IntelSiliconPkg/IntelVTdPmrPei: Parse RMRR table.

In order to support PEI graphic, we let VTdPmrPei driver
parse DMAR table RMRR entry and allow the UMA access.

If a system has no PEI IGD, no RMRR is needed. The behavior
is unchanged.

If a system has PEI IGD, it must report RMRR in PEI phase.
The PeiVTdPrm will program the IGD VTd engine to skip the
RMRR region, and program the rest PCI VTd engine to skip
the another DMA buffer allocated in PEI phase for other
device driver.

Cc: Star Zeng <star.zeng@intel.com>
Contributed-under: TianoCore Contribution Agreement 1.1
Signed-off-by: Jiewen Yao <jiewen.yao@intel.com>
Reviewed-by: Star Zeng <star.zeng@intel.com>
This commit is contained in:
Jiewen Yao 2017-09-15 12:29:10 +08:00
parent f02c531967
commit 8e9da4ba3c
3 changed files with 624 additions and 29 deletions

View File

@ -22,7 +22,7 @@
#include "IntelVTdPmrPei.h"
extern EDKII_VTD_INFO_PPI *mVTdInfoPpi;
extern VTD_INFO *mVTdInfo;
/**
Get protected low memory alignment.
@ -60,7 +60,7 @@ GetPhmrAlignment (
UINT64 Data64;
UINT8 HostAddressWidth;
HostAddressWidth = mVTdInfoPpi->HostAddressWidth;
HostAddressWidth = mVTdInfo->HostAddressWidth;
MmioWrite64 (VtdUnitBaseAddress + R_PMEN_HIGH_BASE_REG, 0xFFFFFFFFFFFFFFFF);
Data64 = MmioRead64 (VtdUnitBaseAddress + R_PMEN_HIGH_BASE_REG);
@ -73,11 +73,13 @@ GetPhmrAlignment (
/**
Get protected low memory alignment.
@param EngineMask The mask of the VTd engine to be accessed.
@return protected low memory alignment.
**/
UINT32
GetLowMemoryAlignment (
VOID
IN UINT64 EngineMask
)
{
UINTN Index;
@ -85,8 +87,11 @@ GetLowMemoryAlignment (
UINT32 FinalAlignment;
FinalAlignment = 0;
for (Index = 0; Index < mVTdInfoPpi->VTdEngineCount; Index++) {
Alignment = GetPlmrAlignment ((UINTN)mVTdInfoPpi->VTdEngineAddress[Index]);
for (Index = 0; Index < mVTdInfo->VTdEngineCount; Index++) {
if ((EngineMask & LShiftU64(1, Index)) == 0) {
continue;
}
Alignment = GetPlmrAlignment ((UINTN)mVTdInfo->VTdEngineAddress[Index]);
if (FinalAlignment < Alignment) {
FinalAlignment = Alignment;
}
@ -97,11 +102,13 @@ GetLowMemoryAlignment (
/**
Get protected high memory alignment.
@param EngineMask The mask of the VTd engine to be accessed.
@return protected high memory alignment.
**/
UINT64
GetHighMemoryAlignment (
VOID
IN UINT64 EngineMask
)
{
UINTN Index;
@ -109,8 +116,11 @@ GetHighMemoryAlignment (
UINT64 FinalAlignment;
FinalAlignment = 0;
for (Index = 0; Index < mVTdInfoPpi->VTdEngineCount; Index++) {
Alignment = GetPhmrAlignment ((UINTN)mVTdInfoPpi->VTdEngineAddress[Index]);
for (Index = 0; Index < mVTdInfo->VTdEngineCount; Index++) {
if ((EngineMask & LShiftU64(1, Index)) == 0) {
continue;
}
Alignment = GetPhmrAlignment ((UINTN)mVTdInfo->VTdEngineAddress[Index]);
if (FinalAlignment < Alignment) {
FinalAlignment = Alignment;
}
@ -246,6 +256,7 @@ SetPmrRegion (
/**
Set DMA protected region.
@param EngineMask The mask of the VTd engine to be accessed.
@param LowMemoryBase The protected low memory region base.
@param LowMemoryLength The protected low memory region length.
@param HighMemoryBase The protected high memory region base.
@ -256,6 +267,7 @@ SetPmrRegion (
**/
EFI_STATUS
SetDmaProtectedRange (
IN UINT64 EngineMask,
IN UINT32 LowMemoryBase,
IN UINT32 LowMemoryLength,
IN UINT64 HighMemoryBase,
@ -265,12 +277,15 @@ SetDmaProtectedRange (
UINTN Index;
EFI_STATUS Status;
DEBUG ((DEBUG_INFO, "SetDmaProtectedRange - [0x%x, 0x%x] [0x%lx, 0x%lx]\n", LowMemoryBase, LowMemoryLength, HighMemoryBase, HighMemoryLength));
DEBUG ((DEBUG_INFO, "SetDmaProtectedRange(0x%lx) - [0x%x, 0x%x] [0x%lx, 0x%lx]\n", EngineMask, LowMemoryBase, LowMemoryLength, HighMemoryBase, HighMemoryLength));
for (Index = 0; Index < mVTdInfoPpi->VTdEngineCount; Index++) {
DisablePmr ((UINTN)mVTdInfoPpi->VTdEngineAddress[Index]);
for (Index = 0; Index < mVTdInfo->VTdEngineCount; Index++) {
if ((EngineMask & LShiftU64(1, Index)) == 0) {
continue;
}
DisablePmr ((UINTN)mVTdInfo->VTdEngineAddress[Index]);
Status = SetPmrRegion (
(UINTN)mVTdInfoPpi->VTdEngineAddress[Index],
(UINTN)mVTdInfo->VTdEngineAddress[Index],
LowMemoryBase,
LowMemoryLength,
HighMemoryBase,
@ -279,7 +294,7 @@ SetDmaProtectedRange (
if (EFI_ERROR(Status)) {
return Status;
}
Status = EnablePmr ((UINTN)mVTdInfoPpi->VTdEngineAddress[Index]);
Status = EnablePmr ((UINTN)mVTdInfo->VTdEngineAddress[Index]);
if (EFI_ERROR(Status)) {
return Status;
}
@ -291,11 +306,13 @@ SetDmaProtectedRange (
/**
Diable DMA protection.
@param EngineMask The mask of the VTd engine to be accessed.
@retval DMA protection is disabled.
**/
EFI_STATUS
DisableDmaProtection (
VOID
IN UINT64 EngineMask
)
{
UINTN Index;
@ -303,8 +320,11 @@ DisableDmaProtection (
DEBUG ((DEBUG_INFO, "DisableDmaProtection\n"));
for (Index = 0; Index < mVTdInfoPpi->VTdEngineCount; Index++) {
Status = DisablePmr ((UINTN)mVTdInfoPpi->VTdEngineAddress[Index]);
for (Index = 0; Index < mVTdInfo->VTdEngineCount; Index++) {
if ((EngineMask & LShiftU64(1, Index)) == 0) {
continue;
}
Status = DisablePmr ((UINTN)mVTdInfo->VTdEngineAddress[Index]);
if (EFI_ERROR(Status)) {
return Status;
}

View File

@ -29,7 +29,9 @@
#define TOTAL_DMA_BUFFER_SIZE SIZE_4MB
EDKII_VTD_INFO_PPI *mVTdInfoPpi;
EFI_ACPI_DMAR_HEADER *mAcpiDmarTable;
VTD_INFO *mVTdInfo;
UINT64 mEngineMask;
UINTN mDmaBufferBase;
UINTN mDmaBufferSize = TOTAL_DMA_BUFFER_SIZE;
UINTN mDmaBufferCurrentTop;
@ -48,15 +50,19 @@ typedef struct {
PEI Memory Layout:
+------------------+ <=============== PHMR.Limit (Top of memory)
| Mem Resource |
| |
+------------------+ <------- EfiMemoryTop
| PEI allocated |
=========== +==================+
=========== +==================+ <=============== PHMR.Base
^ | Commom Buf |
| | -------------- |
DMA Buffer | * DMA FREE * |
| | -------------- |
V | Read/Write Buf |
=========== +==================+
=========== +==================+ <=============== PLMR.Limit
| PEI allocated |
| -------------- | <------- EfiFreeMemoryTop
| * PEI FREE * |
@ -70,6 +76,9 @@ typedef struct {
| Mem Alloc Hob |
+------------------+
| |
| Mem Resource |
+------------------+ <=============== PLMR.Base (0)
**/
@ -457,20 +466,21 @@ DumpPhitHob (
/**
Get the highest memory.
@param HobList the HOB list.
@return the highest memory.
**/
UINT64
GetTopMemory (
IN VOID *HobList
VOID
)
{
VOID *HobList;
EFI_PEI_HOB_POINTERS Hob;
EFI_HOB_RESOURCE_DESCRIPTOR *ResourceHob;
UINT64 TopMemory;
UINT64 ResourceTop;
HobList = GetHobList ();
TopMemory = 0;
for (Hob.Raw = HobList; !END_OF_HOB_LIST (Hob); Hob.Raw = GET_NEXT_HOB (Hob)) {
if (GET_HOB_TYPE (Hob) == EFI_HOB_TYPE_RESOURCE_DESCRIPTOR) {
@ -525,8 +535,8 @@ InitDmaProtection (
ASSERT (PhitHob->EfiMemoryBottom < PhitHob->EfiMemoryTop);
LowMemoryAlignment = GetLowMemoryAlignment ();
HighMemoryAlignment = GetHighMemoryAlignment ();
LowMemoryAlignment = GetLowMemoryAlignment (mEngineMask);
HighMemoryAlignment = GetHighMemoryAlignment (mEngineMask);
if (LowMemoryAlignment < HighMemoryAlignment) {
MemoryAlignment = (UINTN)HighMemoryAlignment;
} else {
@ -542,9 +552,10 @@ InitDmaProtection (
LowBottom = 0;
LowTop = *DmaBufferBase;
HighBottom = *DmaBufferBase + DmaBufferSize;
HighTop = GetTopMemory (HobList);
HighTop = GetTopMemory ();
Status = SetDmaProtectedRange (
mEngineMask,
(UINT32)LowBottom,
(UINT32)(LowTop - LowBottom),
HighBottom,
@ -558,6 +569,541 @@ InitDmaProtection (
return Status;
}
/**
Dump DMAR DeviceScopeEntry.
@param[in] DmarDeviceScopeEntry DMAR DeviceScopeEntry
**/
VOID
DumpDmarDeviceScopeEntry (
IN EFI_ACPI_DMAR_DEVICE_SCOPE_STRUCTURE_HEADER *DmarDeviceScopeEntry
)
{
UINTN PciPathNumber;
UINTN PciPathIndex;
EFI_ACPI_DMAR_PCI_PATH *PciPath;
if (DmarDeviceScopeEntry == NULL) {
return;
}
DEBUG ((DEBUG_INFO,
" *************************************************************************\n"
));
DEBUG ((DEBUG_INFO,
" * DMA-Remapping Device Scope Entry Structure *\n"
));
DEBUG ((DEBUG_INFO,
" *************************************************************************\n"
));
DEBUG ((DEBUG_INFO,
(sizeof(UINTN) == sizeof(UINT64)) ?
" DMAR Device Scope Entry address ...................... 0x%016lx\n" :
" DMAR Device Scope Entry address ...................... 0x%08x\n",
DmarDeviceScopeEntry
));
DEBUG ((DEBUG_INFO,
" Device Scope Entry Type ............................ 0x%02x\n",
DmarDeviceScopeEntry->Type
));
switch (DmarDeviceScopeEntry->Type) {
case EFI_ACPI_DEVICE_SCOPE_ENTRY_TYPE_PCI_ENDPOINT:
DEBUG ((DEBUG_INFO,
" PCI Endpoint Device\n"
));
break;
case EFI_ACPI_DEVICE_SCOPE_ENTRY_TYPE_PCI_BRIDGE:
DEBUG ((DEBUG_INFO,
" PCI Sub-hierachy\n"
));
break;
default:
break;
}
DEBUG ((DEBUG_INFO,
" Length ............................................. 0x%02x\n",
DmarDeviceScopeEntry->Length
));
DEBUG ((DEBUG_INFO,
" Enumeration ID ..................................... 0x%02x\n",
DmarDeviceScopeEntry->EnumerationId
));
DEBUG ((DEBUG_INFO,
" Starting Bus Number ................................ 0x%02x\n",
DmarDeviceScopeEntry->StartBusNumber
));
PciPathNumber = (DmarDeviceScopeEntry->Length - sizeof(EFI_ACPI_DMAR_DEVICE_SCOPE_STRUCTURE_HEADER)) / sizeof(EFI_ACPI_DMAR_PCI_PATH);
PciPath = (EFI_ACPI_DMAR_PCI_PATH *)(DmarDeviceScopeEntry + 1);
for (PciPathIndex = 0; PciPathIndex < PciPathNumber; PciPathIndex++) {
DEBUG ((DEBUG_INFO,
" Device ............................................. 0x%02x\n",
PciPath[PciPathIndex].Device
));
DEBUG ((DEBUG_INFO,
" Function ........................................... 0x%02x\n",
PciPath[PciPathIndex].Function
));
}
DEBUG ((DEBUG_INFO,
" *************************************************************************\n\n"
));
return;
}
/**
Dump DMAR RMRR table.
@param[in] Rmrr DMAR RMRR table
**/
VOID
DumpDmarRmrr (
IN EFI_ACPI_DMAR_RMRR_HEADER *Rmrr
)
{
EFI_ACPI_DMAR_DEVICE_SCOPE_STRUCTURE_HEADER *DmarDeviceScopeEntry;
INTN RmrrLen;
if (Rmrr == NULL) {
return;
}
DEBUG ((DEBUG_INFO,
" ***************************************************************************\n"
));
DEBUG ((DEBUG_INFO,
" * Reserved Memory Region Reporting Structure *\n"
));
DEBUG ((DEBUG_INFO,
" ***************************************************************************\n"
));
DEBUG ((DEBUG_INFO,
(sizeof(UINTN) == sizeof(UINT64)) ?
" RMRR address ........................................... 0x%016lx\n" :
" RMRR address ........................................... 0x%08x\n",
Rmrr
));
DEBUG ((DEBUG_INFO,
" Type ................................................. 0x%04x\n",
Rmrr->Header.Type
));
DEBUG ((DEBUG_INFO,
" Length ............................................... 0x%04x\n",
Rmrr->Header.Length
));
DEBUG ((DEBUG_INFO,
" Segment Number ....................................... 0x%04x\n",
Rmrr->SegmentNumber
));
DEBUG ((DEBUG_INFO,
" Reserved Memory Region Base Address .................. 0x%016lx\n",
Rmrr->ReservedMemoryRegionBaseAddress
));
DEBUG ((DEBUG_INFO,
" Reserved Memory Region Limit Address ................. 0x%016lx\n",
Rmrr->ReservedMemoryRegionLimitAddress
));
RmrrLen = Rmrr->Header.Length - sizeof(EFI_ACPI_DMAR_RMRR_HEADER);
DmarDeviceScopeEntry = (EFI_ACPI_DMAR_DEVICE_SCOPE_STRUCTURE_HEADER *)(Rmrr + 1);
while (RmrrLen > 0) {
DumpDmarDeviceScopeEntry (DmarDeviceScopeEntry);
RmrrLen -= DmarDeviceScopeEntry->Length;
DmarDeviceScopeEntry = (EFI_ACPI_DMAR_DEVICE_SCOPE_STRUCTURE_HEADER *)((UINTN)DmarDeviceScopeEntry + DmarDeviceScopeEntry->Length);
}
DEBUG ((DEBUG_INFO,
" ***************************************************************************\n\n"
));
return;
}
/**
Dump DMAR DRHD table.
@param[in] Drhd DMAR DRHD table
**/
VOID
DumpDmarDrhd (
IN EFI_ACPI_DMAR_DRHD_HEADER *Drhd
)
{
EFI_ACPI_DMAR_DEVICE_SCOPE_STRUCTURE_HEADER *DmarDeviceScopeEntry;
INTN DrhdLen;
if (Drhd == NULL) {
return;
}
DEBUG ((DEBUG_INFO,
" ***************************************************************************\n"
));
DEBUG ((DEBUG_INFO,
" * DMA-Remapping Hardware Definition Structure *\n"
));
DEBUG ((DEBUG_INFO,
" ***************************************************************************\n"
));
DEBUG ((DEBUG_INFO,
(sizeof(UINTN) == sizeof(UINT64)) ?
" DRHD address ........................................... 0x%016lx\n" :
" DRHD address ........................................... 0x%08x\n",
Drhd
));
DEBUG ((DEBUG_INFO,
" Type ................................................. 0x%04x\n",
Drhd->Header.Type
));
DEBUG ((DEBUG_INFO,
" Length ............................................... 0x%04x\n",
Drhd->Header.Length
));
DEBUG ((DEBUG_INFO,
" Flags ................................................ 0x%02x\n",
Drhd->Flags
));
DEBUG ((DEBUG_INFO,
" INCLUDE_PCI_ALL .................................... 0x%02x\n",
Drhd->Flags & EFI_ACPI_DMAR_DRHD_FLAGS_INCLUDE_PCI_ALL
));
DEBUG ((DEBUG_INFO,
" Segment Number ....................................... 0x%04x\n",
Drhd->SegmentNumber
));
DEBUG ((DEBUG_INFO,
" Register Base Address ................................ 0x%016lx\n",
Drhd->RegisterBaseAddress
));
DrhdLen = Drhd->Header.Length - sizeof(EFI_ACPI_DMAR_DRHD_HEADER);
DmarDeviceScopeEntry = (EFI_ACPI_DMAR_DEVICE_SCOPE_STRUCTURE_HEADER *)(Drhd + 1);
while (DrhdLen > 0) {
DumpDmarDeviceScopeEntry (DmarDeviceScopeEntry);
DrhdLen -= DmarDeviceScopeEntry->Length;
DmarDeviceScopeEntry = (EFI_ACPI_DMAR_DEVICE_SCOPE_STRUCTURE_HEADER *)((UINTN)DmarDeviceScopeEntry + DmarDeviceScopeEntry->Length);
}
DEBUG ((DEBUG_INFO,
" ***************************************************************************\n\n"
));
return;
}
/**
Dump DMAR ACPI table.
@param[in] Dmar DMAR ACPI table
**/
VOID
DumpAcpiDMAR (
IN EFI_ACPI_DMAR_HEADER *Dmar
)
{
EFI_ACPI_DMAR_STRUCTURE_HEADER *DmarHeader;
INTN DmarLen;
if (Dmar == NULL) {
return;
}
//
// Dump Dmar table
//
DEBUG ((DEBUG_INFO,
"*****************************************************************************\n"
));
DEBUG ((DEBUG_INFO,
"* DMAR Table *\n"
));
DEBUG ((DEBUG_INFO,
"*****************************************************************************\n"
));
DEBUG ((DEBUG_INFO,
(sizeof(UINTN) == sizeof(UINT64)) ?
"DMAR address ............................................. 0x%016lx\n" :
"DMAR address ............................................. 0x%08x\n",
Dmar
));
DEBUG ((DEBUG_INFO,
" Table Contents:\n"
));
DEBUG ((DEBUG_INFO,
" Host Address Width ................................... 0x%02x\n",
Dmar->HostAddressWidth
));
DEBUG ((DEBUG_INFO,
" Flags ................................................ 0x%02x\n",
Dmar->Flags
));
DEBUG ((DEBUG_INFO,
" INTR_REMAP ......................................... 0x%02x\n",
Dmar->Flags & EFI_ACPI_DMAR_FLAGS_INTR_REMAP
));
DEBUG ((DEBUG_INFO,
" X2APIC_OPT_OUT_SET ................................. 0x%02x\n",
Dmar->Flags & EFI_ACPI_DMAR_FLAGS_X2APIC_OPT_OUT
));
DmarLen = Dmar->Header.Length - sizeof(EFI_ACPI_DMAR_HEADER);
DmarHeader = (EFI_ACPI_DMAR_STRUCTURE_HEADER *)(Dmar + 1);
while (DmarLen > 0) {
switch (DmarHeader->Type) {
case EFI_ACPI_DMAR_TYPE_DRHD:
DumpDmarDrhd ((EFI_ACPI_DMAR_DRHD_HEADER *)DmarHeader);
break;
case EFI_ACPI_DMAR_TYPE_RMRR:
DumpDmarRmrr ((EFI_ACPI_DMAR_RMRR_HEADER *)DmarHeader);
break;
default:
break;
}
DmarLen -= DmarHeader->Length;
DmarHeader = (EFI_ACPI_DMAR_STRUCTURE_HEADER *)((UINTN)DmarHeader + DmarHeader->Length);
}
DEBUG ((DEBUG_INFO,
"*****************************************************************************\n\n"
));
return;
}
/**
Get VTd engine number.
@return the VTd engine number.
**/
UINTN
GetVtdEngineNumber (
VOID
)
{
EFI_ACPI_DMAR_STRUCTURE_HEADER *DmarHeader;
UINTN VtdIndex;
VtdIndex = 0;
DmarHeader = (EFI_ACPI_DMAR_STRUCTURE_HEADER *)((UINTN)(mAcpiDmarTable + 1));
while ((UINTN)DmarHeader < (UINTN)mAcpiDmarTable + mAcpiDmarTable->Header.Length) {
switch (DmarHeader->Type) {
case EFI_ACPI_DMAR_TYPE_DRHD:
VtdIndex++;
break;
default:
break;
}
DmarHeader = (EFI_ACPI_DMAR_STRUCTURE_HEADER *)((UINTN)DmarHeader + DmarHeader->Length);
}
return VtdIndex ;
}
/**
Process DMAR DHRD table.
@param[in] VtdIndex The index of VTd engine.
@param[in] DmarDrhd The DRHD table.
**/
VOID
ProcessDhrd (
IN UINTN VtdIndex,
IN EFI_ACPI_DMAR_DRHD_HEADER *DmarDrhd
)
{
DEBUG ((DEBUG_INFO," VTD (%d) BaseAddress - 0x%016lx\n", VtdIndex, DmarDrhd->RegisterBaseAddress));
mVTdInfo->VTdEngineAddress[VtdIndex] = DmarDrhd->RegisterBaseAddress;
}
/**
Parse DMAR DRHD table.
@return EFI_SUCCESS The DMAR DRHD table is parsed.
**/
EFI_STATUS
ParseDmarAcpiTableDrhd (
VOID
)
{
EFI_ACPI_DMAR_STRUCTURE_HEADER *DmarHeader;
UINTN VtdUnitNumber;
UINTN VtdIndex;
VtdUnitNumber = GetVtdEngineNumber ();
if (VtdUnitNumber == 0) {
return EFI_UNSUPPORTED;
}
mVTdInfo = AllocateZeroPool (sizeof(VTD_INFO) + (VtdUnitNumber - 1) * sizeof(UINT64));
if (mVTdInfo == NULL) {
return EFI_OUT_OF_RESOURCES;
}
mVTdInfo->HostAddressWidth = mAcpiDmarTable->HostAddressWidth;
mVTdInfo->VTdEngineCount = VtdUnitNumber;
VtdIndex = 0;
DmarHeader = (EFI_ACPI_DMAR_STRUCTURE_HEADER *)((UINTN)(mAcpiDmarTable + 1));
while ((UINTN)DmarHeader < (UINTN)mAcpiDmarTable + mAcpiDmarTable->Header.Length) {
switch (DmarHeader->Type) {
case EFI_ACPI_DMAR_TYPE_DRHD:
ASSERT (VtdIndex < VtdUnitNumber);
ProcessDhrd (VtdIndex, (EFI_ACPI_DMAR_DRHD_HEADER *)DmarHeader);
VtdIndex++;
break;
default:
break;
}
DmarHeader = (EFI_ACPI_DMAR_STRUCTURE_HEADER *)((UINTN)DmarHeader + DmarHeader->Length);
}
ASSERT (VtdIndex == VtdUnitNumber);
//
// Initialize the engine mask to all.
//
mEngineMask = LShiftU64 (1, VtdUnitNumber) - 1;
return EFI_SUCCESS;
}
/**
Return the VTd engine index according to the Segment and DevScopeEntry.
@param Segment The segment of the VTd engine
@param DevScopeEntry The DevScopeEntry of the VTd engine
@return The VTd engine index according to the Segment and DevScopeEntry.
@retval -1 The VTd engine is not found.
**/
UINTN
GetVTdEngineFromDevScopeEntry (
IN UINT16 Segment,
IN EFI_ACPI_DMAR_DEVICE_SCOPE_STRUCTURE_HEADER *DevScopeEntry
)
{
EFI_ACPI_DMAR_STRUCTURE_HEADER *DmarHeader;
UINTN VtdIndex;
EFI_ACPI_DMAR_DRHD_HEADER *DmarDrhd;
EFI_ACPI_DMAR_DEVICE_SCOPE_STRUCTURE_HEADER *ThisDevScopeEntry;
VtdIndex = 0;
DmarHeader = (EFI_ACPI_DMAR_STRUCTURE_HEADER *)((UINTN)(mAcpiDmarTable + 1));
while ((UINTN)DmarHeader < (UINTN)mAcpiDmarTable + mAcpiDmarTable->Header.Length) {
switch (DmarHeader->Type) {
case EFI_ACPI_DMAR_TYPE_DRHD:
DmarDrhd = (EFI_ACPI_DMAR_DRHD_HEADER *)DmarHeader;
if (DmarDrhd->SegmentNumber != Segment) {
// Mismatch
break;
}
if ((DmarDrhd->Header.Length == sizeof(EFI_ACPI_DMAR_DRHD_HEADER)) ||
((DmarDrhd->Flags & EFI_ACPI_DMAR_DRHD_FLAGS_INCLUDE_PCI_ALL) != 0)) {
// No DevScopeEntry
// Do not handle PCI_ALL
break;
}
ThisDevScopeEntry = (EFI_ACPI_DMAR_DEVICE_SCOPE_STRUCTURE_HEADER *)((UINTN)(DmarDrhd + 1));
while ((UINTN)ThisDevScopeEntry < (UINTN)DmarDrhd + DmarDrhd->Header.Length) {
if ((ThisDevScopeEntry->Length == DevScopeEntry->Length) &&
(CompareMem (ThisDevScopeEntry, DevScopeEntry, DevScopeEntry->Length) == 0)) {
return VtdIndex;
}
ThisDevScopeEntry = (EFI_ACPI_DMAR_DEVICE_SCOPE_STRUCTURE_HEADER *)((UINTN)ThisDevScopeEntry + ThisDevScopeEntry->Length);
}
break;
default:
break;
}
DmarHeader = (EFI_ACPI_DMAR_STRUCTURE_HEADER *)((UINTN)DmarHeader + DmarHeader->Length);
}
return (UINTN)-1;
}
/**
Process DMAR RMRR table.
@param[in] DmarRmrr The RMRR table.
**/
VOID
ProcessRmrr (
IN EFI_ACPI_DMAR_RMRR_HEADER *DmarRmrr
)
{
EFI_ACPI_DMAR_DEVICE_SCOPE_STRUCTURE_HEADER *DmarDevScopeEntry;
UINTN VTdIndex;
UINT64 RmrrMask;
UINTN LowBottom;
UINTN LowTop;
UINTN HighBottom;
UINT64 HighTop;
DEBUG ((DEBUG_INFO," RMRR (Base 0x%016lx, Limit 0x%016lx)\n", DmarRmrr->ReservedMemoryRegionBaseAddress, DmarRmrr->ReservedMemoryRegionLimitAddress));
if ((DmarRmrr->ReservedMemoryRegionBaseAddress == 0) ||
(DmarRmrr->ReservedMemoryRegionLimitAddress == 0)) {
return ;
}
DmarDevScopeEntry = (EFI_ACPI_DMAR_DEVICE_SCOPE_STRUCTURE_HEADER *)((UINTN)(DmarRmrr + 1));
while ((UINTN)DmarDevScopeEntry < (UINTN)DmarRmrr + DmarRmrr->Header.Length) {
ASSERT (DmarDevScopeEntry->Type == EFI_ACPI_DEVICE_SCOPE_ENTRY_TYPE_PCI_ENDPOINT);
VTdIndex = GetVTdEngineFromDevScopeEntry (DmarRmrr->SegmentNumber, DmarDevScopeEntry);
if (VTdIndex != (UINTN)-1) {
RmrrMask = LShiftU64 (1, VTdIndex);
LowBottom = 0;
LowTop = (UINTN)DmarRmrr->ReservedMemoryRegionBaseAddress;
HighBottom = (UINTN)DmarRmrr->ReservedMemoryRegionLimitAddress + 1;
HighTop = GetTopMemory ();
SetDmaProtectedRange (
RmrrMask,
0,
(UINT32)(LowTop - LowBottom),
HighBottom,
HighTop - HighBottom
);
//
// Remove the engine from the engine mask.
// The assumption is that any other PEI driver does not access
// the device covered by this engine.
//
mEngineMask = mEngineMask & (~RmrrMask);
}
DmarDevScopeEntry = (EFI_ACPI_DMAR_DEVICE_SCOPE_STRUCTURE_HEADER *)((UINTN)DmarDevScopeEntry + DmarDevScopeEntry->Length);
}
}
/**
Parse DMAR DRHD table.
**/
VOID
ParseDmarAcpiTableRmrr (
VOID
)
{
EFI_ACPI_DMAR_STRUCTURE_HEADER *DmarHeader;
DmarHeader = (EFI_ACPI_DMAR_STRUCTURE_HEADER *)((UINTN)(mAcpiDmarTable + 1));
while ((UINTN)DmarHeader < (UINTN)mAcpiDmarTable + mAcpiDmarTable->Header.Length) {
switch (DmarHeader->Type) {
case EFI_ACPI_DMAR_TYPE_RMRR:
ProcessRmrr ((EFI_ACPI_DMAR_RMRR_HEADER *)DmarHeader);
break;
default:
break;
}
DmarHeader = (EFI_ACPI_DMAR_STRUCTURE_HEADER *)((UINTN)DmarHeader + DmarHeader->Length);
}
}
/**
Initializes the Intel VTd PMR PEIM.
@ -585,10 +1131,25 @@ IntelVTdPmrInitialize (
&gEdkiiVTdInfoPpiGuid,
0,
NULL,
(VOID **)&mVTdInfoPpi
(VOID **)&mAcpiDmarTable
);
ASSERT_EFI_ERROR(Status);
DumpAcpiDMAR (mAcpiDmarTable);
//
// Get DMAR information to local VTdInfo
//
Status = ParseDmarAcpiTableDrhd ();
if (EFI_ERROR(Status)) {
return Status;
}
//
// If there is RMRR memory, parse it here.
//
ParseDmarAcpiTableRmrr ();
//
// Find a pre-memory in resource hob as DMA buffer
// Mark PEI memory to be DMA protected.

View File

@ -15,9 +15,16 @@
#ifndef __DMA_ACCESS_LIB_H__
#define __DMA_ACCESS_LIB_H__
typedef struct {
UINT8 HostAddressWidth;
UINTN VTdEngineCount;
UINT64 VTdEngineAddress[1];
} VTD_INFO;
/**
Set DMA protected region.
@param EngineMask The mask of the VTd engine to be accessed.
@param LowMemoryBase The protected low memory region base.
@param LowMemoryLength The protected low memory region length.
@param HighMemoryBase The protected high memory region base.
@ -28,6 +35,7 @@
**/
EFI_STATUS
SetDmaProtectedRange (
IN UINT64 EngineMask,
IN UINT32 LowMemoryBase,
IN UINT32 LowMemoryLength,
IN UINT64 HighMemoryBase,
@ -37,31 +45,37 @@ SetDmaProtectedRange (
/**
Diable DMA protection.
@param EngineMask The mask of the VTd engine to be accessed.
@retval DMA protection is disabled.
**/
EFI_STATUS
DisableDmaProtection (
VOID
IN UINT64 EngineMask
);
/**
Get protected low memory alignment.
@param EngineMask The mask of the VTd engine to be accessed.
@return protected low memory alignment.
**/
UINT32
GetLowMemoryAlignment (
VOID
IN UINT64 EngineMask
);
/**
Get protected high memory alignment.
@param EngineMask The mask of the VTd engine to be accessed.
@return protected high memory alignment.
**/
UINT64
GetHighMemoryAlignment (
VOID
IN UINT64 EngineMask
);
#endif