ArmPkg/ArmSoftFloatLib: remove source files that are no longer used

Now that we have switched to a new version of the SoftFloat code,
remove the source files that make up the old implementation, and
are no longer referenced.

Ref: https://bugzilla.tianocore.org/show_bug.cgi?id=1845
Acked-by: Jian J Wang <jian.j.wang@intel.com>
Acked-by: Laszlo Ersek <lersek@redhat.com>
Reviewed-by: Leif Lindholm <leif.lindholm@linaro.org>
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
This commit is contained in:
Ard Biesheuvel 2019-05-24 16:58:40 +02:00
parent 3cc57695df
commit 99243102b4
21 changed files with 0 additions and 4706 deletions

View File

@ -1,41 +0,0 @@
//------------------------------------------------------------------------------
//
// Copyright (c) 2015, Linaro Limited. All rights reserved.
//
// SPDX-License-Identifier: BSD-2-Clause-Patent
//
//------------------------------------------------------------------------------
EXPORT __aeabi_cdrcmple
EXPORT __aeabi_cdcmpeq
EXPORT __aeabi_cdcmple
IMPORT _softfloat_float64_eq
IMPORT _softfloat_float64_lt
AREA __aeabi_cdcmp, CODE, READONLY
PRESERVE8
__aeabi_cdrcmple
MOV IP, R0
MOV R0, R2
MOV R2, IP
MOV IP, R1
MOV R1, R3
MOV R3, IP
__aeabi_cdcmpeq
__aeabi_cdcmple
PUSH {R0 - R3, IP, LR}
BL _softfloat_float64_eq
SUB IP, R0, #1
CMP IP, #0 // sets C and Z if R0 == 1
POPEQ {R0 - R3, IP, PC}
LDM SP, {R0 - R3}
BL _softfloat_float64_lt
SUB IP, R0, #1
CMP IP, #1 // sets C if R0 == 0
POP {R0 - R3, IP, PC}
END

View File

@ -1,37 +0,0 @@
//------------------------------------------------------------------------------
//
// Copyright (c) 2015, Linaro Limited. All rights reserved.
//
// SPDX-License-Identifier: BSD-2-Clause-Patent
//
//------------------------------------------------------------------------------
EXPORT __aeabi_cfrcmple
EXPORT __aeabi_cfcmpeq
EXPORT __aeabi_cfcmple
IMPORT _softfloat_float32_eq
IMPORT _softfloat_float32_lt
AREA __aeabi_cfcmp, CODE, READONLY
PRESERVE8
__aeabi_cfrcmple
MOV IP, R0
MOV R0, R1
MOV R1, IP
__aeabi_cfcmpeq
__aeabi_cfcmple
PUSH {R0 - R3, IP, LR}
BL _softfloat_float32_eq
SUB IP, R0, #1
CMP IP, #0 // sets C and Z if R0 == 1
POPEQ {R0 - R3, IP, PC}
LDM SP, {R0 - R1}
BL _softfloat_float32_lt
SUB IP, R0, #1
CMP IP, #1 // sets C if R0 == 0
POP {R0 - R3, IP, PC}
END

View File

@ -1,30 +0,0 @@
/* $NetBSD: __aeabi_dcmpeq.c,v 1.1 2013/04/16 10:37:39 matt Exp $ */
/** @file
*
* Copyright (c) 2013 - 2014, ARM Limited. All rights reserved.
*
* SPDX-License-Identifier: BSD-2-Clause-Patent
*
**/
/*
* Written by Ben Harris, 2000. This file is in the Public Domain.
*/
#if defined(LIBC_SCCS) && !defined(lint)
__RCSID("$NetBSD: __aeabi_dcmpeq.c,v 1.1 2013/04/16 10:37:39 matt Exp $");
#endif /* LIBC_SCCS and not lint */
#include "softfloat-for-gcc.h"
#include "milieu.h"
#include "softfloat.h"
int __aeabi_dcmpeq(float64, float64);
int
__aeabi_dcmpeq(float64 a, float64 b)
{
return float64_eq(a, b);
}

View File

@ -1,28 +0,0 @@
/* $NetBSD: __aeabi_dcmpge.c,v 1.2 2013/04/16 13:38:34 matt Exp $ */
/** @file
*
* Copyright (c) 2013 - 2014, ARM Limited. All rights reserved.
*
* SPDX-License-Identifier: BSD-2-Clause-Patent
*
**/
/*
* Written by Ben Harris, 2000. This file is in the Public Domain.
*/
#include "softfloat-for-gcc.h"
#include "milieu.h"
#include "softfloat.h"
#if defined(LIBC_SCCS) && !defined(lint)
__RCSID("$NetBSD: __aeabi_dcmpge.c,v 1.2 2013/04/16 13:38:34 matt Exp $");
#endif /* LIBC_SCCS and not lint */
int __aeabi_dcmpge(float64, float64);
int
__aeabi_dcmpge(float64 a, float64 b)
{
return !float64_lt(a, b) && float64_eq(a, a) && float64_eq(b, b);
}

View File

@ -1,30 +0,0 @@
/* $NetBSD: __aeabi_dcmpgt.c,v 1.2 2013/04/16 13:38:34 matt Exp $ */
/** @file
*
* Copyright (c) 2013 - 2014, ARM Limited. All rights reserved.
*
* SPDX-License-Identifier: BSD-2-Clause-Patent
*
**/
/*
* Written by Ben Harris, 2000. This file is in the Public Domain.
*/
#include "softfloat-for-gcc.h"
#include "milieu.h"
#include "softfloat.h"
#if defined(LIBC_SCCS) && !defined(lint)
__RCSID("$NetBSD: __aeabi_dcmpgt.c,v 1.2 2013/04/16 13:38:34 matt Exp $");
#endif /* LIBC_SCCS and not lint */
int __aeabi_dcmpgt(float64, float64);
int
__aeabi_dcmpgt(float64 a, float64 b)
{
return !float64_le(a, b) && float64_eq(a, a) && float64_eq(b, b);
}

View File

@ -1,30 +0,0 @@
/* $NetBSD: __aeabi_dcmple.c,v 1.1 2013/04/16 10:37:39 matt Exp $ */
/** @file
*
* Copyright (c) 2013 - 2014, ARM Limited. All rights reserved.
*
* SPDX-License-Identifier: BSD-2-Clause-Patent
*
**/
/*
* Written by Ben Harris, 2000. This file is in the Public Domain.
*/
#include "softfloat-for-gcc.h"
#include "milieu.h"
#include "softfloat.h"
#if defined(LIBC_SCCS) && !defined(lint)
__RCSID("$NetBSD: __aeabi_dcmple.c,v 1.1 2013/04/16 10:37:39 matt Exp $");
#endif /* LIBC_SCCS and not lint */
int __aeabi_dcmple(float64, float64);
int
__aeabi_dcmple(float64 a, float64 b)
{
return float64_le(a, b);
}

View File

@ -1,30 +0,0 @@
/* $NetBSD: __aeabi_dcmplt.c,v 1.1 2013/04/16 10:37:39 matt Exp $ */
/** @file
*
* Copyright (c) 2013 - 2014, ARM Limited. All rights reserved.
*
* SPDX-License-Identifier: BSD-2-Clause-Patent
*
**/
/*
* Written by Ben Harris, 2000. This file is in the Public Domain.
*/
#include "softfloat-for-gcc.h"
#include "milieu.h"
#include "softfloat.h"
#if defined(LIBC_SCCS) && !defined(lint)
__RCSID("$NetBSD: __aeabi_dcmplt.c,v 1.1 2013/04/16 10:37:39 matt Exp $");
#endif /* LIBC_SCCS and not lint */
int __aeabi_dcmplt(float64, float64);
int
__aeabi_dcmplt(float64 a, float64 b)
{
return float64_lt(a, b);
}

View File

@ -1,35 +0,0 @@
/* $NetBSD: __aeabi_dcmpun.c,v 1.1 2013/04/16 10:37:39 matt Exp $ */
/** @file
*
* Copyright (c) 2013 - 2014, ARM Limited. All rights reserved.
*
* SPDX-License-Identifier: BSD-2-Clause-Patent
*
**/
/*
* Written by Richard Earnshaw, 2003. This file is in the Public Domain.
*/
#include "softfloat-for-gcc.h"
#include "milieu.h"
#include "softfloat.h"
#if defined(LIBC_SCCS) && !defined(lint)
__RCSID("$NetBSD: __aeabi_dcmpun.c,v 1.1 2013/04/16 10:37:39 matt Exp $");
#endif /* LIBC_SCCS and not lint */
int __aeabi_dcmpun(float64, float64);
int
__aeabi_dcmpun(float64 a, float64 b)
{
/*
* The comparison is unordered if either input is a NaN.
* Test for this by comparing each operand with itself.
* We must perform both comparisons to correctly check for
* signalling NaNs.
*/
return !float64_eq(a, a) || !float64_eq(b, b);
}

View File

@ -1,30 +0,0 @@
/* $NetBSD: __aeabi_fcmpeq.c,v 1.1 2013/04/16 10:37:39 matt Exp $ */
/** @file
*
* Copyright (c) 2013 - 2014, ARM Limited. All rights reserved.
*
* SPDX-License-Identifier: BSD-2-Clause-Patent
*
**/
/*
* Written by Ben Harris, 2000. This file is in the Public Domain.
*/
#if defined(LIBC_SCCS) && !defined(lint)
__RCSID("$NetBSD: __aeabi_fcmpeq.c,v 1.1 2013/04/16 10:37:39 matt Exp $");
#endif /* LIBC_SCCS and not lint */
#include "softfloat-for-gcc.h"
#include "milieu.h"
#include "softfloat.h"
int __aeabi_fcmpeq(float32, float32);
int
__aeabi_fcmpeq(float32 a, float32 b)
{
return float32_eq(a, b);
}

View File

@ -1,30 +0,0 @@
/* $NetBSD: __aeabi_fcmpge.c,v 1.2 2013/04/16 13:38:34 matt Exp $ */
/** @file
*
* Copyright (c) 2013 - 2014, ARM Limited. All rights reserved.
*
* SPDX-License-Identifier: BSD-2-Clause-Patent
*
**/
/*
* Written by Ben Harris, 2000. This file is in the Public Domain.
*/
#include "softfloat-for-gcc.h"
#include "milieu.h"
#include "softfloat.h"
#if defined(LIBC_SCCS) && !defined(lint)
__RCSID("$NetBSD: __aeabi_fcmpge.c,v 1.2 2013/04/16 13:38:34 matt Exp $");
#endif /* LIBC_SCCS and not lint */
int __aeabi_fcmpge(float32, float32);
int
__aeabi_fcmpge(float32 a, float32 b)
{
return !float32_lt(a, b) && float32_eq(a, a) && float32_eq(b, b);
}

View File

@ -1,30 +0,0 @@
/* $NetBSD: __aeabi_fcmpgt.c,v 1.2 2013/04/16 13:38:34 matt Exp $ */
/** @file
*
* Copyright (c) 2013 - 2014, ARM Limited. All rights reserved.
*
* SPDX-License-Identifier: BSD-2-Clause-Patent
*
**/
/*
* Written by Ben Harris, 2000. This file is in the Public Domain.
*/
#include "softfloat-for-gcc.h"
#include "milieu.h"
#include "softfloat.h"
#if defined(LIBC_SCCS) && !defined(lint)
__RCSID("$NetBSD: __aeabi_fcmpgt.c,v 1.2 2013/04/16 13:38:34 matt Exp $");
#endif /* LIBC_SCCS and not lint */
int __aeabi_fcmpgt(float32, float32);
int
__aeabi_fcmpgt(float32 a, float32 b)
{
return !float32_le(a, b) && float32_eq(a, a) && float32_eq(b, b);
}

View File

@ -1,30 +0,0 @@
/* $NetBSD: __aeabi_fcmple.c,v 1.1 2013/04/16 10:37:39 matt Exp $ */
/** @file
*
* Copyright (c) 2013 - 2014, ARM Limited. All rights reserved.
*
* SPDX-License-Identifier: BSD-2-Clause-Patent
*
**/
/*
* Written by Ben Harris, 2000. This file is in the Public Domain.
*/
#include "softfloat-for-gcc.h"
#include "milieu.h"
#include "softfloat.h"
#if defined(LIBC_SCCS) && !defined(lint)
__RCSID("$NetBSD: __aeabi_fcmple.c,v 1.1 2013/04/16 10:37:39 matt Exp $");
#endif /* LIBC_SCCS and not lint */
int __aeabi_fcmple(float32, float32);
int
__aeabi_fcmple(float32 a, float32 b)
{
return float32_le(a, b);
}

View File

@ -1,30 +0,0 @@
/* $NetBSD: __aeabi_fcmplt.c,v 1.1 2013/04/16 10:37:39 matt Exp $ */
/** @file
*
* Copyright (c) 2013 - 2014, ARM Limited. All rights reserved.
*
* SPDX-License-Identifier: BSD-2-Clause-Patent
*
**/
/*
* Written by Ben Harris, 2000. This file is in the Public Domain.
*/
#include "softfloat-for-gcc.h"
#include "milieu.h"
#include "softfloat.h"
#if defined(LIBC_SCCS) && !defined(lint)
__RCSID("$NetBSD: __aeabi_fcmplt.c,v 1.1 2013/04/16 10:37:39 matt Exp $");
#endif /* LIBC_SCCS and not lint */
int __aeabi_fcmplt(float32, float32);
int
__aeabi_fcmplt(float32 a, float32 b)
{
return float32_lt(a, b);
}

View File

@ -1,35 +0,0 @@
/* $NetBSD: __aeabi_fcmpun.c,v 1.1 2013/04/16 10:37:39 matt Exp $ */
/** @file
*
* Copyright (c) 2013 - 2014, ARM Limited. All rights reserved.
*
* SPDX-License-Identifier: BSD-2-Clause-Patent
*
**/
/*
* Written by Richard Earnshaw, 2003. This file is in the Public Domain.
*/
#include "softfloat-for-gcc.h"
#include "milieu.h"
#include "softfloat.h"
#if defined(LIBC_SCCS) && !defined(lint)
__RCSID("$NetBSD: __aeabi_fcmpun.c,v 1.1 2013/04/16 10:37:39 matt Exp $");
#endif /* LIBC_SCCS and not lint */
int __aeabi_fcmpun(float32, float32);
int
__aeabi_fcmpun(float32 a, float32 b)
{
/*
* The comparison is unordered if either input is a NaN.
* Test for this by comparing each operand with itself.
* We must perform both comparisons to correctly check for
* signalling NaNs.
*/
return !float32_eq(a, a) || !float32_eq(b, b);
}

View File

@ -1,345 +0,0 @@
/* $NetBSD: softfloat.h,v 1.10 2013/04/24 18:04:46 matt Exp $ */
/* This is a derivative work. */
/*
===============================================================================
This C header file is part of the SoftFloat IEC/IEEE Floating-point
Arithmetic Package, Release 2a.
Written by John R. Hauser. This work was made possible in part by the
International Computer Science Institute, located at Suite 600, 1947 Center
Street, Berkeley, California 94704. Funding was partially provided by the
National Science Foundation under grant MIP-9311980. The original version
of this code was written as part of a project to build a fixed-point vector
processor in collaboration with the University of California at Berkeley,
overseen by Profs. Nelson Morgan and John Wawrzynek. More information
is available through the Web page `http://HTTP.CS.Berkeley.EDU/~jhauser/
arithmetic/SoftFloat.html'.
THIS SOFTWARE IS DISTRIBUTED AS IS, FOR FREE. Although reasonable effort
has been made to avoid it, THIS SOFTWARE MAY CONTAIN FAULTS THAT WILL AT
TIMES RESULT IN INCORRECT BEHAVIOR. USE OF THIS SOFTWARE IS RESTRICTED TO
PERSONS AND ORGANIZATIONS WHO CAN AND WILL TAKE FULL RESPONSIBILITY FOR ANY
AND ALL LOSSES, COSTS, OR OTHER PROBLEMS ARISING FROM ITS USE.
Derivative works are acceptable, even for commercial purposes, so long as
(1) they include prominent notice that the work is derivative, and (2) they
include prominent notice akin to these four paragraphs for those parts of
this code that are retained.
===============================================================================
*/
/*
-------------------------------------------------------------------------------
The macro `FLOATX80' must be defined to enable the extended double-precision
floating-point format `floatx80'. If this macro is not defined, the
`floatx80' type will not be defined, and none of the functions that either
input or output the `floatx80' type will be defined. The same applies to
the `FLOAT128' macro and the quadruple-precision format `float128'.
-------------------------------------------------------------------------------
*/
/* #define FLOATX80 */
/* #define FLOAT128 */
#define FE_INVALID 0x01 /* invalid operation exception */
#define FE_DIVBYZERO 0x02 /* divide-by-zero exception */
#define FE_OVERFLOW 0x04 /* overflow exception */
#define FE_UNDERFLOW 0x08 /* underflow exception */
#define FE_INEXACT 0x10 /* imprecise (loss of precision; "inexact") */
#define FE_ALL_EXCEPT 0x1f
#define FE_TONEAREST 0 /* round to nearest representable number */
#define FE_UPWARD 1 /* round toward positive infinity */
#define FE_DOWNWARD 2 /* round toward negative infinity */
#define FE_TOWARDZERO 3 /* round to zero (truncate) */
typedef int fp_except;
/* Bit defines for fp_except */
#define FP_X_INV FE_INVALID /* invalid operation exception */
#define FP_X_DZ FE_DIVBYZERO /* divide-by-zero exception */
#define FP_X_OFL FE_OVERFLOW /* overflow exception */
#define FP_X_UFL FE_UNDERFLOW /* underflow exception */
#define FP_X_IMP FE_INEXACT /* imprecise (prec. loss; "inexact") */
/* Rounding modes */
typedef enum {
FP_RN=FE_TONEAREST, /* round to nearest representable number */
FP_RP=FE_UPWARD, /* round toward positive infinity */
FP_RM=FE_DOWNWARD, /* round toward negative infinity */
FP_RZ=FE_TOWARDZERO /* round to zero (truncate) */
} fp_rnd;
/*
-------------------------------------------------------------------------------
Software IEC/IEEE floating-point types.
-------------------------------------------------------------------------------
*/
typedef unsigned int float32;
typedef unsigned long long float64;
#ifdef FLOATX80
typedef struct {
unsigned short high;
unsigned long long low;
} floatx80;
#endif
#ifdef FLOAT128
typedef struct {
unsigned long long high, low;
} float128;
#endif
/*
-------------------------------------------------------------------------------
Software IEC/IEEE floating-point underflow tininess-detection mode.
-------------------------------------------------------------------------------
*/
#ifndef SOFTFLOAT_FOR_GCC
extern int float_detect_tininess;
#endif
enum {
float_tininess_after_rounding = 0,
float_tininess_before_rounding = 1
};
/*
-------------------------------------------------------------------------------
Software IEC/IEEE floating-point rounding mode.
-------------------------------------------------------------------------------
*/
extern fp_rnd float_rounding_mode;
#define float_round_nearest_even FP_RN
#define float_round_to_zero FP_RZ
#define float_round_down FP_RM
#define float_round_up FP_RP
/*
-------------------------------------------------------------------------------
Software IEC/IEEE floating-point exception flags.
-------------------------------------------------------------------------------
*/
extern fp_except float_exception_flags;
extern fp_except float_exception_mask;
enum {
float_flag_inexact = FP_X_IMP,
float_flag_underflow = FP_X_UFL,
float_flag_overflow = FP_X_OFL,
float_flag_divbyzero = FP_X_DZ,
float_flag_invalid = FP_X_INV
};
/*
-------------------------------------------------------------------------------
Routine to raise any or all of the software IEC/IEEE floating-point
exception flags.
-------------------------------------------------------------------------------
*/
void float_raise( fp_except );
/*
-------------------------------------------------------------------------------
Software IEC/IEEE integer-to-floating-point conversion routines.
-------------------------------------------------------------------------------
*/
float32 int32_to_float32( int32 );
float32 uint32_to_float32( uint32 );
float64 int32_to_float64( int32 );
float64 uint32_to_float64( uint32 );
#ifdef FLOATX80
floatx80 int32_to_floatx80( int32 );
floatx80 uint32_to_floatx80( uint32 );
#endif
#ifdef FLOAT128
float128 int32_to_float128( int32 );
float128 uint32_to_float128( uint32 );
#endif
#ifndef SOFTFLOAT_FOR_GCC /* __floatdi?f is in libgcc2.c */
float32 int64_to_float32( long long );
float64 int64_to_float64( long long );
#ifdef FLOATX80
floatx80 int64_to_floatx80( long long );
#endif
#ifdef FLOAT128
float128 int64_to_float128( long long );
#endif
#endif
/*
-------------------------------------------------------------------------------
Software IEC/IEEE single-precision conversion routines.
-------------------------------------------------------------------------------
*/
int float32_to_int32( float32 );
int float32_to_int32_round_to_zero( float32 );
#if defined(SOFTFLOAT_FOR_GCC) && defined(SOFTFLOAT_NEED_FIXUNS)
unsigned int float32_to_uint32_round_to_zero( float32 );
#endif
#ifndef SOFTFLOAT_FOR_GCC /* __fix?fdi provided by libgcc2.c */
long long float32_to_int64( float32 );
long long float32_to_int64_round_to_zero( float32 );
#endif
float64 float32_to_float64( float32 );
#ifdef FLOATX80
floatx80 float32_to_floatx80( float32 );
#endif
#ifdef FLOAT128
float128 float32_to_float128( float32 );
#endif
/*
-------------------------------------------------------------------------------
Software IEC/IEEE single-precision operations.
-------------------------------------------------------------------------------
*/
float32 float32_round_to_int( float32 );
float32 float32_add( float32, float32 );
float32 float32_sub( float32, float32 );
float32 float32_mul( float32, float32 );
float32 float32_div( float32, float32 );
float32 float32_rem( float32, float32 );
float32 float32_sqrt( float32 );
int float32_eq( float32, float32 );
int float32_le( float32, float32 );
int float32_lt( float32, float32 );
int float32_eq_signaling( float32, float32 );
int float32_le_quiet( float32, float32 );
int float32_lt_quiet( float32, float32 );
#ifndef SOFTFLOAT_FOR_GCC
int float32_is_signaling_nan( float32 );
#endif
/*
-------------------------------------------------------------------------------
Software IEC/IEEE double-precision conversion routines.
-------------------------------------------------------------------------------
*/
int float64_to_int32( float64 );
int float64_to_int32_round_to_zero( float64 );
#if defined(SOFTFLOAT_FOR_GCC) && defined(SOFTFLOAT_NEED_FIXUNS)
unsigned int float64_to_uint32_round_to_zero( float64 );
#endif
#ifndef SOFTFLOAT_FOR_GCC /* __fix?fdi provided by libgcc2.c */
long long float64_to_int64( float64 );
long long float64_to_int64_round_to_zero( float64 );
#endif
float32 float64_to_float32( float64 );
#ifdef FLOATX80
floatx80 float64_to_floatx80( float64 );
#endif
#ifdef FLOAT128
float128 float64_to_float128( float64 );
#endif
/*
-------------------------------------------------------------------------------
Software IEC/IEEE double-precision operations.
-------------------------------------------------------------------------------
*/
float64 float64_round_to_int( float64 );
float64 float64_add( float64, float64 );
float64 float64_sub( float64, float64 );
float64 float64_mul( float64, float64 );
float64 float64_div( float64, float64 );
float64 float64_rem( float64, float64 );
float64 float64_sqrt( float64 );
int float64_eq( float64, float64 );
int float64_le( float64, float64 );
int float64_lt( float64, float64 );
int float64_eq_signaling( float64, float64 );
int float64_le_quiet( float64, float64 );
int float64_lt_quiet( float64, float64 );
#ifndef SOFTFLOAT_FOR_GCC
int float64_is_signaling_nan( float64 );
#endif
#ifdef FLOATX80
/*
-------------------------------------------------------------------------------
Software IEC/IEEE extended double-precision conversion routines.
-------------------------------------------------------------------------------
*/
int floatx80_to_int32( floatx80 );
int floatx80_to_int32_round_to_zero( floatx80 );
long long floatx80_to_int64( floatx80 );
long long floatx80_to_int64_round_to_zero( floatx80 );
float32 floatx80_to_float32( floatx80 );
float64 floatx80_to_float64( floatx80 );
#ifdef FLOAT128
float128 floatx80_to_float128( floatx80 );
#endif
/*
-------------------------------------------------------------------------------
Software IEC/IEEE extended double-precision rounding precision. Valid
values are 32, 64, and 80.
-------------------------------------------------------------------------------
*/
extern int floatx80_rounding_precision;
/*
-------------------------------------------------------------------------------
Software IEC/IEEE extended double-precision operations.
-------------------------------------------------------------------------------
*/
floatx80 floatx80_round_to_int( floatx80 );
floatx80 floatx80_add( floatx80, floatx80 );
floatx80 floatx80_sub( floatx80, floatx80 );
floatx80 floatx80_mul( floatx80, floatx80 );
floatx80 floatx80_div( floatx80, floatx80 );
floatx80 floatx80_rem( floatx80, floatx80 );
floatx80 floatx80_sqrt( floatx80 );
int floatx80_eq( floatx80, floatx80 );
int floatx80_le( floatx80, floatx80 );
int floatx80_lt( floatx80, floatx80 );
int floatx80_eq_signaling( floatx80, floatx80 );
int floatx80_le_quiet( floatx80, floatx80 );
int floatx80_lt_quiet( floatx80, floatx80 );
int floatx80_is_signaling_nan( floatx80 );
#endif
#ifdef FLOAT128
/*
-------------------------------------------------------------------------------
Software IEC/IEEE quadruple-precision conversion routines.
-------------------------------------------------------------------------------
*/
int float128_to_int32( float128 );
int float128_to_int32_round_to_zero( float128 );
long long float128_to_int64( float128 );
long long float128_to_int64_round_to_zero( float128 );
float32 float128_to_float32( float128 );
float64 float128_to_float64( float128 );
#ifdef FLOATX80
floatx80 float128_to_floatx80( float128 );
#endif
/*
-------------------------------------------------------------------------------
Software IEC/IEEE quadruple-precision operations.
-------------------------------------------------------------------------------
*/
float128 float128_round_to_int( float128 );
float128 float128_add( float128, float128 );
float128 float128_sub( float128, float128 );
float128 float128_mul( float128, float128 );
float128 float128_div( float128, float128 );
float128 float128_rem( float128, float128 );
float128 float128_sqrt( float128 );
int float128_eq( float128, float128 );
int float128_le( float128, float128 );
int float128_lt( float128, float128 );
int float128_eq_signaling( float128, float128 );
int float128_le_quiet( float128, float128 );
int float128_lt_quiet( float128, float128 );
int float128_is_signaling_nan( float128 );
#endif

View File

@ -1,108 +0,0 @@
/** @file
Copyright (c) 2014, ARM Limited. All rights reserved.
SPDX-License-Identifier: BSD-2-Clause-Patent
**/
/* $NetBSD: arm-gcc.h,v 1.4 2013/01/26 07:08:14 matt Exp $ */
/*
-------------------------------------------------------------------------------
One of the macros `BIGENDIAN' or `LITTLEENDIAN' must be defined.
-------------------------------------------------------------------------------
*/
#ifdef __ARMEB__
#define BIGENDIAN
#else
#define LITTLEENDIAN
#endif
/*
-------------------------------------------------------------------------------
The macro `BITS64' can be defined to indicate that 64-bit integer types are
supported by the compiler.
-------------------------------------------------------------------------------
*/
#define BITS64
/*
-------------------------------------------------------------------------------
Each of the following `typedef's defines the most convenient type that holds
integers of at least as many bits as specified. For example, `uint8' should
be the most convenient type that can hold unsigned integers of as many as
8 bits. The `flag' type must be able to hold either a 0 or 1. For most
implementations of C, `flag', `uint8', and `int8' should all be `typedef'ed
to the same as `int'.
-------------------------------------------------------------------------------
*/
typedef int flag;
typedef int uint8;
typedef int int8;
typedef int uint16;
typedef int int16;
typedef unsigned int uint32;
typedef signed int int32;
#ifdef BITS64
typedef unsigned long long int uint64;
typedef signed long long int int64;
#endif
/*
-------------------------------------------------------------------------------
Each of the following `typedef's defines a type that holds integers
of _exactly_ the number of bits specified. For instance, for most
implementation of C, `bits16' and `sbits16' should be `typedef'ed to
`unsigned short int' and `signed short int' (or `short int'), respectively.
-------------------------------------------------------------------------------
*/
typedef unsigned char bits8;
typedef signed char sbits8;
typedef unsigned short int bits16;
typedef signed short int sbits16;
typedef unsigned int bits32;
typedef signed int sbits32;
#ifdef BITS64
typedef unsigned long long int bits64;
typedef signed long long int sbits64;
#endif
#ifdef BITS64
/*
-------------------------------------------------------------------------------
The `LIT64' macro takes as its argument a textual integer literal and
if necessary ``marks'' the literal as having a 64-bit integer type.
For example, the GNU C Compiler (`gcc') requires that 64-bit literals be
appended with the letters `LL' standing for `long long', which is `gcc's
name for the 64-bit integer type. Some compilers may allow `LIT64' to be
defined as the identity macro: `#define LIT64( a ) a'.
-------------------------------------------------------------------------------
*/
#define LIT64( a ) a##ULL
#endif
/*
-------------------------------------------------------------------------------
The macro `INLINE' can be used before functions that should be inlined. If
a compiler does not support explicit inlining, this macro should be defined
to be `static'.
-------------------------------------------------------------------------------
*/
#define INLINE static inline
/*
-------------------------------------------------------------------------------
The ARM FPA is odd in that it stores doubles high-order word first, no matter
what the endianness of the CPU. VFP is sane.
-------------------------------------------------------------------------------
*/
#if defined(SOFTFLOAT_FOR_GCC)
#if defined(__VFP_FP__) || defined(__ARMEB__)
#define FLOAT64_DEMANGLE(a) (a)
#define FLOAT64_MANGLE(a) (a)
#else
#define FLOAT64_DEMANGLE(a) (((a) << 32) | ((a) >> 32))
#define FLOAT64_MANGLE(a) FLOAT64_DEMANGLE(a)
#endif
#endif

View File

@ -1,648 +0,0 @@
/*
===============================================================================
This C source fragment is part of the SoftFloat IEC/IEEE Floating-point
Arithmetic Package, Release 2a.
Written by John R. Hauser. This work was made possible in part by the
International Computer Science Institute, located at Suite 600, 1947 Center
Street, Berkeley, California 94704. Funding was partially provided by the
National Science Foundation under grant MIP-9311980. The original version
of this code was written as part of a project to build a fixed-point vector
processor in collaboration with the University of California at Berkeley,
overseen by Profs. Nelson Morgan and John Wawrzynek. More information
is available through the Web page `http://HTTP.CS.Berkeley.EDU/~jhauser/
arithmetic/SoftFloat.html'.
THIS SOFTWARE IS DISTRIBUTED AS IS, FOR FREE. Although reasonable effort
has been made to avoid it, THIS SOFTWARE MAY CONTAIN FAULTS THAT WILL AT
TIMES RESULT IN INCORRECT BEHAVIOR. USE OF THIS SOFTWARE IS RESTRICTED TO
PERSONS AND ORGANIZATIONS WHO CAN AND WILL TAKE FULL RESPONSIBILITY FOR ANY
AND ALL LOSSES, COSTS, OR OTHER PROBLEMS ARISING FROM ITS USE.
Derivative works are acceptable, even for commercial purposes, so long as
(1) they include prominent notice that the work is derivative, and (2) they
include prominent notice akin to these four paragraphs for those parts of
this code that are retained.
===============================================================================
*/
/*
-------------------------------------------------------------------------------
Shifts `a' right by the number of bits given in `count'. If any nonzero
bits are shifted off, they are ``jammed'' into the least significant bit of
the result by setting the least significant bit to 1. The value of `count'
can be arbitrarily large; in particular, if `count' is greater than 32, the
result will be either 0 or 1, depending on whether `a' is zero or nonzero.
The result is stored in the location pointed to by `zPtr'.
-------------------------------------------------------------------------------
*/
INLINE void shift32RightJamming( bits32 a, int16 count, bits32 *zPtr )
{
bits32 z;
if ( count == 0 ) {
z = a;
}
else if ( count < 32 ) {
z = ( a>>count ) | ( ( a<<( ( - count ) & 31 ) ) != 0 );
}
else {
z = ( a != 0 );
}
*zPtr = z;
}
/*
-------------------------------------------------------------------------------
Shifts the 64-bit value formed by concatenating `a0' and `a1' right by the
number of bits given in `count'. Any bits shifted off are lost. The value
of `count' can be arbitrarily large; in particular, if `count' is greater
than 64, the result will be 0. The result is broken into two 32-bit pieces
which are stored at the locations pointed to by `z0Ptr' and `z1Ptr'.
-------------------------------------------------------------------------------
*/
INLINE void
shift64Right(
bits32 a0, bits32 a1, int16 count, bits32 *z0Ptr, bits32 *z1Ptr )
{
bits32 z0, z1;
int8 negCount = ( - count ) & 31;
if ( count == 0 ) {
z1 = a1;
z0 = a0;
}
else if ( count < 32 ) {
z1 = ( a0<<negCount ) | ( a1>>count );
z0 = a0>>count;
}
else {
z1 = ( count < 64 ) ? ( a0>>( count & 31 ) ) : 0;
z0 = 0;
}
*z1Ptr = z1;
*z0Ptr = z0;
}
/*
-------------------------------------------------------------------------------
Shifts the 64-bit value formed by concatenating `a0' and `a1' right by the
number of bits given in `count'. If any nonzero bits are shifted off, they
are ``jammed'' into the least significant bit of the result by setting the
least significant bit to 1. The value of `count' can be arbitrarily large;
in particular, if `count' is greater than 64, the result will be either 0
or 1, depending on whether the concatenation of `a0' and `a1' is zero or
nonzero. The result is broken into two 32-bit pieces which are stored at
the locations pointed to by `z0Ptr' and `z1Ptr'.
-------------------------------------------------------------------------------
*/
INLINE void
shift64RightJamming(
bits32 a0, bits32 a1, int16 count, bits32 *z0Ptr, bits32 *z1Ptr )
{
bits32 z0, z1;
int8 negCount = ( - count ) & 31;
if ( count == 0 ) {
z1 = a1;
z0 = a0;
}
else if ( count < 32 ) {
z1 = ( a0<<negCount ) | ( a1>>count ) | ( ( a1<<negCount ) != 0 );
z0 = a0>>count;
}
else {
if ( count == 32 ) {
z1 = a0 | ( a1 != 0 );
}
else if ( count < 64 ) {
z1 = ( a0>>( count & 31 ) ) | ( ( ( a0<<negCount ) | a1 ) != 0 );
}
else {
z1 = ( ( a0 | a1 ) != 0 );
}
z0 = 0;
}
*z1Ptr = z1;
*z0Ptr = z0;
}
/*
-------------------------------------------------------------------------------
Shifts the 96-bit value formed by concatenating `a0', `a1', and `a2' right
by 32 _plus_ the number of bits given in `count'. The shifted result is
at most 64 nonzero bits; these are broken into two 32-bit pieces which are
stored at the locations pointed to by `z0Ptr' and `z1Ptr'. The bits shifted
off form a third 32-bit result as follows: The _last_ bit shifted off is
the most-significant bit of the extra result, and the other 31 bits of the
extra result are all zero if and only if _all_but_the_last_ bits shifted off
were all zero. This extra result is stored in the location pointed to by
`z2Ptr'. The value of `count' can be arbitrarily large.
(This routine makes more sense if `a0', `a1', and `a2' are considered
to form a fixed-point value with binary point between `a1' and `a2'. This
fixed-point value is shifted right by the number of bits given in `count',
and the integer part of the result is returned at the locations pointed to
by `z0Ptr' and `z1Ptr'. The fractional part of the result may be slightly
corrupted as described above, and is returned at the location pointed to by
`z2Ptr'.)
-------------------------------------------------------------------------------
*/
INLINE void
shift64ExtraRightJamming(
bits32 a0,
bits32 a1,
bits32 a2,
int16 count,
bits32 *z0Ptr,
bits32 *z1Ptr,
bits32 *z2Ptr
)
{
bits32 z0, z1, z2;
int8 negCount = ( - count ) & 31;
if ( count == 0 ) {
z2 = a2;
z1 = a1;
z0 = a0;
}
else {
if ( count < 32 ) {
z2 = a1<<negCount;
z1 = ( a0<<negCount ) | ( a1>>count );
z0 = a0>>count;
}
else {
if ( count == 32 ) {
z2 = a1;
z1 = a0;
}
else {
a2 |= a1;
if ( count < 64 ) {
z2 = a0<<negCount;
z1 = a0>>( count & 31 );
}
else {
z2 = ( count == 64 ) ? a0 : ( a0 != 0 );
z1 = 0;
}
}
z0 = 0;
}
z2 |= ( a2 != 0 );
}
*z2Ptr = z2;
*z1Ptr = z1;
*z0Ptr = z0;
}
/*
-------------------------------------------------------------------------------
Shifts the 64-bit value formed by concatenating `a0' and `a1' left by the
number of bits given in `count'. Any bits shifted off are lost. The value
of `count' must be less than 32. The result is broken into two 32-bit
pieces which are stored at the locations pointed to by `z0Ptr' and `z1Ptr'.
-------------------------------------------------------------------------------
*/
INLINE void
shortShift64Left(
bits32 a0, bits32 a1, int16 count, bits32 *z0Ptr, bits32 *z1Ptr )
{
*z1Ptr = a1<<count;
*z0Ptr =
( count == 0 ) ? a0 : ( a0<<count ) | ( a1>>( ( - count ) & 31 ) );
}
/*
-------------------------------------------------------------------------------
Shifts the 96-bit value formed by concatenating `a0', `a1', and `a2' left
by the number of bits given in `count'. Any bits shifted off are lost.
The value of `count' must be less than 32. The result is broken into three
32-bit pieces which are stored at the locations pointed to by `z0Ptr',
`z1Ptr', and `z2Ptr'.
-------------------------------------------------------------------------------
*/
INLINE void
shortShift96Left(
bits32 a0,
bits32 a1,
bits32 a2,
int16 count,
bits32 *z0Ptr,
bits32 *z1Ptr,
bits32 *z2Ptr
)
{
bits32 z0, z1, z2;
int8 negCount;
z2 = a2<<count;
z1 = a1<<count;
z0 = a0<<count;
if ( 0 < count ) {
negCount = ( ( - count ) & 31 );
z1 |= a2>>negCount;
z0 |= a1>>negCount;
}
*z2Ptr = z2;
*z1Ptr = z1;
*z0Ptr = z0;
}
/*
-------------------------------------------------------------------------------
Adds the 64-bit value formed by concatenating `a0' and `a1' to the 64-bit
value formed by concatenating `b0' and `b1'. Addition is modulo 2^64, so
any carry out is lost. The result is broken into two 32-bit pieces which
are stored at the locations pointed to by `z0Ptr' and `z1Ptr'.
-------------------------------------------------------------------------------
*/
INLINE void
add64(
bits32 a0, bits32 a1, bits32 b0, bits32 b1, bits32 *z0Ptr, bits32 *z1Ptr )
{
bits32 z1;
z1 = a1 + b1;
*z1Ptr = z1;
*z0Ptr = a0 + b0 + ( z1 < a1 );
}
/*
-------------------------------------------------------------------------------
Adds the 96-bit value formed by concatenating `a0', `a1', and `a2' to the
96-bit value formed by concatenating `b0', `b1', and `b2'. Addition is
modulo 2^96, so any carry out is lost. The result is broken into three
32-bit pieces which are stored at the locations pointed to by `z0Ptr',
`z1Ptr', and `z2Ptr'.
-------------------------------------------------------------------------------
*/
INLINE void
add96(
bits32 a0,
bits32 a1,
bits32 a2,
bits32 b0,
bits32 b1,
bits32 b2,
bits32 *z0Ptr,
bits32 *z1Ptr,
bits32 *z2Ptr
)
{
bits32 z0, z1, z2;
int8 carry0, carry1;
z2 = a2 + b2;
carry1 = ( z2 < a2 );
z1 = a1 + b1;
carry0 = ( z1 < a1 );
z0 = a0 + b0;
z1 += carry1;
z0 += ( z1 < (bits32)carry1 );
z0 += carry0;
*z2Ptr = z2;
*z1Ptr = z1;
*z0Ptr = z0;
}
/*
-------------------------------------------------------------------------------
Subtracts the 64-bit value formed by concatenating `b0' and `b1' from the
64-bit value formed by concatenating `a0' and `a1'. Subtraction is modulo
2^64, so any borrow out (carry out) is lost. The result is broken into two
32-bit pieces which are stored at the locations pointed to by `z0Ptr' and
`z1Ptr'.
-------------------------------------------------------------------------------
*/
INLINE void
sub64(
bits32 a0, bits32 a1, bits32 b0, bits32 b1, bits32 *z0Ptr, bits32 *z1Ptr )
{
*z1Ptr = a1 - b1;
*z0Ptr = a0 - b0 - ( a1 < b1 );
}
/*
-------------------------------------------------------------------------------
Subtracts the 96-bit value formed by concatenating `b0', `b1', and `b2' from
the 96-bit value formed by concatenating `a0', `a1', and `a2'. Subtraction
is modulo 2^96, so any borrow out (carry out) is lost. The result is broken
into three 32-bit pieces which are stored at the locations pointed to by
`z0Ptr', `z1Ptr', and `z2Ptr'.
-------------------------------------------------------------------------------
*/
INLINE void
sub96(
bits32 a0,
bits32 a1,
bits32 a2,
bits32 b0,
bits32 b1,
bits32 b2,
bits32 *z0Ptr,
bits32 *z1Ptr,
bits32 *z2Ptr
)
{
bits32 z0, z1, z2;
int8 borrow0, borrow1;
z2 = a2 - b2;
borrow1 = ( a2 < b2 );
z1 = a1 - b1;
borrow0 = ( a1 < b1 );
z0 = a0 - b0;
z0 -= ( z1 < (bits32)borrow1 );
z1 -= borrow1;
z0 -= borrow0;
*z2Ptr = z2;
*z1Ptr = z1;
*z0Ptr = z0;
}
/*
-------------------------------------------------------------------------------
Multiplies `a' by `b' to obtain a 64-bit product. The product is broken
into two 32-bit pieces which are stored at the locations pointed to by
`z0Ptr' and `z1Ptr'.
-------------------------------------------------------------------------------
*/
INLINE void mul32To64( bits32 a, bits32 b, bits32 *z0Ptr, bits32 *z1Ptr )
{
bits16 aHigh, aLow, bHigh, bLow;
bits32 z0, zMiddleA, zMiddleB, z1;
aLow = a;
aHigh = a>>16;
bLow = b;
bHigh = b>>16;
z1 = ( (bits32) aLow ) * bLow;
zMiddleA = ( (bits32) aLow ) * bHigh;
zMiddleB = ( (bits32) aHigh ) * bLow;
z0 = ( (bits32) aHigh ) * bHigh;
zMiddleA += zMiddleB;
z0 += ( ( (bits32) ( zMiddleA < zMiddleB ) )<<16 ) + ( zMiddleA>>16 );
zMiddleA <<= 16;
z1 += zMiddleA;
z0 += ( z1 < zMiddleA );
*z1Ptr = z1;
*z0Ptr = z0;
}
/*
-------------------------------------------------------------------------------
Multiplies the 64-bit value formed by concatenating `a0' and `a1' by `b'
to obtain a 96-bit product. The product is broken into three 32-bit pieces
which are stored at the locations pointed to by `z0Ptr', `z1Ptr', and
`z2Ptr'.
-------------------------------------------------------------------------------
*/
INLINE void
mul64By32To96(
bits32 a0,
bits32 a1,
bits32 b,
bits32 *z0Ptr,
bits32 *z1Ptr,
bits32 *z2Ptr
)
{
bits32 z0, z1, z2, more1;
mul32To64( a1, b, &z1, &z2 );
mul32To64( a0, b, &z0, &more1 );
add64( z0, more1, 0, z1, &z0, &z1 );
*z2Ptr = z2;
*z1Ptr = z1;
*z0Ptr = z0;
}
/*
-------------------------------------------------------------------------------
Multiplies the 64-bit value formed by concatenating `a0' and `a1' to the
64-bit value formed by concatenating `b0' and `b1' to obtain a 128-bit
product. The product is broken into four 32-bit pieces which are stored at
the locations pointed to by `z0Ptr', `z1Ptr', `z2Ptr', and `z3Ptr'.
-------------------------------------------------------------------------------
*/
INLINE void
mul64To128(
bits32 a0,
bits32 a1,
bits32 b0,
bits32 b1,
bits32 *z0Ptr,
bits32 *z1Ptr,
bits32 *z2Ptr,
bits32 *z3Ptr
)
{
bits32 z0, z1, z2, z3;
bits32 more1, more2;
mul32To64( a1, b1, &z2, &z3 );
mul32To64( a1, b0, &z1, &more2 );
add64( z1, more2, 0, z2, &z1, &z2 );
mul32To64( a0, b0, &z0, &more1 );
add64( z0, more1, 0, z1, &z0, &z1 );
mul32To64( a0, b1, &more1, &more2 );
add64( more1, more2, 0, z2, &more1, &z2 );
add64( z0, z1, 0, more1, &z0, &z1 );
*z3Ptr = z3;
*z2Ptr = z2;
*z1Ptr = z1;
*z0Ptr = z0;
}
/*
-------------------------------------------------------------------------------
Returns an approximation to the 32-bit integer quotient obtained by dividing
`b' into the 64-bit value formed by concatenating `a0' and `a1'. The
divisor `b' must be at least 2^31. If q is the exact quotient truncated
toward zero, the approximation returned lies between q and q + 2 inclusive.
If the exact quotient q is larger than 32 bits, the maximum positive 32-bit
unsigned integer is returned.
-------------------------------------------------------------------------------
*/
static bits32 estimateDiv64To32( bits32 a0, bits32 a1, bits32 b )
{
bits32 b0, b1;
bits32 rem0, rem1, term0, term1;
bits32 z;
if ( b <= a0 ) return 0xFFFFFFFF;
b0 = b>>16;
z = ( b0<<16 <= a0 ) ? 0xFFFF0000 : ( a0 / b0 )<<16;
mul32To64( b, z, &term0, &term1 );
sub64( a0, a1, term0, term1, &rem0, &rem1 );
while ( ( (sbits32) rem0 ) < 0 ) {
z -= 0x10000;
b1 = b<<16;
add64( rem0, rem1, b0, b1, &rem0, &rem1 );
}
rem0 = ( rem0<<16 ) | ( rem1>>16 );
z |= ( b0<<16 <= rem0 ) ? 0xFFFF : rem0 / b0;
return z;
}
#ifndef SOFTFLOAT_FOR_GCC
/*
-------------------------------------------------------------------------------
Returns an approximation to the square root of the 32-bit significand given
by `a'. Considered as an integer, `a' must be at least 2^31. If bit 0 of
`aExp' (the least significant bit) is 1, the integer returned approximates
2^31*sqrt(`a'/2^31), where `a' is considered an integer. If bit 0 of `aExp'
is 0, the integer returned approximates 2^31*sqrt(`a'/2^30). In either
case, the approximation returned lies strictly within +/-2 of the exact
value.
-------------------------------------------------------------------------------
*/
static bits32 estimateSqrt32( int16 aExp, bits32 a )
{
static const bits16 sqrtOddAdjustments[] = {
0x0004, 0x0022, 0x005D, 0x00B1, 0x011D, 0x019F, 0x0236, 0x02E0,
0x039C, 0x0468, 0x0545, 0x0631, 0x072B, 0x0832, 0x0946, 0x0A67
};
static const bits16 sqrtEvenAdjustments[] = {
0x0A2D, 0x08AF, 0x075A, 0x0629, 0x051A, 0x0429, 0x0356, 0x029E,
0x0200, 0x0179, 0x0109, 0x00AF, 0x0068, 0x0034, 0x0012, 0x0002
};
int8 index;
bits32 z;
index = ( a>>27 ) & 15;
if ( aExp & 1 ) {
z = 0x4000 + ( a>>17 ) - sqrtOddAdjustments[ index ];
z = ( ( a / z )<<14 ) + ( z<<15 );
a >>= 1;
}
else {
z = 0x8000 + ( a>>17 ) - sqrtEvenAdjustments[ index ];
z = a / z + z;
z = ( 0x20000 <= z ) ? 0xFFFF8000 : ( z<<15 );
if ( z <= a ) return (bits32) ( ( (sbits32) a )>>1 );
}
return ( ( estimateDiv64To32( a, 0, z ) )>>1 ) + ( z>>1 );
}
#endif
/*
-------------------------------------------------------------------------------
Returns the number of leading 0 bits before the most-significant 1 bit of
`a'. If `a' is zero, 32 is returned.
-------------------------------------------------------------------------------
*/
static int8 countLeadingZeros32( bits32 a )
{
static const int8 countLeadingZerosHigh[] = {
8, 7, 6, 6, 5, 5, 5, 5, 4, 4, 4, 4, 4, 4, 4, 4,
3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,
2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
};
int8 shiftCount;
shiftCount = 0;
if ( a < 0x10000 ) {
shiftCount += 16;
a <<= 16;
}
if ( a < 0x1000000 ) {
shiftCount += 8;
a <<= 8;
}
shiftCount += countLeadingZerosHigh[ a>>24 ];
return shiftCount;
}
/*
-------------------------------------------------------------------------------
Returns 1 if the 64-bit value formed by concatenating `a0' and `a1' is
equal to the 64-bit value formed by concatenating `b0' and `b1'. Otherwise,
returns 0.
-------------------------------------------------------------------------------
*/
INLINE flag eq64( bits32 a0, bits32 a1, bits32 b0, bits32 b1 )
{
return ( a0 == b0 ) && ( a1 == b1 );
}
/*
-------------------------------------------------------------------------------
Returns 1 if the 64-bit value formed by concatenating `a0' and `a1' is less
than or equal to the 64-bit value formed by concatenating `b0' and `b1'.
Otherwise, returns 0.
-------------------------------------------------------------------------------
*/
INLINE flag le64( bits32 a0, bits32 a1, bits32 b0, bits32 b1 )
{
return ( a0 < b0 ) || ( ( a0 == b0 ) && ( a1 <= b1 ) );
}
/*
-------------------------------------------------------------------------------
Returns 1 if the 64-bit value formed by concatenating `a0' and `a1' is less
than the 64-bit value formed by concatenating `b0' and `b1'. Otherwise,
returns 0.
-------------------------------------------------------------------------------
*/
INLINE flag lt64( bits32 a0, bits32 a1, bits32 b0, bits32 b1 )
{
return ( a0 < b0 ) || ( ( a0 == b0 ) && ( a1 < b1 ) );
}
/*
-------------------------------------------------------------------------------
Returns 1 if the 64-bit value formed by concatenating `a0' and `a1' is not
equal to the 64-bit value formed by concatenating `b0' and `b1'. Otherwise,
returns 0.
-------------------------------------------------------------------------------
*/
INLINE flag ne64( bits32 a0, bits32 a1, bits32 b0, bits32 b1 )
{
return ( a0 != b0 ) || ( a1 != b1 );
}

File diff suppressed because it is too large Load Diff

View File

@ -1,38 +0,0 @@
/* $NetBSD: milieu.h,v 1.1 2000/12/29 20:13:54 bjh21 Exp $ */
/*
===============================================================================
This C header file is part of the SoftFloat IEC/IEEE Floating-point
Arithmetic Package, Release 2a.
Written by John R. Hauser. This work was made possible in part by the
International Computer Science Institute, located at Suite 600, 1947 Center
Street, Berkeley, California 94704. Funding was partially provided by the
National Science Foundation under grant MIP-9311980. The original version
of this code was written as part of a project to build a fixed-point vector
processor in collaboration with the University of California at Berkeley,
overseen by Profs. Nelson Morgan and John Wawrzynek. More information
is available through the Web page `http://HTTP.CS.Berkeley.EDU/~jhauser/
arithmetic/SoftFloat.html'.
THIS SOFTWARE IS DISTRIBUTED AS IS, FOR FREE. Although reasonable effort
has been made to avoid it, THIS SOFTWARE MAY CONTAIN FAULTS THAT WILL AT
TIMES RESULT IN INCORRECT BEHAVIOR. USE OF THIS SOFTWARE IS RESTRICTED TO
PERSONS AND ORGANIZATIONS WHO CAN AND WILL TAKE FULL RESPONSIBILITY FOR ANY
AND ALL LOSSES, COSTS, OR OTHER PROBLEMS ARISING FROM ITS USE.
Derivative works are acceptable, even for commercial purposes, so long as
(1) they include prominent notice that the work is derivative, and (2) they
include prominent notice akin to these four paragraphs for those parts of
this code that are retained.
===============================================================================
*/
/*
-------------------------------------------------------------------------------
Include common integer types and flags.
-------------------------------------------------------------------------------
*/
#include "arm-gcc.h"

View File

@ -1,242 +0,0 @@
/* $NetBSD: softfloat-for-gcc.h,v 1.12 2013/08/01 23:21:19 matt Exp $ */
/*-
* Copyright (c) 2008 The NetBSD Foundation, Inc.
* All rights reserved.
*
* This code is derived from software contributed to The NetBSD Foundation
* by
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
/*
* Move private identifiers with external linkage into implementation
* namespace. -- Klaus Klein <kleink@NetBSD.org>, May 5, 1999
*/
#define float_exception_flags _softfloat_float_exception_flags
#define float_exception_mask _softfloat_float_exception_mask
#define float_rounding_mode _softfloat_float_rounding_mode
#define float_raise _softfloat_float_raise
/* The following batch are called by GCC through wrappers */
#define float32_eq _softfloat_float32_eq
#define float32_le _softfloat_float32_le
#define float32_lt _softfloat_float32_lt
#define float64_eq _softfloat_float64_eq
#define float64_le _softfloat_float64_le
#define float64_lt _softfloat_float64_lt
#define float128_eq _softfloat_float128_eq
#define float128_le _softfloat_float128_le
#define float128_lt _softfloat_float128_lt
/*
* Macros to define functions with the GCC expected names
*/
#define float32_add __addsf3
#define float64_add __adddf3
#define floatx80_add __addxf3
#define float128_add __addtf3
#define float32_sub __subsf3
#define float64_sub __subdf3
#define floatx80_sub __subxf3
#define float128_sub __subtf3
#define float32_mul __mulsf3
#define float64_mul __muldf3
#define floatx80_mul __mulxf3
#define float128_mul __multf3
#define float32_div __divsf3
#define float64_div __divdf3
#define floatx80_div __divxf3
#define float128_div __divtf3
#if 0
#define float32_neg __negsf2
#define float64_neg __negdf2
#define floatx80_neg __negxf2
#define float128_neg __negtf2
#endif
#define int32_to_float32 __floatsisf
#define int32_to_float64 __floatsidf
#define int32_to_floatx80 __floatsixf
#define int32_to_float128 __floatsitf
#define int64_to_float32 __floatdisf
#define int64_to_float64 __floatdidf
#define int64_to_floatx80 __floatdixf
#define int64_to_float128 __floatditf
#define int128_to_float32 __floattisf
#define int128_to_float64 __floattidf
#define int128_to_floatx80 __floattixf
#define int128_to_float128 __floattitf
#define uint32_to_float32 __floatunsisf
#define uint32_to_float64 __floatunsidf
#define uint32_to_floatx80 __floatunsixf
#define uint32_to_float128 __floatunsitf
#define uint64_to_float32 __floatundisf
#define uint64_to_float64 __floatundidf
#define uint64_to_floatx80 __floatundixf
#define uint64_to_float128 __floatunditf
#define uint128_to_float32 __floatuntisf
#define uint128_to_float64 __floatuntidf
#define uint128_to_floatx80 __floatuntixf
#define uint128_to_float128 __floatuntitf
#define float32_to_int32_round_to_zero __fixsfsi
#define float64_to_int32_round_to_zero __fixdfsi
#define floatx80_to_int32_round_to_zero __fixxfsi
#define float128_to_int32_round_to_zero __fixtfsi
#define float32_to_int64_round_to_zero __fixsfdi
#define float64_to_int64_round_to_zero __fixdfdi
#define floatx80_to_int64_round_to_zero __fixxfdi
#define float128_to_int64_round_to_zero __fixtfdi
#define float32_to_int128_round_to_zero __fixsfti
#define float64_to_int128_round_to_zero __fixdfti
#define floatx80_to_int128_round_to_zero __fixxfti
#define float128_to_int128_round_to_zero __fixtfti
#define float32_to_uint32_round_to_zero __fixunssfsi
#define float64_to_uint32_round_to_zero __fixunsdfsi
#define floatx80_to_uint32_round_to_zero __fixunsxfsi
#define float128_to_uint32_round_to_zero __fixunstfsi
#define float32_to_uint64_round_to_zero __fixunssfdi
#define float64_to_uint64_round_to_zero __fixunsdfdi
#define floatx80_to_uint64_round_to_zero __fixunsxfdi
#define float128_to_uint64_round_to_zero __fixunstfdi
#define float32_to_uint128_round_to_zero __fixunssfti
#define float64_to_uint128_round_to_zero __fixunsdfti
#define floatx80_to_uint128_round_to_zero __fixunsxfti
#define float128_to_uint128_round_to_zero __fixunstfti
#define float32_to_float64 __extendsfdf2
#define float32_to_floatx80 __extendsfxf2
#define float32_to_float128 __extendsftf2
#define float64_to_floatx80 __extenddfxf2
#define float64_to_float128 __extenddftf2
#define float128_to_float64 __trunctfdf2
#define floatx80_to_float64 __truncxfdf2
#define float128_to_float32 __trunctfsf2
#define floatx80_to_float32 __truncxfsf2
#define float64_to_float32 __truncdfsf2
#if 0
#define float32_cmp __cmpsf2
#define float32_unord __unordsf2
#define float32_eq __eqsf2
#define float32_ne __nesf2
#define float32_ge __gesf2
#define float32_lt __ltsf2
#define float32_le __lesf2
#define float32_gt __gtsf2
#endif
#if 0
#define float64_cmp __cmpdf2
#define float64_unord __unorddf2
#define float64_eq __eqdf2
#define float64_ne __nedf2
#define float64_ge __gedf2
#define float64_lt __ltdf2
#define float64_le __ledf2
#define float64_gt __gtdf2
#endif
/* XXX not in libgcc */
#if 1
#define floatx80_cmp __cmpxf2
#define floatx80_unord __unordxf2
#define floatx80_eq __eqxf2
#define floatx80_ne __nexf2
#define floatx80_ge __gexf2
#define floatx80_lt __ltxf2
#define floatx80_le __lexf2
#define floatx80_gt __gtxf2
#endif
#if 0
#define float128_cmp __cmptf2
#define float128_unord __unordtf2
#define float128_eq __eqtf2
#define float128_ne __netf2
#define float128_ge __getf2
#define float128_lt __lttf2
#define float128_le __letf2
#define float128_gt __gttf2
#endif
#if defined (__ARM_EABI__) || defined (__CC_ARM)
#ifdef __ARM_PCS_VFP
#include <arm/aeabi.h>
#endif
#define __addsf3 __aeabi_fadd
#define __adddf3 __aeabi_dadd
#define __subsf3 __aeabi_fsub
#define __subdf3 __aeabi_dsub
#define __mulsf3 __aeabi_fmul
#define __muldf3 __aeabi_dmul
#define __divsf3 __aeabi_fdiv
#define __divdf3 __aeabi_ddiv
#define __floatsisf __aeabi_i2f
#define __floatsidf __aeabi_i2d
#define __floatdisf __aeabi_l2f
#define __floatdidf __aeabi_l2d
#define __floatunsisf __aeabi_ui2f
#define __floatunsidf __aeabi_ui2d
#define __floatundisf __aeabi_ul2f
#define __floatundidf __aeabi_ul2d
#define __fixsfsi __aeabi_f2iz
#define __fixdfsi __aeabi_d2iz
#define __fixsfdi __aeabi_f2lz
#define __fixdfdi __aeabi_d2lz
#define __fixunssfsi __aeabi_f2uiz
#define __fixunsdfsi __aeabi_d2uiz
#define __fixunssfdi __aeabi_f2ulz
#define __fixunsdfdi __aeabi_d2ulz
#define __extendsfdf2 __aeabi_f2d
#define __truncdfsf2 __aeabi_d2f
#endif /* __ARM_EABI__ */

View File

@ -1,525 +0,0 @@
/* $NetBSD: softfloat-specialize,v 1.8 2013/01/10 08:16:10 matt Exp $ */
/* This is a derivative work. */
/*
===============================================================================
This C source fragment is part of the SoftFloat IEC/IEEE Floating-point
Arithmetic Package, Release 2a.
Written by John R. Hauser. This work was made possible in part by the
International Computer Science Institute, located at Suite 600, 1947 Center
Street, Berkeley, California 94704. Funding was partially provided by the
National Science Foundation under grant MIP-9311980. The original version
of this code was written as part of a project to build a fixed-point vector
processor in collaboration with the University of California at Berkeley,
overseen by Profs. Nelson Morgan and John Wawrzynek. More information
is available through the Web page `http://HTTP.CS.Berkeley.EDU/~jhauser/
arithmetic/SoftFloat.html'.
THIS SOFTWARE IS DISTRIBUTED AS IS, FOR FREE. Although reasonable effort
has been made to avoid it, THIS SOFTWARE MAY CONTAIN FAULTS THAT WILL AT
TIMES RESULT IN INCORRECT BEHAVIOR. USE OF THIS SOFTWARE IS RESTRICTED TO
PERSONS AND ORGANIZATIONS WHO CAN AND WILL TAKE FULL RESPONSIBILITY FOR ANY
AND ALL LOSSES, COSTS, OR OTHER PROBLEMS ARISING FROM ITS USE.
Derivative works are acceptable, even for commercial purposes, so long as
(1) they include prominent notice that the work is derivative, and (2) they
include prominent notice akin to these four paragraphs for those parts of
this code that are retained.
===============================================================================
*/
/*
-------------------------------------------------------------------------------
Underflow tininess-detection mode, statically initialized to default value.
(The declaration in `softfloat.h' must match the `int8' type here.)
-------------------------------------------------------------------------------
*/
#ifdef SOFTFLOAT_FOR_GCC
static
#endif
int8 float_detect_tininess = float_tininess_after_rounding;
/*
-------------------------------------------------------------------------------
Raises the exceptions specified by `flags'. Floating-point traps can be
defined here if desired. It is currently not possible for such a trap to
substitute a result value. If traps are not implemented, this routine
should be simply `float_exception_flags |= flags;'.
-------------------------------------------------------------------------------
*/
#ifdef SOFTFLOAT_FOR_GCC
#ifndef set_float_exception_mask
#define float_exception_mask _softfloat_float_exception_mask
#endif
#endif
#ifndef set_float_exception_mask
fp_except float_exception_mask = 0;
#endif
void
float_raise( fp_except flags )
{
#if 0 // Don't raise exceptions
siginfo_t info;
fp_except mask = float_exception_mask;
#ifdef set_float_exception_mask
flags |= set_float_exception_flags(flags, 0);
#else
float_exception_flags |= flags;
flags = float_exception_flags;
#endif
flags &= mask;
if ( flags ) {
memset(&info, 0, sizeof info);
info.si_signo = SIGFPE;
info.si_pid = getpid();
info.si_uid = geteuid();
if (flags & float_flag_underflow)
info.si_code = FPE_FLTUND;
else if (flags & float_flag_overflow)
info.si_code = FPE_FLTOVF;
else if (flags & float_flag_divbyzero)
info.si_code = FPE_FLTDIV;
else if (flags & float_flag_invalid)
info.si_code = FPE_FLTINV;
else if (flags & float_flag_inexact)
info.si_code = FPE_FLTRES;
sigqueueinfo(getpid(), &info);
}
#else // Don't raise exceptions
float_exception_flags |= flags;
#endif // Don't raise exceptions
}
#undef float_exception_mask
/*
-------------------------------------------------------------------------------
Internal canonical NaN format.
-------------------------------------------------------------------------------
*/
typedef struct {
flag sign;
bits64 high, low;
} commonNaNT;
/*
-------------------------------------------------------------------------------
The pattern for a default generated single-precision NaN.
-------------------------------------------------------------------------------
*/
#define float32_default_nan 0xFFFFFFFF
/*
-------------------------------------------------------------------------------
Returns 1 if the single-precision floating-point value `a' is a NaN;
otherwise returns 0.
-------------------------------------------------------------------------------
*/
#ifdef SOFTFLOAT_FOR_GCC
static
#endif
flag float32_is_nan( float32 a )
{
return ( (bits32)0xFF000000 < (bits32) ( a<<1 ) );
}
/*
-------------------------------------------------------------------------------
Returns 1 if the single-precision floating-point value `a' is a signaling
NaN; otherwise returns 0.
-------------------------------------------------------------------------------
*/
#if defined(SOFTFLOAT_FOR_GCC) && !defined(SOFTFLOATSPARC64_FOR_GCC) && \
!defined(SOFTFLOAT_M68K_FOR_GCC)
static
#endif
flag float32_is_signaling_nan( float32 a )
{
return ( ( ( a>>22 ) & 0x1FF ) == 0x1FE ) && ( a & 0x003FFFFF );
}
/*
-------------------------------------------------------------------------------
Returns the result of converting the single-precision floating-point NaN
`a' to the canonical NaN format. If `a' is a signaling NaN, the invalid
exception is raised.
-------------------------------------------------------------------------------
*/
static commonNaNT float32ToCommonNaN( float32 a )
{
commonNaNT z;
if ( float32_is_signaling_nan( a ) ) float_raise( float_flag_invalid );
z.sign = a>>31;
z.low = 0;
z.high = ( (bits64) a )<<41;
return z;
}
/*
-------------------------------------------------------------------------------
Returns the result of converting the canonical NaN `a' to the single-
precision floating-point format.
-------------------------------------------------------------------------------
*/
static float32 commonNaNToFloat32( commonNaNT a )
{
return ( ( (bits32) a.sign )<<31 ) | 0x7FC00000 | (bits32)( a.high>>41 );
}
/*
-------------------------------------------------------------------------------
Takes two single-precision floating-point values `a' and `b', one of which
is a NaN, and returns the appropriate NaN result. If either `a' or `b' is a
signaling NaN, the invalid exception is raised.
-------------------------------------------------------------------------------
*/
static float32 propagateFloat32NaN( float32 a, float32 b )
{
flag aIsNaN, aIsSignalingNaN, bIsNaN, bIsSignalingNaN;
aIsNaN = float32_is_nan( a );
aIsSignalingNaN = float32_is_signaling_nan( a );
bIsNaN = float32_is_nan( b );
bIsSignalingNaN = float32_is_signaling_nan( b );
a |= 0x00400000;
b |= 0x00400000;
if ( aIsSignalingNaN | bIsSignalingNaN ) float_raise( float_flag_invalid );
if ( aIsNaN ) {
return ( aIsSignalingNaN & bIsNaN ) ? b : a;
}
else {
return b;
}
}
/*
-------------------------------------------------------------------------------
The pattern for a default generated double-precision NaN.
-------------------------------------------------------------------------------
*/
#define float64_default_nan LIT64( 0xFFFFFFFFFFFFFFFF )
/*
-------------------------------------------------------------------------------
Returns 1 if the double-precision floating-point value `a' is a NaN;
otherwise returns 0.
-------------------------------------------------------------------------------
*/
#ifdef SOFTFLOAT_FOR_GCC
static
#endif
flag float64_is_nan( float64 a )
{
return ( (bits64)LIT64( 0xFFE0000000000000 ) <
(bits64) ( FLOAT64_DEMANGLE(a)<<1 ) );
}
/*
-------------------------------------------------------------------------------
Returns 1 if the double-precision floating-point value `a' is a signaling
NaN; otherwise returns 0.
-------------------------------------------------------------------------------
*/
#if defined(SOFTFLOAT_FOR_GCC) && !defined(SOFTFLOATSPARC64_FOR_GCC) && \
!defined(SOFTFLOATM68K_FOR_GCC)
static
#endif
flag float64_is_signaling_nan( float64 a )
{
return
( ( ( FLOAT64_DEMANGLE(a)>>51 ) & 0xFFF ) == 0xFFE )
&& ( FLOAT64_DEMANGLE(a) & LIT64( 0x0007FFFFFFFFFFFF ) );
}
/*
-------------------------------------------------------------------------------
Returns the result of converting the double-precision floating-point NaN
`a' to the canonical NaN format. If `a' is a signaling NaN, the invalid
exception is raised.
-------------------------------------------------------------------------------
*/
static commonNaNT float64ToCommonNaN( float64 a )
{
commonNaNT z;
if ( float64_is_signaling_nan( a ) ) float_raise( float_flag_invalid );
z.sign = (flag)(FLOAT64_DEMANGLE(a)>>63);
z.low = 0;
z.high = FLOAT64_DEMANGLE(a)<<12;
return z;
}
/*
-------------------------------------------------------------------------------
Returns the result of converting the canonical NaN `a' to the double-
precision floating-point format.
-------------------------------------------------------------------------------
*/
static float64 commonNaNToFloat64( commonNaNT a )
{
return FLOAT64_MANGLE(
( ( (bits64) a.sign )<<63 )
| LIT64( 0x7FF8000000000000 )
| ( a.high>>12 ) );
}
/*
-------------------------------------------------------------------------------
Takes two double-precision floating-point values `a' and `b', one of which
is a NaN, and returns the appropriate NaN result. If either `a' or `b' is a
signaling NaN, the invalid exception is raised.
-------------------------------------------------------------------------------
*/
static float64 propagateFloat64NaN( float64 a, float64 b )
{
flag aIsNaN, aIsSignalingNaN, bIsNaN, bIsSignalingNaN;
aIsNaN = float64_is_nan( a );
aIsSignalingNaN = float64_is_signaling_nan( a );
bIsNaN = float64_is_nan( b );
bIsSignalingNaN = float64_is_signaling_nan( b );
a |= FLOAT64_MANGLE(LIT64( 0x0008000000000000 ));
b |= FLOAT64_MANGLE(LIT64( 0x0008000000000000 ));
if ( aIsSignalingNaN | bIsSignalingNaN ) float_raise( float_flag_invalid );
if ( aIsNaN ) {
return ( aIsSignalingNaN & bIsNaN ) ? b : a;
}
else {
return b;
}
}
#ifdef FLOATX80
/*
-------------------------------------------------------------------------------
The pattern for a default generated extended double-precision NaN. The
`high' and `low' values hold the most- and least-significant bits,
respectively.
-------------------------------------------------------------------------------
*/
#define floatx80_default_nan_high 0xFFFF
#define floatx80_default_nan_low LIT64( 0xFFFFFFFFFFFFFFFF )
/*
-------------------------------------------------------------------------------
Returns 1 if the extended double-precision floating-point value `a' is a
NaN; otherwise returns 0.
-------------------------------------------------------------------------------
*/
flag floatx80_is_nan( floatx80 a )
{
return ( ( a.high & 0x7FFF ) == 0x7FFF ) && (bits64) ( a.low<<1 );
}
/*
-------------------------------------------------------------------------------
Returns 1 if the extended double-precision floating-point value `a' is a
signaling NaN; otherwise returns 0.
-------------------------------------------------------------------------------
*/
flag floatx80_is_signaling_nan( floatx80 a )
{
bits64 aLow;
aLow = a.low & ~ LIT64( 0x4000000000000000 );
return
( ( a.high & 0x7FFF ) == 0x7FFF )
&& (bits64) ( aLow<<1 )
&& ( a.low == aLow );
}
/*
-------------------------------------------------------------------------------
Returns the result of converting the extended double-precision floating-
point NaN `a' to the canonical NaN format. If `a' is a signaling NaN, the
invalid exception is raised.
-------------------------------------------------------------------------------
*/
static commonNaNT floatx80ToCommonNaN( floatx80 a )
{
commonNaNT z;
if ( floatx80_is_signaling_nan( a ) ) float_raise( float_flag_invalid );
z.sign = a.high>>15;
z.low = 0;
z.high = a.low<<1;
return z;
}
/*
-------------------------------------------------------------------------------
Returns the result of converting the canonical NaN `a' to the extended
double-precision floating-point format.
-------------------------------------------------------------------------------
*/
static floatx80 commonNaNToFloatx80( commonNaNT a )
{
floatx80 z;
z.low = LIT64( 0xC000000000000000 ) | ( a.high>>1 );
z.high = ( ( (bits16) a.sign )<<15 ) | 0x7FFF;
return z;
}
/*
-------------------------------------------------------------------------------
Takes two extended double-precision floating-point values `a' and `b', one
of which is a NaN, and returns the appropriate NaN result. If either `a' or
`b' is a signaling NaN, the invalid exception is raised.
-------------------------------------------------------------------------------
*/
static floatx80 propagateFloatx80NaN( floatx80 a, floatx80 b )
{
flag aIsNaN, aIsSignalingNaN, bIsNaN, bIsSignalingNaN;
aIsNaN = floatx80_is_nan( a );
aIsSignalingNaN = floatx80_is_signaling_nan( a );
bIsNaN = floatx80_is_nan( b );
bIsSignalingNaN = floatx80_is_signaling_nan( b );
a.low |= LIT64( 0xC000000000000000 );
b.low |= LIT64( 0xC000000000000000 );
if ( aIsSignalingNaN | bIsSignalingNaN ) float_raise( float_flag_invalid );
if ( aIsNaN ) {
return ( aIsSignalingNaN & bIsNaN ) ? b : a;
}
else {
return b;
}
}
#endif
#ifdef FLOAT128
/*
-------------------------------------------------------------------------------
The pattern for a default generated quadruple-precision NaN. The `high' and
`low' values hold the most- and least-significant bits, respectively.
-------------------------------------------------------------------------------
*/
#define float128_default_nan_high LIT64( 0xFFFFFFFFFFFFFFFF )
#define float128_default_nan_low LIT64( 0xFFFFFFFFFFFFFFFF )
/*
-------------------------------------------------------------------------------
Returns 1 if the quadruple-precision floating-point value `a' is a NaN;
otherwise returns 0.
-------------------------------------------------------------------------------
*/
flag float128_is_nan( float128 a )
{
return
( (bits64)LIT64( 0xFFFE000000000000 ) <= (bits64) ( a.high<<1 ) )
&& ( a.low || ( a.high & LIT64( 0x0000FFFFFFFFFFFF ) ) );
}
/*
-------------------------------------------------------------------------------
Returns 1 if the quadruple-precision floating-point value `a' is a
signaling NaN; otherwise returns 0.
-------------------------------------------------------------------------------
*/
flag float128_is_signaling_nan( float128 a )
{
return
( ( ( a.high>>47 ) & 0xFFFF ) == 0xFFFE )
&& ( a.low || ( a.high & LIT64( 0x00007FFFFFFFFFFF ) ) );
}
/*
-------------------------------------------------------------------------------
Returns the result of converting the quadruple-precision floating-point NaN
`a' to the canonical NaN format. If `a' is a signaling NaN, the invalid
exception is raised.
-------------------------------------------------------------------------------
*/
static commonNaNT float128ToCommonNaN( float128 a )
{
commonNaNT z;
if ( float128_is_signaling_nan( a ) ) float_raise( float_flag_invalid );
z.sign = (flag)(a.high>>63);
shortShift128Left( a.high, a.low, 16, &z.high, &z.low );
return z;
}
/*
-------------------------------------------------------------------------------
Returns the result of converting the canonical NaN `a' to the quadruple-
precision floating-point format.
-------------------------------------------------------------------------------
*/
static float128 commonNaNToFloat128( commonNaNT a )
{
float128 z;
shift128Right( a.high, a.low, 16, &z.high, &z.low );
z.high |= ( ( (bits64) a.sign )<<63 ) | LIT64( 0x7FFF800000000000 );
return z;
}
/*
-------------------------------------------------------------------------------
Takes two quadruple-precision floating-point values `a' and `b', one of
which is a NaN, and returns the appropriate NaN result. If either `a' or
`b' is a signaling NaN, the invalid exception is raised.
-------------------------------------------------------------------------------
*/
static float128 propagateFloat128NaN( float128 a, float128 b )
{
flag aIsNaN, aIsSignalingNaN, bIsNaN, bIsSignalingNaN;
aIsNaN = float128_is_nan( a );
aIsSignalingNaN = float128_is_signaling_nan( a );
bIsNaN = float128_is_nan( b );
bIsSignalingNaN = float128_is_signaling_nan( b );
a.high |= LIT64( 0x0000800000000000 );
b.high |= LIT64( 0x0000800000000000 );
if ( aIsSignalingNaN | bIsSignalingNaN ) float_raise( float_flag_invalid );
if ( aIsNaN ) {
return ( aIsSignalingNaN & bIsNaN ) ? b : a;
}
else {
return b;
}
}
#endif