add SR-IOV support in EDK II.

git-svn-id: https://edk2.svn.sourceforge.net/svnroot/edk2/trunk/edk2@9269 6f19259b-4bc3-4df7-8a09-765794883524
This commit is contained in:
htao 2009-09-16 09:32:06 +00:00
parent fd53905e69
commit 7fc72ecb0d
11 changed files with 988 additions and 10 deletions

View File

@ -50,6 +50,13 @@ WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED.
typedef struct _PCI_IO_DEVICE PCI_IO_DEVICE;
typedef struct _PCI_BAR PCI_BAR;
#define EFI_PCI_RID(Bus, Device, Function) (((UINT32)Bus << 8) + ((UINT32)Device << 3) + (UINT32)Function)
#define EFI_PCI_BUS_OF_RID(RID) ((UINT32)RID >> 8)
#define EFI_PCI_IOV_POLICY_ARI 0x0001
#define EFI_PCI_IOV_POLICY_SRIOV 0x0002
#define EFI_PCI_IOV_POLICY_MRIOV 0x0004
typedef enum {
PciBarTypeUnknown = 0,
PciBarTypeIo16,
@ -248,7 +255,17 @@ struct _PCI_IO_DEVICE {
EFI_HPC_PADDING_ATTRIBUTES PaddingAttributes;
BOOLEAN IsPciExp;
//
// For SR-IOV
//
UINT8 PciExpressCapabilityOffset;
UINT32 AriCapabilityOffset;
UINT32 SrIovCapabilityOffset;
UINT32 MrIovCapabilityOffset;
PCI_BAR VfPciBar[PCI_MAX_BAR];
UINT32 SystemPageSize;
UINT16 InitialVFs;
UINT16 ReservedBusNum;
};
#define PCI_IO_DEVICE_FROM_PCI_IO_THIS(a) \

View File

@ -101,7 +101,12 @@
[FeaturePcd.common]
gEfiIntelFrameworkModulePkgTokenSpaceGuid.PcdPciBusHotplugDeviceSupport
gEfiIntelFrameworkModulePkgTokenSpaceGuid.PcdSrIovSupport
gEfiIntelFrameworkModulePkgTokenSpaceGuid.PcdAriSupport
gEfiIntelFrameworkModulePkgTokenSpaceGuid.PcdMrIovSupport
[FixedPcd.common]
gEfiIntelFrameworkModulePkgTokenSpaceGuid.PcdSrIovSystemPageSize
# [Event]
# ##
# # Notify event set by CreateEventForHpc () for PCI Hot Plug controller.

View File

@ -179,3 +179,70 @@ LocateCapabilityRegBlock (
return EFI_NOT_FOUND;
}
/**
Locate PciExpress capability register block per capability ID.
@param PciIoDevice A pointer to the PCI_IO_DEVICE.
@param CapId The capability ID.
@param Offset A pointer to the offset returned.
@param NextRegBlock A pointer to the next block returned.
@retval EFI_SUCCESS Successfuly located capability register block.
@retval EFI_UNSUPPORTED Pci device does not support capability.
@retval EFI_NOT_FOUND Pci device support but can not find register block.
**/
EFI_STATUS
LocatePciExpressCapabilityRegBlock (
IN PCI_IO_DEVICE *PciIoDevice,
IN UINT16 CapId,
IN OUT UINT32 *Offset,
OUT UINT32 *NextRegBlock OPTIONAL
)
{
UINT32 CapabilityPtr;
UINT32 CapabilityEntry;
UINT16 CapabilityID;
//
// To check the capability of this device supports
//
if (!PciIoDevice->IsPciExp) {
return EFI_UNSUPPORTED;
}
if (*Offset != 0) {
CapabilityPtr = *Offset;
} else {
CapabilityPtr = EFI_PCIE_CAPABILITY_BASE_OFFSET;
}
while (CapabilityPtr != 0) {
//
// Mask it to DWORD alignment per PCI spec
//
CapabilityPtr &= 0xFFC;
PciIoDevice->PciIo.Pci.Read (
&PciIoDevice->PciIo,
EfiPciIoWidthUint32,
CapabilityPtr,
1,
&CapabilityEntry
);
CapabilityID = (UINT16) CapabilityEntry;
if (CapabilityID == CapId) {
*Offset = CapabilityPtr;
if (NextRegBlock != NULL) {
*NextRegBlock = (CapabilityEntry >> 20) & 0xFFF;
}
return EFI_SUCCESS;
}
CapabilityPtr = (CapabilityEntry >> 20) & 0xFFF;
}
return EFI_NOT_FOUND;
}

View File

@ -118,6 +118,27 @@ LocateCapabilityRegBlock (
OUT UINT8 *NextRegBlock OPTIONAL
);
/**
Locate PciExpress capability register block per capability ID.
@param PciIoDevice A pointer to the PCI_IO_DEVICE.
@param CapId The capability ID.
@param Offset A pointer to the offset returned.
@param NextRegBlock A pointer to the next block returned.
@retval EFI_SUCCESS Successfuly located capability register block.
@retval EFI_UNSUPPORTED Pci device does not support capability.
@retval EFI_NOT_FOUND Pci device support but can not find register block.
**/
EFI_STATUS
LocatePciExpressCapabilityRegBlock (
IN PCI_IO_DEVICE *PciIoDevice,
IN UINT16 CapId,
IN OUT UINT32 *Offset,
OUT UINT32 *NextRegBlock OPTIONAL
);
/**
Macro that reads command register.

View File

@ -215,6 +215,10 @@ RegisterPciDevice (
EFI_PCI_IO_PROTOCOL *PciIo;
UINT8 Data8;
BOOLEAN HasEfiImage;
PCI_IO_DEVICE *ParrentPciIoDevice;
EFI_PCI_IO_PROTOCOL *ParrentPciIo;
UINT16 Data16;
UINT32 Data32;
//
// Install the pciio protocol, device path protocol
@ -251,7 +255,35 @@ RegisterPciDevice (
PciIo = &(PciIoDevice->PciIo);
Data8 = PCI_INT_LINE_UNKNOWN;
PciIo->Pci.Write (PciIo, EfiPciIoWidthUint8, 0x3C, 1, &Data8);
//
// PCI-IOV programming
//
if (((FeaturePcdGet(PcdAriSupport) & EFI_PCI_IOV_POLICY_ARI) != 0) && (PciIoDevice->AriCapabilityOffset != 0) && ((FeaturePcdGet(PcdSrIovSupport) & EFI_PCI_IOV_POLICY_SRIOV) != 0) &&
(PciIoDevice->SrIovCapabilityOffset != 0)) {
//
// Check its parrent ARI forwarding capability
//
ParrentPciIoDevice = PciIoDevice->Parent;
ParrentPciIo = &(ParrentPciIoDevice->PciIo);
ParrentPciIo->Pci.Read (PciIo, EfiPciIoWidthUint32, ParrentPciIoDevice->PciExpressCapabilityOffset + EFI_PCIE_CAPABILITY_DEVICE_CAPABILITIES_2_OFFSET, 1, &Data32);
if (Data32 & EFI_PCIE_CAPABILITY_DEVICE_CAPABILITIES_2_ARI_FORWARDING) {
//
// ARI forward support in bridge, so enable it.
//
ParrentPciIo->Pci.Read (PciIo, EfiPciIoWidthUint32, ParrentPciIoDevice->PciExpressCapabilityOffset + EFI_PCIE_CAPABILITY_DEVICE_CONTROL_2_OFFSET, 1, &Data32);
Data32 |= EFI_PCIE_CAPABILITY_DEVICE_CONTROL_2_ARI_FORWARDING;
ParrentPciIo->Pci.Write (PciIo, EfiPciIoWidthUint32, ParrentPciIoDevice->PciExpressCapabilityOffset + EFI_PCIE_CAPABILITY_DEVICE_CONTROL_2_OFFSET, 1, &Data32);
//
// Set ARI Capable Hierarchy for device
//
PciIo->Pci.Read (PciIo, EfiPciIoWidthUint16, PciIoDevice->SrIovCapabilityOffset + EFI_PCIE_CAPABILITY_ID_SRIOV_CONTROL, 1, &Data16);
Data16 |= EFI_PCIE_CAPABILITY_ID_SRIOV_CONTROL_ARI_HIERARCHY;
PciIo->Pci.Write (PciIo, EfiPciIoWidthUint16, PciIoDevice->SrIovCapabilityOffset + EFI_PCIE_CAPABILITY_ID_SRIOV_CONTROL, 1, &Data16);
}
}
//
// Process OpRom
//

View File

@ -367,6 +367,16 @@ GatherDeviceInfo (
Offset = PciParseBar (PciIoDevice, Offset, BarIndex);
}
//
// Parse the SR-IOV VF bars
//
if ((PciIoDevice->SrIovCapabilityOffset != 0) && ((FeaturePcdGet(PcdSrIovSupport)& EFI_PCI_IOV_POLICY_SRIOV) != 0)) {
for (Offset = PciIoDevice->SrIovCapabilityOffset + EFI_PCIE_CAPABILITY_ID_SRIOV_BAR0, BarIndex = 0;
Offset <= PciIoDevice->SrIovCapabilityOffset + EFI_PCIE_CAPABILITY_ID_SRIOV_BAR5;
BarIndex++) {
Offset = PciIovParseVfBar (PciIoDevice, Offset, BarIndex);
}
}
return PciIoDevice;
}
@ -597,6 +607,80 @@ CreatePciDevicePath (
return PciIoDevice->DevicePath;
}
/**
Check whether the PCI IOV VF bar is existed or not.
@param PciIoDevice A pointer to the PCI_IO_DEVICE.
@param Offset The offset.
@param BarLengthValue The bar length value returned.
@param OriginalBarValue The original bar value returned.
@retval EFI_NOT_FOUND The bar doesn't exist.
@retval EFI_SUCCESS The bar exist.
**/
EFI_STATUS
VfBarExisted (
IN PCI_IO_DEVICE *PciIoDevice,
IN UINTN Offset,
OUT UINT32 *BarLengthValue,
OUT UINT32 *OriginalBarValue
)
{
EFI_PCI_IO_PROTOCOL *PciIo;
UINT32 OriginalValue;
UINT32 Value;
EFI_TPL OldTpl;
//
// Ensure it is called properly
//
ASSERT (PciIoDevice->SrIovCapabilityOffset != 0);
if (PciIoDevice->SrIovCapabilityOffset == 0) {
return EFI_NOT_FOUND;
}
PciIo = &PciIoDevice->PciIo;
//
// Preserve the original value
//
PciIo->Pci.Read (PciIo, EfiPciIoWidthUint32, (UINT32)Offset, 1, &OriginalValue);
//
// Raise TPL to high level to disable timer interrupt while the BAR is probed
//
OldTpl = gBS->RaiseTPL (TPL_HIGH_LEVEL);
PciIo->Pci.Write (PciIo, EfiPciIoWidthUint32, (UINT32)Offset, 1, &gAllOne);
PciIo->Pci.Read (PciIo, EfiPciIoWidthUint32, (UINT32)Offset, 1, &Value);
//
// Write back the original value
//
PciIo->Pci.Write (PciIo, EfiPciIoWidthUint32, (UINT32)Offset, 1, &OriginalValue);
//
// Restore TPL to its original level
//
gBS->RestoreTPL (OldTpl);
if (BarLengthValue != NULL) {
*BarLengthValue = Value;
}
if (OriginalBarValue != NULL) {
*OriginalBarValue = OriginalValue;
}
if (Value == 0) {
return EFI_NOT_FOUND;
} else {
return EFI_SUCCESS;
}
}
/**
Check whether the bar is existed or not.
@ -1249,6 +1333,207 @@ SetNewAlign (
return ;
}
/**
Parse PCI IOV VF bar information and fill them into PCI device instance.
@param PciIoDevice Pci device instance.
@param Offset Bar offset.
@param BarIndex Bar index.
@return Next bar offset.
**/
UINTN
PciIovParseVfBar (
IN PCI_IO_DEVICE *PciIoDevice,
IN UINTN Offset,
IN UINTN BarIndex
)
{
UINT32 Value;
UINT64 BarValue64;
UINT32 OriginalValue;
UINT32 Mask;
UINT32 Data;
UINT8 Index;
EFI_STATUS Status;
//
// Ensure it is called properly
//
ASSERT (PciIoDevice->SrIovCapabilityOffset != 0);
if (PciIoDevice->SrIovCapabilityOffset == 0) {
return 0;
}
OriginalValue = 0;
Value = 0;
BarValue64 = 0;
Status = VfBarExisted (
PciIoDevice,
Offset,
&Value,
&OriginalValue
);
if (EFI_ERROR (Status)) {
PciIoDevice->VfPciBar[BarIndex].BaseAddress = 0;
PciIoDevice->VfPciBar[BarIndex].Length = 0;
PciIoDevice->VfPciBar[BarIndex].Alignment = 0;
//
// Scan all the BARs anyway
//
PciIoDevice->VfPciBar[BarIndex].Offset = (UINT8) Offset;
return Offset + 4;
}
PciIoDevice->VfPciBar[BarIndex].Offset = (UINT8) Offset;
if (Value & 0x01) {
//
// Device I/Os. Impossible
//
ASSERT (FALSE);
return Offset + 4;
} else {
Mask = 0xfffffff0;
PciIoDevice->VfPciBar[BarIndex].BaseAddress = OriginalValue & Mask;
switch (Value & 0x07) {
//
//memory space; anywhere in 32 bit address space
//
case 0x00:
if (Value & 0x08) {
PciIoDevice->VfPciBar[BarIndex].BarType = PciBarTypePMem32;
} else {
PciIoDevice->VfPciBar[BarIndex].BarType = PciBarTypeMem32;
}
PciIoDevice->VfPciBar[BarIndex].Length = (~(Value & Mask)) + 1;
PciIoDevice->VfPciBar[BarIndex].Alignment = PciIoDevice->VfPciBar[BarIndex].Length - 1;
//
// Adjust Length
//
PciIoDevice->VfPciBar[BarIndex].Length = MultU64x32 (PciIoDevice->VfPciBar[BarIndex].Length, PciIoDevice->InitialVFs);
//
// Adjust Alignment
//
if (PciIoDevice->VfPciBar[BarIndex].Alignment < PciIoDevice->SystemPageSize - 1) {
PciIoDevice->VfPciBar[BarIndex].Alignment = PciIoDevice->SystemPageSize - 1;
}
break;
//
// memory space; anywhere in 64 bit address space
//
case 0x04:
if (Value & 0x08) {
PciIoDevice->VfPciBar[BarIndex].BarType = PciBarTypePMem64;
} else {
PciIoDevice->VfPciBar[BarIndex].BarType = PciBarTypeMem64;
}
//
// According to PCI 2.2,if the bar indicates a memory 64 decoding, next bar
// is regarded as an extension for the first bar. As a result
// the sizing will be conducted on combined 64 bit value
// Here just store the masked first 32bit value for future size
// calculation
//
PciIoDevice->VfPciBar[BarIndex].Length = Value & Mask;
PciIoDevice->VfPciBar[BarIndex].Alignment = PciIoDevice->VfPciBar[BarIndex].Length - 1;
if (PciIoDevice->VfPciBar[BarIndex].Alignment < PciIoDevice->SystemPageSize - 1) {
PciIoDevice->VfPciBar[BarIndex].Alignment = PciIoDevice->SystemPageSize - 1;
}
//
// Increment the offset to point to next DWORD
//
Offset += 4;
Status = VfBarExisted (
PciIoDevice,
Offset,
&Value,
&OriginalValue
);
if (EFI_ERROR (Status)) {
return Offset + 4;
}
//
// Fix the length to support some spefic 64 bit BAR
//
Data = Value;
Index = 0;
for (Data = Value; Data != 0; Data >>= 1) {
Index ++;
}
Value |= ((UINT32)(-1) << Index);
//
// Calculate the size of 64bit bar
//
PciIoDevice->VfPciBar[BarIndex].BaseAddress |= LShiftU64 ((UINT64) OriginalValue, 32);
PciIoDevice->VfPciBar[BarIndex].Length = PciIoDevice->VfPciBar[BarIndex].Length | LShiftU64 ((UINT64) Value, 32);
PciIoDevice->VfPciBar[BarIndex].Length = (~(PciIoDevice->VfPciBar[BarIndex].Length)) + 1;
PciIoDevice->VfPciBar[BarIndex].Alignment = PciIoDevice->VfPciBar[BarIndex].Length - 1;
//
// Adjust Length
//
PciIoDevice->VfPciBar[BarIndex].Length = MultU64x32 (PciIoDevice->VfPciBar[BarIndex].Length, PciIoDevice->InitialVFs);
//
// Adjust Alignment
//
if (PciIoDevice->VfPciBar[BarIndex].Alignment < PciIoDevice->SystemPageSize - 1) {
PciIoDevice->VfPciBar[BarIndex].Alignment = PciIoDevice->SystemPageSize - 1;
}
break;
//
// reserved
//
default:
PciIoDevice->VfPciBar[BarIndex].BarType = PciBarTypeUnknown;
PciIoDevice->VfPciBar[BarIndex].Length = (~(Value & Mask)) + 1;
PciIoDevice->VfPciBar[BarIndex].Alignment = PciIoDevice->VfPciBar[BarIndex].Length - 1;
if (PciIoDevice->VfPciBar[BarIndex].Alignment < PciIoDevice->SystemPageSize - 1) {
PciIoDevice->VfPciBar[BarIndex].Alignment = PciIoDevice->SystemPageSize - 1;
}
break;
}
}
//
// Check the length again so as to keep compatible with some special bars
//
if (PciIoDevice->VfPciBar[BarIndex].Length == 0) {
PciIoDevice->VfPciBar[BarIndex].BarType = PciBarTypeUnknown;
PciIoDevice->VfPciBar[BarIndex].BaseAddress = 0;
PciIoDevice->VfPciBar[BarIndex].Alignment = 0;
}
//
// Increment number of bar
//
return Offset + 4;
}
/**
Parse PCI bar information and fill them into PCI device instance.
@ -1349,8 +1634,14 @@ PciParseBar (
}
PciIoDevice->PciBar[BarIndex].Length = (~(Value & Mask)) + 1;
PciIoDevice->PciBar[BarIndex].Alignment = PciIoDevice->PciBar[BarIndex].Length - 1;
if (PciIoDevice->PciBar[BarIndex].Length < (SIZE_4KB)) {
//
// Force minimum 4KByte alignment for Virtualization technology for Directed I/O
//
PciIoDevice->PciBar[BarIndex].Alignment = (SIZE_4KB - 1);
} else {
PciIoDevice->PciBar[BarIndex].Alignment = PciIoDevice->PciBar[BarIndex].Length - 1;
}
break;
//
@ -1386,6 +1677,15 @@ PciParseBar (
);
if (EFI_ERROR (Status)) {
//
// the high 32 bit does not claim any BAR, we need to re-check the low 32 bit BAR again
//
if (PciIoDevice->PciBar[BarIndex].Length == 0) {
//
// some device implement MMIO bar with 0 length, need to treat it as no-bar
//
PciIoDevice->PciBar[BarIndex].BarType = PciBarTypeUnknown;
}
return Offset + 4;
}
@ -1406,7 +1706,14 @@ PciParseBar (
PciIoDevice->PciBar[BarIndex].Length = PciIoDevice->PciBar[BarIndex].Length | LShiftU64 ((UINT64) Value, 32);
PciIoDevice->PciBar[BarIndex].Length = (~(PciIoDevice->PciBar[BarIndex].Length)) + 1;
PciIoDevice->PciBar[BarIndex].Alignment = PciIoDevice->PciBar[BarIndex].Length - 1;
if (PciIoDevice->PciBar[BarIndex].Length < (SIZE_4KB)) {
//
// Force minimum 4KByte alignment for Virtualization technology for Directed I/O
//
PciIoDevice->PciBar[BarIndex].Alignment = (SIZE_4KB - 1);
} else {
PciIoDevice->PciBar[BarIndex].Alignment = PciIoDevice->PciBar[BarIndex].Length - 1;
}
break;
@ -1416,8 +1723,14 @@ PciParseBar (
default:
PciIoDevice->PciBar[BarIndex].BarType = PciBarTypeUnknown;
PciIoDevice->PciBar[BarIndex].Length = (~(Value & Mask)) + 1;
PciIoDevice->PciBar[BarIndex].Alignment = PciIoDevice->PciBar[BarIndex].Length - 1;
if (PciIoDevice->PciBar[BarIndex].Length < (SIZE_4KB)) {
//
// Force minimum 4KByte alignment for Virtualization technology for Directed I/O
//
PciIoDevice->PciBar[BarIndex].Alignment = (SIZE_4KB - 1);
} else {
PciIoDevice->PciBar[BarIndex].Alignment = PciIoDevice->PciBar[BarIndex].Length - 1;
}
break;
}
}
@ -1570,6 +1883,8 @@ CreatePciIoDevice (
)
{
PCI_IO_DEVICE *PciIoDevice;
EFI_PCI_IO_PROTOCOL *PciIo;
EFI_STATUS Status;
PciIoDevice = AllocateZeroPool (sizeof (PCI_IO_DEVICE));
if (PciIoDevice == NULL) {
@ -1607,6 +1922,162 @@ CreatePciIoDevice (
InitializePciIoInstance (PciIoDevice);
InitializePciDriverOverrideInstance (PciIoDevice);
InitializePciLoadFile2 (PciIoDevice);
PciIo = &PciIoDevice->PciIo;
//
// Detect if PCI Express Device
//
PciIoDevice->PciExpressCapabilityOffset = 0;
Status = LocateCapabilityRegBlock (
PciIoDevice,
EFI_PCI_CAPABILITY_ID_PCIEXP,
&PciIoDevice->PciExpressCapabilityOffset,
NULL
);
if (!EFI_ERROR (Status)) {
PciIoDevice->IsPciExp = TRUE;
}
//
// Initialize for PCI IOV
//
//
// Check ARI for function 0 only
//
Status = LocatePciExpressCapabilityRegBlock (
PciIoDevice,
EFI_PCIE_CAPABILITY_ID_ARI,
&PciIoDevice->AriCapabilityOffset,
NULL
);
if (!EFI_ERROR (Status)) {
DEBUG ((
EFI_D_INFO,
"PCI-IOV B%x.D%x.F%x - ARI Cap offset - 0x%x\n",
(UINTN)Bus,
(UINTN)Device,
(UINTN)Func,
(UINTN)PciIoDevice->AriCapabilityOffset
));
}
Status = LocatePciExpressCapabilityRegBlock (
PciIoDevice,
EFI_PCIE_CAPABILITY_ID_SRIOV,
&PciIoDevice->SrIovCapabilityOffset,
NULL
);
if (!EFI_ERROR (Status)) {
DEBUG ((
EFI_D_INFO,
"PCI-IOV B%x.D%x.F%x - SRIOV Cap offset - 0x%x\n",
(UINTN)Bus,
(UINTN)Device,
(UINTN)Func,
(UINTN)PciIoDevice->SrIovCapabilityOffset
));
}
Status = LocatePciExpressCapabilityRegBlock (
PciIoDevice,
EFI_PCIE_CAPABILITY_ID_MRIOV,
&PciIoDevice->MrIovCapabilityOffset,
NULL
);
if (!EFI_ERROR (Status)) {
DEBUG ((
EFI_D_INFO,
"PCI-IOV B%x.D%x.F%x - MRIOV Cap offset - 0x%x\n",
(UINTN)Bus,
(UINTN)Device,
(UINTN)Func,
(UINTN)PciIoDevice->MrIovCapabilityOffset
));
}
//
// Calculate SystemPageSize
//
if ((PciIoDevice->SrIovCapabilityOffset != 0) && ((FeaturePcdGet(PcdSrIovSupport)& EFI_PCI_IOV_POLICY_SRIOV) != 0)) {
PciIo->Pci.Read (
PciIo,
EfiPciIoWidthUint32,
PciIoDevice->SrIovCapabilityOffset + EFI_PCIE_CAPABILITY_ID_SRIOV_SUPPORTED_PAGE_SIZE,
1,
&PciIoDevice->SystemPageSize
);
DEBUG ((EFI_D_INFO, "PCI-IOV B%x.D%x.F%x - SupportedPageSize - 0x%x\n", (UINTN)Bus, (UINTN)Device, (UINTN)Func, PciIoDevice->SystemPageSize));
PciIoDevice->SystemPageSize = (PcdGet32(PcdSrIovSystemPageSize) & PciIoDevice->SystemPageSize);
ASSERT (PciIoDevice->SystemPageSize != 0);
PciIo->Pci.Write (
PciIo,
EfiPciIoWidthUint32,
PciIoDevice->SrIovCapabilityOffset + EFI_PCIE_CAPABILITY_ID_SRIOV_SYSTEM_PAGE_SIZE,
1,
&PciIoDevice->SystemPageSize
);
DEBUG ((EFI_D_INFO, "PCI-IOV B%x.D%x.F%x - SystemPageSize - 0x%x\n", (UINTN)Bus, (UINTN)Device, (UINTN)Func, PciIoDevice->SystemPageSize));
//
// Adjust SystemPageSize for Alignment usage later
//
PciIoDevice->SystemPageSize <<= 12;
}
// Calculate BusReservation for PCI IOV
//
if ((PciIoDevice->SrIovCapabilityOffset != 0) && ((FeaturePcdGet(PcdSrIovSupport)& EFI_PCI_IOV_POLICY_SRIOV) != 0)) {
UINT16 VFStride;
UINT16 FirstVFOffset;
UINT32 PFRID;
UINT32 LastVF;
//
// Read First FirstVFOffset, InitialVFs, and VFStride
//
PciIo->Pci.Read (
PciIo,
EfiPciIoWidthUint16,
PciIoDevice->SrIovCapabilityOffset + EFI_PCIE_CAPABILITY_ID_SRIOV_FIRSTVF,
1,
&FirstVFOffset
);
DEBUG ((EFI_D_INFO, "PCI-IOV B%x.D%x.F%x - FirstVFOffset - 0x%x\n", (UINTN)Bus, (UINTN)Device, (UINTN)Func, (UINTN)FirstVFOffset));
PciIo->Pci.Read (
PciIo,
EfiPciIoWidthUint16,
PciIoDevice->SrIovCapabilityOffset + EFI_PCIE_CAPABILITY_ID_SRIOV_INITIALVFS,
1,
&PciIoDevice->InitialVFs
);
DEBUG ((EFI_D_INFO, "PCI-IOV B%x.D%x.F%x - InitialVFs - 0x%x\n", (UINTN)Bus, (UINTN)Device, (UINTN)Func, (UINTN)PciIoDevice->InitialVFs));
PciIo->Pci.Read (
PciIo,
EfiPciIoWidthUint16,
PciIoDevice->SrIovCapabilityOffset + EFI_PCIE_CAPABILITY_ID_SRIOV_VFSTRIDE,
1,
&VFStride
);
DEBUG ((EFI_D_INFO, "PCI-IOV B%x.D%x.F%x - VFStride - 0x%x\n", (UINTN)Bus, (UINTN)Device, (UINTN)Func, (UINTN)VFStride));
//
// Calculate LastVF
//
PFRID = EFI_PCI_RID(Bus, Device, Func);
LastVF = PFRID + FirstVFOffset + (PciIoDevice->InitialVFs - 1) * VFStride;
//
// Calculate ReservedBusNum for this PF
//
PciIoDevice->ReservedBusNum = (UINT16)(EFI_PCI_BUS_OF_RID (LastVF) - Bus + 1);
DEBUG ((EFI_D_INFO, "PCI-IOV B%x.D%x.F%x - reserved bus number - 0x%x\n", (UINTN)Bus, (UINTN)Device, (UINTN)Func, (UINTN)PciIoDevice->ReservedBusNum));
}
//
// Initialize the reserved resource list

View File

@ -158,6 +158,26 @@ CreatePciDevicePath (
IN PCI_IO_DEVICE *PciIoDevice
);
/**
Check whether the PCI IOV VF bar is existed or not.
@param PciIoDevice A pointer to the PCI_IO_DEVICE.
@param Offset The offset.
@param BarLengthValue The bar length value returned.
@param OriginalBarValue The original bar value returned.
@retval EFI_NOT_FOUND The bar doesn't exist.
@retval EFI_SUCCESS The bar exist.
**/
EFI_STATUS
VfBarExisted (
IN PCI_IO_DEVICE *PciIoDevice,
IN UINTN Offset,
OUT UINT32 *BarLengthValue,
OUT UINT32 *OriginalBarValue
);
/**
Check whether the bar is existed or not.
@ -288,6 +308,23 @@ PciParseBar (
IN UINTN BarIndex
);
/**
Parse PCI IOV VF bar information and fill them into PCI device instance.
@param PciIoDevice Pci device instance.
@param Offset Bar offset.
@param BarIndex Bar index.
@return Next bar offset.
**/
UINTN
PciIovParseVfBar (
IN PCI_IO_DEVICE *PciIoDevice,
IN UINTN Offset,
IN UINTN BarIndex
);
/**
This routine is used to initialize the bar of a PCI device.

View File

@ -706,6 +706,7 @@ PciScanBus (
UINT16 BusRange;
EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL *PciRootBridgeIo;
BOOLEAN BusPadding;
UINT32 TempReservedBusNum;
PciRootBridgeIo = Bridge->PciRootBridgeIo;
SecondBus = 0;
@ -718,6 +719,7 @@ PciScanBus (
PciAddress = 0;
for (Device = 0; Device <= PCI_MAX_DEVICE; Device++) {
TempReservedBusNum = 0;
for (Func = 0; Func <= PCI_MAX_FUNC; Func++) {
//
@ -742,7 +744,7 @@ PciScanBus (
continue;
}
DEBUG((EFI_D_ERROR, "Found DEV(%02d,%02d,%02d)\n", StartBusNumber, Device, Func ));
DEBUG((EFI_D_INFO, "Found DEV(%02d,%02d,%02d)\n", StartBusNumber, Device, Func ));
if (FeaturePcdGet (PcdPciBusHotplugDeviceSupport)) {
//
@ -930,7 +932,7 @@ PciScanBus (
EfiPciBeforeChildBusEnumeration
);
DEBUG((EFI_D_ERROR, "Scan PPB(%02d,%02d,%02d)\n", PciDevice->BusNumber, PciDevice->DeviceNumber,PciDevice->FunctionNumber));
DEBUG((EFI_D_INFO, "Scan PPB(%02d,%02d,%02d)\n", PciDevice->BusNumber, PciDevice->DeviceNumber,PciDevice->FunctionNumber));
Status = PciScanBus (
PciDevice,
(UINT8) (SecondBus),
@ -967,6 +969,28 @@ PciScanBus (
1,
SubBusNumber
);
} else {
//
// It is device. Check PCI IOV for Bus reservation
//
//
// Go through each function, just reserve the MAX ReservedBusNum for one device
//
if ((PciDevice->AriCapabilityOffset != 0) && ((FeaturePcdGet(PcdSrIovSupport)& EFI_PCI_IOV_POLICY_SRIOV) != 0)) {
if (TempReservedBusNum < PciDevice->ReservedBusNum) {
(*SubBusNumber) = (UINT8)((*SubBusNumber) + PciDevice->ReservedBusNum - TempReservedBusNum);
TempReservedBusNum = PciDevice->ReservedBusNum;
if (Func == 0) {
DEBUG ((EFI_D_INFO, "PCI-IOV ScanBus - SubBusNumber - 0x%x\n", *SubBusNumber));
} else {
DEBUG ((EFI_D_INFO, "PCI-IOV ScanBus - SubBusNumber - 0x%x (Update)\n", *SubBusNumber));
}
}
}
}
if (Func == 0 && !IS_PCI_MULTI_FUNC (&Pci)) {
@ -1139,7 +1163,7 @@ PciHostBridgeEnumerator (
//
NotifyPhase (PciResAlloc, EfiPciHostBridgeBeginBusAllocation);
DEBUG((EFI_D_ERROR, "PCI Bus First Scanning\n"));
DEBUG((EFI_D_INFO, "PCI Bus First Scanning\n"));
RootBridgeHandle = NULL;
while (PciResAlloc->GetNextRootBridge (PciResAlloc, &RootBridgeHandle) == EFI_SUCCESS) {
@ -1226,7 +1250,7 @@ PciHostBridgeEnumerator (
//
NotifyPhase (PciResAlloc, EfiPciHostBridgeBeginBusAllocation);
DEBUG((EFI_D_ERROR, "PCI Bus Second Scanning\n"));
DEBUG((EFI_D_INFO, "PCI Bus Second Scanning\n"));
RootBridgeHandle = NULL;
while (PciResAlloc->GetNextRootBridge (PciResAlloc, &RootBridgeHandle) == EFI_SUCCESS) {

View File

@ -544,6 +544,94 @@ GetResourceFromDevice (
}
//
// Add VF resource
//
for (Index = 0; Index < PCI_MAX_BAR; Index++) {
switch ((PciDev->VfPciBar)[Index].BarType) {
case PciBarTypeMem32:
Node = CreateVfResourceNode (
PciDev,
(PciDev->VfPciBar)[Index].Length,
(PciDev->VfPciBar)[Index].Alignment,
Index,
PciBarTypeMem32,
PciResUsageTypical
);
InsertResourceNode (
Mem32Node,
Node
);
break;
case PciBarTypeMem64:
Node = CreateVfResourceNode (
PciDev,
(PciDev->VfPciBar)[Index].Length,
(PciDev->VfPciBar)[Index].Alignment,
Index,
PciBarTypeMem64,
PciResUsageTypical
);
InsertResourceNode (
Mem64Node,
Node
);
break;
case PciBarTypePMem64:
Node = CreateVfResourceNode (
PciDev,
(PciDev->VfPciBar)[Index].Length,
(PciDev->VfPciBar)[Index].Alignment,
Index,
PciBarTypePMem64,
PciResUsageTypical
);
InsertResourceNode (
PMem64Node,
Node
);
break;
case PciBarTypePMem32:
Node = CreateVfResourceNode (
PciDev,
(PciDev->VfPciBar)[Index].Length,
(PciDev->VfPciBar)[Index].Alignment,
Index,
PciBarTypePMem32,
PciResUsageTypical
);
InsertResourceNode (
PMem32Node,
Node
);
break;
case PciBarTypeIo16:
case PciBarTypeIo32:
break;
case PciBarTypeUnknown:
break;
default:
break;
}
}
// If there is no resource requested from this device,
// then we indicate this device has been allocated naturally.
//
@ -599,6 +687,53 @@ CreateResourceNode (
return Node;
}
/**
This function is used to create a IOV VF resource node.
@param PciDev Pci device instance.
@param Length Length of Io/Memory resource.
@param Alignment Alignment of resource.
@param Bar Bar index.
@param ResType Type of resource: IO/Memory.
@param ResUsage Resource usage.
@return PCI resource node created for given VF PCI device.
NULL means PCI resource node is not created.
**/
PCI_RESOURCE_NODE *
CreateVfResourceNode (
IN PCI_IO_DEVICE *PciDev,
IN UINT64 Length,
IN UINT64 Alignment,
IN UINT8 Bar,
IN PCI_BAR_TYPE ResType,
IN PCI_RESOURCE_USAGE ResUsage
)
{
PCI_RESOURCE_NODE *Node;
DEBUG ((
EFI_D_INFO,
"PCI-IOV B%x.D%x.F%x - VfResource (Bar - 0x%x) (Type - 0x%x) (Length - 0x%x)\n",
(UINTN)PciDev->BusNumber,
(UINTN)PciDev->DeviceNumber,
(UINTN)PciDev->FunctionNumber,
(UINTN)Bar,
(UINTN)ResType,
(UINTN)Length
));
Node = CreateResourceNode (PciDev, Length, Alignment, Bar, ResType, ResUsage);
if (Node == NULL) {
return Node;
}
Node->Virtual = TRUE;
return Node;
}
/**
This function is used to extract resource request from
device node list.
@ -1094,6 +1229,13 @@ ProgramBar (
UINT64 Address;
UINT32 Address32;
//
// Check VF BAR
//
if (Node->Virtual) {
ProgramVfBar (Base, Node);
}
Address = 0;
PciIo = &(Node->PciDev->PciIo);
@ -1159,6 +1301,116 @@ ProgramBar (
}
}
/**
Program IOV VF Bar register for PCI device.
@param Base Base address for PCI device resource to be progammed.
@param Node Point to resoure node structure.
**/
EFI_STATUS
ProgramVfBar (
IN UINT64 Base,
IN PCI_RESOURCE_NODE *Node
)
{
EFI_PCI_IO_PROTOCOL *PciIo;
UINT64 Address;
UINT32 Address32;
ASSERT (Node->Virtual);
if (!Node->Virtual) {
return EFI_UNSUPPORTED;
}
Address = 0;
PciIo = &(Node->PciDev->PciIo);
Address = Base + Node->Offset;
//
// Indicate pci bus driver has allocated
// resource for this device
// It might be a temporary solution here since
// pci device could have multiple bar
//
Node->PciDev->Allocated = TRUE;
switch ((Node->PciDev->VfPciBar[Node->Bar]).BarType) {
case PciBarTypeMem32:
case PciBarTypePMem32:
PciIo->Pci.Write (
PciIo,
EfiPciIoWidthUint32,
(Node->PciDev->VfPciBar[Node->Bar]).Offset,
1,
&Address
);
Node->PciDev->VfPciBar[Node->Bar].BaseAddress = Address;
DEBUG ((
EFI_D_INFO,
"PCI-IOV B%x.D%x.F%x - VF Bar (Offset - 0x%x) 32Mem (Address - 0x%x)\n",
(UINTN)Node->PciDev->BusNumber,
(UINTN)Node->PciDev->DeviceNumber,
(UINTN)Node->PciDev->FunctionNumber,
(UINTN)(Node->PciDev->VfPciBar[Node->Bar]).Offset,
(UINTN)Address
));
break;
case PciBarTypeMem64:
case PciBarTypePMem64:
Address32 = (UINT32) (Address & 0x00000000FFFFFFFF);
PciIo->Pci.Write (
PciIo,
EfiPciIoWidthUint32,
(Node->PciDev->VfPciBar[Node->Bar]).Offset,
1,
&Address32
);
Address32 = (UINT32) RShiftU64 (Address, 32);
PciIo->Pci.Write (
PciIo,
EfiPciIoWidthUint32,
((Node->PciDev->VfPciBar[Node->Bar]).Offset + 4),
1,
&Address32
);
Node->PciDev->VfPciBar[Node->Bar].BaseAddress = Address;
DEBUG ((
EFI_D_INFO,
"PCI-IOV B%x.D%x.F%x - VF Bar (Offset - 0x%x) 64Mem (Address - 0x%lx)\n",
(UINTN)Node->PciDev->BusNumber,
(UINTN)Node->PciDev->DeviceNumber,
(UINTN)Node->PciDev->FunctionNumber,
(UINTN)(Node->PciDev->VfPciBar[Node->Bar]).Offset,
(UINT64)Address
));
break;
case PciBarTypeIo16:
case PciBarTypeIo32:
break;
default:
break;
}
return EFI_SUCCESS;
}
/**
Program PCI-PCI bridge apperture.

View File

@ -35,6 +35,7 @@ typedef struct {
UINT64 Length;
BOOLEAN Reserved;
PCI_RESOURCE_USAGE ResourceUsage;
BOOLEAN Virtual;
} PCI_RESOURCE_NODE;
#define RESOURCE_NODE_FROM_LINK(a) \
@ -174,6 +175,28 @@ CreateResourceNode (
IN PCI_RESOURCE_USAGE ResUsage
);
/**
This function is used to extract resource request from
IOV VF device node list.
@param Bridge Pci device instance.
@param IoNode Resource info node for IO.
@param Mem32Node Resource info node for 32-bit memory.
@param PMem32Node Resource info node for 32-bit Prefetchable Memory.
@param Mem64Node Resource info node for 64-bit memory.
@param PMem64Node Resource info node for 64-bit Prefetchable Memory.
**/
PCI_RESOURCE_NODE *
CreateVfResourceNode (
IN PCI_IO_DEVICE *PciDev,
IN UINT64 Length,
IN UINT64 Alignment,
IN UINT8 Bar,
IN PCI_BAR_TYPE ResType,
IN PCI_RESOURCE_USAGE ResUsage
);
/**
This function is used to extract resource request from
device node list.
@ -287,6 +310,19 @@ ProgramBar (
IN PCI_RESOURCE_NODE *Node
);
/**
Program IOV VF Bar register for PCI device.
@param Base Base address for PCI device resource to be progammed.
@param Node Point to resoure node structure.
**/
EFI_STATUS
ProgramVfBar (
IN UINT64 Base,
IN PCI_RESOURCE_NODE *Node
);
/**
Program PCI-PCI bridge apperture.

View File

@ -102,6 +102,16 @@
## This PCD specifies whether Serial device use half hand shake.
gEfiIntelFrameworkModulePkgTokenSpaceGuid.PcdIsaBusSerialUseHalfHandshake|FALSE|BOOLEAN|0x00010043
## This PCD specifies whether the Single Root I/O virtualization support.
gEfiIntelFrameworkModulePkgTokenSpaceGuid.PcdSrIovSupport|TRUE|BOOLEAN|0x10000044
## This PCD specifies whether the Alternative Routing-ID support.
gEfiIntelFrameworkModulePkgTokenSpaceGuid.PcdAriSupport|TRUE|BOOLEAN|0x10000045
## This PCD specifies whether the Multi Root I/O virtualization support.
gEfiIntelFrameworkModulePkgTokenSpaceGuid.PcdMrIovSupport|FALSE|BOOLEAN|0x10000046
[PcdsFixedAtBuild]
## FFS filename to find the default BMP Logo file.
gEfiIntelFrameworkModulePkgTokenSpaceGuid.PcdLogoFile |{ 0x99, 0x8b, 0xB2, 0x7B, 0xBB, 0x61, 0xD5, 0x11, 0x9A, 0x5D, 0x00, 0x90, 0x27, 0x3F, 0xC1, 0x4D }|VOID*|16
@ -115,6 +125,12 @@
# BIT2 indicates if ISA memory is supported
gEfiIntelFrameworkModulePkgTokenSpaceGuid.PcdIsaBusSupportedFeatures|0x05|UINT8|0x00010040
## Single root I/O virtualization virtual function memory BAR alignment
# BITN set indicates 2 of n+12 power
# BIT0 set indicates 4KB alignment
# BIT1 set indicates 8KB alignment
gEfiIntelFrameworkModulePkgTokenSpaceGuid.PcdSrIovSystemPageSize|0x1|UINT32|0x10000047
[PcdsFixedAtBuild,PcdsPatchableInModule,PcdsDynamic]
## PcdStatusCodeMemorySize is used when PcdStatusCodeUseMemory is set to true
# (PcdStatusCodeMemorySize * KBytes) is the total taken memory size.