UefiCpuPkg/PiSmmCpuDxeSmm: Add logic to support semaphore type.

V4 changes:
1. Serial console log for different threads when program register table.
2. Check the AcpiCpuData before use it to avoid potential ASSERT.

V3 changes:
1. Use global variable instead of internal function to return string for register type
   and dependence type.
2. Add comments for some complicated logic.

V1 changes:
Because this driver needs to set MSRs saved in normal boot phase, sync
semaphore logic from RegisterCpuFeaturesLib code which used for normal boot phase.

Detail see below change for RegisterCpuFeaturesLib:
  UefiCpuPkg/RegisterCpuFeaturesLib: Add logic to support semaphore type.

Cc: Ruiyu Ni <ruiyu.ni@intel.com>
Cc: Laszlo Ersek <lersek@redhat.com>
Contributed-under: TianoCore Contribution Agreement 1.1
Signed-off-by: Eric Dong <eric.dong@intel.com>
Reviewed-by: Ruiyu Ni <ruiyu.ni@intel.com>
Acked-by: Laszlo Ersek <lersek@redhat.com>
Regression-tested-by: Laszlo Ersek <lersek@redhat.com>
This commit is contained in:
Eric Dong 2018-10-15 10:34:59 +08:00
parent b3c71b472d
commit 9332439058
3 changed files with 277 additions and 144 deletions

View File

@ -38,9 +38,13 @@ typedef struct {
} MP_ASSEMBLY_ADDRESS_MAP; } MP_ASSEMBLY_ADDRESS_MAP;
// //
// Spin lock used to serialize MemoryMapped operation // Flags used when program the register.
// //
SPIN_LOCK *mMemoryMappedLock = NULL; typedef struct {
volatile UINTN ConsoleLogLock; // Spinlock used to control console.
volatile UINTN MemoryMappedLock; // Spinlock used to program mmio
volatile UINT32 *SemaphoreCount; // Semaphore used to program semaphore.
} PROGRAM_CPU_REGISTER_FLAGS;
// //
// Signal that SMM BASE relocation is complete. // Signal that SMM BASE relocation is complete.
@ -62,13 +66,11 @@ AsmGetAddressMap (
#define LEGACY_REGION_SIZE (2 * 0x1000) #define LEGACY_REGION_SIZE (2 * 0x1000)
#define LEGACY_REGION_BASE (0xA0000 - LEGACY_REGION_SIZE) #define LEGACY_REGION_BASE (0xA0000 - LEGACY_REGION_SIZE)
PROGRAM_CPU_REGISTER_FLAGS mCpuFlags;
ACPI_CPU_DATA mAcpiCpuData; ACPI_CPU_DATA mAcpiCpuData;
volatile UINT32 mNumberToFinish; volatile UINT32 mNumberToFinish;
MP_CPU_EXCHANGE_INFO *mExchangeInfo; MP_CPU_EXCHANGE_INFO *mExchangeInfo;
BOOLEAN mRestoreSmmConfigurationInS3 = FALSE; BOOLEAN mRestoreSmmConfigurationInS3 = FALSE;
MP_MSR_LOCK *mMsrSpinLocks = NULL;
UINTN mMsrSpinLockCount;
UINTN mMsrCount = 0;
// //
// S3 boot flag // S3 boot flag
@ -91,88 +93,7 @@ UINT8 mApHltLoopCodeTemplate[] = {
0xEB, 0xFC // jmp $-2 0xEB, 0xFC // jmp $-2
}; };
/** CHAR16 *mRegisterTypeStr[] = {L"MSR", L"CR", L"MMIO", L"CACHE", L"SEMAP", L"INVALID" };
Get MSR spin lock by MSR index.
@param MsrIndex MSR index value.
@return Pointer to MSR spin lock.
**/
SPIN_LOCK *
GetMsrSpinLockByIndex (
IN UINT32 MsrIndex
)
{
UINTN Index;
for (Index = 0; Index < mMsrCount; Index++) {
if (MsrIndex == mMsrSpinLocks[Index].MsrIndex) {
return mMsrSpinLocks[Index].SpinLock;
}
}
return NULL;
}
/**
Initialize MSR spin lock by MSR index.
@param MsrIndex MSR index value.
**/
VOID
InitMsrSpinLockByIndex (
IN UINT32 MsrIndex
)
{
UINTN MsrSpinLockCount;
UINTN NewMsrSpinLockCount;
UINTN Index;
UINTN AddedSize;
if (mMsrSpinLocks == NULL) {
MsrSpinLockCount = mSmmCpuSemaphores.SemaphoreMsr.AvailableCounter;
mMsrSpinLocks = (MP_MSR_LOCK *) AllocatePool (sizeof (MP_MSR_LOCK) * MsrSpinLockCount);
ASSERT (mMsrSpinLocks != NULL);
for (Index = 0; Index < MsrSpinLockCount; Index++) {
mMsrSpinLocks[Index].SpinLock =
(SPIN_LOCK *)((UINTN)mSmmCpuSemaphores.SemaphoreMsr.Msr + Index * mSemaphoreSize);
mMsrSpinLocks[Index].MsrIndex = (UINT32)-1;
}
mMsrSpinLockCount = MsrSpinLockCount;
mSmmCpuSemaphores.SemaphoreMsr.AvailableCounter = 0;
}
if (GetMsrSpinLockByIndex (MsrIndex) == NULL) {
//
// Initialize spin lock for MSR programming
//
mMsrSpinLocks[mMsrCount].MsrIndex = MsrIndex;
InitializeSpinLock (mMsrSpinLocks[mMsrCount].SpinLock);
mMsrCount ++;
if (mMsrCount == mMsrSpinLockCount) {
//
// If MSR spin lock buffer is full, enlarge it
//
AddedSize = SIZE_4KB;
mSmmCpuSemaphores.SemaphoreMsr.Msr =
AllocatePages (EFI_SIZE_TO_PAGES(AddedSize));
ASSERT (mSmmCpuSemaphores.SemaphoreMsr.Msr != NULL);
NewMsrSpinLockCount = mMsrSpinLockCount + AddedSize / mSemaphoreSize;
mMsrSpinLocks = ReallocatePool (
sizeof (MP_MSR_LOCK) * mMsrSpinLockCount,
sizeof (MP_MSR_LOCK) * NewMsrSpinLockCount,
mMsrSpinLocks
);
ASSERT (mMsrSpinLocks != NULL);
mMsrSpinLockCount = NewMsrSpinLockCount;
for (Index = mMsrCount; Index < mMsrSpinLockCount; Index++) {
mMsrSpinLocks[Index].SpinLock =
(SPIN_LOCK *)((UINTN)mSmmCpuSemaphores.SemaphoreMsr.Msr +
(Index - mMsrCount) * mSemaphoreSize);
mMsrSpinLocks[Index].MsrIndex = (UINT32)-1;
}
}
}
}
/** /**
Sync up the MTRR values for all processors. Sync up the MTRR values for all processors.
@ -204,42 +125,103 @@ Returns:
} }
/** /**
Programs registers for the calling processor. Increment semaphore by 1.
This function programs registers for the calling processor. @param Sem IN: 32-bit unsigned integer
@param RegisterTables Pointer to register table of the running processor.
@param RegisterTableCount Register table count.
**/ **/
VOID VOID
SetProcessorRegister ( S3ReleaseSemaphore (
IN CPU_REGISTER_TABLE *RegisterTables, IN OUT volatile UINT32 *Sem
IN UINTN RegisterTableCount )
{
InterlockedIncrement (Sem);
}
/**
Decrement the semaphore by 1 if it is not zero.
Performs an atomic decrement operation for semaphore.
The compare exchange operation must be performed using
MP safe mechanisms.
@param Sem IN: 32-bit unsigned integer
**/
VOID
S3WaitForSemaphore (
IN OUT volatile UINT32 *Sem
)
{
UINT32 Value;
do {
Value = *Sem;
} while (Value == 0 ||
InterlockedCompareExchange32 (
Sem,
Value,
Value - 1
) != Value);
}
/**
Initialize the CPU registers from a register table.
@param[in] RegisterTable The register table for this AP.
@param[in] ApLocation AP location info for this ap.
@param[in] CpuStatus CPU status info for this CPU.
@param[in] CpuFlags Flags data structure used when program the register.
@note This service could be called by BSP/APs.
**/
VOID
ProgramProcessorRegister (
IN CPU_REGISTER_TABLE *RegisterTable,
IN EFI_CPU_PHYSICAL_LOCATION *ApLocation,
IN CPU_STATUS_INFORMATION *CpuStatus,
IN PROGRAM_CPU_REGISTER_FLAGS *CpuFlags
) )
{ {
CPU_REGISTER_TABLE_ENTRY *RegisterTableEntry; CPU_REGISTER_TABLE_ENTRY *RegisterTableEntry;
UINTN Index; UINTN Index;
UINTN Value; UINTN Value;
SPIN_LOCK *MsrSpinLock; CPU_REGISTER_TABLE_ENTRY *RegisterTableEntryHead;
UINT32 InitApicId; volatile UINT32 *SemaphorePtr;
CPU_REGISTER_TABLE *RegisterTable; UINT32 FirstThread;
UINT32 PackageThreadsCount;
InitApicId = GetInitialApicId (); UINT32 CurrentThread;
RegisterTable = NULL; UINTN ProcessorIndex;
for (Index = 0; Index < RegisterTableCount; Index++) { UINTN ThreadIndex;
if (RegisterTables[Index].InitialApicId == InitApicId) { UINTN ValidThreadCount;
RegisterTable = &RegisterTables[Index]; UINT32 *ValidCoreCountPerPackage;
break;
}
}
ASSERT (RegisterTable != NULL);
// //
// Traverse Register Table of this logical processor // Traverse Register Table of this logical processor
// //
RegisterTableEntry = (CPU_REGISTER_TABLE_ENTRY *) (UINTN) RegisterTable->RegisterTableEntry; RegisterTableEntryHead = (CPU_REGISTER_TABLE_ENTRY *) (UINTN) RegisterTable->RegisterTableEntry;
for (Index = 0; Index < RegisterTable->TableLength; Index++, RegisterTableEntry++) {
for (Index = 0; Index < RegisterTable->TableLength; Index++) {
RegisterTableEntry = &RegisterTableEntryHead[Index];
DEBUG_CODE_BEGIN ();
if (ApLocation != NULL) {
AcquireSpinLock (&CpuFlags->ConsoleLogLock);
ThreadIndex = ApLocation->Package * CpuStatus->MaxCoreCount * CpuStatus->MaxThreadCount +
ApLocation->Core * CpuStatus->MaxThreadCount +
ApLocation->Thread;
DEBUG ((
DEBUG_INFO,
"Processor = %lu, Entry Index %lu, Type = %s!\n",
(UINT64)ThreadIndex,
(UINT64)Index,
mRegisterTypeStr[MIN ((REGISTER_TYPE)RegisterTableEntry->RegisterType, InvalidReg)]
));
ReleaseSpinLock (&CpuFlags->ConsoleLogLock);
}
DEBUG_CODE_END ();
// //
// Check the type of specified register // Check the type of specified register
// //
@ -310,12 +292,6 @@ SetProcessorRegister (
RegisterTableEntry->Value RegisterTableEntry->Value
); );
} else { } else {
//
// Get lock to avoid Package/Core scope MSRs programming issue in parallel execution mode
// to make sure MSR read/write operation is atomic.
//
MsrSpinLock = GetMsrSpinLockByIndex (RegisterTableEntry->Index);
AcquireSpinLock (MsrSpinLock);
// //
// Set the bit section according to bit start and length // Set the bit section according to bit start and length
// //
@ -325,21 +301,20 @@ SetProcessorRegister (
RegisterTableEntry->ValidBitStart + RegisterTableEntry->ValidBitLength - 1, RegisterTableEntry->ValidBitStart + RegisterTableEntry->ValidBitLength - 1,
RegisterTableEntry->Value RegisterTableEntry->Value
); );
ReleaseSpinLock (MsrSpinLock);
} }
break; break;
// //
// MemoryMapped operations // MemoryMapped operations
// //
case MemoryMapped: case MemoryMapped:
AcquireSpinLock (mMemoryMappedLock); AcquireSpinLock (&CpuFlags->MemoryMappedLock);
MmioBitFieldWrite32 ( MmioBitFieldWrite32 (
(UINTN)(RegisterTableEntry->Index | LShiftU64 (RegisterTableEntry->HighIndex, 32)), (UINTN)(RegisterTableEntry->Index | LShiftU64 (RegisterTableEntry->HighIndex, 32)),
RegisterTableEntry->ValidBitStart, RegisterTableEntry->ValidBitStart,
RegisterTableEntry->ValidBitStart + RegisterTableEntry->ValidBitLength - 1, RegisterTableEntry->ValidBitStart + RegisterTableEntry->ValidBitLength - 1,
(UINT32)RegisterTableEntry->Value (UINT32)RegisterTableEntry->Value
); );
ReleaseSpinLock (mMemoryMappedLock); ReleaseSpinLock (&CpuFlags->MemoryMappedLock);
break; break;
// //
// Enable or disable cache // Enable or disable cache
@ -355,12 +330,153 @@ SetProcessorRegister (
} }
break; break;
case Semaphore:
// Semaphore works logic like below:
//
// V(x) = LibReleaseSemaphore (Semaphore[FirstThread + x]);
// P(x) = LibWaitForSemaphore (Semaphore[FirstThread + x]);
//
// All threads (T0...Tn) waits in P() line and continues running
// together.
//
//
// T0 T1 ... Tn
//
// V(0...n) V(0...n) ... V(0...n)
// n * P(0) n * P(1) ... n * P(n)
//
ASSERT (
(ApLocation != NULL) &&
(CpuStatus->ValidCoreCountPerPackage != 0) &&
(CpuFlags->SemaphoreCount) != NULL
);
SemaphorePtr = CpuFlags->SemaphoreCount;
switch (RegisterTableEntry->Value) {
case CoreDepType:
//
// Get Offset info for the first thread in the core which current thread belongs to.
//
FirstThread = (ApLocation->Package * CpuStatus->MaxCoreCount + ApLocation->Core) * CpuStatus->MaxThreadCount;
CurrentThread = FirstThread + ApLocation->Thread;
//
// First Notify all threads in current Core that this thread has ready.
//
for (ProcessorIndex = 0; ProcessorIndex < CpuStatus->MaxThreadCount; ProcessorIndex ++) {
S3ReleaseSemaphore (&SemaphorePtr[FirstThread + ProcessorIndex]);
}
//
// Second, check whether all valid threads in current core have ready.
//
for (ProcessorIndex = 0; ProcessorIndex < CpuStatus->MaxThreadCount; ProcessorIndex ++) {
S3WaitForSemaphore (&SemaphorePtr[CurrentThread]);
}
break;
case PackageDepType:
ValidCoreCountPerPackage = (UINT32 *)(UINTN)CpuStatus->ValidCoreCountPerPackage;
//
// Get Offset info for the first thread in the package which current thread belongs to.
//
FirstThread = ApLocation->Package * CpuStatus->MaxCoreCount * CpuStatus->MaxThreadCount;
//
// Get the possible threads count for current package.
//
PackageThreadsCount = CpuStatus->MaxThreadCount * CpuStatus->MaxCoreCount;
CurrentThread = FirstThread + CpuStatus->MaxThreadCount * ApLocation->Core + ApLocation->Thread;
//
// Get the valid thread count for current package.
//
ValidThreadCount = CpuStatus->MaxThreadCount * ValidCoreCountPerPackage[ApLocation->Package];
//
// Different packages may have different valid cores in them. If driver maintail clearly
// cores number in different packages, the logic will be much complicated.
// Here driver just simply records the max core number in all packages and use it as expect
// core number for all packages.
// In below two steps logic, first current thread will Release semaphore for each thread
// in current package. Maybe some threads are not valid in this package, but driver don't
// care. Second, driver will let current thread wait semaphore for all valid threads in
// current package. Because only the valid threads will do release semaphore for this
// thread, driver here only need to wait the valid thread count.
//
//
// First Notify all threads in current package that this thread has ready.
//
for (ProcessorIndex = 0; ProcessorIndex < PackageThreadsCount ; ProcessorIndex ++) {
S3ReleaseSemaphore (&SemaphorePtr[FirstThread + ProcessorIndex]);
}
//
// Second, check whether all valid threads in current package have ready.
//
for (ProcessorIndex = 0; ProcessorIndex < ValidThreadCount; ProcessorIndex ++) {
S3WaitForSemaphore (&SemaphorePtr[CurrentThread]);
}
break;
default:
break;
}
break;
default: default:
break; break;
} }
} }
} }
/**
Set Processor register for one AP.
@param PreSmmRegisterTable Use pre Smm register table or register table.
**/
VOID
SetRegister (
IN BOOLEAN PreSmmRegisterTable
)
{
CPU_REGISTER_TABLE *RegisterTable;
CPU_REGISTER_TABLE *RegisterTables;
UINT32 InitApicId;
UINTN ProcIndex;
UINTN Index;
if (PreSmmRegisterTable) {
RegisterTables = (CPU_REGISTER_TABLE *)(UINTN)mAcpiCpuData.PreSmmInitRegisterTable;
} else {
RegisterTables = (CPU_REGISTER_TABLE *)(UINTN)mAcpiCpuData.RegisterTable;
}
InitApicId = GetInitialApicId ();
RegisterTable = NULL;
for (Index = 0; Index < mAcpiCpuData.NumberOfCpus; Index++) {
if (RegisterTables[Index].InitialApicId == InitApicId) {
RegisterTable = &RegisterTables[Index];
ProcIndex = Index;
break;
}
}
ASSERT (RegisterTable != NULL);
if (mAcpiCpuData.ApLocation != 0) {
ProgramProcessorRegister (
RegisterTable,
(EFI_CPU_PHYSICAL_LOCATION *)(UINTN)mAcpiCpuData.ApLocation + ProcIndex,
&mAcpiCpuData.CpuStatus,
&mCpuFlags
);
} else {
ProgramProcessorRegister (
RegisterTable,
NULL,
&mAcpiCpuData.CpuStatus,
&mCpuFlags
);
}
}
/** /**
AP initialization before then after SMBASE relocation in the S3 boot path. AP initialization before then after SMBASE relocation in the S3 boot path.
**/ **/
@ -374,7 +490,7 @@ InitializeAp (
LoadMtrrData (mAcpiCpuData.MtrrTable); LoadMtrrData (mAcpiCpuData.MtrrTable);
SetProcessorRegister ((CPU_REGISTER_TABLE *) (UINTN) mAcpiCpuData.PreSmmInitRegisterTable, mAcpiCpuData.NumberOfCpus); SetRegister (TRUE);
// //
// Count down the number with lock mechanism. // Count down the number with lock mechanism.
@ -391,7 +507,7 @@ InitializeAp (
ProgramVirtualWireMode (); ProgramVirtualWireMode ();
DisableLvtInterrupts (); DisableLvtInterrupts ();
SetProcessorRegister ((CPU_REGISTER_TABLE *) (UINTN) mAcpiCpuData.RegisterTable, mAcpiCpuData.NumberOfCpus); SetRegister (FALSE);
// //
// Place AP into the safe code, count down the number with lock mechanism in the safe code. // Place AP into the safe code, count down the number with lock mechanism in the safe code.
@ -466,7 +582,7 @@ InitializeCpuBeforeRebase (
{ {
LoadMtrrData (mAcpiCpuData.MtrrTable); LoadMtrrData (mAcpiCpuData.MtrrTable);
SetProcessorRegister ((CPU_REGISTER_TABLE *) (UINTN) mAcpiCpuData.PreSmmInitRegisterTable, mAcpiCpuData.NumberOfCpus); SetRegister (TRUE);
ProgramVirtualWireMode (); ProgramVirtualWireMode ();
@ -502,15 +618,24 @@ InitializeCpuAfterRebase (
VOID VOID
) )
{ {
SetProcessorRegister ((CPU_REGISTER_TABLE *) (UINTN) mAcpiCpuData.RegisterTable, mAcpiCpuData.NumberOfCpus);
mNumberToFinish = mAcpiCpuData.NumberOfCpus - 1; mNumberToFinish = mAcpiCpuData.NumberOfCpus - 1;
// //
// Signal that SMM base relocation is complete and to continue initialization. // Signal that SMM base relocation is complete and to continue initialization for all APs.
// //
mInitApsAfterSmmBaseReloc = TRUE; mInitApsAfterSmmBaseReloc = TRUE;
//
// Must begin set register after all APs have continue their initialization.
// This is a requirement to support semaphore mechanism in register table.
// Because if semaphore's dependence type is package type, semaphore will wait
// for all Aps in one package finishing their tasks before set next register
// for all APs. If the Aps not begin its task during BSP doing its task, the
// BSP thread will hang because it is waiting for other Aps in the same
// package finishing their task.
//
SetRegister (FALSE);
while (mNumberToFinish > 0) { while (mNumberToFinish > 0) {
CpuPause (); CpuPause ();
} }
@ -574,8 +699,6 @@ SmmRestoreCpu (
mSmmS3Flag = TRUE; mSmmS3Flag = TRUE;
InitializeSpinLock (mMemoryMappedLock);
// //
// See if there is enough context to resume PEI Phase // See if there is enough context to resume PEI Phase
// //
@ -790,7 +913,6 @@ CopyRegisterTable (
) )
{ {
UINTN Index; UINTN Index;
UINTN Index1;
CPU_REGISTER_TABLE_ENTRY *RegisterTableEntry; CPU_REGISTER_TABLE_ENTRY *RegisterTableEntry;
CopyMem (DestinationRegisterTableList, SourceRegisterTableList, NumberOfCpus * sizeof (CPU_REGISTER_TABLE)); CopyMem (DestinationRegisterTableList, SourceRegisterTableList, NumberOfCpus * sizeof (CPU_REGISTER_TABLE));
@ -802,17 +924,6 @@ CopyRegisterTable (
); );
ASSERT (RegisterTableEntry != NULL); ASSERT (RegisterTableEntry != NULL);
DestinationRegisterTableList[Index].RegisterTableEntry = (EFI_PHYSICAL_ADDRESS)(UINTN)RegisterTableEntry; DestinationRegisterTableList[Index].RegisterTableEntry = (EFI_PHYSICAL_ADDRESS)(UINTN)RegisterTableEntry;
//
// Go though all MSRs in register table to initialize MSR spin lock
//
for (Index1 = 0; Index1 < DestinationRegisterTableList[Index].TableLength; Index1++, RegisterTableEntry++) {
if ((RegisterTableEntry->RegisterType == Msr) && (RegisterTableEntry->ValidBitLength < 64)) {
//
// Initialize MSR spin lock only for those MSRs need bit field writing
//
InitMsrSpinLockByIndex (RegisterTableEntry->Index);
}
}
} }
} }
} }
@ -832,6 +943,7 @@ GetAcpiCpuData (
VOID *GdtForAp; VOID *GdtForAp;
VOID *IdtForAp; VOID *IdtForAp;
VOID *MachineCheckHandlerForAp; VOID *MachineCheckHandlerForAp;
CPU_STATUS_INFORMATION *CpuStatus;
if (!mAcpiS3Enable) { if (!mAcpiS3Enable) {
return; return;
@ -906,6 +1018,31 @@ GetAcpiCpuData (
Gdtr->Base = (UINTN)GdtForAp; Gdtr->Base = (UINTN)GdtForAp;
Idtr->Base = (UINTN)IdtForAp; Idtr->Base = (UINTN)IdtForAp;
mAcpiCpuData.ApMachineCheckHandlerBase = (EFI_PHYSICAL_ADDRESS)(UINTN)MachineCheckHandlerForAp; mAcpiCpuData.ApMachineCheckHandlerBase = (EFI_PHYSICAL_ADDRESS)(UINTN)MachineCheckHandlerForAp;
CpuStatus = &mAcpiCpuData.CpuStatus;
CopyMem (CpuStatus, &AcpiCpuData->CpuStatus, sizeof (CPU_STATUS_INFORMATION));
if (AcpiCpuData->CpuStatus.ValidCoreCountPerPackage != 0) {
CpuStatus->ValidCoreCountPerPackage = (EFI_PHYSICAL_ADDRESS)(UINTN)AllocateCopyPool (
sizeof (UINT32) * CpuStatus->PackageCount,
(UINT32 *)(UINTN)AcpiCpuData->CpuStatus.ValidCoreCountPerPackage
);
ASSERT (CpuStatus->ValidCoreCountPerPackage != 0);
}
if (AcpiCpuData->ApLocation != 0) {
mAcpiCpuData.ApLocation = (EFI_PHYSICAL_ADDRESS)(UINTN)AllocateCopyPool (
mAcpiCpuData.NumberOfCpus * sizeof (EFI_CPU_PHYSICAL_LOCATION),
(EFI_CPU_PHYSICAL_LOCATION *)(UINTN)AcpiCpuData->ApLocation
);
ASSERT (mAcpiCpuData.ApLocation != 0);
}
if (CpuStatus->PackageCount != 0) {
mCpuFlags.SemaphoreCount = AllocateZeroPool (
sizeof (UINT32) * CpuStatus->PackageCount *
CpuStatus->MaxCoreCount * CpuStatus->MaxThreadCount);
ASSERT (mCpuFlags.SemaphoreCount != NULL);
}
InitializeSpinLock((SPIN_LOCK*) &mCpuFlags.MemoryMappedLock);
InitializeSpinLock((SPIN_LOCK*) &mCpuFlags.ConsoleLogLock);
} }
/** /**

View File

@ -1303,8 +1303,6 @@ InitializeSmmCpuSemaphores (
mSmmCpuSemaphores.SemaphoreGlobal.CodeAccessCheckLock mSmmCpuSemaphores.SemaphoreGlobal.CodeAccessCheckLock
= (SPIN_LOCK *)SemaphoreAddr; = (SPIN_LOCK *)SemaphoreAddr;
SemaphoreAddr += SemaphoreSize; SemaphoreAddr += SemaphoreSize;
mSmmCpuSemaphores.SemaphoreGlobal.MemoryMappedLock
= (SPIN_LOCK *)SemaphoreAddr;
SemaphoreAddr = (UINTN)SemaphoreBlock + GlobalSemaphoresSize; SemaphoreAddr = (UINTN)SemaphoreBlock + GlobalSemaphoresSize;
mSmmCpuSemaphores.SemaphoreCpu.Busy = (SPIN_LOCK *)SemaphoreAddr; mSmmCpuSemaphores.SemaphoreCpu.Busy = (SPIN_LOCK *)SemaphoreAddr;
@ -1321,7 +1319,6 @@ InitializeSmmCpuSemaphores (
mPFLock = mSmmCpuSemaphores.SemaphoreGlobal.PFLock; mPFLock = mSmmCpuSemaphores.SemaphoreGlobal.PFLock;
mConfigSmmCodeAccessCheckLock = mSmmCpuSemaphores.SemaphoreGlobal.CodeAccessCheckLock; mConfigSmmCodeAccessCheckLock = mSmmCpuSemaphores.SemaphoreGlobal.CodeAccessCheckLock;
mMemoryMappedLock = mSmmCpuSemaphores.SemaphoreGlobal.MemoryMappedLock;
mSemaphoreSize = SemaphoreSize; mSemaphoreSize = SemaphoreSize;
} }

View File

@ -53,6 +53,7 @@ WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED.
#include <Library/ReportStatusCodeLib.h> #include <Library/ReportStatusCodeLib.h>
#include <Library/SmmCpuFeaturesLib.h> #include <Library/SmmCpuFeaturesLib.h>
#include <Library/PeCoffGetEntryPointLib.h> #include <Library/PeCoffGetEntryPointLib.h>
#include <Library/RegisterCpuFeaturesLib.h>
#include <AcpiCpuData.h> #include <AcpiCpuData.h>
#include <CpuHotPlugData.h> #include <CpuHotPlugData.h>
@ -364,7 +365,6 @@ typedef struct {
volatile BOOLEAN *AllCpusInSync; volatile BOOLEAN *AllCpusInSync;
SPIN_LOCK *PFLock; SPIN_LOCK *PFLock;
SPIN_LOCK *CodeAccessCheckLock; SPIN_LOCK *CodeAccessCheckLock;
SPIN_LOCK *MemoryMappedLock;
} SMM_CPU_SEMAPHORE_GLOBAL; } SMM_CPU_SEMAPHORE_GLOBAL;
/// ///
@ -409,7 +409,6 @@ extern SMM_CPU_SEMAPHORES mSmmCpuSemaphores;
extern UINTN mSemaphoreSize; extern UINTN mSemaphoreSize;
extern SPIN_LOCK *mPFLock; extern SPIN_LOCK *mPFLock;
extern SPIN_LOCK *mConfigSmmCodeAccessCheckLock; extern SPIN_LOCK *mConfigSmmCodeAccessCheckLock;
extern SPIN_LOCK *mMemoryMappedLock;
extern EFI_SMRAM_DESCRIPTOR *mSmmCpuSmramRanges; extern EFI_SMRAM_DESCRIPTOR *mSmmCpuSmramRanges;
extern UINTN mSmmCpuSmramRangeCount; extern UINTN mSmmCpuSmramRangeCount;
extern UINT8 mPhysicalAddressBits; extern UINT8 mPhysicalAddressBits;