mirror of https://github.com/acidanthera/audk.git
MdePkg/MpService.h: Trim whitespace at end of line
Cc: Liming Gao <liming.gao@intel.com> Cc: Michael Kinney <michael.d.kinney@intel.com> Cc: Feng Tian <feng.tian@intel.com> Cc: Giri P Mudusuru <giri.p.mudusuru@intel.com> Cc: Laszlo Ersek <lersek@redhat.com> Contributed-under: TianoCore Contribution Agreement 1.0 Signed-off-by: Jeff Fan <jeff.fan@intel.com> Reviewed-by: Giri P Mudusuru <giri.p.mudusuru@intel.com> Reviewed-by: Michael Kinney <michael.d.kinney@intel.com> Tested-by: Michael Kinney <michael.d.kinney@intel.com>
This commit is contained in:
parent
51d4779d7b
commit
8f3446d8ee
|
@ -1,5 +1,5 @@
|
|||
/** @file
|
||||
When installed, the MP Services Protocol produces a collection of services
|
||||
When installed, the MP Services Protocol produces a collection of services
|
||||
that are needed for MP management.
|
||||
|
||||
The MP Services Protocol provides a generalized way of performing following tasks:
|
||||
|
@ -14,32 +14,32 @@
|
|||
The Protocol is available only during boot time.
|
||||
|
||||
MP Services Protocol is hardware-independent. Most of the logic of this protocol
|
||||
is architecturally neutral. It abstracts the multi-processor environment and
|
||||
status of processors, and provides interfaces to retrieve information, maintain,
|
||||
is architecturally neutral. It abstracts the multi-processor environment and
|
||||
status of processors, and provides interfaces to retrieve information, maintain,
|
||||
and dispatch.
|
||||
|
||||
MP Services Protocol may be consumed by ACPI module. The ACPI module may use this
|
||||
MP Services Protocol may be consumed by ACPI module. The ACPI module may use this
|
||||
protocol to retrieve data that are needed for an MP platform and report them to OS.
|
||||
MP Services Protocol may also be used to program and configure processors, such
|
||||
MP Services Protocol may also be used to program and configure processors, such
|
||||
as MTRR synchronization for memory space attributes setting in DXE Services.
|
||||
MP Services Protocol may be used by non-CPU DXE drivers to speed up platform boot
|
||||
by taking advantage of the processing capabilities of the APs, for example, using
|
||||
MP Services Protocol may be used by non-CPU DXE drivers to speed up platform boot
|
||||
by taking advantage of the processing capabilities of the APs, for example, using
|
||||
APs to help test system memory in parallel with other device initialization.
|
||||
Diagnostics applications may also use this protocol for multi-processor.
|
||||
|
||||
Copyright (c) 2006 - 2016, Intel Corporation. All rights reserved.<BR>
|
||||
This program and the accompanying materials are licensed and made available under
|
||||
the terms and conditions of the BSD License that accompanies this distribution.
|
||||
This program and the accompanying materials are licensed and made available under
|
||||
the terms and conditions of the BSD License that accompanies this distribution.
|
||||
The full text of the license may be found at
|
||||
http://opensource.org/licenses/bsd-license.php.
|
||||
|
||||
THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS,
|
||||
http://opensource.org/licenses/bsd-license.php.
|
||||
|
||||
THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED.
|
||||
|
||||
@par Revision Reference:
|
||||
This Protocol is defined in the UEFI Platform Initialization Specification 1.2,
|
||||
This Protocol is defined in the UEFI Platform Initialization Specification 1.2,
|
||||
Volume 2:Driver Execution Environment Core Interface.
|
||||
|
||||
|
||||
**/
|
||||
|
||||
#ifndef _MP_SERVICE_PROTOCOL_H_
|
||||
|
@ -64,22 +64,22 @@ typedef struct _EFI_MP_SERVICES_PROTOCOL EFI_MP_SERVICES_PROTOCOL;
|
|||
#define END_OF_CPU_LIST 0xffffffff
|
||||
|
||||
///
|
||||
/// This bit is used in the StatusFlag field of EFI_PROCESSOR_INFORMATION and
|
||||
/// This bit is used in the StatusFlag field of EFI_PROCESSOR_INFORMATION and
|
||||
/// indicates whether the processor is playing the role of BSP. If the bit is 1,
|
||||
/// then the processor is BSP. Otherwise, it is AP.
|
||||
///
|
||||
#define PROCESSOR_AS_BSP_BIT 0x00000001
|
||||
|
||||
///
|
||||
/// This bit is used in the StatusFlag field of EFI_PROCESSOR_INFORMATION and
|
||||
/// indicates whether the processor is enabled. If the bit is 1, then the
|
||||
/// This bit is used in the StatusFlag field of EFI_PROCESSOR_INFORMATION and
|
||||
/// indicates whether the processor is enabled. If the bit is 1, then the
|
||||
/// processor is enabled. Otherwise, it is disabled.
|
||||
///
|
||||
#define PROCESSOR_ENABLED_BIT 0x00000002
|
||||
|
||||
///
|
||||
/// This bit is used in the StatusFlag field of EFI_PROCESSOR_INFORMATION and
|
||||
/// indicates whether the processor is healthy. If the bit is 1, then the
|
||||
/// This bit is used in the StatusFlag field of EFI_PROCESSOR_INFORMATION and
|
||||
/// indicates whether the processor is healthy. If the bit is 1, then the
|
||||
/// processor is healthy. Otherwise, some fault has been detected for the processor.
|
||||
///
|
||||
#define PROCESSOR_HEALTH_STATUS_BIT 0x00000004
|
||||
|
@ -107,17 +107,17 @@ typedef struct {
|
|||
///
|
||||
typedef struct {
|
||||
///
|
||||
/// The unique processor ID determined by system hardware. For IA32 and X64,
|
||||
/// the processor ID is the same as the Local APIC ID. Only the lower 8 bits
|
||||
/// The unique processor ID determined by system hardware. For IA32 and X64,
|
||||
/// the processor ID is the same as the Local APIC ID. Only the lower 8 bits
|
||||
/// are used, and higher bits are reserved. For IPF, the lower 16 bits contains
|
||||
/// id/eid, and higher bits are reserved.
|
||||
///
|
||||
UINT64 ProcessorId;
|
||||
UINT64 ProcessorId;
|
||||
///
|
||||
/// Flags indicating if the processor is BSP or AP, if the processor is enabled
|
||||
/// or disabled, and if the processor is healthy. Bits 3..31 are reserved and
|
||||
/// must be 0.
|
||||
///
|
||||
/// Flags indicating if the processor is BSP or AP, if the processor is enabled
|
||||
/// or disabled, and if the processor is healthy. Bits 3..31 are reserved and
|
||||
/// must be 0.
|
||||
///
|
||||
/// <pre>
|
||||
/// BSP ENABLED HEALTH Description
|
||||
/// === ======= ====== ===================================================
|
||||
|
@ -134,7 +134,7 @@ typedef struct {
|
|||
UINT32 StatusFlag;
|
||||
///
|
||||
/// The physical location of the processor, including the physical package number
|
||||
/// that identifies the cartridge, the physical core number within package, and
|
||||
/// that identifies the cartridge, the physical core number within package, and
|
||||
/// logical thread number within core.
|
||||
///
|
||||
EFI_CPU_PHYSICAL_LOCATION Location;
|
||||
|
@ -147,17 +147,17 @@ typedef struct {
|
|||
|
||||
This function is used to retrieve the following information:
|
||||
- The number of logical processors that are present in the system.
|
||||
- The number of enabled logical processors in the system at the instant
|
||||
- The number of enabled logical processors in the system at the instant
|
||||
this call is made.
|
||||
|
||||
Because MP Service Protocol provides services to enable and disable processors
|
||||
dynamically, the number of enabled logical processors may vary during the
|
||||
Because MP Service Protocol provides services to enable and disable processors
|
||||
dynamically, the number of enabled logical processors may vary during the
|
||||
course of a boot session.
|
||||
|
||||
If this service is called from an AP, then EFI_DEVICE_ERROR is returned.
|
||||
If NumberOfProcessors or NumberOfEnabledProcessors is NULL, then
|
||||
EFI_INVALID_PARAMETER is returned. Otherwise, the total number of processors
|
||||
is returned in NumberOfProcessors, the number of currently enabled processor
|
||||
|
||||
If this service is called from an AP, then EFI_DEVICE_ERROR is returned.
|
||||
If NumberOfProcessors or NumberOfEnabledProcessors is NULL, then
|
||||
EFI_INVALID_PARAMETER is returned. Otherwise, the total number of processors
|
||||
is returned in NumberOfProcessors, the number of currently enabled processor
|
||||
is returned in NumberOfEnabledProcessors, and EFI_SUCCESS is returned.
|
||||
|
||||
@param[in] This A pointer to the EFI_MP_SERVICES_PROTOCOL
|
||||
|
@ -169,7 +169,7 @@ typedef struct {
|
|||
processors that exist in system, including
|
||||
the BSP.
|
||||
|
||||
@retval EFI_SUCCESS The number of logical processors and enabled
|
||||
@retval EFI_SUCCESS The number of logical processors and enabled
|
||||
logical processors was retrieved.
|
||||
@retval EFI_DEVICE_ERROR The calling processor is an AP.
|
||||
@retval EFI_INVALID_PARAMETER NumberOfProcessors is NULL.
|
||||
|
@ -188,13 +188,13 @@ EFI_STATUS
|
|||
Gets detailed MP-related information on the requested processor at the
|
||||
instant this call is made. This service may only be called from the BSP.
|
||||
|
||||
This service retrieves detailed MP-related information about any processor
|
||||
This service retrieves detailed MP-related information about any processor
|
||||
on the platform. Note the following:
|
||||
- The processor information may change during the course of a boot session.
|
||||
- The information presented here is entirely MP related.
|
||||
|
||||
|
||||
Information regarding the number of caches and their sizes, frequency of operation,
|
||||
slot numbers is all considered platform-related information and is not provided
|
||||
slot numbers is all considered platform-related information and is not provided
|
||||
by this service.
|
||||
|
||||
@param[in] This A pointer to the EFI_MP_SERVICES_PROTOCOL
|
||||
|
@ -219,137 +219,137 @@ EFI_STATUS
|
|||
);
|
||||
|
||||
/**
|
||||
This service executes a caller provided function on all enabled APs. APs can
|
||||
run either simultaneously or one at a time in sequence. This service supports
|
||||
both blocking and non-blocking requests. The non-blocking requests use EFI
|
||||
events so the BSP can detect when the APs have finished. This service may only
|
||||
This service executes a caller provided function on all enabled APs. APs can
|
||||
run either simultaneously or one at a time in sequence. This service supports
|
||||
both blocking and non-blocking requests. The non-blocking requests use EFI
|
||||
events so the BSP can detect when the APs have finished. This service may only
|
||||
be called from the BSP.
|
||||
|
||||
This function is used to dispatch all the enabled APs to the function specified
|
||||
by Procedure. If any enabled AP is busy, then EFI_NOT_READY is returned
|
||||
This function is used to dispatch all the enabled APs to the function specified
|
||||
by Procedure. If any enabled AP is busy, then EFI_NOT_READY is returned
|
||||
immediately and Procedure is not started on any AP.
|
||||
|
||||
If SingleThread is TRUE, all the enabled APs execute the function specified by
|
||||
Procedure one by one, in ascending order of processor handle number. Otherwise,
|
||||
If SingleThread is TRUE, all the enabled APs execute the function specified by
|
||||
Procedure one by one, in ascending order of processor handle number. Otherwise,
|
||||
all the enabled APs execute the function specified by Procedure simultaneously.
|
||||
|
||||
If WaitEvent is NULL, execution is in blocking mode. The BSP waits until all
|
||||
APs finish or TimeoutInMicroSecs expires. Otherwise, execution is in non-blocking
|
||||
mode, and the BSP returns from this service without waiting for APs. If a
|
||||
non-blocking mode is requested after the UEFI Event EFI_EVENT_GROUP_READY_TO_BOOT
|
||||
If WaitEvent is NULL, execution is in blocking mode. The BSP waits until all
|
||||
APs finish or TimeoutInMicroSecs expires. Otherwise, execution is in non-blocking
|
||||
mode, and the BSP returns from this service without waiting for APs. If a
|
||||
non-blocking mode is requested after the UEFI Event EFI_EVENT_GROUP_READY_TO_BOOT
|
||||
is signaled, then EFI_UNSUPPORTED must be returned.
|
||||
|
||||
If the timeout specified by TimeoutInMicroseconds expires before all APs return
|
||||
from Procedure, then Procedure on the failed APs is terminated. All enabled APs
|
||||
If the timeout specified by TimeoutInMicroseconds expires before all APs return
|
||||
from Procedure, then Procedure on the failed APs is terminated. All enabled APs
|
||||
are always available for further calls to EFI_MP_SERVICES_PROTOCOL.StartupAllAPs()
|
||||
and EFI_MP_SERVICES_PROTOCOL.StartupThisAP(). If FailedCpuList is not NULL, its
|
||||
content points to the list of processor handle numbers in which Procedure was
|
||||
and EFI_MP_SERVICES_PROTOCOL.StartupThisAP(). If FailedCpuList is not NULL, its
|
||||
content points to the list of processor handle numbers in which Procedure was
|
||||
terminated.
|
||||
|
||||
Note: It is the responsibility of the consumer of the EFI_MP_SERVICES_PROTOCOL.StartupAllAPs()
|
||||
to make sure that the nature of the code that is executed on the BSP and the
|
||||
dispatched APs is well controlled. The MP Services Protocol does not guarantee
|
||||
that the Procedure function is MP-safe. Hence, the tasks that can be run in
|
||||
parallel are limited to certain independent tasks and well-controlled exclusive
|
||||
code. EFI services and protocols may not be called by APs unless otherwise
|
||||
Note: It is the responsibility of the consumer of the EFI_MP_SERVICES_PROTOCOL.StartupAllAPs()
|
||||
to make sure that the nature of the code that is executed on the BSP and the
|
||||
dispatched APs is well controlled. The MP Services Protocol does not guarantee
|
||||
that the Procedure function is MP-safe. Hence, the tasks that can be run in
|
||||
parallel are limited to certain independent tasks and well-controlled exclusive
|
||||
code. EFI services and protocols may not be called by APs unless otherwise
|
||||
specified.
|
||||
|
||||
In blocking execution mode, BSP waits until all APs finish or
|
||||
In blocking execution mode, BSP waits until all APs finish or
|
||||
TimeoutInMicroSeconds expires.
|
||||
|
||||
In non-blocking execution mode, BSP is freed to return to the caller and then
|
||||
proceed to the next task without having to wait for APs. The following
|
||||
In non-blocking execution mode, BSP is freed to return to the caller and then
|
||||
proceed to the next task without having to wait for APs. The following
|
||||
sequence needs to occur in a non-blocking execution mode:
|
||||
|
||||
-# The caller that intends to use this MP Services Protocol in non-blocking
|
||||
mode creates WaitEvent by calling the EFI CreateEvent() service. The caller
|
||||
invokes EFI_MP_SERVICES_PROTOCOL.StartupAllAPs(). If the parameter WaitEvent
|
||||
is not NULL, then StartupAllAPs() executes in non-blocking mode. It requests
|
||||
the function specified by Procedure to be started on all the enabled APs,
|
||||
-# The caller that intends to use this MP Services Protocol in non-blocking
|
||||
mode creates WaitEvent by calling the EFI CreateEvent() service. The caller
|
||||
invokes EFI_MP_SERVICES_PROTOCOL.StartupAllAPs(). If the parameter WaitEvent
|
||||
is not NULL, then StartupAllAPs() executes in non-blocking mode. It requests
|
||||
the function specified by Procedure to be started on all the enabled APs,
|
||||
and releases the BSP to continue with other tasks.
|
||||
-# The caller can use the CheckEvent() and WaitForEvent() services to check
|
||||
-# The caller can use the CheckEvent() and WaitForEvent() services to check
|
||||
the state of the WaitEvent created in step 1.
|
||||
-# When the APs complete their task or TimeoutInMicroSecondss expires, the MP
|
||||
Service signals WaitEvent by calling the EFI SignalEvent() function. If
|
||||
FailedCpuList is not NULL, its content is available when WaitEvent is
|
||||
signaled. If all APs returned from Procedure prior to the timeout, then
|
||||
FailedCpuList is set to NULL. If not all APs return from Procedure before
|
||||
the timeout, then FailedCpuList is filled in with the list of the failed
|
||||
APs. The buffer is allocated by MP Service Protocol using AllocatePool().
|
||||
-# When the APs complete their task or TimeoutInMicroSecondss expires, the MP
|
||||
Service signals WaitEvent by calling the EFI SignalEvent() function. If
|
||||
FailedCpuList is not NULL, its content is available when WaitEvent is
|
||||
signaled. If all APs returned from Procedure prior to the timeout, then
|
||||
FailedCpuList is set to NULL. If not all APs return from Procedure before
|
||||
the timeout, then FailedCpuList is filled in with the list of the failed
|
||||
APs. The buffer is allocated by MP Service Protocol using AllocatePool().
|
||||
It is the caller's responsibility to free the buffer with FreePool() service.
|
||||
-# This invocation of SignalEvent() function informs the caller that invoked
|
||||
EFI_MP_SERVICES_PROTOCOL.StartupAllAPs() that either all the APs completed
|
||||
the specified task or a timeout occurred. The contents of FailedCpuList
|
||||
can be examined to determine which APs did not complete the specified task
|
||||
the specified task or a timeout occurred. The contents of FailedCpuList
|
||||
can be examined to determine which APs did not complete the specified task
|
||||
prior to the timeout.
|
||||
|
||||
@param[in] This A pointer to the EFI_MP_SERVICES_PROTOCOL
|
||||
instance.
|
||||
@param[in] Procedure A pointer to the function to be run on
|
||||
@param[in] Procedure A pointer to the function to be run on
|
||||
enabled APs of the system. See type
|
||||
EFI_AP_PROCEDURE.
|
||||
@param[in] SingleThread If TRUE, then all the enabled APs execute
|
||||
the function specified by Procedure one by
|
||||
one, in ascending order of processor handle
|
||||
number. If FALSE, then all the enabled APs
|
||||
@param[in] SingleThread If TRUE, then all the enabled APs execute
|
||||
the function specified by Procedure one by
|
||||
one, in ascending order of processor handle
|
||||
number. If FALSE, then all the enabled APs
|
||||
execute the function specified by Procedure
|
||||
simultaneously.
|
||||
@param[in] WaitEvent The event created by the caller with CreateEvent()
|
||||
service. If it is NULL, then execute in
|
||||
blocking mode. BSP waits until all APs finish
|
||||
or TimeoutInMicroSeconds expires. If it's
|
||||
not NULL, then execute in non-blocking mode.
|
||||
BSP requests the function specified by
|
||||
Procedure to be started on all the enabled
|
||||
APs, and go on executing immediately. If
|
||||
service. If it is NULL, then execute in
|
||||
blocking mode. BSP waits until all APs finish
|
||||
or TimeoutInMicroSeconds expires. If it's
|
||||
not NULL, then execute in non-blocking mode.
|
||||
BSP requests the function specified by
|
||||
Procedure to be started on all the enabled
|
||||
APs, and go on executing immediately. If
|
||||
all return from Procedure, or TimeoutInMicroSeconds
|
||||
expires, this event is signaled. The BSP
|
||||
can use the CheckEvent() or WaitForEvent()
|
||||
services to check the state of event. Type
|
||||
EFI_EVENT is defined in CreateEvent() in
|
||||
the Unified Extensible Firmware Interface
|
||||
Specification.
|
||||
@param[in] TimeoutInMicrosecsond Indicates the time limit in microseconds for
|
||||
APs to return from Procedure, either for
|
||||
blocking or non-blocking mode. Zero means
|
||||
infinity. If the timeout expires before
|
||||
expires, this event is signaled. The BSP
|
||||
can use the CheckEvent() or WaitForEvent()
|
||||
services to check the state of event. Type
|
||||
EFI_EVENT is defined in CreateEvent() in
|
||||
the Unified Extensible Firmware Interface
|
||||
Specification.
|
||||
@param[in] TimeoutInMicrosecsond Indicates the time limit in microseconds for
|
||||
APs to return from Procedure, either for
|
||||
blocking or non-blocking mode. Zero means
|
||||
infinity. If the timeout expires before
|
||||
all APs return from Procedure, then Procedure
|
||||
on the failed APs is terminated. All enabled
|
||||
APs are available for next function assigned
|
||||
by EFI_MP_SERVICES_PROTOCOL.StartupAllAPs()
|
||||
on the failed APs is terminated. All enabled
|
||||
APs are available for next function assigned
|
||||
by EFI_MP_SERVICES_PROTOCOL.StartupAllAPs()
|
||||
or EFI_MP_SERVICES_PROTOCOL.StartupThisAP().
|
||||
If the timeout expires in blocking mode,
|
||||
BSP returns EFI_TIMEOUT. If the timeout
|
||||
expires in non-blocking mode, WaitEvent
|
||||
If the timeout expires in blocking mode,
|
||||
BSP returns EFI_TIMEOUT. If the timeout
|
||||
expires in non-blocking mode, WaitEvent
|
||||
is signaled with SignalEvent().
|
||||
@param[in] ProcedureArgument The parameter passed into Procedure for
|
||||
@param[in] ProcedureArgument The parameter passed into Procedure for
|
||||
all APs.
|
||||
@param[out] FailedCpuList If NULL, this parameter is ignored. Otherwise,
|
||||
if all APs finish successfully, then its
|
||||
content is set to NULL. If not all APs
|
||||
finish before timeout expires, then its
|
||||
content is set to address of the buffer
|
||||
holding handle numbers of the failed APs.
|
||||
The buffer is allocated by MP Service Protocol,
|
||||
and it's the caller's responsibility to
|
||||
@param[out] FailedCpuList If NULL, this parameter is ignored. Otherwise,
|
||||
if all APs finish successfully, then its
|
||||
content is set to NULL. If not all APs
|
||||
finish before timeout expires, then its
|
||||
content is set to address of the buffer
|
||||
holding handle numbers of the failed APs.
|
||||
The buffer is allocated by MP Service Protocol,
|
||||
and it's the caller's responsibility to
|
||||
free the buffer with FreePool() service.
|
||||
In blocking mode, it is ready for consumption
|
||||
when the call returns. In non-blocking mode,
|
||||
it is ready when WaitEvent is signaled. The
|
||||
list of failed CPU is terminated by
|
||||
In blocking mode, it is ready for consumption
|
||||
when the call returns. In non-blocking mode,
|
||||
it is ready when WaitEvent is signaled. The
|
||||
list of failed CPU is terminated by
|
||||
END_OF_CPU_LIST.
|
||||
|
||||
@retval EFI_SUCCESS In blocking mode, all APs have finished before
|
||||
@retval EFI_SUCCESS In blocking mode, all APs have finished before
|
||||
the timeout expired.
|
||||
@retval EFI_SUCCESS In non-blocking mode, function has been dispatched
|
||||
@retval EFI_SUCCESS In non-blocking mode, function has been dispatched
|
||||
to all enabled APs.
|
||||
@retval EFI_UNSUPPORTED A non-blocking mode request was made after the
|
||||
UEFI event EFI_EVENT_GROUP_READY_TO_BOOT was
|
||||
@retval EFI_UNSUPPORTED A non-blocking mode request was made after the
|
||||
UEFI event EFI_EVENT_GROUP_READY_TO_BOOT was
|
||||
signaled.
|
||||
@retval EFI_DEVICE_ERROR Caller processor is AP.
|
||||
@retval EFI_NOT_STARTED No enabled APs exist in the system.
|
||||
@retval EFI_NOT_READY Any enabled APs are busy.
|
||||
@retval EFI_TIMEOUT In blocking mode, the timeout expired before
|
||||
@retval EFI_TIMEOUT In blocking mode, the timeout expired before
|
||||
all enabled APs have finished.
|
||||
@retval EFI_INVALID_PARAMETER Procedure is NULL.
|
||||
|
||||
|
@ -367,23 +367,23 @@ EFI_STATUS
|
|||
);
|
||||
|
||||
/**
|
||||
This service lets the caller get one enabled AP to execute a caller-provided
|
||||
function. The caller can request the BSP to either wait for the completion
|
||||
of the AP or just proceed with the next task by using the EFI event mechanism.
|
||||
See EFI_MP_SERVICES_PROTOCOL.StartupAllAPs() for more details on non-blocking
|
||||
This service lets the caller get one enabled AP to execute a caller-provided
|
||||
function. The caller can request the BSP to either wait for the completion
|
||||
of the AP or just proceed with the next task by using the EFI event mechanism.
|
||||
See EFI_MP_SERVICES_PROTOCOL.StartupAllAPs() for more details on non-blocking
|
||||
execution support. This service may only be called from the BSP.
|
||||
|
||||
This function is used to dispatch one enabled AP to the function specified by
|
||||
Procedure passing in the argument specified by ProcedureArgument. If WaitEvent
|
||||
is NULL, execution is in blocking mode. The BSP waits until the AP finishes or
|
||||
TimeoutInMicroSecondss expires. Otherwise, execution is in non-blocking mode.
|
||||
BSP proceeds to the next task without waiting for the AP. If a non-blocking mode
|
||||
is requested after the UEFI Event EFI_EVENT_GROUP_READY_TO_BOOT is signaled,
|
||||
This function is used to dispatch one enabled AP to the function specified by
|
||||
Procedure passing in the argument specified by ProcedureArgument. If WaitEvent
|
||||
is NULL, execution is in blocking mode. The BSP waits until the AP finishes or
|
||||
TimeoutInMicroSecondss expires. Otherwise, execution is in non-blocking mode.
|
||||
BSP proceeds to the next task without waiting for the AP. If a non-blocking mode
|
||||
is requested after the UEFI Event EFI_EVENT_GROUP_READY_TO_BOOT is signaled,
|
||||
then EFI_UNSUPPORTED must be returned.
|
||||
|
||||
If the timeout specified by TimeoutInMicroseconds expires before the AP returns
|
||||
from Procedure, then execution of Procedure by the AP is terminated. The AP is
|
||||
available for subsequent calls to EFI_MP_SERVICES_PROTOCOL.StartupAllAPs() and
|
||||
|
||||
If the timeout specified by TimeoutInMicroseconds expires before the AP returns
|
||||
from Procedure, then execution of Procedure by the AP is terminated. The AP is
|
||||
available for subsequent calls to EFI_MP_SERVICES_PROTOCOL.StartupAllAPs() and
|
||||
EFI_MP_SERVICES_PROTOCOL.StartupThisAP().
|
||||
|
||||
@param[in] This A pointer to the EFI_MP_SERVICES_PROTOCOL
|
||||
|
@ -391,62 +391,62 @@ EFI_STATUS
|
|||
@param[in] Procedure A pointer to the function to be run on the
|
||||
designated AP of the system. See type
|
||||
EFI_AP_PROCEDURE.
|
||||
@param[in] ProcessorNumber The handle number of the AP. The range is
|
||||
@param[in] ProcessorNumber The handle number of the AP. The range is
|
||||
from 0 to the total number of logical
|
||||
processors minus 1. The total number of
|
||||
processors minus 1. The total number of
|
||||
logical processors can be retrieved by
|
||||
EFI_MP_SERVICES_PROTOCOL.GetNumberOfProcessors().
|
||||
@param[in] WaitEvent The event created by the caller with CreateEvent()
|
||||
service. If it is NULL, then execute in
|
||||
blocking mode. BSP waits until this AP finish
|
||||
or TimeoutInMicroSeconds expires. If it's
|
||||
not NULL, then execute in non-blocking mode.
|
||||
BSP requests the function specified by
|
||||
Procedure to be started on this AP,
|
||||
service. If it is NULL, then execute in
|
||||
blocking mode. BSP waits until this AP finish
|
||||
or TimeoutInMicroSeconds expires. If it's
|
||||
not NULL, then execute in non-blocking mode.
|
||||
BSP requests the function specified by
|
||||
Procedure to be started on this AP,
|
||||
and go on executing immediately. If this AP
|
||||
return from Procedure or TimeoutInMicroSeconds
|
||||
expires, this event is signaled. The BSP
|
||||
can use the CheckEvent() or WaitForEvent()
|
||||
services to check the state of event. Type
|
||||
EFI_EVENT is defined in CreateEvent() in
|
||||
the Unified Extensible Firmware Interface
|
||||
Specification.
|
||||
@param[in] TimeoutInMicrosecsond Indicates the time limit in microseconds for
|
||||
this AP to finish this Procedure, either for
|
||||
blocking or non-blocking mode. Zero means
|
||||
infinity. If the timeout expires before
|
||||
expires, this event is signaled. The BSP
|
||||
can use the CheckEvent() or WaitForEvent()
|
||||
services to check the state of event. Type
|
||||
EFI_EVENT is defined in CreateEvent() in
|
||||
the Unified Extensible Firmware Interface
|
||||
Specification.
|
||||
@param[in] TimeoutInMicrosecsond Indicates the time limit in microseconds for
|
||||
this AP to finish this Procedure, either for
|
||||
blocking or non-blocking mode. Zero means
|
||||
infinity. If the timeout expires before
|
||||
this AP returns from Procedure, then Procedure
|
||||
on the AP is terminated. The
|
||||
AP is available for next function assigned
|
||||
by EFI_MP_SERVICES_PROTOCOL.StartupAllAPs()
|
||||
on the AP is terminated. The
|
||||
AP is available for next function assigned
|
||||
by EFI_MP_SERVICES_PROTOCOL.StartupAllAPs()
|
||||
or EFI_MP_SERVICES_PROTOCOL.StartupThisAP().
|
||||
If the timeout expires in blocking mode,
|
||||
BSP returns EFI_TIMEOUT. If the timeout
|
||||
expires in non-blocking mode, WaitEvent
|
||||
If the timeout expires in blocking mode,
|
||||
BSP returns EFI_TIMEOUT. If the timeout
|
||||
expires in non-blocking mode, WaitEvent
|
||||
is signaled with SignalEvent().
|
||||
@param[in] ProcedureArgument The parameter passed into Procedure on the
|
||||
specified AP.
|
||||
@param[out] Finished If NULL, this parameter is ignored. In
|
||||
@param[out] Finished If NULL, this parameter is ignored. In
|
||||
blocking mode, this parameter is ignored.
|
||||
In non-blocking mode, if AP returns from
|
||||
In non-blocking mode, if AP returns from
|
||||
Procedure before the timeout expires, its
|
||||
content is set to TRUE. Otherwise, the
|
||||
content is set to TRUE. Otherwise, the
|
||||
value is set to FALSE. The caller can
|
||||
determine if the AP returned from Procedure
|
||||
determine if the AP returned from Procedure
|
||||
by evaluating this value.
|
||||
|
||||
@retval EFI_SUCCESS In blocking mode, specified AP finished before
|
||||
@retval EFI_SUCCESS In blocking mode, specified AP finished before
|
||||
the timeout expires.
|
||||
@retval EFI_SUCCESS In non-blocking mode, the function has been
|
||||
@retval EFI_SUCCESS In non-blocking mode, the function has been
|
||||
dispatched to specified AP.
|
||||
@retval EFI_UNSUPPORTED A non-blocking mode request was made after the
|
||||
UEFI event EFI_EVENT_GROUP_READY_TO_BOOT was
|
||||
@retval EFI_UNSUPPORTED A non-blocking mode request was made after the
|
||||
UEFI event EFI_EVENT_GROUP_READY_TO_BOOT was
|
||||
signaled.
|
||||
@retval EFI_DEVICE_ERROR The calling processor is an AP.
|
||||
@retval EFI_TIMEOUT In blocking mode, the timeout expired before
|
||||
@retval EFI_TIMEOUT In blocking mode, the timeout expired before
|
||||
the specified AP has finished.
|
||||
@retval EFI_NOT_READY The specified AP is busy.
|
||||
@retval EFI_NOT_FOUND The processor with the handle specified by
|
||||
@retval EFI_NOT_FOUND The processor with the handle specified by
|
||||
ProcessorNumber does not exist.
|
||||
@retval EFI_INVALID_PARAMETER ProcessorNumber specifies the BSP or disabled AP.
|
||||
@retval EFI_INVALID_PARAMETER Procedure is NULL.
|
||||
|
@ -465,36 +465,36 @@ EFI_STATUS
|
|||
);
|
||||
|
||||
/**
|
||||
This service switches the requested AP to be the BSP from that point onward.
|
||||
This service changes the BSP for all purposes. This call can only be performed
|
||||
This service switches the requested AP to be the BSP from that point onward.
|
||||
This service changes the BSP for all purposes. This call can only be performed
|
||||
by the current BSP.
|
||||
|
||||
This service switches the requested AP to be the BSP from that point onward.
|
||||
This service changes the BSP for all purposes. The new BSP can take over the
|
||||
execution of the old BSP and continue seamlessly from where the old one left
|
||||
off. This service may not be supported after the UEFI Event EFI_EVENT_GROUP_READY_TO_BOOT
|
||||
This service switches the requested AP to be the BSP from that point onward.
|
||||
This service changes the BSP for all purposes. The new BSP can take over the
|
||||
execution of the old BSP and continue seamlessly from where the old one left
|
||||
off. This service may not be supported after the UEFI Event EFI_EVENT_GROUP_READY_TO_BOOT
|
||||
is signaled.
|
||||
|
||||
If the BSP cannot be switched prior to the return from this service, then
|
||||
If the BSP cannot be switched prior to the return from this service, then
|
||||
EFI_UNSUPPORTED must be returned.
|
||||
|
||||
@param[in] This A pointer to the EFI_MP_SERVICES_PROTOCOL instance.
|
||||
@param[in] ProcessorNumber The handle number of AP that is to become the new
|
||||
BSP. The range is from 0 to the total number of
|
||||
logical processors minus 1. The total number of
|
||||
@param[in] ProcessorNumber The handle number of AP that is to become the new
|
||||
BSP. The range is from 0 to the total number of
|
||||
logical processors minus 1. The total number of
|
||||
logical processors can be retrieved by
|
||||
EFI_MP_SERVICES_PROTOCOL.GetNumberOfProcessors().
|
||||
@param[in] EnableOldBSP If TRUE, then the old BSP will be listed as an
|
||||
@param[in] EnableOldBSP If TRUE, then the old BSP will be listed as an
|
||||
enabled AP. Otherwise, it will be disabled.
|
||||
|
||||
@retval EFI_SUCCESS BSP successfully switched.
|
||||
@retval EFI_UNSUPPORTED Switching the BSP cannot be completed prior to
|
||||
@retval EFI_UNSUPPORTED Switching the BSP cannot be completed prior to
|
||||
this service returning.
|
||||
@retval EFI_UNSUPPORTED Switching the BSP is not supported.
|
||||
@retval EFI_SUCCESS The calling processor is an AP.
|
||||
@retval EFI_NOT_FOUND The processor with the handle specified by
|
||||
ProcessorNumber does not exist.
|
||||
@retval EFI_INVALID_PARAMETER ProcessorNumber specifies the current BSP or
|
||||
@retval EFI_INVALID_PARAMETER ProcessorNumber specifies the current BSP or
|
||||
a disabled AP.
|
||||
@retval EFI_NOT_READY The specified AP is busy.
|
||||
|
||||
|
@ -508,38 +508,38 @@ EFI_STATUS
|
|||
);
|
||||
|
||||
/**
|
||||
This service lets the caller enable or disable an AP from this point onward.
|
||||
This service lets the caller enable or disable an AP from this point onward.
|
||||
This service may only be called from the BSP.
|
||||
|
||||
This service allows the caller enable or disable an AP from this point onward.
|
||||
The caller can optionally specify the health status of the AP by Health. If
|
||||
an AP is being disabled, then the state of the disabled AP is implementation
|
||||
dependent. If an AP is enabled, then the implementation must guarantee that a
|
||||
complete initialization sequence is performed on the AP, so the AP is in a state
|
||||
that is compatible with an MP operating system. This service may not be supported
|
||||
This service allows the caller enable or disable an AP from this point onward.
|
||||
The caller can optionally specify the health status of the AP by Health. If
|
||||
an AP is being disabled, then the state of the disabled AP is implementation
|
||||
dependent. If an AP is enabled, then the implementation must guarantee that a
|
||||
complete initialization sequence is performed on the AP, so the AP is in a state
|
||||
that is compatible with an MP operating system. This service may not be supported
|
||||
after the UEFI Event EFI_EVENT_GROUP_READY_TO_BOOT is signaled.
|
||||
|
||||
If the enable or disable AP operation cannot be completed prior to the return
|
||||
If the enable or disable AP operation cannot be completed prior to the return
|
||||
from this service, then EFI_UNSUPPORTED must be returned.
|
||||
|
||||
@param[in] This A pointer to the EFI_MP_SERVICES_PROTOCOL instance.
|
||||
@param[in] ProcessorNumber The handle number of AP.
|
||||
The range is from 0 to the total number of
|
||||
logical processors minus 1. The total number of
|
||||
The range is from 0 to the total number of
|
||||
logical processors minus 1. The total number of
|
||||
logical processors can be retrieved by
|
||||
EFI_MP_SERVICES_PROTOCOL.GetNumberOfProcessors().
|
||||
@param[in] EnableAP Specifies the new state for the processor for
|
||||
@param[in] EnableAP Specifies the new state for the processor for
|
||||
enabled, FALSE for disabled.
|
||||
@param[in] HealthFlag If not NULL, a pointer to a value that specifies
|
||||
the new health status of the AP. This flag
|
||||
corresponds to StatusFlag defined in
|
||||
EFI_MP_SERVICES_PROTOCOL.GetProcessorInfo(). Only
|
||||
the PROCESSOR_HEALTH_STATUS_BIT is used. All other
|
||||
bits are ignored. If it is NULL, this parameter
|
||||
@param[in] HealthFlag If not NULL, a pointer to a value that specifies
|
||||
the new health status of the AP. This flag
|
||||
corresponds to StatusFlag defined in
|
||||
EFI_MP_SERVICES_PROTOCOL.GetProcessorInfo(). Only
|
||||
the PROCESSOR_HEALTH_STATUS_BIT is used. All other
|
||||
bits are ignored. If it is NULL, this parameter
|
||||
is ignored.
|
||||
|
||||
@retval EFI_SUCCESS The specified AP was enabled or disabled successfully.
|
||||
@retval EFI_UNSUPPORTED Enabling or disabling an AP cannot be completed
|
||||
@retval EFI_UNSUPPORTED Enabling or disabling an AP cannot be completed
|
||||
prior to this service returning.
|
||||
@retval EFI_UNSUPPORTED Enabling or disabling an AP is not supported.
|
||||
@retval EFI_DEVICE_ERROR The calling processor is an AP.
|
||||
|
@ -558,25 +558,25 @@ EFI_STATUS
|
|||
);
|
||||
|
||||
/**
|
||||
This return the handle number for the calling processor. This service may be
|
||||
This return the handle number for the calling processor. This service may be
|
||||
called from the BSP and APs.
|
||||
|
||||
This service returns the processor handle number for the calling processor.
|
||||
The returned value is in the range from 0 to the total number of logical
|
||||
processors minus 1. The total number of logical processors can be retrieved
|
||||
with EFI_MP_SERVICES_PROTOCOL.GetNumberOfProcessors(). This service may be
|
||||
called from the BSP and APs. If ProcessorNumber is NULL, then EFI_INVALID_PARAMETER
|
||||
is returned. Otherwise, the current processors handle number is returned in
|
||||
This service returns the processor handle number for the calling processor.
|
||||
The returned value is in the range from 0 to the total number of logical
|
||||
processors minus 1. The total number of logical processors can be retrieved
|
||||
with EFI_MP_SERVICES_PROTOCOL.GetNumberOfProcessors(). This service may be
|
||||
called from the BSP and APs. If ProcessorNumber is NULL, then EFI_INVALID_PARAMETER
|
||||
is returned. Otherwise, the current processors handle number is returned in
|
||||
ProcessorNumber, and EFI_SUCCESS is returned.
|
||||
|
||||
@param[in] This A pointer to the EFI_MP_SERVICES_PROTOCOL instance.
|
||||
@param[in] ProcessorNumber Pointer to the handle number of AP.
|
||||
The range is from 0 to the total number of
|
||||
logical processors minus 1. The total number of
|
||||
The range is from 0 to the total number of
|
||||
logical processors minus 1. The total number of
|
||||
logical processors can be retrieved by
|
||||
EFI_MP_SERVICES_PROTOCOL.GetNumberOfProcessors().
|
||||
|
||||
@retval EFI_SUCCESS The current processor handle number was returned
|
||||
@retval EFI_SUCCESS The current processor handle number was returned
|
||||
in ProcessorNumber.
|
||||
@retval EFI_INVALID_PARAMETER ProcessorNumber is NULL.
|
||||
|
||||
|
@ -589,34 +589,34 @@ EFI_STATUS
|
|||
);
|
||||
|
||||
///
|
||||
/// When installed, the MP Services Protocol produces a collection of services
|
||||
/// When installed, the MP Services Protocol produces a collection of services
|
||||
/// that are needed for MP management.
|
||||
///
|
||||
/// Before the UEFI event EFI_EVENT_GROUP_READY_TO_BOOT is signaled, the module
|
||||
/// that produces this protocol is required to place all APs into an idle state
|
||||
/// whenever the APs are disabled or the APs are not executing code as requested
|
||||
/// through the StartupAllAPs() or StartupThisAP() services. The idle state of
|
||||
/// an AP before the UEFI event EFI_EVENT_GROUP_READY_TO_BOOT is signaled is
|
||||
/// Before the UEFI event EFI_EVENT_GROUP_READY_TO_BOOT is signaled, the module
|
||||
/// that produces this protocol is required to place all APs into an idle state
|
||||
/// whenever the APs are disabled or the APs are not executing code as requested
|
||||
/// through the StartupAllAPs() or StartupThisAP() services. The idle state of
|
||||
/// an AP before the UEFI event EFI_EVENT_GROUP_READY_TO_BOOT is signaled is
|
||||
/// implementation dependent.
|
||||
///
|
||||
/// After the UEFI event EFI_EVENT_GROUP_READY_TO_BOOT is signaled, all the APs
|
||||
/// must be placed in the OS compatible CPU state as defined by the UEFI
|
||||
/// Specification. Implementations of this protocol may use the UEFI event
|
||||
/// EFI_EVENT_GROUP_READY_TO_BOOT to force APs into the OS compatible state as
|
||||
/// defined by the UEFI Specification. Modules that use this protocol must
|
||||
/// guarantee that all non-blocking mode requests on all APs have been completed
|
||||
/// before the UEFI event EFI_EVENT_GROUP_READY_TO_BOOT is signaled. Since the
|
||||
/// order that event notification functions in the same event group are executed
|
||||
/// is not deterministic, an event of type EFI_EVENT_GROUP_READY_TO_BOOT cannot
|
||||
/// After the UEFI event EFI_EVENT_GROUP_READY_TO_BOOT is signaled, all the APs
|
||||
/// must be placed in the OS compatible CPU state as defined by the UEFI
|
||||
/// Specification. Implementations of this protocol may use the UEFI event
|
||||
/// EFI_EVENT_GROUP_READY_TO_BOOT to force APs into the OS compatible state as
|
||||
/// defined by the UEFI Specification. Modules that use this protocol must
|
||||
/// guarantee that all non-blocking mode requests on all APs have been completed
|
||||
/// before the UEFI event EFI_EVENT_GROUP_READY_TO_BOOT is signaled. Since the
|
||||
/// order that event notification functions in the same event group are executed
|
||||
/// is not deterministic, an event of type EFI_EVENT_GROUP_READY_TO_BOOT cannot
|
||||
/// be used to guarantee that APs have completed their non-blocking mode requests.
|
||||
///
|
||||
/// When the UEFI event EFI_EVENT_GROUP_READY_TO_BOOT is signaled, the StartAllAPs()
|
||||
/// and StartupThisAp() services must no longer support non-blocking mode requests.
|
||||
/// The support for SwitchBSP() and EnableDisableAP() may no longer be supported
|
||||
/// after this event is signaled. Since UEFI Applications and UEFI OS Loaders
|
||||
/// execute after the UEFI event EFI_EVENT_GROUP_READY_TO_BOOT is signaled, these
|
||||
/// When the UEFI event EFI_EVENT_GROUP_READY_TO_BOOT is signaled, the StartAllAPs()
|
||||
/// and StartupThisAp() services must no longer support non-blocking mode requests.
|
||||
/// The support for SwitchBSP() and EnableDisableAP() may no longer be supported
|
||||
/// after this event is signaled. Since UEFI Applications and UEFI OS Loaders
|
||||
/// execute after the UEFI event EFI_EVENT_GROUP_READY_TO_BOOT is signaled, these
|
||||
/// UEFI images must be aware that the functionality of this protocol may be reduced.
|
||||
///
|
||||
///
|
||||
struct _EFI_MP_SERVICES_PROTOCOL {
|
||||
EFI_MP_SERVICES_GET_NUMBER_OF_PROCESSORS GetNumberOfProcessors;
|
||||
EFI_MP_SERVICES_GET_PROCESSOR_INFO GetProcessorInfo;
|
||||
|
|
Loading…
Reference in New Issue