;
UINT64 *Pml4;
UINT64 *PageTableTop;
UINT64 PFAddress;
UINTN StartBit;
UINTN EndBit;
@ -690,6 +808,8 @@ SmiDefaultPFHandler (
UINTN PageAttribute;
EFI_STATUS Status;
UINT64 *UpperEntry;
BOOLEAN Enable5LevelPaging;
IA32_CR4 Cr4;
//
// Set default SMM page attribute
@ -699,9 +819,12 @@ SmiDefaultPFHandler (
PageAttribute = 0;
EndBit = 0;
Pml4 = (UINT64*)(AsmReadCr3 () & gPhyMask);
PageTableTop = (UINT64*)(AsmReadCr3 () & gPhyMask);
PFAddress = AsmReadCr2 ();
Cr4.UintN = AsmReadCr4 ();
Enable5LevelPaging = (BOOLEAN) (Cr4.Bits.LA57 != 0);
Status = GetPlatformPageTableAttribute (PFAddress, &PageSize, &NumOfPages, &PageAttribute);
//
// If platform not support page table attribute, set default SMM page attribute
@ -755,9 +878,9 @@ SmiDefaultPFHandler (
}
for (Index = 0; Index < NumOfPages; Index++) {
PageTable = Pml4;
PageTable = PageTableTop;
UpperEntry = NULL;
for (StartBit = 39; StartBit > EndBit; StartBit -= 9) {
for (StartBit = Enable5LevelPaging ? 48 : 39; StartBit > EndBit; StartBit -= 9) {
PTIndex = BitFieldRead64 (PFAddress, StartBit, StartBit + 8);
if ((PageTable[PTIndex] & IA32_PG_P) == 0) {
//
@ -941,13 +1064,20 @@ SetPageTableAttributes (
UINTN Index2;
UINTN Index3;
UINTN Index4;
UINTN Index5;
UINT64 *L1PageTable;
UINT64 *L2PageTable;
UINT64 *L3PageTable;
UINT64 *L4PageTable;
UINT64 *L5PageTable;
BOOLEAN IsSplitted;
BOOLEAN PageTableSplitted;
BOOLEAN CetEnabled;
IA32_CR4 Cr4;
BOOLEAN Enable5LevelPaging;
Cr4.UintN = AsmReadCr4 ();
Enable5LevelPaging = (BOOLEAN) (Cr4.Bits.LA57 == 1);
//
// Don't do this if
@ -991,44 +1121,59 @@ SetPageTableAttributes (
do {
DEBUG ((DEBUG_INFO, "Start...\n"));
PageTableSplitted = FALSE;
L5PageTable = NULL;
if (Enable5LevelPaging) {
L5PageTable = (UINT64 *)GetPageTableBase ();
SmmSetMemoryAttributesEx ((EFI_PHYSICAL_ADDRESS)(UINTN)L5PageTable, SIZE_4KB, EFI_MEMORY_RO, &IsSplitted);
PageTableSplitted = (PageTableSplitted || IsSplitted);
}
L4PageTable = (UINT64 *)GetPageTableBase ();
SmmSetMemoryAttributesEx ((EFI_PHYSICAL_ADDRESS)(UINTN)L4PageTable, SIZE_4KB, EFI_MEMORY_RO, &IsSplitted);
PageTableSplitted = (PageTableSplitted || IsSplitted);
for (Index4 = 0; Index4 < SIZE_4KB/sizeof(UINT64); Index4++) {
L3PageTable = (UINT64 *)(UINTN)(L4PageTable[Index4] & ~mAddressEncMask & PAGING_4K_ADDRESS_MASK_64);
if (L3PageTable == NULL) {
continue;
for (Index5 = 0; Index5 < (Enable5LevelPaging ? SIZE_4KB/sizeof(UINT64) : 1); Index5++) {
if (Enable5LevelPaging) {
L4PageTable = (UINT64 *)(UINTN)(L5PageTable[Index5] & ~mAddressEncMask & PAGING_4K_ADDRESS_MASK_64);
if (L4PageTable == NULL) {
continue;
}
} else {
L4PageTable = (UINT64 *)GetPageTableBase ();
}
SmmSetMemoryAttributesEx ((EFI_PHYSICAL_ADDRESS)(UINTN)L3PageTable, SIZE_4KB, EFI_MEMORY_RO, &IsSplitted);
SmmSetMemoryAttributesEx ((EFI_PHYSICAL_ADDRESS)(UINTN)L4PageTable, SIZE_4KB, EFI_MEMORY_RO, &IsSplitted);
PageTableSplitted = (PageTableSplitted || IsSplitted);
for (Index3 = 0; Index3 < SIZE_4KB/sizeof(UINT64); Index3++) {
if ((L3PageTable[Index3] & IA32_PG_PS) != 0) {
// 1G
continue;
}
L2PageTable = (UINT64 *)(UINTN)(L3PageTable[Index3] & ~mAddressEncMask & PAGING_4K_ADDRESS_MASK_64);
if (L2PageTable == NULL) {
for (Index4 = 0; Index4 < SIZE_4KB/sizeof(UINT64); Index4++) {
L3PageTable = (UINT64 *)(UINTN)(L4PageTable[Index4] & ~mAddressEncMask & PAGING_4K_ADDRESS_MASK_64);
if (L3PageTable == NULL) {
continue;
}
SmmSetMemoryAttributesEx ((EFI_PHYSICAL_ADDRESS)(UINTN)L2PageTable, SIZE_4KB, EFI_MEMORY_RO, &IsSplitted);
SmmSetMemoryAttributesEx ((EFI_PHYSICAL_ADDRESS)(UINTN)L3PageTable, SIZE_4KB, EFI_MEMORY_RO, &IsSplitted);
PageTableSplitted = (PageTableSplitted || IsSplitted);
for (Index2 = 0; Index2 < SIZE_4KB/sizeof(UINT64); Index2++) {
if ((L2PageTable[Index2] & IA32_PG_PS) != 0) {
// 2M
for (Index3 = 0; Index3 < SIZE_4KB/sizeof(UINT64); Index3++) {
if ((L3PageTable[Index3] & IA32_PG_PS) != 0) {
// 1G
continue;
}
L1PageTable = (UINT64 *)(UINTN)(L2PageTable[Index2] & ~mAddressEncMask & PAGING_4K_ADDRESS_MASK_64);
if (L1PageTable == NULL) {
L2PageTable = (UINT64 *)(UINTN)(L3PageTable[Index3] & ~mAddressEncMask & PAGING_4K_ADDRESS_MASK_64);
if (L2PageTable == NULL) {
continue;
}
SmmSetMemoryAttributesEx ((EFI_PHYSICAL_ADDRESS)(UINTN)L1PageTable, SIZE_4KB, EFI_MEMORY_RO, &IsSplitted);
SmmSetMemoryAttributesEx ((EFI_PHYSICAL_ADDRESS)(UINTN)L2PageTable, SIZE_4KB, EFI_MEMORY_RO, &IsSplitted);
PageTableSplitted = (PageTableSplitted || IsSplitted);
for (Index2 = 0; Index2 < SIZE_4KB/sizeof(UINT64); Index2++) {
if ((L2PageTable[Index2] & IA32_PG_PS) != 0) {
// 2M
continue;
}
L1PageTable = (UINT64 *)(UINTN)(L2PageTable[Index2] & ~mAddressEncMask & PAGING_4K_ADDRESS_MASK_64);
if (L1PageTable == NULL) {
continue;
}
SmmSetMemoryAttributesEx ((EFI_PHYSICAL_ADDRESS)(UINTN)L1PageTable, SIZE_4KB, EFI_MEMORY_RO, &IsSplitted);
PageTableSplitted = (PageTableSplitted || IsSplitted);
}
}
}
}

View File

@ -69,6 +69,7 @@ extern ASM_PFX(mXdSupported)
global ASM_PFX(gPatchXdSupported)
global ASM_PFX(gPatchSmiStack)
global ASM_PFX(gPatchSmiCr3)
global ASM_PFX(gPatch5LevelPagingSupport)
global ASM_PFX(gcSmiHandlerTemplate)
global ASM_PFX(gcSmiHandlerSize)
@ -124,6 +125,17 @@ ProtFlatMode:
ASM_PFX(gPatchSmiCr3):
mov cr3, rax
mov eax, 0x668 ; as cr4.PGE is not set here, refresh cr3
mov cl, strict byte 0 ; source operand will be patched
ASM_PFX(gPatch5LevelPagingSupport):
cmp cl, 0
je SkipEnable5LevelPaging
;
; Enable 5-Level Paging bit
;
bts eax, 12 ; Set LA57 bit (bit #12)
SkipEnable5LevelPaging:
mov cr4, rax ; in PreModifyMtrrs() to flush TLB.
; Load TSS
sub esp, 8 ; reserve room in stack

View File

@ -1,7 +1,7 @@
/** @file
X64 processor specific functions to enable SMM profile.
Copyright (c) 2012 - 2016, Intel Corporation. All rights reserved.<BR>
Copyright (c) 2012 - 2019, Intel Corporation. All rights reserved.<BR>
Copyright (c) 2017, AMD Incorporated. All rights reserved.<BR>
SPDX-License-Identifier: BSD-2-Clause-Patent
@ -147,9 +147,14 @@ RestorePageTableAbove4G (
BOOLEAN Existed;
UINTN Index;
UINTN PFIndex;
IA32_CR4 Cr4;
BOOLEAN Enable5LevelPaging;
ASSERT ((PageTable != NULL) && (IsValidPFAddress != NULL));
Cr4.UintN = AsmReadCr4 ();
Enable5LevelPaging = (BOOLEAN) (Cr4.Bits.LA57 == 1);
//
// If page fault address is 4GB above.
//
@ -161,38 +166,48 @@ RestorePageTableAbove4G (
//
Existed = FALSE;
PageTable = (UINT64*)(AsmReadCr3 () & PHYSICAL_ADDRESS_MASK);
PTIndex = BitFieldRead64 (PFAddress, 39, 47);
if ((PageTable[PTIndex] & IA32_PG_P) != 0) {
// PML4E
PageTable = (UINT64*)(UINTN)(PageTable[PTIndex] & ~mAddressEncMask & PHYSICAL_ADDRESS_MASK);
PTIndex = BitFieldRead64 (PFAddress, 30, 38);
if ((PageTable[PTIndex] & IA32_PG_P) != 0) {
// PDPTE
PTIndex = 0;
if (Enable5LevelPaging) {
PTIndex = BitFieldRead64 (PFAddress, 48, 56);
}
if ((!Enable5LevelPaging) || ((PageTable[PTIndex] & IA32_PG_P) != 0)) {
// PML5E
if (Enable5LevelPaging) {
PageTable = (UINT64*)(UINTN)(PageTable[PTIndex] & ~mAddressEncMask & PHYSICAL_ADDRESS_MASK);
PTIndex = BitFieldRead64 (PFAddress, 21, 29);
// PD
if ((PageTable[PTIndex] & IA32_PG_PS) != 0) {
//
// 2MB page
//
Address = (UINT64)(PageTable[PTIndex] & ~mAddressEncMask & PHYSICAL_ADDRESS_MASK);
if ((Address & ~((1ull << 21) - 1)) == ((PFAddress & PHYSICAL_ADDRESS_MASK & ~((1ull << 21) - 1)))) {
Existed = TRUE;
}
} else {
//
// 4KB page
//
PageTable = (UINT64*)(UINTN)(PageTable[PTIndex] & ~mAddressEncMask& PHYSICAL_ADDRESS_MASK);
if (PageTable != 0) {
}
PTIndex = BitFieldRead64 (PFAddress, 39, 47);
if ((PageTable[PTIndex] & IA32_PG_P) != 0) {
// PML4E
PageTable = (UINT64*)(UINTN)(PageTable[PTIndex] & ~mAddressEncMask & PHYSICAL_ADDRESS_MASK);
PTIndex = BitFieldRead64 (PFAddress, 30, 38);
if ((PageTable[PTIndex] & IA32_PG_P) != 0) {
// PDPTE
PageTable = (UINT64*)(UINTN)(PageTable[PTIndex] & ~mAddressEncMask & PHYSICAL_ADDRESS_MASK);
PTIndex = BitFieldRead64 (PFAddress, 21, 29);
// PD
if ((PageTable[PTIndex] & IA32_PG_PS) != 0) {
//
// When there is a valid entry to map to 4KB page, need not create a new entry to map 2MB.
// 2MB page
//
PTIndex = BitFieldRead64 (PFAddress, 12, 20);
Address = (UINT64)(PageTable[PTIndex] & ~mAddressEncMask & PHYSICAL_ADDRESS_MASK);
if ((Address & ~((1ull << 12) - 1)) == (PFAddress & PHYSICAL_ADDRESS_MASK & ~((1ull << 12) - 1))) {
if ((Address & ~((1ull << 21) - 1)) == ((PFAddress & PHYSICAL_ADDRESS_MASK & ~((1ull << 21) - 1)))) {
Existed = TRUE;
}
} else {
//
// 4KB page
//
PageTable = (UINT64*)(UINTN)(PageTable[PTIndex] & ~mAddressEncMask& PHYSICAL_ADDRESS_MASK);
if (PageTable != 0) {
//
// When there is a valid entry to map to 4KB page, need not create a new entry to map 2MB.
//
PTIndex = BitFieldRead64 (PFAddress, 12, 20);
Address = (UINT64)(PageTable[PTIndex] & ~mAddressEncMask & PHYSICAL_ADDRESS_MASK);
if ((Address & ~((1ull << 12) - 1)) == (PFAddress & PHYSICAL_ADDRESS_MASK & ~((1ull << 12) - 1))) {
Existed = TRUE;
}
}
}
}
}
@ -221,6 +236,11 @@ RestorePageTableAbove4G (
//
PageTable = (UINT64*)(AsmReadCr3 () & PHYSICAL_ADDRESS_MASK);
PFAddress = AsmReadCr2 ();
// PML5E
if (Enable5LevelPaging) {
PTIndex = BitFieldRead64 (PFAddress, 48, 56);
PageTable = (UINT64*)(UINTN)(PageTable[PTIndex] & ~mAddressEncMask & PHYSICAL_ADDRESS_MASK);
}
// PML4E
PTIndex = BitFieldRead64 (PFAddress, 39, 47);
PageTable = (UINT64*)(UINTN)(PageTable[PTIndex] & ~mAddressEncMask & PHYSICAL_ADDRESS_MASK);