BaseTools: Add DevicePath support for PCD values

Use C code parse device path to output hex string, and Python
run command when PCD Value need device path parse.

https://bugzilla.tianocore.org/show_bug.cgi?id=541

Contributed-under: TianoCore Contribution Agreement 1.1
Signed-off-by: Yunhua Feng <yunhuax.feng@intel.com>
Signed-off-by: Yonghong Zhu <yonghong.zhu@intel.com>
Reviewed-by: Liming Gao <liming.gao@intel.com>
This commit is contained in:
Yonghong Zhu 2017-12-27 14:12:29 +08:00
parent f13f306b3b
commit 7dbc50bd24
17 changed files with 8959 additions and 9 deletions

View File

@ -0,0 +1,29 @@
#!/usr/bin/env bash
full_cmd=${BASH_SOURCE:-$0} # see http://mywiki.wooledge.org/BashFAQ/028 for a discussion of why $0 is not a good choice here
dir=$(dirname "$full_cmd")
cmd=${full_cmd##*/}
if [ -n "$WORKSPACE" ] && [ -e "$WORKSPACE/Conf/BaseToolsCBinaries" ]
then
exec "$WORKSPACE/Conf/BaseToolsCBinaries/$cmd"
elif [ -n "$WORKSPACE" ] && [ -e "$EDK_TOOLS_PATH/Source/C" ]
then
if [ ! -e "$EDK_TOOLS_PATH/Source/C/bin/$cmd" ]
then
echo "BaseTools C Tool binary was not found ($cmd)"
echo "You may need to run:"
echo " make -C $EDK_TOOLS_PATH/Source/C"
else
exec "$EDK_TOOLS_PATH/Source/C/bin/$cmd" "$@"
fi
elif [ -e "$dir/../../Source/C/bin/$cmd" ]
then
exec "$dir/../../Source/C/bin/$cmd" "$@"
else
echo "Unable to find the real '$cmd' to run"
echo "This message was printed by"
echo " $0"
exit 127
fi

View File

@ -11,7 +11,7 @@
# must ensure that files that are required by the cx_freeze frozen binaries are
# present in the Bin\Win32 directory.
#
# Copyright (c) 2014 - 2016, Intel Corporation. All rights reserved.<BR>
# Copyright (c) 2014 - 2017, Intel Corporation. All rights reserved.<BR>
#
# This program and the accompanying materials are licensed and made available under
# the terms and conditions of the BSD License which accompanies this distribution.
@ -59,6 +59,7 @@ UPT.exe
VfrCompile.exe
VolInfo.exe
Pkcs7Sign.exe
DevicePath.exe
[ExtraFiles.Win32]
TestSigningPrivateKey.pem

File diff suppressed because it is too large Load Diff

View File

@ -1,7 +1,7 @@
/** @file
Common library assistance routines.
Copyright (c) 2004 - 2014, Intel Corporation. All rights reserved.<BR>
Copyright (c) 2004 - 2017, Intel Corporation. All rights reserved.<BR>
This program and the accompanying materials
are licensed and made available under the terms and conditions of the BSD License
which accompanies this distribution. The full text of the license may be found at
@ -17,10 +17,31 @@ WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED.
#include <Common/UefiBaseTypes.h>
#include <Common/BuildVersion.h>
#include <assert.h>
#define PRINTED_GUID_BUFFER_SIZE 37 // including null-termination
#define MAX_LONG_FILE_PATH 500
#define MAX_UINTN MAX_ADDRESS
#define MAX_UINT64 ((UINT64)0xFFFFFFFFFFFFFFFFULL)
#define MAX_UINT16 ((UINT16)0xFFFF)
#define MAX_UINT8 ((UINT8)0xFF)
#define ARRAY_SIZE(Array) (sizeof (Array) / sizeof ((Array)[0]))
#define ASCII_RSIZE_MAX 1000000
#ifndef RSIZE_MAX
#define RSIZE_MAX 1000000
#endif
#define IS_COMMA(a) ((a) == L',')
#define IS_HYPHEN(a) ((a) == L'-')
#define IS_DOT(a) ((a) == L'.')
#define IS_LEFT_PARENTH(a) ((a) == L'(')
#define IS_RIGHT_PARENTH(a) ((a) == L')')
#define IS_SLASH(a) ((a) == L'/')
#define IS_NULL(a) ((a) == L'\0')
#define ASSERT(x) assert(x)
#ifdef __cplusplus
extern "C" {
#endif
@ -149,6 +170,285 @@ CHAR8 *
LongFilePath (
IN CHAR8 *FileName
);
UINTN
StrLen (
CONST CHAR16 *String
);
VOID *
AllocateCopyPool (
UINTN AllocationSize,
CONST VOID *Buffer
);
INTN
StrnCmp (
CONST CHAR16 *FirstString,
CONST CHAR16 *SecondString,
UINTN Length
);
RETURN_STATUS
StrToGuid (
CONST CHAR16 *String,
EFI_GUID *Guid
);
RETURN_STATUS
StrHexToBytes (
CONST CHAR16 *String,
UINTN Length,
UINT8 *Buffer,
UINTN MaxBufferSize
);
UINTN
InternalHexCharToUintn (
CHAR16 Char
);
VOID *
InternalAllocateCopyPool (
UINTN AllocationSize,
CONST VOID *Buffer
);
BOOLEAN
InternalIsDecimalDigitCharacter (
CHAR16 Char
);
UINT32
SwapBytes32 (
UINT32 Value
);
UINT16
SwapBytes16 (
UINT16 Value
);
EFI_GUID *
CopyGuid (
EFI_GUID *DestinationGuid,
CONST EFI_GUID *SourceGuid
);
UINT64
WriteUnaligned64 (
UINT64 *Buffer,
UINT64 Value
);
UINT64
ReadUnaligned64 (
CONST UINT64 *Buffer
);
UINTN
StrSize (
CONST CHAR16 *String
);
UINTN
StrHexToUintn (
CONST CHAR16 *String
);
UINTN
StrDecimalToUintn (
CONST CHAR16 *String
);
UINT64
StrHexToUint64 (
CONST CHAR16 *String
);
UINT64
StrDecimalToUint64 (
CONST CHAR16 *String
);
RETURN_STATUS
StrHexToUint64S (
CONST CHAR16 *String,
CHAR16 **EndPointer,
UINT64 *Data
);
RETURN_STATUS
StrHexToUintnS (
CONST CHAR16 *String,
CHAR16 **EndPointer, OPTIONAL
UINTN *Data
);
RETURN_STATUS
StrDecimalToUint64S (
CONST CHAR16 *String,
CHAR16 **EndPointer, OPTIONAL
UINT64 *Data
);
RETURN_STATUS
StrDecimalToUintnS (
CONST CHAR16 *String,
CHAR16 **EndPointer, OPTIONAL
UINTN *Data
);
VOID *
ReallocatePool (
UINTN OldSize,
UINTN NewSize,
VOID *OldBuffer OPTIONAL
);
VOID *
InternalReallocatePool (
UINTN OldSize,
UINTN NewSize,
VOID *OldBuffer OPTIONAL
);
VOID *
InternalAllocateZeroPool (
UINTN AllocationSize
) ;
VOID *
InternalAllocatePool (
UINTN AllocationSize
);
UINTN
StrnLenS (
CONST CHAR16 *String,
UINTN MaxSize
);
CHAR16
InternalCharToUpper (
CHAR16 Char
);
INTN
StrCmp (
CONST CHAR16 *FirstString,
CONST CHAR16 *SecondString
);
UINT64
SwapBytes64 (
UINT64 Value
);
UINT64
InternalMathSwapBytes64 (
UINT64 Operand
);
RETURN_STATUS
StrToIpv4Address (
CONST CHAR16 *String,
CHAR16 **EndPointer,
EFI_IPv4_ADDRESS *Address,
UINT8 *PrefixLength
);
RETURN_STATUS
StrToIpv6Address (
CONST CHAR16 *String,
CHAR16 **EndPointer,
EFI_IPv6_ADDRESS *Address,
UINT8 *PrefixLength
);
RETURN_STATUS
StrCpyS (
CHAR16 *Destination,
UINTN DestMax,
CONST CHAR16 *Source
);
RETURN_STATUS
UnicodeStrToAsciiStrS (
CONST CHAR16 *Source,
CHAR8 *Destination,
UINTN DestMax
);
VOID *
AllocatePool (
UINTN AllocationSize
);
UINT16
WriteUnaligned16 (
UINT16 *Buffer,
UINT16 Value
);
UINT16
ReadUnaligned16 (
CONST UINT16 *Buffer
);
VOID *
AllocateZeroPool (
UINTN AllocationSize
);
BOOLEAN
InternalIsHexaDecimalDigitCharacter (
CHAR16 Char
);
BOOLEAN
InternalSafeStringIsOverlap (
IN VOID *Base1,
IN UINTN Size1,
IN VOID *Base2,
IN UINTN Size2
);
BOOLEAN
InternalSafeStringNoStrOverlap (
IN CHAR16 *Str1,
IN UINTN Size1,
IN CHAR16 *Str2,
IN UINTN Size2
);
BOOLEAN
IsHexStr (
CHAR16 *Str
);
UINTN
Strtoi (
CHAR16 *Str
);
VOID
Strtoi64 (
CHAR16 *Str,
UINT64 *Data
);
VOID
StrToAscii (
CHAR16 *Str,
CHAR8 **AsciiStr
);
CHAR16 *
SplitStr (
CHAR16 **List,
CHAR16 Separator
);
/*++
Routine Description:
@ -166,8 +466,6 @@ Returns:
}
#endif
#define ASSERT(x) assert(x)
#ifdef __GNUC__
#include <stdio.h>
#include <sys/stat.h>

View File

@ -0,0 +1,186 @@
/** @file
Definition for Device Path Tool.
Copyright (c) 2017, Intel Corporation. All rights reserved.<BR>
This program and the accompanying materials
are licensed and made available under the terms and conditions of the BSD License
which accompanies this distribution. The full text of the license may be found at
http://opensource.org/licenses/bsd-license.php
THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS,
WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED.
**/
#include "UefiDevicePathLib.h"
//
// Utility Name
//
#define UTILITY_NAME "DevicePath"
//
// Utility version information
//
#define UTILITY_MAJOR_VERSION 0
#define UTILITY_MINOR_VERSION 1
EFI_GUID gEfiDebugPortDevicePathGuid = DEVICE_PATH_MESSAGING_DEBUGPORT;
EFI_GUID gEfiPcAnsiGuid = EFI_PC_ANSI_GUID;
EFI_GUID gEfiVT100Guid = EFI_VT_100_GUID;
EFI_GUID gEfiVT100PlusGuid = EFI_VT_100_PLUS_GUID;
EFI_GUID gEfiVTUTF8Guid = EFI_VT_UTF8_GUID;
EFI_GUID gEfiUartDevicePathGuid = EFI_UART_DEVICE_PATH_GUID;
EFI_GUID gEfiSasDevicePathGuid = EFI_SAS_DEVICE_PATH_GUID;
EFI_GUID gEfiVirtualDiskGuid = EFI_VIRTUAL_DISK_GUID;
EFI_GUID gEfiVirtualCdGuid = EFI_VIRTUAL_CD_GUID;
EFI_GUID gEfiPersistentVirtualDiskGuid = EFI_PERSISTENT_VIRTUAL_DISK_GUID;
EFI_GUID gEfiPersistentVirtualCdGuid = EFI_PERSISTENT_VIRTUAL_CD_GUID;
STATIC
VOID
Version (
VOID
)
/*++
Routine Description:
Displays the standard utility information to SDTOUT
Arguments:
None
Returns:
None
--*/
{
fprintf (stdout, "%s Version %d.%d %s \n", UTILITY_NAME, UTILITY_MAJOR_VERSION, UTILITY_MINOR_VERSION, __BUILD_VERSION);
}
STATIC
VOID
Usage (
VOID
)
/*++
Routine Description:
Displays the utility usage syntax to STDOUT
Arguments:
None
Returns:
None
--*/
{
//
// Summary usage
//
fprintf (stdout, "\nUsage: %s [options]\n\n", UTILITY_NAME);
//
// Copyright declaration
//
fprintf (stdout, "Copyright (c) 2017, Intel Corporation. All rights reserved.\n\n");
//
// Details Option
//
fprintf (stdout, "Options:\n");
fprintf (stdout, " DevicePathString Device Path string is specified, no space character.\n"
" Example: \"PciRoot(0)/Pci(0,0)\"\n");
fprintf (stdout, " --version Show program's version number and exit.\n");
fprintf (stdout, " -h, --help Show this help message and exit.\n");
}
void print_mem(void const *vp, size_t n)
{
unsigned char const *p = vp;
for (size_t i=0; i<n; i++) {
printf("0x%02x ", p[i]);
}
}
VOID
Ascii2UnicodeString (
CHAR8 *String,
CHAR16 *UniString
)
/*++
Routine Description:
Write ascii string as unicode string format to FILE
Arguments:
String - Pointer to string that is written to FILE.
UniString - Pointer to unicode string
Returns:
NULL
--*/
{
while (*String != '\0') {
*(UniString++) = (CHAR16) *(String++);
}
//
// End the UniString with a NULL.
//
*UniString = '\0';
}
int main(int argc, CHAR8 *argv[])
{
CHAR8 * Str;
CHAR16* Str16;
EFI_DEVICE_PATH_PROTOCOL *DevicePath;
if (argc == 1) {
Error (NULL, 0, 1001, "Missing options", "No input options specified.");
Usage ();
return STATUS_ERROR;
}
if ((stricmp (argv[1], "-h") == 0) || (stricmp (argv[1], "--help") == 0)) {
Version ();
Usage ();
return STATUS_SUCCESS;
}
if (stricmp (argv[1], "--version") == 0) {
Version ();
return STATUS_SUCCESS;
}
Str = argv[1];
if (Str == NULL) {
fprintf(stderr, "Invalid option value, Device Path can't be NULL");
return STATUS_ERROR;
}
Str16 = (CHAR16 *)malloc(1024);
if (Str16 == NULL) {
fprintf(stderr, "Resource, memory cannot be allcoated");
return STATUS_ERROR;
}
Ascii2UnicodeString(Str, Str16);
DevicePath = UefiDevicePathLibConvertTextToDevicePath(Str16);
while (!((DevicePath->Type == END_DEVICE_PATH_TYPE) && (DevicePath->SubType == END_ENTIRE_DEVICE_PATH_SUBTYPE)) )
{
print_mem(DevicePath, (DevicePath->Length[0] | DevicePath->Length[1] << 8));
DevicePath = (EFI_DEVICE_PATH_PROTOCOL *)((UINT8 *)DevicePath + (DevicePath->Length[0] | DevicePath->Length[1] << 8));
}
print_mem(DevicePath, (DevicePath->Length[0] | DevicePath->Length[1] << 8));
putchar('\n');
return STATUS_SUCCESS;
}

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,875 @@
/** @file
Device Path services. The thing to remember is device paths are built out of
nodes. The device path is terminated by an end node that is length
sizeof(EFI_DEVICE_PATH_PROTOCOL). That would be why there is sizeof(EFI_DEVICE_PATH_PROTOCOL)
all over this file.
The only place where multi-instance device paths are supported is in
environment varibles. Multi-instance device paths should never be placed
on a Handle.
Copyright (c) 2017, Intel Corporation. All rights reserved.<BR>
This program and the accompanying materials
are licensed and made available under the terms and conditions of the BSD License
which accompanies this distribution. The full text of the license may be found at
http://opensource.org/licenses/bsd-license.php.
THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS,
WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED.
**/
#include "UefiDevicePathLib.h"
#include <Protocol/DevicePathUtilities.h>
//
// Template for an end-of-device path node.
//
CONST EFI_DEVICE_PATH_PROTOCOL mUefiDevicePathLibEndDevicePath = {
END_DEVICE_PATH_TYPE,
END_ENTIRE_DEVICE_PATH_SUBTYPE,
{
END_DEVICE_PATH_LENGTH,
0
}
};
/**
Determine whether a given device path is valid.
If DevicePath is NULL, then ASSERT().
@param DevicePath A pointer to a device path data structure.
@param MaxSize The maximum size of the device path data structure.
@retval TRUE DevicePath is valid.
@retval FALSE The length of any node node in the DevicePath is less
than sizeof (EFI_DEVICE_PATH_PROTOCOL).
@retval FALSE If MaxSize is not zero, the size of the DevicePath
exceeds MaxSize.
@retval FALSE If PcdMaximumDevicePathNodeCount is not zero, the node
count of the DevicePath exceeds PcdMaximumDevicePathNodeCount.
**/
BOOLEAN
IsDevicePathValid (
CONST EFI_DEVICE_PATH_PROTOCOL *DevicePath,
UINTN MaxSize
)
{
UINTN Count;
UINTN Size;
UINTN NodeLength;
ASSERT (DevicePath != NULL);
if (MaxSize == 0) {
MaxSize = MAX_UINTN;
}
//
// Validate the input size big enough to touch the first node.
//
if (MaxSize < sizeof (EFI_DEVICE_PATH_PROTOCOL)) {
return FALSE;
}
for (Count = 0, Size = 0; !IsDevicePathEnd (DevicePath); DevicePath = NextDevicePathNode (DevicePath)) {
NodeLength = DevicePathNodeLength (DevicePath);
if (NodeLength < sizeof (EFI_DEVICE_PATH_PROTOCOL)) {
return FALSE;
}
if (NodeLength > MAX_UINTN - Size) {
return FALSE;
}
Size += NodeLength;
//
// Validate next node before touch it.
//
if (Size > MaxSize - END_DEVICE_PATH_LENGTH ) {
return FALSE;
}
Count++;
if (Count >= MAX_DEVICE_PATH_NODE_COUNT) {
return FALSE;
}
}
//
// Only return TRUE when the End Device Path node is valid.
//
return (BOOLEAN) (DevicePathNodeLength (DevicePath) == END_DEVICE_PATH_LENGTH);
}
/**
Returns the Type field of a device path node.
Returns the Type field of the device path node specified by Node.
If Node is NULL, then ASSERT().
@param Node A pointer to a device path node data structure.
@return The Type field of the device path node specified by Node.
**/
UINT8
DevicePathType (
CONST VOID *Node
)
{
ASSERT (Node != NULL);
return ((EFI_DEVICE_PATH_PROTOCOL *)(Node))->Type;
}
/**
Returns the SubType field of a device path node.
Returns the SubType field of the device path node specified by Node.
If Node is NULL, then ASSERT().
@param Node A pointer to a device path node data structure.
@return The SubType field of the device path node specified by Node.
**/
UINT8
DevicePathSubType (
CONST VOID *Node
)
{
ASSERT (Node != NULL);
return ((EFI_DEVICE_PATH_PROTOCOL *)(Node))->SubType;
}
/**
Returns the 16-bit Length field of a device path node.
Returns the 16-bit Length field of the device path node specified by Node.
Node is not required to be aligned on a 16-bit boundary, so it is recommended
that a function such as ReadUnaligned16() be used to extract the contents of
the Length field.
If Node is NULL, then ASSERT().
@param Node A pointer to a device path node data structure.
@return The 16-bit Length field of the device path node specified by Node.
**/
UINTN
DevicePathNodeLength (
CONST VOID *Node
)
{
ASSERT (Node != NULL);
return ReadUnaligned16 ((UINT16 *)&((EFI_DEVICE_PATH_PROTOCOL *)(Node))->Length[0]);
}
/**
Returns a pointer to the next node in a device path.
Returns a pointer to the device path node that follows the device path node
specified by Node.
If Node is NULL, then ASSERT().
@param Node A pointer to a device path node data structure.
@return a pointer to the device path node that follows the device path node
specified by Node.
**/
EFI_DEVICE_PATH_PROTOCOL *
NextDevicePathNode (
CONST VOID *Node
)
{
ASSERT (Node != NULL);
return (EFI_DEVICE_PATH_PROTOCOL *)((UINT8 *)(Node) + DevicePathNodeLength(Node));
}
/**
Determines if a device path node is an end node of a device path.
This includes nodes that are the end of a device path instance and nodes that
are the end of an entire device path.
Determines if the device path node specified by Node is an end node of a device path.
This includes nodes that are the end of a device path instance and nodes that are the
end of an entire device path. If Node represents an end node of a device path,
then TRUE is returned. Otherwise, FALSE is returned.
If Node is NULL, then ASSERT().
@param Node A pointer to a device path node data structure.
@retval TRUE The device path node specified by Node is an end node of a
device path.
@retval FALSE The device path node specified by Node is not an end node of
a device path.
**/
BOOLEAN
IsDevicePathEndType (
CONST VOID *Node
)
{
ASSERT (Node != NULL);
return (BOOLEAN) (DevicePathType (Node) == END_DEVICE_PATH_TYPE);
}
/**
Determines if a device path node is an end node of an entire device path.
Determines if a device path node specified by Node is an end node of an entire
device path. If Node represents the end of an entire device path, then TRUE is
returned. Otherwise, FALSE is returned.
If Node is NULL, then ASSERT().
@param Node A pointer to a device path node data structure.
@retval TRUE The device path node specified by Node is the end of an entire
device path.
@retval FALSE The device path node specified by Node is not the end of an
entire device path.
**/
BOOLEAN
IsDevicePathEnd (
CONST VOID *Node
)
{
ASSERT (Node != NULL);
return (BOOLEAN) (IsDevicePathEndType (Node) && DevicePathSubType(Node) == END_ENTIRE_DEVICE_PATH_SUBTYPE);
}
/**
Determines if a device path node is an end node of a device path instance.
Determines if a device path node specified by Node is an end node of a device
path instance. If Node represents the end of a device path instance, then TRUE
is returned. Otherwise, FALSE is returned.
If Node is NULL, then ASSERT().
@param Node A pointer to a device path node data structure.
@retval TRUE The device path node specified by Node is the end of a device
path instance.
@retval FALSE The device path node specified by Node is not the end of a
device path instance.
**/
BOOLEAN
IsDevicePathEndInstance (
CONST VOID *Node
)
{
ASSERT (Node != NULL);
return (BOOLEAN) (IsDevicePathEndType (Node) && DevicePathSubType(Node) == END_INSTANCE_DEVICE_PATH_SUBTYPE);
}
/**
Sets the length, in bytes, of a device path node.
Sets the length of the device path node specified by Node to the value specified
by NodeLength. NodeLength is returned. Node is not required to be aligned on
a 16-bit boundary, so it is recommended that a function such as WriteUnaligned16()
be used to set the contents of the Length field.
If Node is NULL, then ASSERT().
If NodeLength >= SIZE_64KB, then ASSERT().
If NodeLength < sizeof (EFI_DEVICE_PATH_PROTOCOL), then ASSERT().
@param Node A pointer to a device path node data structure.
@param Length The length, in bytes, of the device path node.
@return Length
**/
UINT16
SetDevicePathNodeLength (
VOID *Node,
UINTN Length
)
{
ASSERT (Node != NULL);
ASSERT ((Length >= sizeof (EFI_DEVICE_PATH_PROTOCOL)) && (Length < SIZE_64KB));
return WriteUnaligned16 ((UINT16 *)&((EFI_DEVICE_PATH_PROTOCOL *)(Node))->Length[0], (UINT16)(Length));
}
/**
Fills in all the fields of a device path node that is the end of an entire device path.
Fills in all the fields of a device path node specified by Node so Node represents
the end of an entire device path. The Type field of Node is set to
END_DEVICE_PATH_TYPE, the SubType field of Node is set to
END_ENTIRE_DEVICE_PATH_SUBTYPE, and the Length field of Node is set to
END_DEVICE_PATH_LENGTH. Node is not required to be aligned on a 16-bit boundary,
so it is recommended that a function such as WriteUnaligned16() be used to set
the contents of the Length field.
If Node is NULL, then ASSERT().
@param Node A pointer to a device path node data structure.
**/
VOID
SetDevicePathEndNode (
VOID *Node
)
{
ASSERT (Node != NULL);
memcpy (Node, &mUefiDevicePathLibEndDevicePath, sizeof (mUefiDevicePathLibEndDevicePath));
}
/**
Returns the size of a device path in bytes.
This function returns the size, in bytes, of the device path data structure
specified by DevicePath including the end of device path node.
If DevicePath is NULL or invalid, then 0 is returned.
@param DevicePath A pointer to a device path data structure.
@retval 0 If DevicePath is NULL or invalid.
@retval Others The size of a device path in bytes.
**/
UINTN
UefiDevicePathLibGetDevicePathSize (
CONST EFI_DEVICE_PATH_PROTOCOL *DevicePath
)
{
CONST EFI_DEVICE_PATH_PROTOCOL *Start;
if (DevicePath == NULL) {
return 0;
}
if (!IsDevicePathValid (DevicePath, 0)) {
return 0;
}
//
// Search for the end of the device path structure
//
Start = DevicePath;
while (!IsDevicePathEnd (DevicePath)) {
DevicePath = NextDevicePathNode (DevicePath);
}
//
// Compute the size and add back in the size of the end device path structure
//
return ((UINTN) DevicePath - (UINTN) Start) + DevicePathNodeLength (DevicePath);
}
/**
Creates a new copy of an existing device path.
This function allocates space for a new copy of the device path specified by DevicePath.
If DevicePath is NULL, then NULL is returned. If the memory is successfully
allocated, then the contents of DevicePath are copied to the newly allocated
buffer, and a pointer to that buffer is returned. Otherwise, NULL is returned.
The memory for the new device path is allocated from EFI boot services memory.
It is the responsibility of the caller to free the memory allocated.
@param DevicePath A pointer to a device path data structure.
@retval NULL DevicePath is NULL or invalid.
@retval Others A pointer to the duplicated device path.
**/
EFI_DEVICE_PATH_PROTOCOL *
UefiDevicePathLibDuplicateDevicePath (
CONST EFI_DEVICE_PATH_PROTOCOL *DevicePath
)
{
UINTN Size;
//
// Compute the size
//
Size = GetDevicePathSize (DevicePath);
if (Size == 0) {
return NULL;
}
//
// Allocate space for duplicate device path
//
return AllocateCopyPool (Size, DevicePath);
}
/**
Creates a new device path by appending a second device path to a first device path.
This function creates a new device path by appending a copy of SecondDevicePath
to a copy of FirstDevicePath in a newly allocated buffer. Only the end-of-device-path
device node from SecondDevicePath is retained. The newly created device path is
returned. If FirstDevicePath is NULL, then it is ignored, and a duplicate of
SecondDevicePath is returned. If SecondDevicePath is NULL, then it is ignored,
and a duplicate of FirstDevicePath is returned. If both FirstDevicePath and
SecondDevicePath are NULL, then a copy of an end-of-device-path is returned.
If there is not enough memory for the newly allocated buffer, then NULL is returned.
The memory for the new device path is allocated from EFI boot services memory.
It is the responsibility of the caller to free the memory allocated.
@param FirstDevicePath A pointer to a device path data structure.
@param SecondDevicePath A pointer to a device path data structure.
@retval NULL If there is not enough memory for the newly allocated buffer.
@retval NULL If FirstDevicePath or SecondDevicePath is invalid.
@retval Others A pointer to the new device path if success.
Or a copy an end-of-device-path if both FirstDevicePath and SecondDevicePath are NULL.
**/
EFI_DEVICE_PATH_PROTOCOL *
UefiDevicePathLibAppendDevicePath (
CONST EFI_DEVICE_PATH_PROTOCOL *FirstDevicePath,
CONST EFI_DEVICE_PATH_PROTOCOL *SecondDevicePath
)
{
UINTN Size;
UINTN Size1;
UINTN Size2;
EFI_DEVICE_PATH_PROTOCOL *NewDevicePath;
EFI_DEVICE_PATH_PROTOCOL *DevicePath2;
//
// If there's only 1 path, just duplicate it.
//
if (FirstDevicePath == NULL) {
return DuplicateDevicePath ((SecondDevicePath != NULL) ? SecondDevicePath : &mUefiDevicePathLibEndDevicePath);
}
if (SecondDevicePath == NULL) {
return DuplicateDevicePath (FirstDevicePath);
}
if (!IsDevicePathValid (FirstDevicePath, 0) || !IsDevicePathValid (SecondDevicePath, 0)) {
return NULL;
}
//
// Allocate space for the combined device path. It only has one end node of
// length EFI_DEVICE_PATH_PROTOCOL.
//
Size1 = GetDevicePathSize (FirstDevicePath);
Size2 = GetDevicePathSize (SecondDevicePath);
Size = Size1 + Size2 - END_DEVICE_PATH_LENGTH;
NewDevicePath = AllocatePool (Size);
if (NewDevicePath != NULL) {
NewDevicePath = memcpy (NewDevicePath, FirstDevicePath, Size1);
//
// Over write FirstDevicePath EndNode and do the copy
//
DevicePath2 = (EFI_DEVICE_PATH_PROTOCOL *) ((CHAR8 *) NewDevicePath +
(Size1 - END_DEVICE_PATH_LENGTH));
memcpy (DevicePath2, SecondDevicePath, Size2);
}
return NewDevicePath;
}
/**
Creates a new path by appending the device node to the device path.
This function creates a new device path by appending a copy of the device node
specified by DevicePathNode to a copy of the device path specified by DevicePath
in an allocated buffer. The end-of-device-path device node is moved after the
end of the appended device node.
If DevicePathNode is NULL then a copy of DevicePath is returned.
If DevicePath is NULL then a copy of DevicePathNode, followed by an end-of-device
path device node is returned.
If both DevicePathNode and DevicePath are NULL then a copy of an end-of-device-path
device node is returned.
If there is not enough memory to allocate space for the new device path, then
NULL is returned.
The memory is allocated from EFI boot services memory. It is the responsibility
of the caller to free the memory allocated.
@param DevicePath A pointer to a device path data structure.
@param DevicePathNode A pointer to a single device path node.
@retval NULL If there is not enough memory for the new device path.
@retval Others A pointer to the new device path if success.
A copy of DevicePathNode followed by an end-of-device-path node
if both FirstDevicePath and SecondDevicePath are NULL.
A copy of an end-of-device-path node if both FirstDevicePath
and SecondDevicePath are NULL.
**/
EFI_DEVICE_PATH_PROTOCOL *
UefiDevicePathLibAppendDevicePathNode (
CONST EFI_DEVICE_PATH_PROTOCOL *DevicePath,
CONST EFI_DEVICE_PATH_PROTOCOL *DevicePathNode
)
{
EFI_DEVICE_PATH_PROTOCOL *TempDevicePath;
EFI_DEVICE_PATH_PROTOCOL *NextNode;
EFI_DEVICE_PATH_PROTOCOL *NewDevicePath;
UINTN NodeLength;
if (DevicePathNode == NULL) {
return DuplicateDevicePath ((DevicePath != NULL) ? DevicePath : &mUefiDevicePathLibEndDevicePath);
}
//
// Build a Node that has a terminator on it
//
NodeLength = DevicePathNodeLength (DevicePathNode);
TempDevicePath = AllocatePool (NodeLength + END_DEVICE_PATH_LENGTH);
if (TempDevicePath == NULL) {
return NULL;
}
TempDevicePath = memcpy (TempDevicePath, DevicePathNode, NodeLength);
//
// Add and end device path node to convert Node to device path
//
NextNode = NextDevicePathNode (TempDevicePath);
SetDevicePathEndNode (NextNode);
//
// Append device paths
//
NewDevicePath = AppendDevicePath (DevicePath, TempDevicePath);
free (TempDevicePath);
return NewDevicePath;
}
/**
Creates a new device path by appending the specified device path instance to the specified device
path.
This function creates a new device path by appending a copy of the device path
instance specified by DevicePathInstance to a copy of the device path specified
by DevicePath in a allocated buffer.
The end-of-device-path device node is moved after the end of the appended device
path instance and a new end-of-device-path-instance node is inserted between.
If DevicePath is NULL, then a copy if DevicePathInstance is returned.
If DevicePathInstance is NULL, then NULL is returned.
If DevicePath or DevicePathInstance is invalid, then NULL is returned.
If there is not enough memory to allocate space for the new device path, then
NULL is returned.
The memory is allocated from EFI boot services memory. It is the responsibility
of the caller to free the memory allocated.
@param DevicePath A pointer to a device path data structure.
@param DevicePathInstance A pointer to a device path instance.
@return A pointer to the new device path.
**/
EFI_DEVICE_PATH_PROTOCOL *
UefiDevicePathLibAppendDevicePathInstance (
CONST EFI_DEVICE_PATH_PROTOCOL *DevicePath,
CONST EFI_DEVICE_PATH_PROTOCOL *DevicePathInstance
)
{
EFI_DEVICE_PATH_PROTOCOL *NewDevicePath;
EFI_DEVICE_PATH_PROTOCOL *TempDevicePath;
UINTN SrcSize;
UINTN InstanceSize;
if (DevicePath == NULL) {
return DuplicateDevicePath (DevicePathInstance);
}
if (DevicePathInstance == NULL) {
return NULL;
}
if (!IsDevicePathValid (DevicePath, 0) || !IsDevicePathValid (DevicePathInstance, 0)) {
return NULL;
}
SrcSize = GetDevicePathSize (DevicePath);
InstanceSize = GetDevicePathSize (DevicePathInstance);
NewDevicePath = AllocatePool (SrcSize + InstanceSize);
if (NewDevicePath != NULL) {
TempDevicePath = memcpy (NewDevicePath, DevicePath, SrcSize);;
while (!IsDevicePathEnd (TempDevicePath)) {
TempDevicePath = NextDevicePathNode (TempDevicePath);
}
TempDevicePath->SubType = END_INSTANCE_DEVICE_PATH_SUBTYPE;
TempDevicePath = NextDevicePathNode (TempDevicePath);
memcpy (TempDevicePath, DevicePathInstance, InstanceSize);
}
return NewDevicePath;
}
/**
Creates a copy of the current device path instance and returns a pointer to the next device path
instance.
This function creates a copy of the current device path instance. It also updates
DevicePath to point to the next device path instance in the device path (or NULL
if no more) and updates Size to hold the size of the device path instance copy.
If DevicePath is NULL, then NULL is returned.
If DevicePath points to a invalid device path, then NULL is returned.
If there is not enough memory to allocate space for the new device path, then
NULL is returned.
The memory is allocated from EFI boot services memory. It is the responsibility
of the caller to free the memory allocated.
If Size is NULL, then ASSERT().
@param DevicePath On input, this holds the pointer to the current
device path instance. On output, this holds
the pointer to the next device path instance
or NULL if there are no more device path
instances in the device path pointer to a
device path data structure.
@param Size On output, this holds the size of the device
path instance, in bytes or zero, if DevicePath
is NULL.
@return A pointer to the current device path instance.
**/
EFI_DEVICE_PATH_PROTOCOL *
UefiDevicePathLibGetNextDevicePathInstance (
EFI_DEVICE_PATH_PROTOCOL **DevicePath,
UINTN *Size
)
{
EFI_DEVICE_PATH_PROTOCOL *DevPath;
EFI_DEVICE_PATH_PROTOCOL *ReturnValue;
UINT8 Temp;
ASSERT (Size != NULL);
if (DevicePath == NULL || *DevicePath == NULL) {
*Size = 0;
return NULL;
}
if (!IsDevicePathValid (*DevicePath, 0)) {
return NULL;
}
//
// Find the end of the device path instance
//
DevPath = *DevicePath;
while (!IsDevicePathEndType (DevPath)) {
DevPath = NextDevicePathNode (DevPath);
}
//
// Compute the size of the device path instance
//
*Size = ((UINTN) DevPath - (UINTN) (*DevicePath)) + sizeof (EFI_DEVICE_PATH_PROTOCOL);
//
// Make a copy and return the device path instance
//
Temp = DevPath->SubType;
DevPath->SubType = END_ENTIRE_DEVICE_PATH_SUBTYPE;
ReturnValue = DuplicateDevicePath (*DevicePath);
DevPath->SubType = Temp;
//
// If DevPath is the end of an entire device path, then another instance
// does not follow, so *DevicePath is set to NULL.
//
if (DevicePathSubType (DevPath) == END_ENTIRE_DEVICE_PATH_SUBTYPE) {
*DevicePath = NULL;
} else {
*DevicePath = NextDevicePathNode (DevPath);
}
return ReturnValue;
}
/**
Creates a device node.
This function creates a new device node in a newly allocated buffer of size
NodeLength and initializes the device path node header with NodeType and NodeSubType.
The new device path node is returned.
If NodeLength is smaller than a device path header, then NULL is returned.
If there is not enough memory to allocate space for the new device path, then
NULL is returned.
The memory is allocated from EFI boot services memory. It is the responsibility
of the caller to free the memory allocated.
@param NodeType The device node type for the new device node.
@param NodeSubType The device node sub-type for the new device node.
@param NodeLength The length of the new device node.
@return The new device path.
**/
EFI_DEVICE_PATH_PROTOCOL *
UefiDevicePathLibCreateDeviceNode (
UINT8 NodeType,
UINT8 NodeSubType,
UINT16 NodeLength
)
{
EFI_DEVICE_PATH_PROTOCOL *DevicePath;
if (NodeLength < sizeof (EFI_DEVICE_PATH_PROTOCOL)) {
//
// NodeLength is less than the size of the header.
//
return NULL;
}
DevicePath = AllocateZeroPool (NodeLength);
if (DevicePath != NULL) {
DevicePath->Type = NodeType;
DevicePath->SubType = NodeSubType;
SetDevicePathNodeLength (DevicePath, NodeLength);
}
return DevicePath;
}
/**
Determines if a device path is single or multi-instance.
This function returns TRUE if the device path specified by DevicePath is
multi-instance.
Otherwise, FALSE is returned.
If DevicePath is NULL or invalid, then FALSE is returned.
@param DevicePath A pointer to a device path data structure.
@retval TRUE DevicePath is multi-instance.
@retval FALSE DevicePath is not multi-instance, or DevicePath
is NULL or invalid.
**/
BOOLEAN
UefiDevicePathLibIsDevicePathMultiInstance (
CONST EFI_DEVICE_PATH_PROTOCOL *DevicePath
)
{
CONST EFI_DEVICE_PATH_PROTOCOL *Node;
if (DevicePath == NULL) {
return FALSE;
}
if (!IsDevicePathValid (DevicePath, 0)) {
return FALSE;
}
Node = DevicePath;
while (!IsDevicePathEnd (Node)) {
if (IsDevicePathEndInstance (Node)) {
return TRUE;
}
Node = NextDevicePathNode (Node);
}
return FALSE;
}
/**
Retrieves the device path protocol from a handle.
This function returns the device path protocol from the handle specified by Handle.
If Handle is NULL or Handle does not contain a device path protocol, then NULL
is returned.
@param Handle The handle from which to retrieve the device
path protocol.
@return The device path protocol from the handle specified by Handle.
**/
/*
EFI_DEVICE_PATH_PROTOCOL *
DevicePathFromHandle (
EFI_HANDLE Handle
)
{
EFI_DEVICE_PATH_PROTOCOL *DevicePath;
EFI_STATUS Status;
Status = gBS->HandleProtocol (
Handle,
&gEfiDevicePathProtocolGuid,
(VOID *) &DevicePath
);
if (EFI_ERROR (Status)) {
DevicePath = NULL;
}
return DevicePath;
}
*/
/**
Allocates a device path for a file and appends it to an existing device path.
If Device is a valid device handle that contains a device path protocol, then a device path for
the file specified by FileName is allocated and appended to the device path associated with the
handle Device. The allocated device path is returned. If Device is NULL or Device is a handle
that does not support the device path protocol, then a device path containing a single device
path node for the file specified by FileName is allocated and returned.
The memory for the new device path is allocated from EFI boot services memory. It is the responsibility
of the caller to free the memory allocated.
If FileName is NULL, then ASSERT().
If FileName is not aligned on a 16-bit boundary, then ASSERT().
@param Device A pointer to a device handle. This parameter
is optional and may be NULL.
@param FileName A pointer to a Null-terminated Unicode string.
@return The allocated device path.
**/
EFI_DEVICE_PATH_PROTOCOL *
FileDevicePath (
EFI_HANDLE Device, OPTIONAL
CONST CHAR16 *FileName
)
{
UINTN Size;
FILEPATH_DEVICE_PATH *FilePath;
EFI_DEVICE_PATH_PROTOCOL *DevicePath;
EFI_DEVICE_PATH_PROTOCOL *FileDevicePath;
DevicePath = NULL;
Size = StrSize (FileName);
FileDevicePath = AllocatePool (Size + SIZE_OF_FILEPATH_DEVICE_PATH + END_DEVICE_PATH_LENGTH);
if (FileDevicePath != NULL) {
FilePath = (FILEPATH_DEVICE_PATH *) FileDevicePath;
FilePath->Header.Type = MEDIA_DEVICE_PATH;
FilePath->Header.SubType = MEDIA_FILEPATH_DP;
memcpy (&FilePath->PathName, FileName, Size);
SetDevicePathNodeLength (&FilePath->Header, Size + SIZE_OF_FILEPATH_DEVICE_PATH);
SetDevicePathEndNode (NextDevicePathNode (&FilePath->Header));
//if (Device != NULL) {
// DevicePath = DevicePathFromHandle (Device);
//}
DevicePath = AppendDevicePath (DevicePath, FileDevicePath);
free (FileDevicePath);
}
return DevicePath;
}

View File

@ -0,0 +1,30 @@
## @file
# GNU/Linux makefile for 'DevicePath' module build.
#
# Copyright (c) 2017, Intel Corporation. All rights reserved.<BR>
# This program and the accompanying materials
# are licensed and made available under the terms and conditions of the BSD License
# which accompanies this distribution. The full text of the license may be found at
# http://opensource.org/licenses/bsd-license.php
#
# THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS,
# WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED.
#
ARCH ?= IA32
MAKEROOT ?= ..
APPNAME = DevicePath
OBJECTS = DevicePath.o UefiDevicePathLib.o DevicePathFromText.o DevicePathUtilities.o
include $(MAKEROOT)/Makefiles/app.makefile
LIBS = -lCommon
ifeq ($(CYGWIN), CYGWIN)
LIBS += -L/lib/e2fsprogs -luuid
endif
ifeq ($(LINUX), Linux)
LIBS += -luuid
endif

View File

@ -0,0 +1,24 @@
## @file
# Windows makefile for 'DevicePath' module build.
#
# Copyright (c) 2017, Intel Corporation. All rights reserved.<BR>
# This program and the accompanying materials
# are licensed and made available under the terms and conditions of the BSD License
# which accompanies this distribution. The full text of the license may be found at
# http://opensource.org/licenses/bsd-license.php
#
# THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS,
# WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED.
#
!INCLUDE ..\Makefiles\ms.common
APPNAME = DevicePath
LIBS = $(LIB_PATH)\Common.lib
OBJECTS = DevicePath.obj UefiDevicePathLib.obj DevicePathFromText.obj DevicePathUtilities.obj
#CFLAGS = $(CFLAGS) /nodefaultlib:libc.lib
!INCLUDE ..\Makefiles\ms.app

View File

@ -0,0 +1,298 @@
/** @file
Device Path services. The thing to remember is device paths are built out of
nodes. The device path is terminated by an end node that is length
sizeof(EFI_DEVICE_PATH_PROTOCOL). That would be why there is sizeof(EFI_DEVICE_PATH_PROTOCOL)
all over this file.
The only place where multi-instance device paths are supported is in
environment varibles. Multi-instance device paths should never be placed
on a Handle.
Copyright (c) 2017, Intel Corporation. All rights reserved.<BR>
This program and the accompanying materials
are licensed and made available under the terms and conditions of the BSD License
which accompanies this distribution. The full text of the license may be found at
http://opensource.org/licenses/bsd-license.php.
THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS,
WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED.
**/
#include "UefiDevicePathLib.h"
/**
Returns the size of a device path in bytes.
This function returns the size, in bytes, of the device path data structure
specified by DevicePath including the end of device path node.
If DevicePath is NULL or invalid, then 0 is returned.
@param DevicePath A pointer to a device path data structure.
@retval 0 If DevicePath is NULL or invalid.
@retval Others The size of a device path in bytes.
**/
UINTN
GetDevicePathSize (
CONST EFI_DEVICE_PATH_PROTOCOL *DevicePath
)
{
return UefiDevicePathLibGetDevicePathSize (DevicePath);
}
/**
Creates a new copy of an existing device path.
This function allocates space for a new copy of the device path specified by DevicePath.
If DevicePath is NULL, then NULL is returned. If the memory is successfully
allocated, then the contents of DevicePath are copied to the newly allocated
buffer, and a pointer to that buffer is returned. Otherwise, NULL is returned.
The memory for the new device path is allocated from EFI boot services memory.
It is the responsibility of the caller to free the memory allocated.
@param DevicePath A pointer to a device path data structure.
@retval NULL DevicePath is NULL or invalid.
@retval Others A pointer to the duplicated device path.
**/
EFI_DEVICE_PATH_PROTOCOL *
DuplicateDevicePath (
CONST EFI_DEVICE_PATH_PROTOCOL *DevicePath
)
{
return UefiDevicePathLibDuplicateDevicePath (DevicePath);
}
/**
Creates a new device path by appending a second device path to a first device path.
This function creates a new device path by appending a copy of SecondDevicePath
to a copy of FirstDevicePath in a newly allocated buffer. Only the end-of-device-path
device node from SecondDevicePath is retained. The newly created device path is
returned. If FirstDevicePath is NULL, then it is ignored, and a duplicate of
SecondDevicePath is returned. If SecondDevicePath is NULL, then it is ignored,
and a duplicate of FirstDevicePath is returned. If both FirstDevicePath and
SecondDevicePath are NULL, then a copy of an end-of-device-path is returned.
If there is not enough memory for the newly allocated buffer, then NULL is returned.
The memory for the new device path is allocated from EFI boot services memory.
It is the responsibility of the caller to free the memory allocated.
@param FirstDevicePath A pointer to a device path data structure.
@param SecondDevicePath A pointer to a device path data structure.
@retval NULL If there is not enough memory for the newly allocated buffer.
@retval NULL If FirstDevicePath or SecondDevicePath is invalid.
@retval Others A pointer to the new device path if success.
Or a copy an end-of-device-path if both FirstDevicePath and SecondDevicePath are NULL.
**/
EFI_DEVICE_PATH_PROTOCOL *
AppendDevicePath (
CONST EFI_DEVICE_PATH_PROTOCOL *FirstDevicePath, OPTIONAL
CONST EFI_DEVICE_PATH_PROTOCOL *SecondDevicePath OPTIONAL
)
{
return UefiDevicePathLibAppendDevicePath (FirstDevicePath, SecondDevicePath);
}
/**
Creates a new path by appending the device node to the device path.
This function creates a new device path by appending a copy of the device node
specified by DevicePathNode to a copy of the device path specified by DevicePath
in an allocated buffer. The end-of-device-path device node is moved after the
end of the appended device node.
If DevicePathNode is NULL then a copy of DevicePath is returned.
If DevicePath is NULL then a copy of DevicePathNode, followed by an end-of-device
path device node is returned.
If both DevicePathNode and DevicePath are NULL then a copy of an end-of-device-path
device node is returned.
If there is not enough memory to allocate space for the new device path, then
NULL is returned.
The memory is allocated from EFI boot services memory. It is the responsibility
of the caller to free the memory allocated.
@param DevicePath A pointer to a device path data structure.
@param DevicePathNode A pointer to a single device path node.
@retval NULL If there is not enough memory for the new device path.
@retval Others A pointer to the new device path if success.
A copy of DevicePathNode followed by an end-of-device-path node
if both FirstDevicePath and SecondDevicePath are NULL.
A copy of an end-of-device-path node if both FirstDevicePath
and SecondDevicePath are NULL.
**/
EFI_DEVICE_PATH_PROTOCOL *
AppendDevicePathNode (
CONST EFI_DEVICE_PATH_PROTOCOL *DevicePath, OPTIONAL
CONST EFI_DEVICE_PATH_PROTOCOL *DevicePathNode OPTIONAL
)
{
return UefiDevicePathLibAppendDevicePathNode (DevicePath, DevicePathNode);
}
/**
Creates a new device path by appending the specified device path instance to the specified device
path.
This function creates a new device path by appending a copy of the device path
instance specified by DevicePathInstance to a copy of the device path specified
by DevicePath in a allocated buffer.
The end-of-device-path device node is moved after the end of the appended device
path instance and a new end-of-device-path-instance node is inserted between.
If DevicePath is NULL, then a copy if DevicePathInstance is returned.
If DevicePathInstance is NULL, then NULL is returned.
If DevicePath or DevicePathInstance is invalid, then NULL is returned.
If there is not enough memory to allocate space for the new device path, then
NULL is returned.
The memory is allocated from EFI boot services memory. It is the responsibility
of the caller to free the memory allocated.
@param DevicePath A pointer to a device path data structure.
@param DevicePathInstance A pointer to a device path instance.
@return A pointer to the new device path.
**/
EFI_DEVICE_PATH_PROTOCOL *
AppendDevicePathInstance (
CONST EFI_DEVICE_PATH_PROTOCOL *DevicePath, OPTIONAL
CONST EFI_DEVICE_PATH_PROTOCOL *DevicePathInstance OPTIONAL
)
{
return UefiDevicePathLibAppendDevicePathInstance (DevicePath, DevicePathInstance);
}
/**
Creates a copy of the current device path instance and returns a pointer to the next device path
instance.
This function creates a copy of the current device path instance. It also updates
DevicePath to point to the next device path instance in the device path (or NULL
if no more) and updates Size to hold the size of the device path instance copy.
If DevicePath is NULL, then NULL is returned.
If DevicePath points to a invalid device path, then NULL is returned.
If there is not enough memory to allocate space for the new device path, then
NULL is returned.
The memory is allocated from EFI boot services memory. It is the responsibility
of the caller to free the memory allocated.
If Size is NULL, then ASSERT().
@param DevicePath On input, this holds the pointer to the current
device path instance. On output, this holds
the pointer to the next device path instance
or NULL if there are no more device path
instances in the device path pointer to a
device path data structure.
@param Size On output, this holds the size of the device
path instance, in bytes or zero, if DevicePath
is NULL.
@return A pointer to the current device path instance.
**/
EFI_DEVICE_PATH_PROTOCOL *
GetNextDevicePathInstance (
EFI_DEVICE_PATH_PROTOCOL **DevicePath,
UINTN *Size
)
{
return UefiDevicePathLibGetNextDevicePathInstance (DevicePath, Size);
}
/**
Creates a device node.
This function creates a new device node in a newly allocated buffer of size
NodeLength and initializes the device path node header with NodeType and NodeSubType.
The new device path node is returned.
If NodeLength is smaller than a device path header, then NULL is returned.
If there is not enough memory to allocate space for the new device path, then
NULL is returned.
The memory is allocated from EFI boot services memory. It is the responsibility
of the caller to free the memory allocated.
@param NodeType The device node type for the new device node.
@param NodeSubType The device node sub-type for the new device node.
@param NodeLength The length of the new device node.
@return The new device path.
**/
EFI_DEVICE_PATH_PROTOCOL *
CreateDeviceNode (
UINT8 NodeType,
UINT8 NodeSubType,
UINT16 NodeLength
)
{
return UefiDevicePathLibCreateDeviceNode (NodeType, NodeSubType, NodeLength);
}
/**
Determines if a device path is single or multi-instance.
This function returns TRUE if the device path specified by DevicePath is
multi-instance.
Otherwise, FALSE is returned.
If DevicePath is NULL or invalid, then FALSE is returned.
@param DevicePath A pointer to a device path data structure.
@retval TRUE DevicePath is multi-instance.
@retval FALSE DevicePath is not multi-instance, or DevicePath
is NULL or invalid.
**/
BOOLEAN
IsDevicePathMultiInstance (
CONST EFI_DEVICE_PATH_PROTOCOL *DevicePath
)
{
return UefiDevicePathLibIsDevicePathMultiInstance (DevicePath);
}
/**
Convert text to the binary representation of a device node.
@param TextDeviceNode TextDeviceNode points to the text representation of a device
node. Conversion starts with the first character and continues
until the first non-device node character.
@return A pointer to the EFI device node or NULL if TextDeviceNode is NULL or there was
insufficient memory or text unsupported.
**/
EFI_DEVICE_PATH_PROTOCOL *
ConvertTextToDeviceNode (
CONST CHAR16 *TextDeviceNode
)
{
return UefiDevicePathLibConvertTextToDeviceNode (TextDeviceNode);
}
/**
Convert text to the binary representation of a device path.
@param TextDevicePath TextDevicePath points to the text representation of a device
path. Conversion starts with the first character and continues
until the first non-device node character.
@return A pointer to the allocated device path or NULL if TextDeviceNode is NULL or
there was insufficient memory.
**/
EFI_DEVICE_PATH_PROTOCOL *
ConvertTextToDevicePath (
CONST CHAR16 *TextDevicePath
)
{
return UefiDevicePathLibConvertTextToDevicePath (TextDevicePath);
}

View File

@ -0,0 +1,452 @@
/** @file
Definition for Device Path library.
Copyright (c) 2017, Intel Corporation. All rights reserved.<BR>
This program and the accompanying materials
are licensed and made available under the terms and conditions of the BSD License
which accompanies this distribution. The full text of the license may be found at
http://opensource.org/licenses/bsd-license.php
THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS,
WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED.
**/
#ifndef _UEFI_DEVICE_PATH_LIB_H_
#define _UEFI_DEVICE_PATH_LIB_H_
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <ctype.h>
#include <assert.h>
#ifdef __GNUC__
#include <unistd.h>
#else
#include <direct.h>
#endif
#include <Common/UefiBaseTypes.h>
#include <Protocol/DevicePath.h>
#include <Protocol/DevicePathUtilities.h>
#include "CommonLib.h"
#include "EfiUtilityMsgs.h"
#define END_DEVICE_PATH_LENGTH (sizeof (EFI_DEVICE_PATH_PROTOCOL))
#define MAX_DEVICE_PATH_NODE_COUNT 1024
#define SIZE_64KB 0x00010000
//
// Private Data structure
//
typedef
EFI_DEVICE_PATH_PROTOCOL *
(*DEVICE_PATH_FROM_TEXT) (
IN CHAR16 *Str
);
typedef struct {
CHAR16 *Str;
UINTN Count;
UINTN Capacity;
} POOL_PRINT;
typedef struct {
CHAR16 *DevicePathNodeText;
DEVICE_PATH_FROM_TEXT Function;
} DEVICE_PATH_FROM_TEXT_TABLE;
typedef struct {
BOOLEAN ClassExist;
UINT8 Class;
BOOLEAN SubClassExist;
UINT8 SubClass;
} USB_CLASS_TEXT;
#define USB_CLASS_AUDIO 1
#define USB_CLASS_CDCCONTROL 2
#define USB_CLASS_HID 3
#define USB_CLASS_IMAGE 6
#define USB_CLASS_PRINTER 7
#define USB_CLASS_MASS_STORAGE 8
#define USB_CLASS_HUB 9
#define USB_CLASS_CDCDATA 10
#define USB_CLASS_SMART_CARD 11
#define USB_CLASS_VIDEO 14
#define USB_CLASS_DIAGNOSTIC 220
#define USB_CLASS_WIRELESS 224
#define USB_CLASS_RESERVE 254
#define USB_SUBCLASS_FW_UPDATE 1
#define USB_SUBCLASS_IRDA_BRIDGE 2
#define USB_SUBCLASS_TEST 3
#define RFC_1700_UDP_PROTOCOL 17
#define RFC_1700_TCP_PROTOCOL 6
#pragma pack(1)
typedef struct {
EFI_DEVICE_PATH_PROTOCOL Header;
EFI_GUID Guid;
UINT8 VendorDefinedData[1];
} VENDOR_DEFINED_HARDWARE_DEVICE_PATH;
typedef struct {
EFI_DEVICE_PATH_PROTOCOL Header;
EFI_GUID Guid;
UINT8 VendorDefinedData[1];
} VENDOR_DEFINED_MESSAGING_DEVICE_PATH;
typedef struct {
EFI_DEVICE_PATH_PROTOCOL Header;
EFI_GUID Guid;
UINT8 VendorDefinedData[1];
} VENDOR_DEFINED_MEDIA_DEVICE_PATH;
typedef struct {
EFI_DEVICE_PATH_PROTOCOL Header;
UINT32 Hid;
UINT32 Uid;
UINT32 Cid;
CHAR8 HidUidCidStr[3];
} ACPI_EXTENDED_HID_DEVICE_PATH_WITH_STR;
typedef struct {
EFI_DEVICE_PATH_PROTOCOL Header;
UINT16 NetworkProtocol;
UINT16 LoginOption;
UINT64 Lun;
UINT16 TargetPortalGroupTag;
CHAR8 TargetName[1];
} ISCSI_DEVICE_PATH_WITH_NAME;
typedef struct {
EFI_DEVICE_PATH_PROTOCOL Header;
EFI_GUID Guid;
UINT8 VendorDefinedData[1];
} VENDOR_DEVICE_PATH_WITH_DATA;
#pragma pack()
/**
Returns the size of a device path in bytes.
This function returns the size, in bytes, of the device path data structure
specified by DevicePath including the end of device path node.
If DevicePath is NULL or invalid, then 0 is returned.
@param DevicePath A pointer to a device path data structure.
@retval 0 If DevicePath is NULL or invalid.
@retval Others The size of a device path in bytes.
**/
UINTN
UefiDevicePathLibGetDevicePathSize (
CONST EFI_DEVICE_PATH_PROTOCOL *DevicePath
);
/**
Creates a new copy of an existing device path.
This function allocates space for a new copy of the device path specified by DevicePath.
If DevicePath is NULL, then NULL is returned. If the memory is successfully
allocated, then the contents of DevicePath are copied to the newly allocated
buffer, and a pointer to that buffer is returned. Otherwise, NULL is returned.
The memory for the new device path is allocated from EFI boot services memory.
It is the responsibility of the caller to free the memory allocated.
@param DevicePath A pointer to a device path data structure.
@retval NULL DevicePath is NULL or invalid.
@retval Others A pointer to the duplicated device path.
**/
EFI_DEVICE_PATH_PROTOCOL *
UefiDevicePathLibDuplicateDevicePath (
CONST EFI_DEVICE_PATH_PROTOCOL *DevicePath
);
/**
Creates a new device path by appending a second device path to a first device path.
This function creates a new device path by appending a copy of SecondDevicePath
to a copy of FirstDevicePath in a newly allocated buffer. Only the end-of-device-path
device node from SecondDevicePath is retained. The newly created device path is
returned. If FirstDevicePath is NULL, then it is ignored, and a duplicate of
SecondDevicePath is returned. If SecondDevicePath is NULL, then it is ignored,
and a duplicate of FirstDevicePath is returned. If both FirstDevicePath and
SecondDevicePath are NULL, then a copy of an end-of-device-path is returned.
If there is not enough memory for the newly allocated buffer, then NULL is returned.
The memory for the new device path is allocated from EFI boot services memory.
It is the responsibility of the caller to free the memory allocated.
@param FirstDevicePath A pointer to a device path data structure.
@param SecondDevicePath A pointer to a device path data structure.
@retval NULL If there is not enough memory for the newly allocated buffer.
@retval NULL If FirstDevicePath or SecondDevicePath is invalid.
@retval Others A pointer to the new device path if success.
Or a copy an end-of-device-path if both FirstDevicePath and SecondDevicePath are NULL.
**/
EFI_DEVICE_PATH_PROTOCOL *
UefiDevicePathLibAppendDevicePath (
CONST EFI_DEVICE_PATH_PROTOCOL *FirstDevicePath, OPTIONAL
CONST EFI_DEVICE_PATH_PROTOCOL *SecondDevicePath OPTIONAL
);
/**
Creates a new path by appending the device node to the device path.
This function creates a new device path by appending a copy of the device node
specified by DevicePathNode to a copy of the device path specified by DevicePath
in an allocated buffer. The end-of-device-path device node is moved after the
end of the appended device node.
If DevicePathNode is NULL then a copy of DevicePath is returned.
If DevicePath is NULL then a copy of DevicePathNode, followed by an end-of-device
path device node is returned.
If both DevicePathNode and DevicePath are NULL then a copy of an end-of-device-path
device node is returned.
If there is not enough memory to allocate space for the new device path, then
NULL is returned.
The memory is allocated from EFI boot services memory. It is the responsibility
of the caller to free the memory allocated.
@param DevicePath A pointer to a device path data structure.
@param DevicePathNode A pointer to a single device path node.
@retval NULL If there is not enough memory for the new device path.
@retval Others A pointer to the new device path if success.
A copy of DevicePathNode followed by an end-of-device-path node
if both FirstDevicePath and SecondDevicePath are NULL.
A copy of an end-of-device-path node if both FirstDevicePath
and SecondDevicePath are NULL.
**/
EFI_DEVICE_PATH_PROTOCOL *
UefiDevicePathLibAppendDevicePathNode (
CONST EFI_DEVICE_PATH_PROTOCOL *DevicePath, OPTIONAL
CONST EFI_DEVICE_PATH_PROTOCOL *DevicePathNode OPTIONAL
);
/**
Creates a new device path by appending the specified device path instance to the specified device
path.
This function creates a new device path by appending a copy of the device path
instance specified by DevicePathInstance to a copy of the device path specified
by DevicePath in a allocated buffer.
The end-of-device-path device node is moved after the end of the appended device
path instance and a new end-of-device-path-instance node is inserted between.
If DevicePath is NULL, then a copy if DevicePathInstance is returned.
If DevicePathInstance is NULL, then NULL is returned.
If DevicePath or DevicePathInstance is invalid, then NULL is returned.
If there is not enough memory to allocate space for the new device path, then
NULL is returned.
The memory is allocated from EFI boot services memory. It is the responsibility
of the caller to free the memory allocated.
@param DevicePath A pointer to a device path data structure.
@param DevicePathInstance A pointer to a device path instance.
@return A pointer to the new device path.
**/
EFI_DEVICE_PATH_PROTOCOL *
UefiDevicePathLibAppendDevicePathInstance (
CONST EFI_DEVICE_PATH_PROTOCOL *DevicePath, OPTIONAL
CONST EFI_DEVICE_PATH_PROTOCOL *DevicePathInstance OPTIONAL
);
/**
Creates a copy of the current device path instance and returns a pointer to the next device path
instance.
This function creates a copy of the current device path instance. It also updates
DevicePath to point to the next device path instance in the device path (or NULL
if no more) and updates Size to hold the size of the device path instance copy.
If DevicePath is NULL, then NULL is returned.
If DevicePath points to a invalid device path, then NULL is returned.
If there is not enough memory to allocate space for the new device path, then
NULL is returned.
The memory is allocated from EFI boot services memory. It is the responsibility
of the caller to free the memory allocated.
If Size is NULL, then ASSERT().
@param DevicePath On input, this holds the pointer to the current
device path instance. On output, this holds
the pointer to the next device path instance
or NULL if there are no more device path
instances in the device path pointer to a
device path data structure.
@param Size On output, this holds the size of the device
path instance, in bytes or zero, if DevicePath
is NULL.
@return A pointer to the current device path instance.
**/
EFI_DEVICE_PATH_PROTOCOL *
UefiDevicePathLibGetNextDevicePathInstance (
EFI_DEVICE_PATH_PROTOCOL **DevicePath,
UINTN *Size
);
/**
Creates a device node.
This function creates a new device node in a newly allocated buffer of size
NodeLength and initializes the device path node header with NodeType and NodeSubType.
The new device path node is returned.
If NodeLength is smaller than a device path header, then NULL is returned.
If there is not enough memory to allocate space for the new device path, then
NULL is returned.
The memory is allocated from EFI boot services memory. It is the responsibility
of the caller to free the memory allocated.
@param NodeType The device node type for the new device node.
@param NodeSubType The device node sub-type for the new device node.
@param NodeLength The length of the new device node.
@return The new device path.
**/
EFI_DEVICE_PATH_PROTOCOL *
UefiDevicePathLibCreateDeviceNode (
UINT8 NodeType,
UINT8 NodeSubType,
UINT16 NodeLength
);
/**
Determines if a device path is single or multi-instance.
This function returns TRUE if the device path specified by DevicePath is
multi-instance.
Otherwise, FALSE is returned.
If DevicePath is NULL or invalid, then FALSE is returned.
@param DevicePath A pointer to a device path data structure.
@retval TRUE DevicePath is multi-instance.
@retval FALSE DevicePath is not multi-instance, or DevicePath
is NULL or invalid.
**/
BOOLEAN
UefiDevicePathLibIsDevicePathMultiInstance (
CONST EFI_DEVICE_PATH_PROTOCOL *DevicePath
);
/**
Convert text to the binary representation of a device node.
@param TextDeviceNode TextDeviceNode points to the text representation of a device
node. Conversion starts with the first character and continues
until the first non-device node character.
@return A pointer to the EFI device node or NULL if TextDeviceNode is NULL or there was
insufficient memory or text unsupported.
**/
EFI_DEVICE_PATH_PROTOCOL *
UefiDevicePathLibConvertTextToDeviceNode (
CONST CHAR16 *TextDeviceNode
);
/**
Convert text to the binary representation of a device path.
@param TextDevicePath TextDevicePath points to the text representation of a device
path. Conversion starts with the first character and continues
until the first non-device node character.
@return A pointer to the allocated device path or NULL if TextDeviceNode is NULL or
there was insufficient memory.
**/
EFI_DEVICE_PATH_PROTOCOL *
UefiDevicePathLibConvertTextToDevicePath (
CONST CHAR16 *TextDevicePath
);
EFI_DEVICE_PATH_PROTOCOL *
CreateDeviceNode (
UINT8 NodeType,
UINT8 NodeSubType,
UINT16 NodeLength
);
EFI_DEVICE_PATH_PROTOCOL *
CreateDeviceNode (
UINT8 NodeType,
UINT8 NodeSubType,
UINT16 NodeLength
);
BOOLEAN
IsDevicePathMultiInstance (
CONST EFI_DEVICE_PATH_PROTOCOL *DevicePath
);
EFI_DEVICE_PATH_PROTOCOL *
GetNextDevicePathInstance (
EFI_DEVICE_PATH_PROTOCOL **DevicePath,
UINTN *Size
);
EFI_DEVICE_PATH_PROTOCOL *
AppendDevicePathInstance (
CONST EFI_DEVICE_PATH_PROTOCOL *DevicePath, OPTIONAL
CONST EFI_DEVICE_PATH_PROTOCOL *DevicePathInstance OPTIONAL
);
EFI_DEVICE_PATH_PROTOCOL *
AppendDevicePathNode (
CONST EFI_DEVICE_PATH_PROTOCOL *DevicePath, OPTIONAL
CONST EFI_DEVICE_PATH_PROTOCOL *DevicePathNode OPTIONAL
);
EFI_DEVICE_PATH_PROTOCOL *
AppendDevicePath (
CONST EFI_DEVICE_PATH_PROTOCOL *FirstDevicePath, OPTIONAL
CONST EFI_DEVICE_PATH_PROTOCOL *SecondDevicePath OPTIONAL
);
EFI_DEVICE_PATH_PROTOCOL *
DuplicateDevicePath (
CONST EFI_DEVICE_PATH_PROTOCOL *DevicePath
);
UINTN
GetDevicePathSize (
CONST EFI_DEVICE_PATH_PROTOCOL *DevicePath
);
CHAR16 *
ConvertDeviceNodeToText (
CONST EFI_DEVICE_PATH_PROTOCOL *DeviceNode,
BOOLEAN DisplayOnly,
BOOLEAN AllowShortcuts
);
CHAR16 *
ConvertDevicePathToText (
CONST EFI_DEVICE_PATH_PROTOCOL *DevicePath,
BOOLEAN DisplayOnly,
BOOLEAN AllowShortcuts
);
EFI_DEVICE_PATH_PROTOCOL *
ConvertTextToDeviceNode (
CONST CHAR16 *TextDeviceNode
);
EFI_DEVICE_PATH_PROTOCOL *
ConvertTextToDevicePath (
CONST CHAR16 *TextDevicePath
);
#endif

View File

@ -67,7 +67,8 @@ APPLICATIONS = \
LzmaCompress \
Split \
TianoCompress \
VolInfo
VolInfo \
DevicePath
SUBDIRS := $(LIBRARIES) $(APPLICATIONS)

View File

@ -0,0 +1,62 @@
/** @file
This file contains the Bluetooth definitions that are consumed by drivers.
These definitions are from Bluetooth Core Specification Version 4.0 June, 2010
Copyright (c) 2017, Intel Corporation. All rights reserved.<BR>
This program and the accompanying materials
are licensed and made available under the terms and conditions of the BSD License
which accompanies this distribution. The full text of the license may be found at
http://opensource.org/licenses/bsd-license.php
THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS,
WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED.
**/
#ifndef _BLUETOOTH_H_
#define _BLUETOOTH_H_
#pragma pack(1)
///
/// BLUETOOTH_ADDRESS
///
typedef struct {
///
/// 48bit Bluetooth device address.
///
UINT8 Address[6];
} BLUETOOTH_ADDRESS;
///
/// BLUETOOTH_CLASS_OF_DEVICE. See Bluetooth specification for detail.
///
typedef struct {
UINT8 FormatType:2;
UINT8 MinorDeviceClass: 6;
UINT16 MajorDeviceClass: 5;
UINT16 MajorServiceClass:11;
} BLUETOOTH_CLASS_OF_DEVICE;
///
/// BLUETOOTH_LE_ADDRESS
///
typedef struct {
///
/// 48-bit Bluetooth device address
///
UINT8 Address[6];
///
/// 0x00 - Public Device Address
/// 0x01 - Random Device Address
///
UINT8 Type;
} BLUETOOTH_LE_ADDRESS;
#pragma pack()
#define BLUETOOTH_HCI_COMMAND_LOCAL_READABLE_NAME_MAX_SIZE 248
#define BLUETOOTH_HCI_LINK_KEY_SIZE 16
#endif

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,294 @@
/** @file
EFI_DEVICE_PATH_UTILITIES_PROTOCOL as defined in UEFI 2.0.
Use to create and manipulate device paths and device nodes.
Copyright (c) 2017, Intel Corporation. All rights reserved.<BR>
This program and the accompanying materials
are licensed and made available under the terms and conditions of the BSD License
which accompanies this distribution. The full text of the license may be found at
http://opensource.org/licenses/bsd-license.php
THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS,
WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED.
**/
#ifndef __DEVICE_PATH_UTILITIES_H__
#define __DEVICE_PATH_UTILITIES_H__
///
/// Device Path Utilities protocol
///
#define EFI_DEVICE_PATH_UTILITIES_GUID \
{ \
0x379be4e, 0xd706, 0x437d, {0xb0, 0x37, 0xed, 0xb8, 0x2f, 0xb7, 0x72, 0xa4 } \
}
/**
Returns the size of the device path, in bytes.
@param DevicePath Points to the start of the EFI device path.
@return Size Size of the specified device path, in bytes, including the end-of-path tag.
@retval 0 DevicePath is NULL
**/
typedef
UINTN
( *EFI_DEVICE_PATH_UTILS_GET_DEVICE_PATH_SIZE)(
CONST EFI_DEVICE_PATH_PROTOCOL *DevicePath
);
/**
Create a duplicate of the specified path.
@param DevicePath Points to the source EFI device path.
@retval Pointer A pointer to the duplicate device path.
@retval NULL insufficient memory or DevicePath is NULL
**/
typedef
EFI_DEVICE_PATH_PROTOCOL*
( *EFI_DEVICE_PATH_UTILS_DUP_DEVICE_PATH)(
CONST EFI_DEVICE_PATH_PROTOCOL *DevicePath
);
/**
Create a new path by appending the second device path to the first.
If Src1 is NULL and Src2 is non-NULL, then a duplicate of Src2 is returned.
If Src1 is non-NULL and Src2 is NULL, then a duplicate of Src1 is returned.
If Src1 and Src2 are both NULL, then a copy of an end-of-device-path is returned.
@param Src1 Points to the first device path.
@param Src2 Points to the second device path.
@retval Pointer A pointer to the newly created device path.
@retval NULL Memory could not be allocated
**/
typedef
EFI_DEVICE_PATH_PROTOCOL*
( *EFI_DEVICE_PATH_UTILS_APPEND_PATH)(
CONST EFI_DEVICE_PATH_PROTOCOL *Src1,
CONST EFI_DEVICE_PATH_PROTOCOL *Src2
);
/**
Creates a new path by appending the device node to the device path.
If DeviceNode is NULL then a copy of DevicePath is returned.
If DevicePath is NULL then a copy of DeviceNode, followed by an end-of-device path device node is returned.
If both DeviceNode and DevicePath are NULL then a copy of an end-of-device-path device node is returned.
@param DevicePath Points to the device path.
@param DeviceNode Points to the device node.
@retval Pointer A pointer to the allocated device node.
@retval NULL There was insufficient memory.
**/
typedef
EFI_DEVICE_PATH_PROTOCOL*
( *EFI_DEVICE_PATH_UTILS_APPEND_NODE)(
CONST EFI_DEVICE_PATH_PROTOCOL *DevicePath,
CONST EFI_DEVICE_PATH_PROTOCOL *DeviceNode
);
/**
Creates a new path by appending the specified device path instance to the specified device path.
@param DevicePath Points to the device path. If NULL, then ignored.
@param DevicePathInstance Points to the device path instance.
@retval Pointer A pointer to the newly created device path
@retval NULL Memory could not be allocated or DevicePathInstance is NULL.
**/
typedef
EFI_DEVICE_PATH_PROTOCOL*
( *EFI_DEVICE_PATH_UTILS_APPEND_INSTANCE)(
CONST EFI_DEVICE_PATH_PROTOCOL *DevicePath,
CONST EFI_DEVICE_PATH_PROTOCOL *DevicePathInstance
);
/**
Creates a copy of the current device path instance and returns a pointer to the next device path
instance.
@param DevicePathInstance On input, this holds the pointer to the current device path
instance. On output, this holds the pointer to the next
device path instance or NULL if there are no more device
path instances in the device path.
@param DevicePathInstanceSize On output, this holds the size of the device path instance,
in bytes or zero, if DevicePathInstance is NULL.
If NULL, then the instance size is not output.
@retval Pointer A pointer to the copy of the current device path instance.
@retval NULL DevicePathInstace was NULL on entry or there was insufficient memory.
**/
typedef
EFI_DEVICE_PATH_PROTOCOL*
( *EFI_DEVICE_PATH_UTILS_GET_NEXT_INSTANCE)(
EFI_DEVICE_PATH_PROTOCOL **DevicePathInstance,
UINTN *DevicePathInstanceSize
);
/**
Creates a device node
@param NodeType NodeType is the device node type (EFI_DEVICE_PATH.Type) for
the new device node.
@param NodeSubType NodeSubType is the device node sub-type
EFI_DEVICE_PATH.SubType) for the new device node.
@param NodeLength NodeLength is the length of the device node
(EFI_DEVICE_PATH.Length) for the new device node.
@retval Pointer A pointer to the newly created device node.
@retval NULL NodeLength is less than
the size of the header or there was insufficient memory.
**/
typedef
EFI_DEVICE_PATH_PROTOCOL*
( *EFI_DEVICE_PATH_UTILS_CREATE_NODE)(
UINT8 NodeType,
UINT8 NodeSubType,
UINT16 NodeLength
);
/**
Returns whether a device path is multi-instance.
@param DevicePath Points to the device path. If NULL, then ignored.
@retval TRUE The device path has more than one instance
@retval FALSE The device path is empty or contains only a single instance.
**/
typedef
BOOLEAN
( *EFI_DEVICE_PATH_UTILS_IS_MULTI_INSTANCE)(
CONST EFI_DEVICE_PATH_PROTOCOL *DevicePath
);
///
/// This protocol is used to creates and manipulates device paths and device nodes.
///
typedef struct {
EFI_DEVICE_PATH_UTILS_GET_DEVICE_PATH_SIZE GetDevicePathSize;
EFI_DEVICE_PATH_UTILS_DUP_DEVICE_PATH DuplicateDevicePath;
EFI_DEVICE_PATH_UTILS_APPEND_PATH AppendDevicePath;
EFI_DEVICE_PATH_UTILS_APPEND_NODE AppendDeviceNode;
EFI_DEVICE_PATH_UTILS_APPEND_INSTANCE AppendDevicePathInstance;
EFI_DEVICE_PATH_UTILS_GET_NEXT_INSTANCE GetNextDevicePathInstance;
EFI_DEVICE_PATH_UTILS_IS_MULTI_INSTANCE IsDevicePathMultiInstance;
EFI_DEVICE_PATH_UTILS_CREATE_NODE CreateDeviceNode;
} EFI_DEVICE_PATH_UTILITIES_PROTOCOL;
extern EFI_GUID gEfiDevicePathUtilitiesProtocolGuid;
VOID
SetDevicePathEndNode (
VOID *Node
);
BOOLEAN
IsDevicePathValid (
CONST EFI_DEVICE_PATH_PROTOCOL *DevicePath,
UINTN MaxSize
);
UINT8
DevicePathType (
CONST VOID *Node
);
UINT8
DevicePathSubType (
CONST VOID *Node
);
UINTN
DevicePathNodeLength (
CONST VOID *Node
);
EFI_DEVICE_PATH_PROTOCOL *
NextDevicePathNode (
CONST VOID *Node
);
BOOLEAN
IsDevicePathEndType (
CONST VOID *Node
);
BOOLEAN
IsDevicePathEnd (
CONST VOID *Node
);
BOOLEAN
IsDevicePathEndInstance (
CONST VOID *Node
);
UINT16
SetDevicePathNodeLength (
VOID *Node,
UINTN Length
);
VOID
SetDevicePathEndNode (
VOID *Node
);
UINTN
UefiDevicePathLibGetDevicePathSize (
CONST EFI_DEVICE_PATH_PROTOCOL *DevicePath
);
EFI_DEVICE_PATH_PROTOCOL *
UefiDevicePathLibDuplicateDevicePath (
CONST EFI_DEVICE_PATH_PROTOCOL *DevicePath
);
EFI_DEVICE_PATH_PROTOCOL *
UefiDevicePathLibAppendDevicePath (
CONST EFI_DEVICE_PATH_PROTOCOL *FirstDevicePath,
CONST EFI_DEVICE_PATH_PROTOCOL *SecondDevicePath
);
EFI_DEVICE_PATH_PROTOCOL *
UefiDevicePathLibAppendDevicePathNode (
CONST EFI_DEVICE_PATH_PROTOCOL *DevicePath,
CONST EFI_DEVICE_PATH_PROTOCOL *DevicePathNode
);
EFI_DEVICE_PATH_PROTOCOL *
UefiDevicePathLibAppendDevicePathInstance (
CONST EFI_DEVICE_PATH_PROTOCOL *DevicePath,
CONST EFI_DEVICE_PATH_PROTOCOL *DevicePathInstance
);
EFI_DEVICE_PATH_PROTOCOL *
UefiDevicePathLibGetNextDevicePathInstance (
EFI_DEVICE_PATH_PROTOCOL **DevicePath,
UINTN *Size
);
EFI_DEVICE_PATH_PROTOCOL *
UefiDevicePathLibCreateDeviceNode (
UINT8 NodeType,
UINT8 NodeSubType,
UINT16 NodeLength
);
BOOLEAN
UefiDevicePathLibIsDevicePathMultiInstance (
CONST EFI_DEVICE_PATH_PROTOCOL *DevicePath
);
#endif

View File

@ -1,7 +1,7 @@
## @file
# Windows makefile for C tools build.
#
# Copyright (c) 2009 - 2014, Intel Corporation. All rights reserved.<BR>
# Copyright (c) 2009 - 2017, Intel Corporation. All rights reserved.<BR>
# This program and the accompanying materials
# are licensed and made available under the terms and conditions of the BSD License
# which accompanies this distribution. The full text of the license may be found at
@ -32,7 +32,8 @@ APPLICATIONS = \
Split \
TianoCompress \
VolInfo \
VfrCompile
VfrCompile \
DevicePath
all: libs apps install

View File

@ -38,7 +38,7 @@ from Common.LongFilePathSupport import OpenLongFilePath as open
from Common.MultipleWorkspace import MultipleWorkspace as mws
import uuid
from CommonDataClass.Exceptions import BadExpression
import subprocess
## Regular expression used to find out place holders in string template
gPlaceholderPattern = re.compile("\$\{([^$()\s]+)\}", re.MULTILINE | re.UNICODE)
@ -1474,7 +1474,37 @@ def AnalyzePcdExpression(Setting):
return FieldList
def ParseDevPathValue (Value):
pass
DevPathList = [ "Path","HardwarePath","Pci","PcCard","MemoryMapped","VenHw","Ctrl","BMC","AcpiPath","Acpi","PciRoot",
"PcieRoot","Floppy","Keyboard","Serial","ParallelPort","AcpiEx","AcpiExp","AcpiAdr","Msg","Ata","Scsi",
"Fibre","FibreEx","I1394","USB","I2O","Infiniband","VenMsg","VenPcAnsi","VenVt100","VenVt100Plus",
"VenUtf8","UartFlowCtrl","SAS","SasEx","NVMe","UFS","SD","eMMC","DebugPort","MAC","IPv4","IPv6","Uart",
"UsbClass","UsbAudio","UsbCDCControl","UsbHID","UsbImage","UsbPrinter","UsbMassStorage","UsbHub",
"UsbCDCData","UsbSmartCard","UsbVideo","UsbDiagnostic","UsbWireless","UsbDeviceFirmwareUpdate",
"UsbIrdaBridge","UsbTestAndMeasurement","UsbWwid","Unit","iSCSI","Vlan","Uri","Bluetooth","Wi-Fi",
"MediaPath","HD","CDROM","VenMedia","Media","Fv","FvFile","Offset","RamDisk","VirtualDisk","VirtualCD",
"PersistentVirtualDisk","PersistentVirtualCD","BbsPath","BBS","Sata" ]
if '\\' in Value:
Value.replace('\\', '/').replace(' ', '')
for Item in Value.split('/'):
Key = Item.strip().split('(')[0]
if Key not in DevPathList:
pass
Cmd = 'DevicePath ' + '"' + Value + '"'
try:
p = subprocess.Popen(Cmd, stdout=subprocess.PIPE, stderr=subprocess.PIPE, shell=True)
out, err = p.communicate()
except Exception, X:
raise BadExpression("DevicePath: %s" % (str(X)) )
finally:
subprocess._cleanup()
p.stdout.close()
p.stderr.close()
if err:
raise BadExpression("DevicePath: %s" % str(err))
Size = len(out.split())
out = ','.join(out.split())
return '{' + out + '}', Size
def ParseFieldValue (Value):
if type(Value) == type(0):