The list of locked variables is traversed at runtime, hence we must

convert the list when transferring from physical to virtual mode.

Contributed-under: TianoCore Contribution Agreement 1.0

Signed-off-by: Laszlo Ersek <lersek@redhat.com>
Reviewed-by: Ruiyu Ni <ruiyu.ni@intel.com>

git-svn-id: https://svn.code.sf.net/p/edk2/code/trunk/edk2@14403 6f19259b-4bc3-4df7-8a09-765794883524
This commit is contained in:
Laszlo Ersek 2013-06-14 01:55:12 +00:00 committed by niruiyu
parent 97733405f2
commit 9199cb9c02
2 changed files with 1006 additions and 960 deletions

View File

@ -1,479 +1,502 @@
/** @file /** @file
Implement all four UEFI Runtime Variable services for the nonvolatile Implement all four UEFI Runtime Variable services for the nonvolatile
and volatile storage space and install variable architecture protocol. and volatile storage space and install variable architecture protocol.
Copyright (c) 2006 - 2013, Intel Corporation. All rights reserved.<BR> Copyright (C) 2013, Red Hat, Inc.
This program and the accompanying materials Copyright (c) 2006 - 2013, Intel Corporation. All rights reserved.<BR>
are licensed and made available under the terms and conditions of the BSD License This program and the accompanying materials
which accompanies this distribution. The full text of the license may be found at are licensed and made available under the terms and conditions of the BSD License
http://opensource.org/licenses/bsd-license.php which accompanies this distribution. The full text of the license may be found at
http://opensource.org/licenses/bsd-license.php
THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS,
WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED. THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS,
WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED.
**/
**/
#include "Variable.h"
#include "Variable.h"
extern VARIABLE_STORE_HEADER *mNvVariableCache;
extern VARIABLE_INFO_ENTRY *gVariableInfo; extern VARIABLE_STORE_HEADER *mNvVariableCache;
EFI_HANDLE mHandle = NULL; extern VARIABLE_INFO_ENTRY *gVariableInfo;
EFI_EVENT mVirtualAddressChangeEvent = NULL; EFI_HANDLE mHandle = NULL;
EFI_EVENT mFtwRegistration = NULL; EFI_EVENT mVirtualAddressChangeEvent = NULL;
extern BOOLEAN mEndOfDxe; EFI_EVENT mFtwRegistration = NULL;
EDKII_VARIABLE_LOCK_PROTOCOL mVariableLock = { VariableLockRequestToLock }; extern LIST_ENTRY mLockedVariableList;
extern BOOLEAN mEndOfDxe;
/** EDKII_VARIABLE_LOCK_PROTOCOL mVariableLock = { VariableLockRequestToLock };
Return TRUE if ExitBootServices () has been called.
/**
@retval TRUE If ExitBootServices () has been called. Return TRUE if ExitBootServices () has been called.
**/
BOOLEAN @retval TRUE If ExitBootServices () has been called.
AtRuntime ( **/
VOID BOOLEAN
) AtRuntime (
{ VOID
return EfiAtRuntime (); )
} {
return EfiAtRuntime ();
}
/**
Initializes a basic mutual exclusion lock.
/**
This function initializes a basic mutual exclusion lock to the released state Initializes a basic mutual exclusion lock.
and returns the lock. Each lock provides mutual exclusion access at its task
priority level. Since there is no preemption or multiprocessor support in EFI, This function initializes a basic mutual exclusion lock to the released state
acquiring the lock only consists of raising to the locks TPL. and returns the lock. Each lock provides mutual exclusion access at its task
If Lock is NULL, then ASSERT(). priority level. Since there is no preemption or multiprocessor support in EFI,
If Priority is not a valid TPL value, then ASSERT(). acquiring the lock only consists of raising to the locks TPL.
If Lock is NULL, then ASSERT().
@param Lock A pointer to the lock data structure to initialize. If Priority is not a valid TPL value, then ASSERT().
@param Priority EFI TPL is associated with the lock.
@param Lock A pointer to the lock data structure to initialize.
@return The lock. @param Priority EFI TPL is associated with the lock.
**/ @return The lock.
EFI_LOCK *
InitializeLock ( **/
IN OUT EFI_LOCK *Lock, EFI_LOCK *
IN EFI_TPL Priority InitializeLock (
) IN OUT EFI_LOCK *Lock,
{ IN EFI_TPL Priority
return EfiInitializeLock (Lock, Priority); )
} {
return EfiInitializeLock (Lock, Priority);
}
/**
Acquires lock only at boot time. Simply returns at runtime.
/**
This is a temperary function that will be removed when Acquires lock only at boot time. Simply returns at runtime.
EfiAcquireLock() in UefiLib can handle the call in UEFI
Runtimer driver in RT phase. This is a temperary function that will be removed when
It calls EfiAcquireLock() at boot time, and simply returns EfiAcquireLock() in UefiLib can handle the call in UEFI
at runtime. Runtimer driver in RT phase.
It calls EfiAcquireLock() at boot time, and simply returns
@param Lock A pointer to the lock to acquire. at runtime.
**/ @param Lock A pointer to the lock to acquire.
VOID
AcquireLockOnlyAtBootTime ( **/
IN EFI_LOCK *Lock VOID
) AcquireLockOnlyAtBootTime (
{ IN EFI_LOCK *Lock
if (!AtRuntime ()) { )
EfiAcquireLock (Lock); {
} if (!AtRuntime ()) {
} EfiAcquireLock (Lock);
}
}
/**
Releases lock only at boot time. Simply returns at runtime.
/**
This is a temperary function which will be removed when Releases lock only at boot time. Simply returns at runtime.
EfiReleaseLock() in UefiLib can handle the call in UEFI
Runtimer driver in RT phase. This is a temperary function which will be removed when
It calls EfiReleaseLock() at boot time and simply returns EfiReleaseLock() in UefiLib can handle the call in UEFI
at runtime. Runtimer driver in RT phase.
It calls EfiReleaseLock() at boot time and simply returns
@param Lock A pointer to the lock to release. at runtime.
**/ @param Lock A pointer to the lock to release.
VOID
ReleaseLockOnlyAtBootTime ( **/
IN EFI_LOCK *Lock VOID
) ReleaseLockOnlyAtBootTime (
{ IN EFI_LOCK *Lock
if (!AtRuntime ()) { )
EfiReleaseLock (Lock); {
} if (!AtRuntime ()) {
} EfiReleaseLock (Lock);
}
/** }
Retrive the Fault Tolerent Write protocol interface.
/**
@param[out] FtwProtocol The interface of Ftw protocol Retrive the Fault Tolerent Write protocol interface.
@retval EFI_SUCCESS The FTW protocol instance was found and returned in FtwProtocol. @param[out] FtwProtocol The interface of Ftw protocol
@retval EFI_NOT_FOUND The FTW protocol instance was not found.
@retval EFI_INVALID_PARAMETER SarProtocol is NULL. @retval EFI_SUCCESS The FTW protocol instance was found and returned in FtwProtocol.
@retval EFI_NOT_FOUND The FTW protocol instance was not found.
**/ @retval EFI_INVALID_PARAMETER SarProtocol is NULL.
EFI_STATUS
GetFtwProtocol ( **/
OUT VOID **FtwProtocol EFI_STATUS
) GetFtwProtocol (
{ OUT VOID **FtwProtocol
EFI_STATUS Status; )
{
// EFI_STATUS Status;
// Locate Fault Tolerent Write protocol
// //
Status = gBS->LocateProtocol ( // Locate Fault Tolerent Write protocol
&gEfiFaultTolerantWriteProtocolGuid, //
NULL, Status = gBS->LocateProtocol (
FtwProtocol &gEfiFaultTolerantWriteProtocolGuid,
); NULL,
return Status; FtwProtocol
} );
return Status;
/** }
Retrive the FVB protocol interface by HANDLE.
/**
@param[in] FvBlockHandle The handle of FVB protocol that provides services for Retrive the FVB protocol interface by HANDLE.
reading, writing, and erasing the target block.
@param[out] FvBlock The interface of FVB protocol @param[in] FvBlockHandle The handle of FVB protocol that provides services for
reading, writing, and erasing the target block.
@retval EFI_SUCCESS The interface information for the specified protocol was returned. @param[out] FvBlock The interface of FVB protocol
@retval EFI_UNSUPPORTED The device does not support the FVB protocol.
@retval EFI_INVALID_PARAMETER FvBlockHandle is not a valid EFI_HANDLE or FvBlock is NULL. @retval EFI_SUCCESS The interface information for the specified protocol was returned.
@retval EFI_UNSUPPORTED The device does not support the FVB protocol.
**/ @retval EFI_INVALID_PARAMETER FvBlockHandle is not a valid EFI_HANDLE or FvBlock is NULL.
EFI_STATUS
GetFvbByHandle ( **/
IN EFI_HANDLE FvBlockHandle, EFI_STATUS
OUT EFI_FIRMWARE_VOLUME_BLOCK_PROTOCOL **FvBlock GetFvbByHandle (
) IN EFI_HANDLE FvBlockHandle,
{ OUT EFI_FIRMWARE_VOLUME_BLOCK_PROTOCOL **FvBlock
// )
// To get the FVB protocol interface on the handle {
// //
return gBS->HandleProtocol ( // To get the FVB protocol interface on the handle
FvBlockHandle, //
&gEfiFirmwareVolumeBlockProtocolGuid, return gBS->HandleProtocol (
(VOID **) FvBlock FvBlockHandle,
); &gEfiFirmwareVolumeBlockProtocolGuid,
} (VOID **) FvBlock
);
}
/**
Function returns an array of handles that support the FVB protocol
in a buffer allocated from pool. /**
Function returns an array of handles that support the FVB protocol
@param[out] NumberHandles The number of handles returned in Buffer. in a buffer allocated from pool.
@param[out] Buffer A pointer to the buffer to return the requested
array of handles that support FVB protocol. @param[out] NumberHandles The number of handles returned in Buffer.
@param[out] Buffer A pointer to the buffer to return the requested
@retval EFI_SUCCESS The array of handles was returned in Buffer, and the number of array of handles that support FVB protocol.
handles in Buffer was returned in NumberHandles.
@retval EFI_NOT_FOUND No FVB handle was found. @retval EFI_SUCCESS The array of handles was returned in Buffer, and the number of
@retval EFI_OUT_OF_RESOURCES There is not enough pool memory to store the matching results. handles in Buffer was returned in NumberHandles.
@retval EFI_INVALID_PARAMETER NumberHandles is NULL or Buffer is NULL. @retval EFI_NOT_FOUND No FVB handle was found.
@retval EFI_OUT_OF_RESOURCES There is not enough pool memory to store the matching results.
**/ @retval EFI_INVALID_PARAMETER NumberHandles is NULL or Buffer is NULL.
EFI_STATUS
GetFvbCountAndBuffer ( **/
OUT UINTN *NumberHandles, EFI_STATUS
OUT EFI_HANDLE **Buffer GetFvbCountAndBuffer (
) OUT UINTN *NumberHandles,
{ OUT EFI_HANDLE **Buffer
EFI_STATUS Status; )
{
// EFI_STATUS Status;
// Locate all handles of Fvb protocol
// //
Status = gBS->LocateHandleBuffer ( // Locate all handles of Fvb protocol
ByProtocol, //
&gEfiFirmwareVolumeBlockProtocolGuid, Status = gBS->LocateHandleBuffer (
NULL, ByProtocol,
NumberHandles, &gEfiFirmwareVolumeBlockProtocolGuid,
Buffer NULL,
); NumberHandles,
return Status; Buffer
} );
return Status;
}
/**
Notification function of EVT_SIGNAL_VIRTUAL_ADDRESS_CHANGE.
/**
This is a notification function registered on EVT_SIGNAL_VIRTUAL_ADDRESS_CHANGE event. Notification function of EVT_SIGNAL_VIRTUAL_ADDRESS_CHANGE.
It convers pointer to new virtual address.
This is a notification function registered on EVT_SIGNAL_VIRTUAL_ADDRESS_CHANGE event.
@param Event Event whose notification function is being invoked. It convers pointer to new virtual address.
@param Context Pointer to the notification function's context.
@param Event Event whose notification function is being invoked.
**/ @param Context Pointer to the notification function's context.
VOID
EFIAPI **/
VariableClassAddressChangeEvent ( VOID
IN EFI_EVENT Event, EFIAPI
IN VOID *Context VariableClassAddressChangeEvent (
) IN EFI_EVENT Event,
{ IN VOID *Context
EfiConvertPointer (0x0, (VOID **) &mVariableModuleGlobal->FvbInstance->GetBlockSize); )
EfiConvertPointer (0x0, (VOID **) &mVariableModuleGlobal->FvbInstance->GetPhysicalAddress); {
EfiConvertPointer (0x0, (VOID **) &mVariableModuleGlobal->FvbInstance->GetAttributes); LIST_ENTRY *Link;
EfiConvertPointer (0x0, (VOID **) &mVariableModuleGlobal->FvbInstance->SetAttributes); VARIABLE_ENTRY *Entry;
EfiConvertPointer (0x0, (VOID **) &mVariableModuleGlobal->FvbInstance->Read); EFI_STATUS Status;
EfiConvertPointer (0x0, (VOID **) &mVariableModuleGlobal->FvbInstance->Write);
EfiConvertPointer (0x0, (VOID **) &mVariableModuleGlobal->FvbInstance->EraseBlocks); EfiConvertPointer (0x0, (VOID **) &mVariableModuleGlobal->FvbInstance->GetBlockSize);
EfiConvertPointer (0x0, (VOID **) &mVariableModuleGlobal->FvbInstance); EfiConvertPointer (0x0, (VOID **) &mVariableModuleGlobal->FvbInstance->GetPhysicalAddress);
EfiConvertPointer (0x0, (VOID **) &mVariableModuleGlobal->PlatformLangCodes); EfiConvertPointer (0x0, (VOID **) &mVariableModuleGlobal->FvbInstance->GetAttributes);
EfiConvertPointer (0x0, (VOID **) &mVariableModuleGlobal->LangCodes); EfiConvertPointer (0x0, (VOID **) &mVariableModuleGlobal->FvbInstance->SetAttributes);
EfiConvertPointer (0x0, (VOID **) &mVariableModuleGlobal->PlatformLang); EfiConvertPointer (0x0, (VOID **) &mVariableModuleGlobal->FvbInstance->Read);
EfiConvertPointer (0x0, (VOID **) &mVariableModuleGlobal->VariableGlobal.NonVolatileVariableBase); EfiConvertPointer (0x0, (VOID **) &mVariableModuleGlobal->FvbInstance->Write);
EfiConvertPointer (0x0, (VOID **) &mVariableModuleGlobal->VariableGlobal.VolatileVariableBase); EfiConvertPointer (0x0, (VOID **) &mVariableModuleGlobal->FvbInstance->EraseBlocks);
EfiConvertPointer (0x0, (VOID **) &mVariableModuleGlobal->VariableGlobal.HobVariableBase); EfiConvertPointer (0x0, (VOID **) &mVariableModuleGlobal->FvbInstance);
EfiConvertPointer (0x0, (VOID **) &mVariableModuleGlobal); EfiConvertPointer (0x0, (VOID **) &mVariableModuleGlobal->PlatformLangCodes);
EfiConvertPointer (0x0, (VOID **) &mNvVariableCache); EfiConvertPointer (0x0, (VOID **) &mVariableModuleGlobal->LangCodes);
} EfiConvertPointer (0x0, (VOID **) &mVariableModuleGlobal->PlatformLang);
EfiConvertPointer (0x0, (VOID **) &mVariableModuleGlobal->VariableGlobal.NonVolatileVariableBase);
EfiConvertPointer (0x0, (VOID **) &mVariableModuleGlobal->VariableGlobal.VolatileVariableBase);
/** EfiConvertPointer (0x0, (VOID **) &mVariableModuleGlobal->VariableGlobal.HobVariableBase);
Notification function of EVT_GROUP_READY_TO_BOOT event group. EfiConvertPointer (0x0, (VOID **) &mVariableModuleGlobal);
EfiConvertPointer (0x0, (VOID **) &mNvVariableCache);
This is a notification function registered on EVT_GROUP_READY_TO_BOOT event group.
When the Boot Manager is about to load and execute a boot option, it reclaims variable //
storage if free size is below the threshold. // in the list of locked variables, convert the name pointers first
//
@param Event Event whose notification function is being invoked. for ( Link = GetFirstNode (&mLockedVariableList)
@param Context Pointer to the notification function's context. ; !IsNull (&mLockedVariableList, Link)
; Link = GetNextNode (&mLockedVariableList, Link)
**/ ) {
VOID Entry = BASE_CR (Link, VARIABLE_ENTRY, Link);
EFIAPI Status = EfiConvertPointer (0x0, (VOID **) &Entry->Name);
OnReadyToBoot ( ASSERT_EFI_ERROR (Status);
EFI_EVENT Event, }
VOID *Context //
) // second, convert the list itself using UefiRuntimeLib
{ //
// Status = EfiConvertList (0x0, &mLockedVariableList);
// Set the End Of DXE bit in case the EFI_END_OF_DXE_EVENT_GROUP_GUID event is not signaled. ASSERT_EFI_ERROR (Status);
// }
mEndOfDxe = TRUE;
ReclaimForOS ();
if (FeaturePcdGet (PcdVariableCollectStatistics)) { /**
gBS->InstallConfigurationTable (&gEfiVariableGuid, gVariableInfo); Notification function of EVT_GROUP_READY_TO_BOOT event group.
}
} This is a notification function registered on EVT_GROUP_READY_TO_BOOT event group.
When the Boot Manager is about to load and execute a boot option, it reclaims variable
/** storage if free size is below the threshold.
Notification function of EFI_END_OF_DXE_EVENT_GROUP_GUID event group.
@param Event Event whose notification function is being invoked.
This is a notification function registered on EFI_END_OF_DXE_EVENT_GROUP_GUID event group. @param Context Pointer to the notification function's context.
@param Event Event whose notification function is being invoked. **/
@param Context Pointer to the notification function's context. VOID
EFIAPI
**/ OnReadyToBoot (
VOID EFI_EVENT Event,
EFIAPI VOID *Context
OnEndOfDxe ( )
EFI_EVENT Event, {
VOID *Context //
) // Set the End Of DXE bit in case the EFI_END_OF_DXE_EVENT_GROUP_GUID event is not signaled.
{ //
mEndOfDxe = TRUE; mEndOfDxe = TRUE;
} ReclaimForOS ();
if (FeaturePcdGet (PcdVariableCollectStatistics)) {
/** gBS->InstallConfigurationTable (&gEfiVariableGuid, gVariableInfo);
Fault Tolerant Write protocol notification event handler. }
}
Non-Volatile variable write may needs FTW protocol to reclaim when
writting variable. /**
Notification function of EFI_END_OF_DXE_EVENT_GROUP_GUID event group.
@param[in] Event Event whose notification function is being invoked.
@param[in] Context Pointer to the notification function's context. This is a notification function registered on EFI_END_OF_DXE_EVENT_GROUP_GUID event group.
**/ @param Event Event whose notification function is being invoked.
VOID @param Context Pointer to the notification function's context.
EFIAPI
FtwNotificationEvent ( **/
IN EFI_EVENT Event, VOID
IN VOID *Context EFIAPI
) OnEndOfDxe (
{ EFI_EVENT Event,
EFI_STATUS Status; VOID *Context
EFI_FIRMWARE_VOLUME_BLOCK_PROTOCOL *FvbProtocol; )
EFI_FAULT_TOLERANT_WRITE_PROTOCOL *FtwProtocol; {
EFI_PHYSICAL_ADDRESS NvStorageVariableBase; mEndOfDxe = TRUE;
EFI_GCD_MEMORY_SPACE_DESCRIPTOR GcdDescriptor; }
EFI_PHYSICAL_ADDRESS BaseAddress;
UINT64 Length; /**
EFI_PHYSICAL_ADDRESS VariableStoreBase; Fault Tolerant Write protocol notification event handler.
UINT64 VariableStoreLength;
Non-Volatile variable write may needs FTW protocol to reclaim when
// writting variable.
// Ensure FTW protocol is installed.
// @param[in] Event Event whose notification function is being invoked.
Status = GetFtwProtocol ((VOID**) &FtwProtocol); @param[in] Context Pointer to the notification function's context.
if (EFI_ERROR (Status)) {
return ; **/
} VOID
EFIAPI
// FtwNotificationEvent (
// Find the proper FVB protocol for variable. IN EFI_EVENT Event,
// IN VOID *Context
NvStorageVariableBase = (EFI_PHYSICAL_ADDRESS) PcdGet64 (PcdFlashNvStorageVariableBase64); )
if (NvStorageVariableBase == 0) { {
NvStorageVariableBase = (EFI_PHYSICAL_ADDRESS) PcdGet32 (PcdFlashNvStorageVariableBase); EFI_STATUS Status;
} EFI_FIRMWARE_VOLUME_BLOCK_PROTOCOL *FvbProtocol;
Status = GetFvbInfoByAddress (NvStorageVariableBase, NULL, &FvbProtocol); EFI_FAULT_TOLERANT_WRITE_PROTOCOL *FtwProtocol;
if (EFI_ERROR (Status)) { EFI_PHYSICAL_ADDRESS NvStorageVariableBase;
return ; EFI_GCD_MEMORY_SPACE_DESCRIPTOR GcdDescriptor;
} EFI_PHYSICAL_ADDRESS BaseAddress;
mVariableModuleGlobal->FvbInstance = FvbProtocol; UINT64 Length;
EFI_PHYSICAL_ADDRESS VariableStoreBase;
// UINT64 VariableStoreLength;
// Mark the variable storage region of the FLASH as RUNTIME.
// //
VariableStoreBase = mVariableModuleGlobal->VariableGlobal.NonVolatileVariableBase; // Ensure FTW protocol is installed.
VariableStoreLength = ((VARIABLE_STORE_HEADER *)(UINTN)VariableStoreBase)->Size; //
BaseAddress = VariableStoreBase & (~EFI_PAGE_MASK); Status = GetFtwProtocol ((VOID**) &FtwProtocol);
Length = VariableStoreLength + (VariableStoreBase - BaseAddress); if (EFI_ERROR (Status)) {
Length = (Length + EFI_PAGE_SIZE - 1) & (~EFI_PAGE_MASK); return ;
}
Status = gDS->GetMemorySpaceDescriptor (BaseAddress, &GcdDescriptor);
if (EFI_ERROR (Status)) { //
DEBUG ((DEBUG_WARN, "Variable driver failed to add EFI_MEMORY_RUNTIME attribute to Flash.\n")); // Find the proper FVB protocol for variable.
} else { //
Status = gDS->SetMemorySpaceAttributes ( NvStorageVariableBase = (EFI_PHYSICAL_ADDRESS) PcdGet64 (PcdFlashNvStorageVariableBase64);
BaseAddress, if (NvStorageVariableBase == 0) {
Length, NvStorageVariableBase = (EFI_PHYSICAL_ADDRESS) PcdGet32 (PcdFlashNvStorageVariableBase);
GcdDescriptor.Attributes | EFI_MEMORY_RUNTIME }
); Status = GetFvbInfoByAddress (NvStorageVariableBase, NULL, &FvbProtocol);
if (EFI_ERROR (Status)) { if (EFI_ERROR (Status)) {
DEBUG ((DEBUG_WARN, "Variable driver failed to add EFI_MEMORY_RUNTIME attribute to Flash.\n")); return ;
} }
} mVariableModuleGlobal->FvbInstance = FvbProtocol;
Status = VariableWriteServiceInitialize (); //
ASSERT_EFI_ERROR (Status); // Mark the variable storage region of the FLASH as RUNTIME.
//
// VariableStoreBase = mVariableModuleGlobal->VariableGlobal.NonVolatileVariableBase;
// Install the Variable Write Architectural protocol. VariableStoreLength = ((VARIABLE_STORE_HEADER *)(UINTN)VariableStoreBase)->Size;
// BaseAddress = VariableStoreBase & (~EFI_PAGE_MASK);
Status = gBS->InstallProtocolInterface ( Length = VariableStoreLength + (VariableStoreBase - BaseAddress);
&mHandle, Length = (Length + EFI_PAGE_SIZE - 1) & (~EFI_PAGE_MASK);
&gEfiVariableWriteArchProtocolGuid,
EFI_NATIVE_INTERFACE, Status = gDS->GetMemorySpaceDescriptor (BaseAddress, &GcdDescriptor);
NULL if (EFI_ERROR (Status)) {
); DEBUG ((DEBUG_WARN, "Variable driver failed to add EFI_MEMORY_RUNTIME attribute to Flash.\n"));
ASSERT_EFI_ERROR (Status); } else {
Status = gDS->SetMemorySpaceAttributes (
// BaseAddress,
// Close the notify event to avoid install gEfiVariableWriteArchProtocolGuid again. Length,
// GcdDescriptor.Attributes | EFI_MEMORY_RUNTIME
gBS->CloseEvent (Event); );
if (EFI_ERROR (Status)) {
} DEBUG ((DEBUG_WARN, "Variable driver failed to add EFI_MEMORY_RUNTIME attribute to Flash.\n"));
}
}
/**
Variable Driver main entry point. The Variable driver places the 4 EFI Status = VariableWriteServiceInitialize ();
runtime services in the EFI System Table and installs arch protocols ASSERT_EFI_ERROR (Status);
for variable read and write services being availible. It also registers
a notification function for an EVT_SIGNAL_VIRTUAL_ADDRESS_CHANGE event. //
// Install the Variable Write Architectural protocol.
@param[in] ImageHandle The firmware allocated handle for the EFI image. //
@param[in] SystemTable A pointer to the EFI System Table. Status = gBS->InstallProtocolInterface (
&mHandle,
@retval EFI_SUCCESS Variable service successfully initialized. &gEfiVariableWriteArchProtocolGuid,
EFI_NATIVE_INTERFACE,
**/ NULL
EFI_STATUS );
EFIAPI ASSERT_EFI_ERROR (Status);
VariableServiceInitialize (
IN EFI_HANDLE ImageHandle, //
IN EFI_SYSTEM_TABLE *SystemTable // Close the notify event to avoid install gEfiVariableWriteArchProtocolGuid again.
) //
{ gBS->CloseEvent (Event);
EFI_STATUS Status;
EFI_EVENT ReadyToBootEvent; }
EFI_EVENT EndOfDxeEvent;
Status = VariableCommonInitialize (); /**
ASSERT_EFI_ERROR (Status); Variable Driver main entry point. The Variable driver places the 4 EFI
runtime services in the EFI System Table and installs arch protocols
Status = gBS->InstallMultipleProtocolInterfaces ( for variable read and write services being availible. It also registers
&mHandle, a notification function for an EVT_SIGNAL_VIRTUAL_ADDRESS_CHANGE event.
&gEdkiiVariableLockProtocolGuid,
&mVariableLock, @param[in] ImageHandle The firmware allocated handle for the EFI image.
NULL @param[in] SystemTable A pointer to the EFI System Table.
);
ASSERT_EFI_ERROR (Status); @retval EFI_SUCCESS Variable service successfully initialized.
SystemTable->RuntimeServices->GetVariable = VariableServiceGetVariable; **/
SystemTable->RuntimeServices->GetNextVariableName = VariableServiceGetNextVariableName; EFI_STATUS
SystemTable->RuntimeServices->SetVariable = VariableServiceSetVariable; EFIAPI
SystemTable->RuntimeServices->QueryVariableInfo = VariableServiceQueryVariableInfo; VariableServiceInitialize (
IN EFI_HANDLE ImageHandle,
// IN EFI_SYSTEM_TABLE *SystemTable
// Now install the Variable Runtime Architectural protocol on a new handle. )
// {
Status = gBS->InstallProtocolInterface ( EFI_STATUS Status;
&mHandle, EFI_EVENT ReadyToBootEvent;
&gEfiVariableArchProtocolGuid, EFI_EVENT EndOfDxeEvent;
EFI_NATIVE_INTERFACE,
NULL Status = VariableCommonInitialize ();
); ASSERT_EFI_ERROR (Status);
ASSERT_EFI_ERROR (Status);
Status = gBS->InstallMultipleProtocolInterfaces (
// &mHandle,
// Register FtwNotificationEvent () notify function. &gEdkiiVariableLockProtocolGuid,
// &mVariableLock,
EfiCreateProtocolNotifyEvent ( NULL
&gEfiFaultTolerantWriteProtocolGuid, );
TPL_CALLBACK, ASSERT_EFI_ERROR (Status);
FtwNotificationEvent,
(VOID *)SystemTable, SystemTable->RuntimeServices->GetVariable = VariableServiceGetVariable;
&mFtwRegistration SystemTable->RuntimeServices->GetNextVariableName = VariableServiceGetNextVariableName;
); SystemTable->RuntimeServices->SetVariable = VariableServiceSetVariable;
SystemTable->RuntimeServices->QueryVariableInfo = VariableServiceQueryVariableInfo;
Status = gBS->CreateEventEx (
EVT_NOTIFY_SIGNAL, //
TPL_NOTIFY, // Now install the Variable Runtime Architectural protocol on a new handle.
VariableClassAddressChangeEvent, //
NULL, Status = gBS->InstallProtocolInterface (
&gEfiEventVirtualAddressChangeGuid, &mHandle,
&mVirtualAddressChangeEvent &gEfiVariableArchProtocolGuid,
); EFI_NATIVE_INTERFACE,
ASSERT_EFI_ERROR (Status); NULL
);
// ASSERT_EFI_ERROR (Status);
// Register the event handling function to reclaim variable for OS usage.
// //
Status = EfiCreateEventReadyToBootEx ( // Register FtwNotificationEvent () notify function.
TPL_NOTIFY, //
OnReadyToBoot, EfiCreateProtocolNotifyEvent (
NULL, &gEfiFaultTolerantWriteProtocolGuid,
&ReadyToBootEvent TPL_CALLBACK,
); FtwNotificationEvent,
ASSERT_EFI_ERROR (Status); (VOID *)SystemTable,
&mFtwRegistration
// );
// Register the event handling function to set the End Of DXE flag.
// Status = gBS->CreateEventEx (
Status = gBS->CreateEventEx ( EVT_NOTIFY_SIGNAL,
EVT_NOTIFY_SIGNAL, TPL_NOTIFY,
TPL_NOTIFY, VariableClassAddressChangeEvent,
OnEndOfDxe, NULL,
NULL, &gEfiEventVirtualAddressChangeGuid,
&gEfiEndOfDxeEventGroupGuid, &mVirtualAddressChangeEvent
&EndOfDxeEvent );
); ASSERT_EFI_ERROR (Status);
ASSERT_EFI_ERROR (Status);
//
return EFI_SUCCESS; // Register the event handling function to reclaim variable for OS usage.
} //
Status = EfiCreateEventReadyToBootEx (
TPL_NOTIFY,
OnReadyToBoot,
NULL,
&ReadyToBootEvent
);
ASSERT_EFI_ERROR (Status);
//
// Register the event handling function to set the End Of DXE flag.
//
Status = gBS->CreateEventEx (
EVT_NOTIFY_SIGNAL,
TPL_NOTIFY,
OnEndOfDxe,
NULL,
&gEfiEndOfDxeEventGroupGuid,
&EndOfDxeEvent
);
ASSERT_EFI_ERROR (Status);
return EFI_SUCCESS;
}

View File

@ -1,481 +1,504 @@
/** @file /** @file
Implement all four UEFI Runtime Variable services for the nonvolatile Implement all four UEFI Runtime Variable services for the nonvolatile
and volatile storage space and install variable architecture protocol. and volatile storage space and install variable architecture protocol.
Copyright (c) 2009 - 2011, Intel Corporation. All rights reserved.<BR> Copyright (C) 2013, Red Hat, Inc.
This program and the accompanying materials Copyright (c) 2009 - 2011, Intel Corporation. All rights reserved.<BR>
are licensed and made available under the terms and conditions of the BSD License This program and the accompanying materials
which accompanies this distribution. The full text of the license may be found at are licensed and made available under the terms and conditions of the BSD License
http://opensource.org/licenses/bsd-license.php which accompanies this distribution. The full text of the license may be found at
http://opensource.org/licenses/bsd-license.php
THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS,
WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED. THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS,
WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED.
**/
**/
#include "Variable.h"
#include "AuthService.h" #include "Variable.h"
#include "AuthService.h"
extern VARIABLE_STORE_HEADER *mNvVariableCache;
extern VARIABLE_INFO_ENTRY *gVariableInfo; extern VARIABLE_STORE_HEADER *mNvVariableCache;
EFI_HANDLE mHandle = NULL; extern VARIABLE_INFO_ENTRY *gVariableInfo;
EFI_EVENT mVirtualAddressChangeEvent = NULL; EFI_HANDLE mHandle = NULL;
EFI_EVENT mFtwRegistration = NULL; EFI_EVENT mVirtualAddressChangeEvent = NULL;
extern BOOLEAN mEndOfDxe; EFI_EVENT mFtwRegistration = NULL;
EDKII_VARIABLE_LOCK_PROTOCOL mVariableLock = { VariableLockRequestToLock }; extern LIST_ENTRY mLockedVariableList;
extern BOOLEAN mEndOfDxe;
/** EDKII_VARIABLE_LOCK_PROTOCOL mVariableLock = { VariableLockRequestToLock };
Return TRUE if ExitBootServices () has been called.
/**
@retval TRUE If ExitBootServices () has been called. Return TRUE if ExitBootServices () has been called.
**/
BOOLEAN @retval TRUE If ExitBootServices () has been called.
AtRuntime ( **/
VOID BOOLEAN
) AtRuntime (
{ VOID
return EfiAtRuntime (); )
} {
return EfiAtRuntime ();
}
/**
Initializes a basic mutual exclusion lock.
/**
This function initializes a basic mutual exclusion lock to the released state Initializes a basic mutual exclusion lock.
and returns the lock. Each lock provides mutual exclusion access at its task
priority level. Since there is no preemption or multiprocessor support in EFI, This function initializes a basic mutual exclusion lock to the released state
acquiring the lock only consists of raising to the locks TPL. and returns the lock. Each lock provides mutual exclusion access at its task
If Lock is NULL, then ASSERT(). priority level. Since there is no preemption or multiprocessor support in EFI,
If Priority is not a valid TPL value, then ASSERT(). acquiring the lock only consists of raising to the locks TPL.
If Lock is NULL, then ASSERT().
@param Lock A pointer to the lock data structure to initialize. If Priority is not a valid TPL value, then ASSERT().
@param Priority EFI TPL is associated with the lock.
@param Lock A pointer to the lock data structure to initialize.
@return The lock. @param Priority EFI TPL is associated with the lock.
**/ @return The lock.
EFI_LOCK *
InitializeLock ( **/
IN OUT EFI_LOCK *Lock, EFI_LOCK *
IN EFI_TPL Priority InitializeLock (
) IN OUT EFI_LOCK *Lock,
{ IN EFI_TPL Priority
return EfiInitializeLock (Lock, Priority); )
} {
return EfiInitializeLock (Lock, Priority);
}
/**
Acquires lock only at boot time. Simply returns at runtime.
/**
This is a temperary function that will be removed when Acquires lock only at boot time. Simply returns at runtime.
EfiAcquireLock() in UefiLib can handle the call in UEFI
Runtimer driver in RT phase. This is a temperary function that will be removed when
It calls EfiAcquireLock() at boot time, and simply returns EfiAcquireLock() in UefiLib can handle the call in UEFI
at runtime. Runtimer driver in RT phase.
It calls EfiAcquireLock() at boot time, and simply returns
@param Lock A pointer to the lock to acquire. at runtime.
**/ @param Lock A pointer to the lock to acquire.
VOID
AcquireLockOnlyAtBootTime ( **/
IN EFI_LOCK *Lock VOID
) AcquireLockOnlyAtBootTime (
{ IN EFI_LOCK *Lock
if (!AtRuntime ()) { )
EfiAcquireLock (Lock); {
} if (!AtRuntime ()) {
} EfiAcquireLock (Lock);
}
}
/**
Releases lock only at boot time. Simply returns at runtime.
/**
This is a temperary function which will be removed when Releases lock only at boot time. Simply returns at runtime.
EfiReleaseLock() in UefiLib can handle the call in UEFI
Runtimer driver in RT phase. This is a temperary function which will be removed when
It calls EfiReleaseLock() at boot time and simply returns EfiReleaseLock() in UefiLib can handle the call in UEFI
at runtime. Runtimer driver in RT phase.
It calls EfiReleaseLock() at boot time and simply returns
@param Lock A pointer to the lock to release. at runtime.
**/ @param Lock A pointer to the lock to release.
VOID
ReleaseLockOnlyAtBootTime ( **/
IN EFI_LOCK *Lock VOID
) ReleaseLockOnlyAtBootTime (
{ IN EFI_LOCK *Lock
if (!AtRuntime ()) { )
EfiReleaseLock (Lock); {
} if (!AtRuntime ()) {
} EfiReleaseLock (Lock);
}
/** }
Retrive the Fault Tolerent Write protocol interface.
/**
@param[out] FtwProtocol The interface of Ftw protocol Retrive the Fault Tolerent Write protocol interface.
@retval EFI_SUCCESS The FTW protocol instance was found and returned in FtwProtocol. @param[out] FtwProtocol The interface of Ftw protocol
@retval EFI_NOT_FOUND The FTW protocol instance was not found.
@retval EFI_INVALID_PARAMETER SarProtocol is NULL. @retval EFI_SUCCESS The FTW protocol instance was found and returned in FtwProtocol.
@retval EFI_NOT_FOUND The FTW protocol instance was not found.
**/ @retval EFI_INVALID_PARAMETER SarProtocol is NULL.
EFI_STATUS
GetFtwProtocol ( **/
OUT VOID **FtwProtocol EFI_STATUS
) GetFtwProtocol (
{ OUT VOID **FtwProtocol
EFI_STATUS Status; )
{
// EFI_STATUS Status;
// Locate Fault Tolerent Write protocol
// //
Status = gBS->LocateProtocol ( // Locate Fault Tolerent Write protocol
&gEfiFaultTolerantWriteProtocolGuid, //
NULL, Status = gBS->LocateProtocol (
FtwProtocol &gEfiFaultTolerantWriteProtocolGuid,
); NULL,
return Status; FtwProtocol
} );
return Status;
/** }
Retrive the FVB protocol interface by HANDLE.
/**
@param[in] FvBlockHandle The handle of FVB protocol that provides services for Retrive the FVB protocol interface by HANDLE.
reading, writing, and erasing the target block.
@param[out] FvBlock The interface of FVB protocol @param[in] FvBlockHandle The handle of FVB protocol that provides services for
reading, writing, and erasing the target block.
@retval EFI_SUCCESS The interface information for the specified protocol was returned. @param[out] FvBlock The interface of FVB protocol
@retval EFI_UNSUPPORTED The device does not support the FVB protocol.
@retval EFI_INVALID_PARAMETER FvBlockHandle is not a valid EFI_HANDLE or FvBlock is NULL. @retval EFI_SUCCESS The interface information for the specified protocol was returned.
@retval EFI_UNSUPPORTED The device does not support the FVB protocol.
**/ @retval EFI_INVALID_PARAMETER FvBlockHandle is not a valid EFI_HANDLE or FvBlock is NULL.
EFI_STATUS
GetFvbByHandle ( **/
IN EFI_HANDLE FvBlockHandle, EFI_STATUS
OUT EFI_FIRMWARE_VOLUME_BLOCK_PROTOCOL **FvBlock GetFvbByHandle (
) IN EFI_HANDLE FvBlockHandle,
{ OUT EFI_FIRMWARE_VOLUME_BLOCK_PROTOCOL **FvBlock
// )
// To get the FVB protocol interface on the handle {
// //
return gBS->HandleProtocol ( // To get the FVB protocol interface on the handle
FvBlockHandle, //
&gEfiFirmwareVolumeBlockProtocolGuid, return gBS->HandleProtocol (
(VOID **) FvBlock FvBlockHandle,
); &gEfiFirmwareVolumeBlockProtocolGuid,
} (VOID **) FvBlock
);
}
/**
Function returns an array of handles that support the FVB protocol
in a buffer allocated from pool. /**
Function returns an array of handles that support the FVB protocol
@param[out] NumberHandles The number of handles returned in Buffer. in a buffer allocated from pool.
@param[out] Buffer A pointer to the buffer to return the requested
array of handles that support FVB protocol. @param[out] NumberHandles The number of handles returned in Buffer.
@param[out] Buffer A pointer to the buffer to return the requested
@retval EFI_SUCCESS The array of handles was returned in Buffer, and the number of array of handles that support FVB protocol.
handles in Buffer was returned in NumberHandles.
@retval EFI_NOT_FOUND No FVB handle was found. @retval EFI_SUCCESS The array of handles was returned in Buffer, and the number of
@retval EFI_OUT_OF_RESOURCES There is not enough pool memory to store the matching results. handles in Buffer was returned in NumberHandles.
@retval EFI_INVALID_PARAMETER NumberHandles is NULL or Buffer is NULL. @retval EFI_NOT_FOUND No FVB handle was found.
@retval EFI_OUT_OF_RESOURCES There is not enough pool memory to store the matching results.
**/ @retval EFI_INVALID_PARAMETER NumberHandles is NULL or Buffer is NULL.
EFI_STATUS
GetFvbCountAndBuffer ( **/
OUT UINTN *NumberHandles, EFI_STATUS
OUT EFI_HANDLE **Buffer GetFvbCountAndBuffer (
) OUT UINTN *NumberHandles,
{ OUT EFI_HANDLE **Buffer
EFI_STATUS Status; )
{
// EFI_STATUS Status;
// Locate all handles of Fvb protocol
// //
Status = gBS->LocateHandleBuffer ( // Locate all handles of Fvb protocol
ByProtocol, //
&gEfiFirmwareVolumeBlockProtocolGuid, Status = gBS->LocateHandleBuffer (
NULL, ByProtocol,
NumberHandles, &gEfiFirmwareVolumeBlockProtocolGuid,
Buffer NULL,
); NumberHandles,
return Status; Buffer
} );
return Status;
}
/**
Notification function of EVT_SIGNAL_VIRTUAL_ADDRESS_CHANGE.
/**
This is a notification function registered on EVT_SIGNAL_VIRTUAL_ADDRESS_CHANGE event. Notification function of EVT_SIGNAL_VIRTUAL_ADDRESS_CHANGE.
It convers pointer to new virtual address.
This is a notification function registered on EVT_SIGNAL_VIRTUAL_ADDRESS_CHANGE event.
@param Event Event whose notification function is being invoked. It convers pointer to new virtual address.
@param Context Pointer to the notification function's context.
@param Event Event whose notification function is being invoked.
**/ @param Context Pointer to the notification function's context.
VOID
EFIAPI **/
VariableClassAddressChangeEvent ( VOID
IN EFI_EVENT Event, EFIAPI
IN VOID *Context VariableClassAddressChangeEvent (
) IN EFI_EVENT Event,
{ IN VOID *Context
EfiConvertPointer (0x0, (VOID **) &mVariableModuleGlobal->FvbInstance->GetBlockSize); )
EfiConvertPointer (0x0, (VOID **) &mVariableModuleGlobal->FvbInstance->GetPhysicalAddress); {
EfiConvertPointer (0x0, (VOID **) &mVariableModuleGlobal->FvbInstance->GetAttributes); LIST_ENTRY *Link;
EfiConvertPointer (0x0, (VOID **) &mVariableModuleGlobal->FvbInstance->SetAttributes); VARIABLE_ENTRY *Entry;
EfiConvertPointer (0x0, (VOID **) &mVariableModuleGlobal->FvbInstance->Read); EFI_STATUS Status;
EfiConvertPointer (0x0, (VOID **) &mVariableModuleGlobal->FvbInstance->Write);
EfiConvertPointer (0x0, (VOID **) &mVariableModuleGlobal->FvbInstance->EraseBlocks); EfiConvertPointer (0x0, (VOID **) &mVariableModuleGlobal->FvbInstance->GetBlockSize);
EfiConvertPointer (0x0, (VOID **) &mVariableModuleGlobal->FvbInstance); EfiConvertPointer (0x0, (VOID **) &mVariableModuleGlobal->FvbInstance->GetPhysicalAddress);
EfiConvertPointer (0x0, (VOID **) &mVariableModuleGlobal->PlatformLangCodes); EfiConvertPointer (0x0, (VOID **) &mVariableModuleGlobal->FvbInstance->GetAttributes);
EfiConvertPointer (0x0, (VOID **) &mVariableModuleGlobal->LangCodes); EfiConvertPointer (0x0, (VOID **) &mVariableModuleGlobal->FvbInstance->SetAttributes);
EfiConvertPointer (0x0, (VOID **) &mVariableModuleGlobal->PlatformLang); EfiConvertPointer (0x0, (VOID **) &mVariableModuleGlobal->FvbInstance->Read);
EfiConvertPointer (0x0, (VOID **) &mVariableModuleGlobal->VariableGlobal.NonVolatileVariableBase); EfiConvertPointer (0x0, (VOID **) &mVariableModuleGlobal->FvbInstance->Write);
EfiConvertPointer (0x0, (VOID **) &mVariableModuleGlobal->VariableGlobal.VolatileVariableBase); EfiConvertPointer (0x0, (VOID **) &mVariableModuleGlobal->FvbInstance->EraseBlocks);
EfiConvertPointer (0x0, (VOID **) &mVariableModuleGlobal); EfiConvertPointer (0x0, (VOID **) &mVariableModuleGlobal->FvbInstance);
EfiConvertPointer (0x0, (VOID **) &mHashCtx); EfiConvertPointer (0x0, (VOID **) &mVariableModuleGlobal->PlatformLangCodes);
EfiConvertPointer (0x0, (VOID **) &mStorageArea); EfiConvertPointer (0x0, (VOID **) &mVariableModuleGlobal->LangCodes);
EfiConvertPointer (0x0, (VOID **) &mSerializationRuntimeBuffer); EfiConvertPointer (0x0, (VOID **) &mVariableModuleGlobal->PlatformLang);
EfiConvertPointer (0x0, (VOID **) &mNvVariableCache); EfiConvertPointer (0x0, (VOID **) &mVariableModuleGlobal->VariableGlobal.NonVolatileVariableBase);
} EfiConvertPointer (0x0, (VOID **) &mVariableModuleGlobal->VariableGlobal.VolatileVariableBase);
EfiConvertPointer (0x0, (VOID **) &mVariableModuleGlobal);
EfiConvertPointer (0x0, (VOID **) &mHashCtx);
/** EfiConvertPointer (0x0, (VOID **) &mStorageArea);
Notification function of EVT_GROUP_READY_TO_BOOT event group. EfiConvertPointer (0x0, (VOID **) &mSerializationRuntimeBuffer);
EfiConvertPointer (0x0, (VOID **) &mNvVariableCache);
This is a notification function registered on EVT_GROUP_READY_TO_BOOT event group.
When the Boot Manager is about to load and execute a boot option, it reclaims variable //
storage if free size is below the threshold. // in the list of locked variables, convert the name pointers first
//
@param Event Event whose notification function is being invoked. for ( Link = GetFirstNode (&mLockedVariableList)
@param Context Pointer to the notification function's context. ; !IsNull (&mLockedVariableList, Link)
; Link = GetNextNode (&mLockedVariableList, Link)
**/ ) {
VOID Entry = BASE_CR (Link, VARIABLE_ENTRY, Link);
EFIAPI Status = EfiConvertPointer (0x0, (VOID **) &Entry->Name);
OnReadyToBoot ( ASSERT_EFI_ERROR (Status);
EFI_EVENT Event, }
VOID *Context //
) // second, convert the list itself using UefiRuntimeLib
{ //
// Status = EfiConvertList (0x0, &mLockedVariableList);
// Set the End Of DXE bit in case the EFI_END_OF_DXE_EVENT_GROUP_GUID event is not signaled. ASSERT_EFI_ERROR (Status);
// }
mEndOfDxe = TRUE;
ReclaimForOS ();
if (FeaturePcdGet (PcdVariableCollectStatistics)) { /**
gBS->InstallConfigurationTable (&gEfiAuthenticatedVariableGuid, gVariableInfo); Notification function of EVT_GROUP_READY_TO_BOOT event group.
}
} This is a notification function registered on EVT_GROUP_READY_TO_BOOT event group.
When the Boot Manager is about to load and execute a boot option, it reclaims variable
/** storage if free size is below the threshold.
Notification function of EFI_END_OF_DXE_EVENT_GROUP_GUID event group.
@param Event Event whose notification function is being invoked.
This is a notification function registered on EFI_END_OF_DXE_EVENT_GROUP_GUID event group. @param Context Pointer to the notification function's context.
@param Event Event whose notification function is being invoked. **/
@param Context Pointer to the notification function's context. VOID
EFIAPI
**/ OnReadyToBoot (
VOID EFI_EVENT Event,
EFIAPI VOID *Context
OnEndOfDxe ( )
EFI_EVENT Event, {
VOID *Context //
) // Set the End Of DXE bit in case the EFI_END_OF_DXE_EVENT_GROUP_GUID event is not signaled.
{ //
mEndOfDxe = TRUE; mEndOfDxe = TRUE;
} ReclaimForOS ();
if (FeaturePcdGet (PcdVariableCollectStatistics)) {
/** gBS->InstallConfigurationTable (&gEfiAuthenticatedVariableGuid, gVariableInfo);
Fault Tolerant Write protocol notification event handler. }
}
Non-Volatile variable write may needs FTW protocol to reclaim when
writting variable. /**
Notification function of EFI_END_OF_DXE_EVENT_GROUP_GUID event group.
@param[in] Event Event whose notification function is being invoked.
@param[in] Context Pointer to the notification function's context. This is a notification function registered on EFI_END_OF_DXE_EVENT_GROUP_GUID event group.
**/ @param Event Event whose notification function is being invoked.
VOID @param Context Pointer to the notification function's context.
EFIAPI
FtwNotificationEvent ( **/
IN EFI_EVENT Event, VOID
IN VOID *Context EFIAPI
) OnEndOfDxe (
{ EFI_EVENT Event,
EFI_STATUS Status; VOID *Context
EFI_FIRMWARE_VOLUME_BLOCK_PROTOCOL *FvbProtocol; )
EFI_FAULT_TOLERANT_WRITE_PROTOCOL *FtwProtocol; {
EFI_PHYSICAL_ADDRESS NvStorageVariableBase; mEndOfDxe = TRUE;
EFI_GCD_MEMORY_SPACE_DESCRIPTOR GcdDescriptor; }
EFI_PHYSICAL_ADDRESS BaseAddress;
UINT64 Length; /**
EFI_PHYSICAL_ADDRESS VariableStoreBase; Fault Tolerant Write protocol notification event handler.
UINT64 VariableStoreLength;
Non-Volatile variable write may needs FTW protocol to reclaim when
// writting variable.
// Ensure FTW protocol is installed.
// @param[in] Event Event whose notification function is being invoked.
Status = GetFtwProtocol ((VOID**) &FtwProtocol); @param[in] Context Pointer to the notification function's context.
if (EFI_ERROR (Status)) {
return ; **/
} VOID
EFIAPI
// FtwNotificationEvent (
// Find the proper FVB protocol for variable. IN EFI_EVENT Event,
// IN VOID *Context
NvStorageVariableBase = (EFI_PHYSICAL_ADDRESS) PcdGet64 (PcdFlashNvStorageVariableBase64); )
if (NvStorageVariableBase == 0) { {
NvStorageVariableBase = (EFI_PHYSICAL_ADDRESS) PcdGet32 (PcdFlashNvStorageVariableBase); EFI_STATUS Status;
} EFI_FIRMWARE_VOLUME_BLOCK_PROTOCOL *FvbProtocol;
Status = GetFvbInfoByAddress (NvStorageVariableBase, NULL, &FvbProtocol); EFI_FAULT_TOLERANT_WRITE_PROTOCOL *FtwProtocol;
if (EFI_ERROR (Status)) { EFI_PHYSICAL_ADDRESS NvStorageVariableBase;
return ; EFI_GCD_MEMORY_SPACE_DESCRIPTOR GcdDescriptor;
} EFI_PHYSICAL_ADDRESS BaseAddress;
mVariableModuleGlobal->FvbInstance = FvbProtocol; UINT64 Length;
EFI_PHYSICAL_ADDRESS VariableStoreBase;
// UINT64 VariableStoreLength;
// Mark the variable storage region of the FLASH as RUNTIME.
// //
VariableStoreBase = mVariableModuleGlobal->VariableGlobal.NonVolatileVariableBase; // Ensure FTW protocol is installed.
VariableStoreLength = ((VARIABLE_STORE_HEADER *)(UINTN)VariableStoreBase)->Size; //
BaseAddress = VariableStoreBase & (~EFI_PAGE_MASK); Status = GetFtwProtocol ((VOID**) &FtwProtocol);
Length = VariableStoreLength + (VariableStoreBase - BaseAddress); if (EFI_ERROR (Status)) {
Length = (Length + EFI_PAGE_SIZE - 1) & (~EFI_PAGE_MASK); return ;
}
Status = gDS->GetMemorySpaceDescriptor (BaseAddress, &GcdDescriptor);
if (EFI_ERROR (Status)) { //
DEBUG ((DEBUG_WARN, "Variable driver failed to add EFI_MEMORY_RUNTIME attribute to Flash.\n")); // Find the proper FVB protocol for variable.
} else { //
Status = gDS->SetMemorySpaceAttributes ( NvStorageVariableBase = (EFI_PHYSICAL_ADDRESS) PcdGet64 (PcdFlashNvStorageVariableBase64);
BaseAddress, if (NvStorageVariableBase == 0) {
Length, NvStorageVariableBase = (EFI_PHYSICAL_ADDRESS) PcdGet32 (PcdFlashNvStorageVariableBase);
GcdDescriptor.Attributes | EFI_MEMORY_RUNTIME }
); Status = GetFvbInfoByAddress (NvStorageVariableBase, NULL, &FvbProtocol);
if (EFI_ERROR (Status)) { if (EFI_ERROR (Status)) {
DEBUG ((DEBUG_WARN, "Variable driver failed to add EFI_MEMORY_RUNTIME attribute to Flash.\n")); return ;
} }
} mVariableModuleGlobal->FvbInstance = FvbProtocol;
Status = VariableWriteServiceInitialize (); //
ASSERT_EFI_ERROR (Status); // Mark the variable storage region of the FLASH as RUNTIME.
//
// VariableStoreBase = mVariableModuleGlobal->VariableGlobal.NonVolatileVariableBase;
// Install the Variable Write Architectural protocol. VariableStoreLength = ((VARIABLE_STORE_HEADER *)(UINTN)VariableStoreBase)->Size;
// BaseAddress = VariableStoreBase & (~EFI_PAGE_MASK);
Status = gBS->InstallProtocolInterface ( Length = VariableStoreLength + (VariableStoreBase - BaseAddress);
&mHandle, Length = (Length + EFI_PAGE_SIZE - 1) & (~EFI_PAGE_MASK);
&gEfiVariableWriteArchProtocolGuid,
EFI_NATIVE_INTERFACE, Status = gDS->GetMemorySpaceDescriptor (BaseAddress, &GcdDescriptor);
NULL if (EFI_ERROR (Status)) {
); DEBUG ((DEBUG_WARN, "Variable driver failed to add EFI_MEMORY_RUNTIME attribute to Flash.\n"));
ASSERT_EFI_ERROR (Status); } else {
Status = gDS->SetMemorySpaceAttributes (
// BaseAddress,
// Close the notify event to avoid install gEfiVariableWriteArchProtocolGuid again. Length,
// GcdDescriptor.Attributes | EFI_MEMORY_RUNTIME
gBS->CloseEvent (Event); );
if (EFI_ERROR (Status)) {
} DEBUG ((DEBUG_WARN, "Variable driver failed to add EFI_MEMORY_RUNTIME attribute to Flash.\n"));
}
}
/**
Variable Driver main entry point. The Variable driver places the 4 EFI Status = VariableWriteServiceInitialize ();
runtime services in the EFI System Table and installs arch protocols ASSERT_EFI_ERROR (Status);
for variable read and write services being available. It also registers
a notification function for an EVT_SIGNAL_VIRTUAL_ADDRESS_CHANGE event. //
// Install the Variable Write Architectural protocol.
@param[in] ImageHandle The firmware allocated handle for the EFI image. //
@param[in] SystemTable A pointer to the EFI System Table. Status = gBS->InstallProtocolInterface (
&mHandle,
@retval EFI_SUCCESS Variable service successfully initialized. &gEfiVariableWriteArchProtocolGuid,
EFI_NATIVE_INTERFACE,
**/ NULL
EFI_STATUS );
EFIAPI ASSERT_EFI_ERROR (Status);
VariableServiceInitialize (
IN EFI_HANDLE ImageHandle, //
IN EFI_SYSTEM_TABLE *SystemTable // Close the notify event to avoid install gEfiVariableWriteArchProtocolGuid again.
) //
{ gBS->CloseEvent (Event);
EFI_STATUS Status;
EFI_EVENT ReadyToBootEvent; }
EFI_EVENT EndOfDxeEvent;
Status = VariableCommonInitialize (); /**
ASSERT_EFI_ERROR (Status); Variable Driver main entry point. The Variable driver places the 4 EFI
runtime services in the EFI System Table and installs arch protocols
Status = gBS->InstallMultipleProtocolInterfaces ( for variable read and write services being available. It also registers
&mHandle, a notification function for an EVT_SIGNAL_VIRTUAL_ADDRESS_CHANGE event.
&gEdkiiVariableLockProtocolGuid,
&mVariableLock, @param[in] ImageHandle The firmware allocated handle for the EFI image.
NULL @param[in] SystemTable A pointer to the EFI System Table.
);
ASSERT_EFI_ERROR (Status); @retval EFI_SUCCESS Variable service successfully initialized.
SystemTable->RuntimeServices->GetVariable = VariableServiceGetVariable; **/
SystemTable->RuntimeServices->GetNextVariableName = VariableServiceGetNextVariableName; EFI_STATUS
SystemTable->RuntimeServices->SetVariable = VariableServiceSetVariable; EFIAPI
SystemTable->RuntimeServices->QueryVariableInfo = VariableServiceQueryVariableInfo; VariableServiceInitialize (
IN EFI_HANDLE ImageHandle,
// IN EFI_SYSTEM_TABLE *SystemTable
// Now install the Variable Runtime Architectural protocol on a new handle. )
// {
Status = gBS->InstallProtocolInterface ( EFI_STATUS Status;
&mHandle, EFI_EVENT ReadyToBootEvent;
&gEfiVariableArchProtocolGuid, EFI_EVENT EndOfDxeEvent;
EFI_NATIVE_INTERFACE,
NULL Status = VariableCommonInitialize ();
); ASSERT_EFI_ERROR (Status);
ASSERT_EFI_ERROR (Status);
Status = gBS->InstallMultipleProtocolInterfaces (
// &mHandle,
// Register FtwNotificationEvent () notify function. &gEdkiiVariableLockProtocolGuid,
// &mVariableLock,
EfiCreateProtocolNotifyEvent ( NULL
&gEfiFaultTolerantWriteProtocolGuid, );
TPL_CALLBACK, ASSERT_EFI_ERROR (Status);
FtwNotificationEvent,
(VOID *)SystemTable, SystemTable->RuntimeServices->GetVariable = VariableServiceGetVariable;
&mFtwRegistration SystemTable->RuntimeServices->GetNextVariableName = VariableServiceGetNextVariableName;
); SystemTable->RuntimeServices->SetVariable = VariableServiceSetVariable;
SystemTable->RuntimeServices->QueryVariableInfo = VariableServiceQueryVariableInfo;
Status = gBS->CreateEventEx (
EVT_NOTIFY_SIGNAL, //
TPL_NOTIFY, // Now install the Variable Runtime Architectural protocol on a new handle.
VariableClassAddressChangeEvent, //
NULL, Status = gBS->InstallProtocolInterface (
&gEfiEventVirtualAddressChangeGuid, &mHandle,
&mVirtualAddressChangeEvent &gEfiVariableArchProtocolGuid,
); EFI_NATIVE_INTERFACE,
ASSERT_EFI_ERROR (Status); NULL
);
// ASSERT_EFI_ERROR (Status);
// Register the event handling function to reclaim variable for OS usage.
// //
Status = EfiCreateEventReadyToBootEx ( // Register FtwNotificationEvent () notify function.
TPL_NOTIFY, //
OnReadyToBoot, EfiCreateProtocolNotifyEvent (
NULL, &gEfiFaultTolerantWriteProtocolGuid,
&ReadyToBootEvent TPL_CALLBACK,
); FtwNotificationEvent,
ASSERT_EFI_ERROR (Status); (VOID *)SystemTable,
&mFtwRegistration
// );
// Register the event handling function to set the End Of DXE flag.
// Status = gBS->CreateEventEx (
Status = gBS->CreateEventEx ( EVT_NOTIFY_SIGNAL,
EVT_NOTIFY_SIGNAL, TPL_NOTIFY,
TPL_NOTIFY, VariableClassAddressChangeEvent,
OnEndOfDxe, NULL,
NULL, &gEfiEventVirtualAddressChangeGuid,
&gEfiEndOfDxeEventGroupGuid, &mVirtualAddressChangeEvent
&EndOfDxeEvent );
); ASSERT_EFI_ERROR (Status);
ASSERT_EFI_ERROR (Status);
//
return EFI_SUCCESS; // Register the event handling function to reclaim variable for OS usage.
} //
Status = EfiCreateEventReadyToBootEx (
TPL_NOTIFY,
OnReadyToBoot,
NULL,
&ReadyToBootEvent
);
ASSERT_EFI_ERROR (Status);
//
// Register the event handling function to set the End Of DXE flag.
//
Status = gBS->CreateEventEx (
EVT_NOTIFY_SIGNAL,
TPL_NOTIFY,
OnEndOfDxe,
NULL,
&gEfiEndOfDxeEventGroupGuid,
&EndOfDxeEvent
);
ASSERT_EFI_ERROR (Status);
return EFI_SUCCESS;
}