DynamicTablesPkg: Add dynamic PPTT table generation support

The PPTT generator uses the configuration manager protocol to
obtain information about platform's processor topology and caches.
This data is then used to generate the PPTT table.

The table generator supports ACPI 6.3, PPTT table revision 2.

The dynamic PPTT generator also carries out extensive input
validation which includes cycle detection and MADT-PPTT
cross-validation. A number of architectural compliance checks
are also performed.

Signed-off-by: Krzysztof Koch <krzysztof.koch@arm.com>
Reviewed-by: Alexei Fedorov <Alexei.Fedorov@arm.com>
Reviewed-by: Sami Mujawar <sami.mujawar@arm.com>
This commit is contained in:
Krzysztof Koch 2019-02-22 17:42:27 +00:00 committed by Sami Mujawar
parent 8349b86836
commit 77db115601
8 changed files with 1867 additions and 6 deletions

View File

@ -1,7 +1,7 @@
## @file
# Dsc include file for Dynamic Tables Framework.
#
# Copyright (c) 2017 - 2018, ARM Limited. All rights reserved.<BR>
# Copyright (c) 2017 - 2019, ARM Limited. All rights reserved.<BR>
#
# SPDX-License-Identifier: BSD-2-Clause-Patent
#
@ -27,6 +27,7 @@
NULL|DynamicTablesPkg/Library/Acpi/Arm/AcpiIortLibArm/AcpiIortLibArm.inf
NULL|DynamicTablesPkg/Library/Acpi/Arm/AcpiMadtLibArm/AcpiMadtLibArm.inf
NULL|DynamicTablesPkg/Library/Acpi/Arm/AcpiMcfgLibArm/AcpiMcfgLibArm.inf
NULL|DynamicTablesPkg/Library/Acpi/Arm/AcpiPpttLibArm/AcpiPpttLibArm.inf
NULL|DynamicTablesPkg/Library/Acpi/Arm/AcpiRawLibArm/AcpiRawLibArm.inf
NULL|DynamicTablesPkg/Library/Acpi/Arm/AcpiSpcrLibArm/AcpiSpcrLibArm.inf
}

View File

@ -51,6 +51,8 @@ The Dynamic Tables Framework implements the following ACPI table generators:
from the Configuration Manager and builds the MCFG table.
- IORT : The IORT generator collates the IO Topology information from the
Configuration Manager and builds the IORT table.
- PPTT : The PPTT generator collates the processor topology information from
the Configuration Manager and builds the PPTT table.
*/
/** The ACPI_TABLE_GENERATOR_ID type describes ACPI table generator ID.
@ -72,6 +74,7 @@ typedef enum StdAcpiTableId {
EStdAcpiTableIdSpcr, ///< SPCR Generator
EStdAcpiTableIdMcfg, ///< MCFG Generator
EStdAcpiTableIdIort, ///< IORT Generator
EStdAcpiTableIdPptt, ///< PPTT Generator
EStdAcpiTableIdMax
} ESTD_ACPI_TABLE_ID;

View File

@ -48,6 +48,10 @@ typedef enum ArmObjectID {
EArmObjGicItsIdentifierArray, ///< 24 - GIC ITS Identifier Array
EArmObjIdMappingArray, ///< 25 - ID Mapping Array
EArmObjSmmuInterruptArray, ///< 26 - SMMU Interrupt Array
EArmObjProcHierarchyInfo, ///< 27 - Processor Hierarchy Info
EArmObjCacheInfo, ///< 28 - Cache Info
EArmObjProcNodeIdInfo, ///< 29 - Processor Hierarchy Node ID Info
EArmObjCmRef, ///< 30 - CM Object Reference
EArmObjMax
} EARM_OBJECT_ID;
@ -628,6 +632,97 @@ typedef struct CmArmSmmuInterrupt {
UINT32 Flags;
} CM_ARM_SMMU_INTERRUPT;
/** A structure that describes the Processor Hierarchy Node (Type 0) in PPTT
ID: EArmObjProcHierarchyInfo
*/
typedef struct CmArmProcHierarchyInfo {
/// A unique token used to identify this object
CM_OBJECT_TOKEN Token;
/// Processor structure flags (ACPI 6.3 - January 2019, PPTT, Table 5-155)
UINT32 Flags;
/// Token for the parent CM_ARM_PROC_HIERARCHY_INFO object in the processor
/// topology. A value of CM_NULL_TOKEN means this node has no parent.
CM_OBJECT_TOKEN ParentToken;
/// Token of the associated CM_ARM_GICC_INFO object which has the
/// corresponding ACPI Processor ID. A value of CM_NULL_TOKEN means this
/// node represents a group of associated processors and it does not have an
/// associated GIC CPU interface.
CM_OBJECT_TOKEN GicCToken;
/// Number of resources private to this Node
UINT32 NoOfPrivateResources;
/// Token of the array which contains references to the resources private to
/// this CM_ARM_PROC_HIERARCHY_INFO instance. This field is ignored if
/// the NoOfPrivateResources is 0, in which case it is recomended to set
/// this field to CM_NULL_TOKEN.
CM_OBJECT_TOKEN PrivateResourcesArrayToken;
} CM_ARM_PROC_HIERARCHY_INFO;
/** A structure that describes the Cache Type Structure (Type 1) in PPTT
ID: EArmObjCacheInfo
*/
typedef struct CmArmCacheInfo {
/// A unique token used to identify this object
CM_OBJECT_TOKEN Token;
/// Reference token for the next level of cache that is private to the same
/// CM_ARM_PROC_HIERARCHY_INFO instance. A value of CM_NULL_TOKEN means this
/// entry represents the last cache level appropriate to the processor
/// hierarchy node structures using this entry.
CM_OBJECT_TOKEN NextLevelOfCacheToken;
/// Size of the cache in bytes
UINT32 Size;
/// Number of sets in the cache
UINT32 NumberOfSets;
/// Integer number of ways. The maximum associativity supported by
/// ACPI Cache type structure is limited to MAX_UINT8. However,
/// the maximum number of ways supported by the architecture is
/// PPTT_ARM_CCIDX_CACHE_ASSOCIATIVITY_MAX. Therfore this field
/// is 32-bit wide.
UINT32 Associativity;
/// Cache attributes (ACPI 6.3 - January 2019, PPTT, Table 5-156)
UINT8 Attributes;
/// Line size in bytes
UINT16 LineSize;
} CM_ARM_CACHE_INFO;
/** A structure that describes the ID Structure (Type 2) in PPTT
ID: EArmObjProcNodeIdInfo
*/
typedef struct CmArmProcNodeIdInfo {
/// A unique token used to identify this object
CM_OBJECT_TOKEN Token;
// Vendor ID (as described in ACPI ID registry)
UINT32 VendorId;
/// First level unique node ID
UINT64 Level1Id;
/// Second level unique node ID
UINT64 Level2Id;
/// Major revision of the node
UINT16 MajorRev;
/// Minor revision of the node
UINT16 MinorRev;
/// Spin revision of the node
UINT16 SpinRev;
} CM_ARM_PROC_NODE_ID_INFO;
/** A structure that describes a reference to another Configuration Manager
object.
This is useful for creating an array of reference tokens. The framework
can then query the configuration manager for these arrays using the
object ID EArmObjCmRef.
This can be used is to represent one-to-many relationships between objects.
ID: EArmObjCmRef
*/
typedef struct CmArmObjRef {
/// Token of the CM object being referenced
CM_OBJECT_TOKEN ReferenceToken;
} CM_ARM_OBJ_REF;
#pragma pack()
#endif // ARM_NAMESPACE_OBJECTS_H_

View File

@ -63,10 +63,24 @@ Object ID's in the ARM Namespace:
10 - Serial Debug Port Info
11 - Generic Timer Info
12 - Platform GT Block Info
13 - Platform Generic Watchdog
14 - PCI Configuration Space Info
15 - Hypervisor Vendor Id
16 - Fixed feature flags for FADT
13 - Generic Timer Block Frame Info
14 - Platform Generic Watchdog
15 - PCI Configuration Space Info
16 - Hypervisor Vendor Id
17 - Fixed feature flags for FADT
18 - ITS Group
19 - Named Component
20 - Root Complex
21 - SMMUv1 or SMMUv2
22 - SMMUv3
23 - PMCG
24 - GIC ITS Identifier Array
25 - ID Mapping Array
26 - SMMU Interrupt Array
27 - Processor Hierarchy Info
28 - Cache Info
29 - Processor Hierarchy Node ID Info
30 - CM Object Reference
*/
typedef UINT32 CM_OBJECT_ID;

View File

@ -1,6 +1,6 @@
/** @file
Copyright (c) 2017, ARM Limited. All rights reserved.
Copyright (c) 2017 - 2019, ARM Limited. All rights reserved.
SPDX-License-Identifier: BSD-2-Clause-Patent
@ -55,6 +55,7 @@ _______________________________________________________________________________
7 - DBG2
8 - SPCR
9 - MCFG
10 - PPTT
Standard SMBIOS Table IDs:
0 - Reserved

View File

@ -0,0 +1,29 @@
## @file
# PPTT Table Generator
#
# Copyright (c) 2019, ARM Limited. All rights reserved.
#
# SPDX-License-Identifier: BSD-2-Clause-Patent
##
[Defines]
INF_VERSION = 0x0001001B
BASE_NAME = AcpiPpttLibArm
FILE_GUID = FA102D52-5A92-4F95-A097-1D53F9CF5959
VERSION_STRING = 1.0
MODULE_TYPE = DXE_DRIVER
LIBRARY_CLASS = NULL|DXE_DRIVER
CONSTRUCTOR = AcpiPpttLibConstructor
DESTRUCTOR = AcpiPpttLibDestructor
[Sources]
PpttGenerator.c
[Packages]
EmbeddedPkg/EmbeddedPkg.dec
DynamicTablesPkg/DynamicTablesPkg.dec
MdeModulePkg/MdeModulePkg.dec
MdePkg/MdePkg.dec
[LibraryClasses]
BaseLib

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,190 @@
/** @file
Header file for the dynamic PPTT generator
Copyright (c) 2019, ARM Limited. All rights reserved.
SPDX-License-Identifier: BSD-2-Clause-Patent
@par Reference(s):
- ACPI 6.3 Specification, January 2019
- ARM Architecture Reference Manual ARMv8 (D.a)
@par Glossary:
- Cm or CM - Configuration Manager
- Obj or OBJ - Object
**/
#ifndef PPTT_GENERATOR_H_
#define PPTT_GENERATOR_H_
#pragma pack(1)
/// Cache parameters allowed by the architecture with
/// ARMv8.3-CCIDX (Cache extended number of sets)
/// Derived from CCSIDR_EL1 when ID_AA64MMFR2_EL1.CCIDX==0001
#define PPTT_ARM_CCIDX_CACHE_NUMBER_OF_SETS_MAX (1 << 24)
#define PPTT_ARM_CCIDX_CACHE_ASSOCIATIVITY_MAX (1 << 21)
/// Cache parameters allowed by the architecture without
/// ARMv8.3-CCIDX (Cache extended number of sets)
/// Derived from CCSIDR_EL1 when ID_AA64MMFR2_EL1.CCIDX==0000
#define PPTT_ARM_CACHE_NUMBER_OF_SETS_MAX (1 << 15)
#define PPTT_ARM_CACHE_ASSOCIATIVITY_MAX (1 << 10)
/// Common cache parameters
/// Derived from CCSIDR_EL1
/// The LineSize is represented by bits 2:0
/// (Log2(Number of bytes in cache line)) - 4 is used to represent
/// the LineSize bits.
#define PPTT_ARM_CACHE_LINE_SIZE_MAX (1 << 11)
#define PPTT_ARM_CACHE_LINE_SIZE_MIN (1 << 4)
/// Test if the given Processor Hierarchy Info object has the 'Node is a Leaf'
/// flag set
#define IS_PROC_NODE_LEAF(Node) ((Node->Flags & BIT3) != 0)
/// Test if the given Processor Hierarchy Info object has the 'ACPI Processor
/// ID valid' flag set
#define IS_ACPI_PROC_ID_VALID(Node) ((Node->Flags & BIT1) != 0)
/**
The GET_SIZE_OF_PPTT_STRUCTS macro expands to a function that is used to
calculate the total memory requirement for the PPTT structures represented
by the given list of Configuration Manager Objects of the same type. This
function also indexes the input CM objects so that various other CM objects
(possibly of different type) can reference them.
The size of memory needed for the specified type of PPTT structures is based
on the number and type of CM objects provided. The macro assumes that the
ACPI object PpttObjName has fixed size.
The macro expands to a function which has the following prototype:
STATIC
UINT32
EFIAPI
GetSizeof<PpttObjName> (
IN CONST UINT32 StartOffset,
IN CONST CmObjectType * Nodes,
IN UINT32 NodeCount,
IN OUT PPTT_NODE_INDEXER ** CONST NodeIndexer
)
Generated function parameters:
@param [in] StartOffset Offset from the start of PPTT to where
the PPTT structures will be placed.
@param [in] NodesToIndex Pointer to the list of CM objects to be
indexed and size-estimated.
@param [out] NodeCount Number of CM objects in NodesToIndex.
@param [in, out] NodeIndexer Pointer to the list of Node Indexer
elements to populate.
@retval Size Total memory requirement for the PPTT
structures described in NodesToIndex.
Macro Parameters:
@param [in] PpttObjName Name for the type of PPTT structures which
size is estimated.
@param [in] PpttObjSize Expression to use to calculate the size of
of a single instance of the PPTT structure
which corresponds to the CM object being
indexed.
@param [in] CmObjectType Data type of the CM nodes in NodesToIndex.
**/
#define GET_SIZE_OF_PPTT_STRUCTS( \
PpttObjName, \
PpttObjSize, \
CmObjectType \
) \
STATIC \
UINT32 \
GetSizeof##PpttObjName ( \
IN CONST UINT32 StartOffset, \
IN CONST CmObjectType * NodesToIndex, \
IN UINT32 NodeCount, \
IN OUT PPTT_NODE_INDEXER ** CONST NodeIndexer \
) \
{ \
UINT32 Size; \
\
ASSERT ( \
(NodesToIndex != NULL) && \
(NodeIndexer != NULL) \
); \
\
Size = 0; \
while (NodeCount-- != 0) { \
(*NodeIndexer)->Token = NodesToIndex->Token; \
(*NodeIndexer)->Object = (VOID*)NodesToIndex; \
(*NodeIndexer)->Offset = Size + StartOffset; \
(*NodeIndexer)->CycleDetectionStamp = 0; \
(*NodeIndexer)->TopologyParent = NULL; \
DEBUG (( \
DEBUG_INFO, \
"PPTT: Node Indexer = %p, Token = %p, Object = %p, Offset = 0x%x\n", \
*NodeIndexer, \
(*NodeIndexer)->Token, \
(*NodeIndexer)->Object, \
(*NodeIndexer)->Offset \
)); \
\
Size += PpttObjSize; \
(*NodeIndexer)++; \
NodesToIndex++; \
} \
return Size; \
}
/**
A structure for indexing CM objects (nodes) used in PPTT generation.
PPTT_NODE_INDEXER is a wrapper around CM objects which augments these objects
with additional information that enables generating PPTT structures with
correct cross-references.
PPTT_NODE_INDEXER keeps track of each structure's offset from the base
address of the generated table. It also caches certain information and makes
PPTT cyclic reference detection possible.
*/
typedef struct PpttNodeIndexer {
/// Unique identifier for the node
CM_OBJECT_TOKEN Token;
/// Pointer to the CM object being indexed
VOID * Object;
/// Offset from the start of the PPTT table to the PPTT structure which is
/// represented by Object
UINT32 Offset;
/// Field used to mark nodes as 'visited' when detecting cycles in processor
/// and cache topology
UINT32 CycleDetectionStamp;
/// Reference to a Node Indexer element which is the parent of this Node
/// Indexer element in the processor and cache topology
/// e.g For a hardware thread the TopologyParent would point to a CPU node
/// For a L1 cache the TopologyParent would point to a L2 cache
struct PpttNodeIndexer * TopologyParent;
} PPTT_NODE_INDEXER;
typedef struct AcpiPpttGenerator {
/// ACPI Table generator header
ACPI_TABLE_GENERATOR Header;
/// PPTT structure count
UINT32 ProcTopologyStructCount;
/// List of indexed CM objects for PPTT generation
PPTT_NODE_INDEXER * NodeIndexer;
/// Pointer to the start of Processor Hierarchy nodes in
/// the Node Indexer array
PPTT_NODE_INDEXER * ProcHierarchyNodeIndexedList;
/// Pointer to the start of Cache Structures in the Node Indexer array
PPTT_NODE_INDEXER * CacheStructIndexedList;
/// Pointer to the start of Id Structures in the Node Indexer array
PPTT_NODE_INDEXER * IdStructIndexedList;
/// Count of Processor Hierarchy Nodes
UINT32 ProcHierarchyNodeCount;
/// Count of Cache Structures
UINT32 CacheStructCount;
/// Count of Id Structures
UINT32 IdStructCount;
} ACPI_PPTT_GENERATOR;
#pragma pack()
#endif // PPTT_GENERATOR_H_