mirror of https://github.com/acidanthera/audk.git
ArmPkg/ArmSoftFloatLib: remove source files that are no longer used
Now that we have switched to a new version of the SoftFloat code, remove the source files that make up the old implementation, and are no longer referenced. Ref: https://bugzilla.tianocore.org/show_bug.cgi?id=1845 Acked-by: Jian J Wang <jian.j.wang@intel.com> Acked-by: Laszlo Ersek <lersek@redhat.com> Reviewed-by: Leif Lindholm <leif.lindholm@linaro.org> Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
This commit is contained in:
parent
3cc57695df
commit
99243102b4
|
@ -1,41 +0,0 @@
|
|||
//------------------------------------------------------------------------------
|
||||
//
|
||||
// Copyright (c) 2015, Linaro Limited. All rights reserved.
|
||||
//
|
||||
// SPDX-License-Identifier: BSD-2-Clause-Patent
|
||||
//
|
||||
//------------------------------------------------------------------------------
|
||||
|
||||
EXPORT __aeabi_cdrcmple
|
||||
EXPORT __aeabi_cdcmpeq
|
||||
EXPORT __aeabi_cdcmple
|
||||
IMPORT _softfloat_float64_eq
|
||||
IMPORT _softfloat_float64_lt
|
||||
|
||||
AREA __aeabi_cdcmp, CODE, READONLY
|
||||
PRESERVE8
|
||||
|
||||
__aeabi_cdrcmple
|
||||
MOV IP, R0
|
||||
MOV R0, R2
|
||||
MOV R2, IP
|
||||
|
||||
MOV IP, R1
|
||||
MOV R1, R3
|
||||
MOV R3, IP
|
||||
|
||||
__aeabi_cdcmpeq
|
||||
__aeabi_cdcmple
|
||||
PUSH {R0 - R3, IP, LR}
|
||||
BL _softfloat_float64_eq
|
||||
SUB IP, R0, #1
|
||||
CMP IP, #0 // sets C and Z if R0 == 1
|
||||
POPEQ {R0 - R3, IP, PC}
|
||||
|
||||
LDM SP, {R0 - R3}
|
||||
BL _softfloat_float64_lt
|
||||
SUB IP, R0, #1
|
||||
CMP IP, #1 // sets C if R0 == 0
|
||||
POP {R0 - R3, IP, PC}
|
||||
|
||||
END
|
|
@ -1,37 +0,0 @@
|
|||
//------------------------------------------------------------------------------
|
||||
//
|
||||
// Copyright (c) 2015, Linaro Limited. All rights reserved.
|
||||
//
|
||||
// SPDX-License-Identifier: BSD-2-Clause-Patent
|
||||
//
|
||||
//------------------------------------------------------------------------------
|
||||
|
||||
EXPORT __aeabi_cfrcmple
|
||||
EXPORT __aeabi_cfcmpeq
|
||||
EXPORT __aeabi_cfcmple
|
||||
IMPORT _softfloat_float32_eq
|
||||
IMPORT _softfloat_float32_lt
|
||||
|
||||
AREA __aeabi_cfcmp, CODE, READONLY
|
||||
PRESERVE8
|
||||
|
||||
__aeabi_cfrcmple
|
||||
MOV IP, R0
|
||||
MOV R0, R1
|
||||
MOV R1, IP
|
||||
|
||||
__aeabi_cfcmpeq
|
||||
__aeabi_cfcmple
|
||||
PUSH {R0 - R3, IP, LR}
|
||||
BL _softfloat_float32_eq
|
||||
SUB IP, R0, #1
|
||||
CMP IP, #0 // sets C and Z if R0 == 1
|
||||
POPEQ {R0 - R3, IP, PC}
|
||||
|
||||
LDM SP, {R0 - R1}
|
||||
BL _softfloat_float32_lt
|
||||
SUB IP, R0, #1
|
||||
CMP IP, #1 // sets C if R0 == 0
|
||||
POP {R0 - R3, IP, PC}
|
||||
|
||||
END
|
|
@ -1,30 +0,0 @@
|
|||
/* $NetBSD: __aeabi_dcmpeq.c,v 1.1 2013/04/16 10:37:39 matt Exp $ */
|
||||
|
||||
/** @file
|
||||
*
|
||||
* Copyright (c) 2013 - 2014, ARM Limited. All rights reserved.
|
||||
*
|
||||
* SPDX-License-Identifier: BSD-2-Clause-Patent
|
||||
*
|
||||
**/
|
||||
|
||||
/*
|
||||
* Written by Ben Harris, 2000. This file is in the Public Domain.
|
||||
*/
|
||||
|
||||
#if defined(LIBC_SCCS) && !defined(lint)
|
||||
__RCSID("$NetBSD: __aeabi_dcmpeq.c,v 1.1 2013/04/16 10:37:39 matt Exp $");
|
||||
#endif /* LIBC_SCCS and not lint */
|
||||
|
||||
#include "softfloat-for-gcc.h"
|
||||
#include "milieu.h"
|
||||
#include "softfloat.h"
|
||||
|
||||
int __aeabi_dcmpeq(float64, float64);
|
||||
|
||||
int
|
||||
__aeabi_dcmpeq(float64 a, float64 b)
|
||||
{
|
||||
|
||||
return float64_eq(a, b);
|
||||
}
|
|
@ -1,28 +0,0 @@
|
|||
/* $NetBSD: __aeabi_dcmpge.c,v 1.2 2013/04/16 13:38:34 matt Exp $ */
|
||||
/** @file
|
||||
*
|
||||
* Copyright (c) 2013 - 2014, ARM Limited. All rights reserved.
|
||||
*
|
||||
* SPDX-License-Identifier: BSD-2-Clause-Patent
|
||||
*
|
||||
**/
|
||||
/*
|
||||
* Written by Ben Harris, 2000. This file is in the Public Domain.
|
||||
*/
|
||||
|
||||
#include "softfloat-for-gcc.h"
|
||||
#include "milieu.h"
|
||||
#include "softfloat.h"
|
||||
|
||||
#if defined(LIBC_SCCS) && !defined(lint)
|
||||
__RCSID("$NetBSD: __aeabi_dcmpge.c,v 1.2 2013/04/16 13:38:34 matt Exp $");
|
||||
#endif /* LIBC_SCCS and not lint */
|
||||
|
||||
int __aeabi_dcmpge(float64, float64);
|
||||
|
||||
int
|
||||
__aeabi_dcmpge(float64 a, float64 b)
|
||||
{
|
||||
|
||||
return !float64_lt(a, b) && float64_eq(a, a) && float64_eq(b, b);
|
||||
}
|
|
@ -1,30 +0,0 @@
|
|||
/* $NetBSD: __aeabi_dcmpgt.c,v 1.2 2013/04/16 13:38:34 matt Exp $ */
|
||||
|
||||
/** @file
|
||||
*
|
||||
* Copyright (c) 2013 - 2014, ARM Limited. All rights reserved.
|
||||
*
|
||||
* SPDX-License-Identifier: BSD-2-Clause-Patent
|
||||
*
|
||||
**/
|
||||
|
||||
/*
|
||||
* Written by Ben Harris, 2000. This file is in the Public Domain.
|
||||
*/
|
||||
|
||||
#include "softfloat-for-gcc.h"
|
||||
#include "milieu.h"
|
||||
#include "softfloat.h"
|
||||
|
||||
#if defined(LIBC_SCCS) && !defined(lint)
|
||||
__RCSID("$NetBSD: __aeabi_dcmpgt.c,v 1.2 2013/04/16 13:38:34 matt Exp $");
|
||||
#endif /* LIBC_SCCS and not lint */
|
||||
|
||||
int __aeabi_dcmpgt(float64, float64);
|
||||
|
||||
int
|
||||
__aeabi_dcmpgt(float64 a, float64 b)
|
||||
{
|
||||
|
||||
return !float64_le(a, b) && float64_eq(a, a) && float64_eq(b, b);
|
||||
}
|
|
@ -1,30 +0,0 @@
|
|||
/* $NetBSD: __aeabi_dcmple.c,v 1.1 2013/04/16 10:37:39 matt Exp $ */
|
||||
|
||||
/** @file
|
||||
*
|
||||
* Copyright (c) 2013 - 2014, ARM Limited. All rights reserved.
|
||||
*
|
||||
* SPDX-License-Identifier: BSD-2-Clause-Patent
|
||||
*
|
||||
**/
|
||||
|
||||
/*
|
||||
* Written by Ben Harris, 2000. This file is in the Public Domain.
|
||||
*/
|
||||
|
||||
#include "softfloat-for-gcc.h"
|
||||
#include "milieu.h"
|
||||
#include "softfloat.h"
|
||||
|
||||
#if defined(LIBC_SCCS) && !defined(lint)
|
||||
__RCSID("$NetBSD: __aeabi_dcmple.c,v 1.1 2013/04/16 10:37:39 matt Exp $");
|
||||
#endif /* LIBC_SCCS and not lint */
|
||||
|
||||
int __aeabi_dcmple(float64, float64);
|
||||
|
||||
int
|
||||
__aeabi_dcmple(float64 a, float64 b)
|
||||
{
|
||||
|
||||
return float64_le(a, b);
|
||||
}
|
|
@ -1,30 +0,0 @@
|
|||
/* $NetBSD: __aeabi_dcmplt.c,v 1.1 2013/04/16 10:37:39 matt Exp $ */
|
||||
|
||||
/** @file
|
||||
*
|
||||
* Copyright (c) 2013 - 2014, ARM Limited. All rights reserved.
|
||||
*
|
||||
* SPDX-License-Identifier: BSD-2-Clause-Patent
|
||||
*
|
||||
**/
|
||||
|
||||
/*
|
||||
* Written by Ben Harris, 2000. This file is in the Public Domain.
|
||||
*/
|
||||
|
||||
#include "softfloat-for-gcc.h"
|
||||
#include "milieu.h"
|
||||
#include "softfloat.h"
|
||||
|
||||
#if defined(LIBC_SCCS) && !defined(lint)
|
||||
__RCSID("$NetBSD: __aeabi_dcmplt.c,v 1.1 2013/04/16 10:37:39 matt Exp $");
|
||||
#endif /* LIBC_SCCS and not lint */
|
||||
|
||||
int __aeabi_dcmplt(float64, float64);
|
||||
|
||||
int
|
||||
__aeabi_dcmplt(float64 a, float64 b)
|
||||
{
|
||||
|
||||
return float64_lt(a, b);
|
||||
}
|
|
@ -1,35 +0,0 @@
|
|||
/* $NetBSD: __aeabi_dcmpun.c,v 1.1 2013/04/16 10:37:39 matt Exp $ */
|
||||
|
||||
/** @file
|
||||
*
|
||||
* Copyright (c) 2013 - 2014, ARM Limited. All rights reserved.
|
||||
*
|
||||
* SPDX-License-Identifier: BSD-2-Clause-Patent
|
||||
*
|
||||
**/
|
||||
|
||||
/*
|
||||
* Written by Richard Earnshaw, 2003. This file is in the Public Domain.
|
||||
*/
|
||||
|
||||
#include "softfloat-for-gcc.h"
|
||||
#include "milieu.h"
|
||||
#include "softfloat.h"
|
||||
|
||||
#if defined(LIBC_SCCS) && !defined(lint)
|
||||
__RCSID("$NetBSD: __aeabi_dcmpun.c,v 1.1 2013/04/16 10:37:39 matt Exp $");
|
||||
#endif /* LIBC_SCCS and not lint */
|
||||
|
||||
int __aeabi_dcmpun(float64, float64);
|
||||
|
||||
int
|
||||
__aeabi_dcmpun(float64 a, float64 b)
|
||||
{
|
||||
/*
|
||||
* The comparison is unordered if either input is a NaN.
|
||||
* Test for this by comparing each operand with itself.
|
||||
* We must perform both comparisons to correctly check for
|
||||
* signalling NaNs.
|
||||
*/
|
||||
return !float64_eq(a, a) || !float64_eq(b, b);
|
||||
}
|
|
@ -1,30 +0,0 @@
|
|||
/* $NetBSD: __aeabi_fcmpeq.c,v 1.1 2013/04/16 10:37:39 matt Exp $ */
|
||||
|
||||
/** @file
|
||||
*
|
||||
* Copyright (c) 2013 - 2014, ARM Limited. All rights reserved.
|
||||
*
|
||||
* SPDX-License-Identifier: BSD-2-Clause-Patent
|
||||
*
|
||||
**/
|
||||
|
||||
/*
|
||||
* Written by Ben Harris, 2000. This file is in the Public Domain.
|
||||
*/
|
||||
|
||||
#if defined(LIBC_SCCS) && !defined(lint)
|
||||
__RCSID("$NetBSD: __aeabi_fcmpeq.c,v 1.1 2013/04/16 10:37:39 matt Exp $");
|
||||
#endif /* LIBC_SCCS and not lint */
|
||||
|
||||
#include "softfloat-for-gcc.h"
|
||||
#include "milieu.h"
|
||||
#include "softfloat.h"
|
||||
|
||||
int __aeabi_fcmpeq(float32, float32);
|
||||
|
||||
int
|
||||
__aeabi_fcmpeq(float32 a, float32 b)
|
||||
{
|
||||
|
||||
return float32_eq(a, b);
|
||||
}
|
|
@ -1,30 +0,0 @@
|
|||
/* $NetBSD: __aeabi_fcmpge.c,v 1.2 2013/04/16 13:38:34 matt Exp $ */
|
||||
|
||||
/** @file
|
||||
*
|
||||
* Copyright (c) 2013 - 2014, ARM Limited. All rights reserved.
|
||||
*
|
||||
* SPDX-License-Identifier: BSD-2-Clause-Patent
|
||||
*
|
||||
**/
|
||||
|
||||
/*
|
||||
* Written by Ben Harris, 2000. This file is in the Public Domain.
|
||||
*/
|
||||
|
||||
#include "softfloat-for-gcc.h"
|
||||
#include "milieu.h"
|
||||
#include "softfloat.h"
|
||||
|
||||
#if defined(LIBC_SCCS) && !defined(lint)
|
||||
__RCSID("$NetBSD: __aeabi_fcmpge.c,v 1.2 2013/04/16 13:38:34 matt Exp $");
|
||||
#endif /* LIBC_SCCS and not lint */
|
||||
|
||||
int __aeabi_fcmpge(float32, float32);
|
||||
|
||||
int
|
||||
__aeabi_fcmpge(float32 a, float32 b)
|
||||
{
|
||||
|
||||
return !float32_lt(a, b) && float32_eq(a, a) && float32_eq(b, b);
|
||||
}
|
|
@ -1,30 +0,0 @@
|
|||
/* $NetBSD: __aeabi_fcmpgt.c,v 1.2 2013/04/16 13:38:34 matt Exp $ */
|
||||
|
||||
/** @file
|
||||
*
|
||||
* Copyright (c) 2013 - 2014, ARM Limited. All rights reserved.
|
||||
*
|
||||
* SPDX-License-Identifier: BSD-2-Clause-Patent
|
||||
*
|
||||
**/
|
||||
|
||||
/*
|
||||
* Written by Ben Harris, 2000. This file is in the Public Domain.
|
||||
*/
|
||||
|
||||
#include "softfloat-for-gcc.h"
|
||||
#include "milieu.h"
|
||||
#include "softfloat.h"
|
||||
|
||||
#if defined(LIBC_SCCS) && !defined(lint)
|
||||
__RCSID("$NetBSD: __aeabi_fcmpgt.c,v 1.2 2013/04/16 13:38:34 matt Exp $");
|
||||
#endif /* LIBC_SCCS and not lint */
|
||||
|
||||
int __aeabi_fcmpgt(float32, float32);
|
||||
|
||||
int
|
||||
__aeabi_fcmpgt(float32 a, float32 b)
|
||||
{
|
||||
|
||||
return !float32_le(a, b) && float32_eq(a, a) && float32_eq(b, b);
|
||||
}
|
|
@ -1,30 +0,0 @@
|
|||
/* $NetBSD: __aeabi_fcmple.c,v 1.1 2013/04/16 10:37:39 matt Exp $ */
|
||||
|
||||
/** @file
|
||||
*
|
||||
* Copyright (c) 2013 - 2014, ARM Limited. All rights reserved.
|
||||
*
|
||||
* SPDX-License-Identifier: BSD-2-Clause-Patent
|
||||
*
|
||||
**/
|
||||
|
||||
/*
|
||||
* Written by Ben Harris, 2000. This file is in the Public Domain.
|
||||
*/
|
||||
|
||||
#include "softfloat-for-gcc.h"
|
||||
#include "milieu.h"
|
||||
#include "softfloat.h"
|
||||
|
||||
#if defined(LIBC_SCCS) && !defined(lint)
|
||||
__RCSID("$NetBSD: __aeabi_fcmple.c,v 1.1 2013/04/16 10:37:39 matt Exp $");
|
||||
#endif /* LIBC_SCCS and not lint */
|
||||
|
||||
int __aeabi_fcmple(float32, float32);
|
||||
|
||||
int
|
||||
__aeabi_fcmple(float32 a, float32 b)
|
||||
{
|
||||
|
||||
return float32_le(a, b);
|
||||
}
|
|
@ -1,30 +0,0 @@
|
|||
/* $NetBSD: __aeabi_fcmplt.c,v 1.1 2013/04/16 10:37:39 matt Exp $ */
|
||||
|
||||
/** @file
|
||||
*
|
||||
* Copyright (c) 2013 - 2014, ARM Limited. All rights reserved.
|
||||
*
|
||||
* SPDX-License-Identifier: BSD-2-Clause-Patent
|
||||
*
|
||||
**/
|
||||
|
||||
/*
|
||||
* Written by Ben Harris, 2000. This file is in the Public Domain.
|
||||
*/
|
||||
|
||||
#include "softfloat-for-gcc.h"
|
||||
#include "milieu.h"
|
||||
#include "softfloat.h"
|
||||
|
||||
#if defined(LIBC_SCCS) && !defined(lint)
|
||||
__RCSID("$NetBSD: __aeabi_fcmplt.c,v 1.1 2013/04/16 10:37:39 matt Exp $");
|
||||
#endif /* LIBC_SCCS and not lint */
|
||||
|
||||
int __aeabi_fcmplt(float32, float32);
|
||||
|
||||
int
|
||||
__aeabi_fcmplt(float32 a, float32 b)
|
||||
{
|
||||
|
||||
return float32_lt(a, b);
|
||||
}
|
|
@ -1,35 +0,0 @@
|
|||
/* $NetBSD: __aeabi_fcmpun.c,v 1.1 2013/04/16 10:37:39 matt Exp $ */
|
||||
|
||||
/** @file
|
||||
*
|
||||
* Copyright (c) 2013 - 2014, ARM Limited. All rights reserved.
|
||||
*
|
||||
* SPDX-License-Identifier: BSD-2-Clause-Patent
|
||||
*
|
||||
**/
|
||||
|
||||
/*
|
||||
* Written by Richard Earnshaw, 2003. This file is in the Public Domain.
|
||||
*/
|
||||
|
||||
#include "softfloat-for-gcc.h"
|
||||
#include "milieu.h"
|
||||
#include "softfloat.h"
|
||||
|
||||
#if defined(LIBC_SCCS) && !defined(lint)
|
||||
__RCSID("$NetBSD: __aeabi_fcmpun.c,v 1.1 2013/04/16 10:37:39 matt Exp $");
|
||||
#endif /* LIBC_SCCS and not lint */
|
||||
|
||||
int __aeabi_fcmpun(float32, float32);
|
||||
|
||||
int
|
||||
__aeabi_fcmpun(float32 a, float32 b)
|
||||
{
|
||||
/*
|
||||
* The comparison is unordered if either input is a NaN.
|
||||
* Test for this by comparing each operand with itself.
|
||||
* We must perform both comparisons to correctly check for
|
||||
* signalling NaNs.
|
||||
*/
|
||||
return !float32_eq(a, a) || !float32_eq(b, b);
|
||||
}
|
|
@ -1,345 +0,0 @@
|
|||
/* $NetBSD: softfloat.h,v 1.10 2013/04/24 18:04:46 matt Exp $ */
|
||||
|
||||
/* This is a derivative work. */
|
||||
|
||||
/*
|
||||
===============================================================================
|
||||
|
||||
This C header file is part of the SoftFloat IEC/IEEE Floating-point
|
||||
Arithmetic Package, Release 2a.
|
||||
|
||||
Written by John R. Hauser. This work was made possible in part by the
|
||||
International Computer Science Institute, located at Suite 600, 1947 Center
|
||||
Street, Berkeley, California 94704. Funding was partially provided by the
|
||||
National Science Foundation under grant MIP-9311980. The original version
|
||||
of this code was written as part of a project to build a fixed-point vector
|
||||
processor in collaboration with the University of California at Berkeley,
|
||||
overseen by Profs. Nelson Morgan and John Wawrzynek. More information
|
||||
is available through the Web page `http://HTTP.CS.Berkeley.EDU/~jhauser/
|
||||
arithmetic/SoftFloat.html'.
|
||||
|
||||
THIS SOFTWARE IS DISTRIBUTED AS IS, FOR FREE. Although reasonable effort
|
||||
has been made to avoid it, THIS SOFTWARE MAY CONTAIN FAULTS THAT WILL AT
|
||||
TIMES RESULT IN INCORRECT BEHAVIOR. USE OF THIS SOFTWARE IS RESTRICTED TO
|
||||
PERSONS AND ORGANIZATIONS WHO CAN AND WILL TAKE FULL RESPONSIBILITY FOR ANY
|
||||
AND ALL LOSSES, COSTS, OR OTHER PROBLEMS ARISING FROM ITS USE.
|
||||
|
||||
Derivative works are acceptable, even for commercial purposes, so long as
|
||||
(1) they include prominent notice that the work is derivative, and (2) they
|
||||
include prominent notice akin to these four paragraphs for those parts of
|
||||
this code that are retained.
|
||||
|
||||
===============================================================================
|
||||
*/
|
||||
|
||||
/*
|
||||
-------------------------------------------------------------------------------
|
||||
The macro `FLOATX80' must be defined to enable the extended double-precision
|
||||
floating-point format `floatx80'. If this macro is not defined, the
|
||||
`floatx80' type will not be defined, and none of the functions that either
|
||||
input or output the `floatx80' type will be defined. The same applies to
|
||||
the `FLOAT128' macro and the quadruple-precision format `float128'.
|
||||
-------------------------------------------------------------------------------
|
||||
*/
|
||||
/* #define FLOATX80 */
|
||||
/* #define FLOAT128 */
|
||||
|
||||
#define FE_INVALID 0x01 /* invalid operation exception */
|
||||
#define FE_DIVBYZERO 0x02 /* divide-by-zero exception */
|
||||
#define FE_OVERFLOW 0x04 /* overflow exception */
|
||||
#define FE_UNDERFLOW 0x08 /* underflow exception */
|
||||
#define FE_INEXACT 0x10 /* imprecise (loss of precision; "inexact") */
|
||||
|
||||
#define FE_ALL_EXCEPT 0x1f
|
||||
|
||||
#define FE_TONEAREST 0 /* round to nearest representable number */
|
||||
#define FE_UPWARD 1 /* round toward positive infinity */
|
||||
#define FE_DOWNWARD 2 /* round toward negative infinity */
|
||||
#define FE_TOWARDZERO 3 /* round to zero (truncate) */
|
||||
|
||||
typedef int fp_except;
|
||||
|
||||
/* Bit defines for fp_except */
|
||||
|
||||
#define FP_X_INV FE_INVALID /* invalid operation exception */
|
||||
#define FP_X_DZ FE_DIVBYZERO /* divide-by-zero exception */
|
||||
#define FP_X_OFL FE_OVERFLOW /* overflow exception */
|
||||
#define FP_X_UFL FE_UNDERFLOW /* underflow exception */
|
||||
#define FP_X_IMP FE_INEXACT /* imprecise (prec. loss; "inexact") */
|
||||
|
||||
/* Rounding modes */
|
||||
|
||||
typedef enum {
|
||||
FP_RN=FE_TONEAREST, /* round to nearest representable number */
|
||||
FP_RP=FE_UPWARD, /* round toward positive infinity */
|
||||
FP_RM=FE_DOWNWARD, /* round toward negative infinity */
|
||||
FP_RZ=FE_TOWARDZERO /* round to zero (truncate) */
|
||||
} fp_rnd;
|
||||
|
||||
/*
|
||||
-------------------------------------------------------------------------------
|
||||
Software IEC/IEEE floating-point types.
|
||||
-------------------------------------------------------------------------------
|
||||
*/
|
||||
typedef unsigned int float32;
|
||||
typedef unsigned long long float64;
|
||||
#ifdef FLOATX80
|
||||
typedef struct {
|
||||
unsigned short high;
|
||||
unsigned long long low;
|
||||
} floatx80;
|
||||
#endif
|
||||
#ifdef FLOAT128
|
||||
typedef struct {
|
||||
unsigned long long high, low;
|
||||
} float128;
|
||||
#endif
|
||||
|
||||
/*
|
||||
-------------------------------------------------------------------------------
|
||||
Software IEC/IEEE floating-point underflow tininess-detection mode.
|
||||
-------------------------------------------------------------------------------
|
||||
*/
|
||||
#ifndef SOFTFLOAT_FOR_GCC
|
||||
extern int float_detect_tininess;
|
||||
#endif
|
||||
enum {
|
||||
float_tininess_after_rounding = 0,
|
||||
float_tininess_before_rounding = 1
|
||||
};
|
||||
|
||||
/*
|
||||
-------------------------------------------------------------------------------
|
||||
Software IEC/IEEE floating-point rounding mode.
|
||||
-------------------------------------------------------------------------------
|
||||
*/
|
||||
extern fp_rnd float_rounding_mode;
|
||||
#define float_round_nearest_even FP_RN
|
||||
#define float_round_to_zero FP_RZ
|
||||
#define float_round_down FP_RM
|
||||
#define float_round_up FP_RP
|
||||
|
||||
/*
|
||||
-------------------------------------------------------------------------------
|
||||
Software IEC/IEEE floating-point exception flags.
|
||||
-------------------------------------------------------------------------------
|
||||
*/
|
||||
extern fp_except float_exception_flags;
|
||||
extern fp_except float_exception_mask;
|
||||
enum {
|
||||
float_flag_inexact = FP_X_IMP,
|
||||
float_flag_underflow = FP_X_UFL,
|
||||
float_flag_overflow = FP_X_OFL,
|
||||
float_flag_divbyzero = FP_X_DZ,
|
||||
float_flag_invalid = FP_X_INV
|
||||
};
|
||||
|
||||
/*
|
||||
-------------------------------------------------------------------------------
|
||||
Routine to raise any or all of the software IEC/IEEE floating-point
|
||||
exception flags.
|
||||
-------------------------------------------------------------------------------
|
||||
*/
|
||||
void float_raise( fp_except );
|
||||
|
||||
/*
|
||||
-------------------------------------------------------------------------------
|
||||
Software IEC/IEEE integer-to-floating-point conversion routines.
|
||||
-------------------------------------------------------------------------------
|
||||
*/
|
||||
float32 int32_to_float32( int32 );
|
||||
float32 uint32_to_float32( uint32 );
|
||||
float64 int32_to_float64( int32 );
|
||||
float64 uint32_to_float64( uint32 );
|
||||
#ifdef FLOATX80
|
||||
floatx80 int32_to_floatx80( int32 );
|
||||
floatx80 uint32_to_floatx80( uint32 );
|
||||
#endif
|
||||
#ifdef FLOAT128
|
||||
float128 int32_to_float128( int32 );
|
||||
float128 uint32_to_float128( uint32 );
|
||||
#endif
|
||||
#ifndef SOFTFLOAT_FOR_GCC /* __floatdi?f is in libgcc2.c */
|
||||
float32 int64_to_float32( long long );
|
||||
float64 int64_to_float64( long long );
|
||||
#ifdef FLOATX80
|
||||
floatx80 int64_to_floatx80( long long );
|
||||
#endif
|
||||
#ifdef FLOAT128
|
||||
float128 int64_to_float128( long long );
|
||||
#endif
|
||||
#endif
|
||||
|
||||
/*
|
||||
-------------------------------------------------------------------------------
|
||||
Software IEC/IEEE single-precision conversion routines.
|
||||
-------------------------------------------------------------------------------
|
||||
*/
|
||||
int float32_to_int32( float32 );
|
||||
int float32_to_int32_round_to_zero( float32 );
|
||||
#if defined(SOFTFLOAT_FOR_GCC) && defined(SOFTFLOAT_NEED_FIXUNS)
|
||||
unsigned int float32_to_uint32_round_to_zero( float32 );
|
||||
#endif
|
||||
#ifndef SOFTFLOAT_FOR_GCC /* __fix?fdi provided by libgcc2.c */
|
||||
long long float32_to_int64( float32 );
|
||||
long long float32_to_int64_round_to_zero( float32 );
|
||||
#endif
|
||||
float64 float32_to_float64( float32 );
|
||||
#ifdef FLOATX80
|
||||
floatx80 float32_to_floatx80( float32 );
|
||||
#endif
|
||||
#ifdef FLOAT128
|
||||
float128 float32_to_float128( float32 );
|
||||
#endif
|
||||
|
||||
/*
|
||||
-------------------------------------------------------------------------------
|
||||
Software IEC/IEEE single-precision operations.
|
||||
-------------------------------------------------------------------------------
|
||||
*/
|
||||
float32 float32_round_to_int( float32 );
|
||||
float32 float32_add( float32, float32 );
|
||||
float32 float32_sub( float32, float32 );
|
||||
float32 float32_mul( float32, float32 );
|
||||
float32 float32_div( float32, float32 );
|
||||
float32 float32_rem( float32, float32 );
|
||||
float32 float32_sqrt( float32 );
|
||||
int float32_eq( float32, float32 );
|
||||
int float32_le( float32, float32 );
|
||||
int float32_lt( float32, float32 );
|
||||
int float32_eq_signaling( float32, float32 );
|
||||
int float32_le_quiet( float32, float32 );
|
||||
int float32_lt_quiet( float32, float32 );
|
||||
#ifndef SOFTFLOAT_FOR_GCC
|
||||
int float32_is_signaling_nan( float32 );
|
||||
#endif
|
||||
|
||||
/*
|
||||
-------------------------------------------------------------------------------
|
||||
Software IEC/IEEE double-precision conversion routines.
|
||||
-------------------------------------------------------------------------------
|
||||
*/
|
||||
int float64_to_int32( float64 );
|
||||
int float64_to_int32_round_to_zero( float64 );
|
||||
#if defined(SOFTFLOAT_FOR_GCC) && defined(SOFTFLOAT_NEED_FIXUNS)
|
||||
unsigned int float64_to_uint32_round_to_zero( float64 );
|
||||
#endif
|
||||
#ifndef SOFTFLOAT_FOR_GCC /* __fix?fdi provided by libgcc2.c */
|
||||
long long float64_to_int64( float64 );
|
||||
long long float64_to_int64_round_to_zero( float64 );
|
||||
#endif
|
||||
float32 float64_to_float32( float64 );
|
||||
#ifdef FLOATX80
|
||||
floatx80 float64_to_floatx80( float64 );
|
||||
#endif
|
||||
#ifdef FLOAT128
|
||||
float128 float64_to_float128( float64 );
|
||||
#endif
|
||||
|
||||
/*
|
||||
-------------------------------------------------------------------------------
|
||||
Software IEC/IEEE double-precision operations.
|
||||
-------------------------------------------------------------------------------
|
||||
*/
|
||||
float64 float64_round_to_int( float64 );
|
||||
float64 float64_add( float64, float64 );
|
||||
float64 float64_sub( float64, float64 );
|
||||
float64 float64_mul( float64, float64 );
|
||||
float64 float64_div( float64, float64 );
|
||||
float64 float64_rem( float64, float64 );
|
||||
float64 float64_sqrt( float64 );
|
||||
int float64_eq( float64, float64 );
|
||||
int float64_le( float64, float64 );
|
||||
int float64_lt( float64, float64 );
|
||||
int float64_eq_signaling( float64, float64 );
|
||||
int float64_le_quiet( float64, float64 );
|
||||
int float64_lt_quiet( float64, float64 );
|
||||
#ifndef SOFTFLOAT_FOR_GCC
|
||||
int float64_is_signaling_nan( float64 );
|
||||
#endif
|
||||
|
||||
#ifdef FLOATX80
|
||||
|
||||
/*
|
||||
-------------------------------------------------------------------------------
|
||||
Software IEC/IEEE extended double-precision conversion routines.
|
||||
-------------------------------------------------------------------------------
|
||||
*/
|
||||
int floatx80_to_int32( floatx80 );
|
||||
int floatx80_to_int32_round_to_zero( floatx80 );
|
||||
long long floatx80_to_int64( floatx80 );
|
||||
long long floatx80_to_int64_round_to_zero( floatx80 );
|
||||
float32 floatx80_to_float32( floatx80 );
|
||||
float64 floatx80_to_float64( floatx80 );
|
||||
#ifdef FLOAT128
|
||||
float128 floatx80_to_float128( floatx80 );
|
||||
#endif
|
||||
|
||||
/*
|
||||
-------------------------------------------------------------------------------
|
||||
Software IEC/IEEE extended double-precision rounding precision. Valid
|
||||
values are 32, 64, and 80.
|
||||
-------------------------------------------------------------------------------
|
||||
*/
|
||||
extern int floatx80_rounding_precision;
|
||||
|
||||
/*
|
||||
-------------------------------------------------------------------------------
|
||||
Software IEC/IEEE extended double-precision operations.
|
||||
-------------------------------------------------------------------------------
|
||||
*/
|
||||
floatx80 floatx80_round_to_int( floatx80 );
|
||||
floatx80 floatx80_add( floatx80, floatx80 );
|
||||
floatx80 floatx80_sub( floatx80, floatx80 );
|
||||
floatx80 floatx80_mul( floatx80, floatx80 );
|
||||
floatx80 floatx80_div( floatx80, floatx80 );
|
||||
floatx80 floatx80_rem( floatx80, floatx80 );
|
||||
floatx80 floatx80_sqrt( floatx80 );
|
||||
int floatx80_eq( floatx80, floatx80 );
|
||||
int floatx80_le( floatx80, floatx80 );
|
||||
int floatx80_lt( floatx80, floatx80 );
|
||||
int floatx80_eq_signaling( floatx80, floatx80 );
|
||||
int floatx80_le_quiet( floatx80, floatx80 );
|
||||
int floatx80_lt_quiet( floatx80, floatx80 );
|
||||
int floatx80_is_signaling_nan( floatx80 );
|
||||
|
||||
#endif
|
||||
|
||||
#ifdef FLOAT128
|
||||
|
||||
/*
|
||||
-------------------------------------------------------------------------------
|
||||
Software IEC/IEEE quadruple-precision conversion routines.
|
||||
-------------------------------------------------------------------------------
|
||||
*/
|
||||
int float128_to_int32( float128 );
|
||||
int float128_to_int32_round_to_zero( float128 );
|
||||
long long float128_to_int64( float128 );
|
||||
long long float128_to_int64_round_to_zero( float128 );
|
||||
float32 float128_to_float32( float128 );
|
||||
float64 float128_to_float64( float128 );
|
||||
#ifdef FLOATX80
|
||||
floatx80 float128_to_floatx80( float128 );
|
||||
#endif
|
||||
|
||||
/*
|
||||
-------------------------------------------------------------------------------
|
||||
Software IEC/IEEE quadruple-precision operations.
|
||||
-------------------------------------------------------------------------------
|
||||
*/
|
||||
float128 float128_round_to_int( float128 );
|
||||
float128 float128_add( float128, float128 );
|
||||
float128 float128_sub( float128, float128 );
|
||||
float128 float128_mul( float128, float128 );
|
||||
float128 float128_div( float128, float128 );
|
||||
float128 float128_rem( float128, float128 );
|
||||
float128 float128_sqrt( float128 );
|
||||
int float128_eq( float128, float128 );
|
||||
int float128_le( float128, float128 );
|
||||
int float128_lt( float128, float128 );
|
||||
int float128_eq_signaling( float128, float128 );
|
||||
int float128_le_quiet( float128, float128 );
|
||||
int float128_lt_quiet( float128, float128 );
|
||||
int float128_is_signaling_nan( float128 );
|
||||
|
||||
#endif
|
|
@ -1,108 +0,0 @@
|
|||
/** @file
|
||||
|
||||
Copyright (c) 2014, ARM Limited. All rights reserved.
|
||||
|
||||
SPDX-License-Identifier: BSD-2-Clause-Patent
|
||||
|
||||
**/
|
||||
|
||||
/* $NetBSD: arm-gcc.h,v 1.4 2013/01/26 07:08:14 matt Exp $ */
|
||||
|
||||
/*
|
||||
-------------------------------------------------------------------------------
|
||||
One of the macros `BIGENDIAN' or `LITTLEENDIAN' must be defined.
|
||||
-------------------------------------------------------------------------------
|
||||
*/
|
||||
#ifdef __ARMEB__
|
||||
#define BIGENDIAN
|
||||
#else
|
||||
#define LITTLEENDIAN
|
||||
#endif
|
||||
|
||||
/*
|
||||
-------------------------------------------------------------------------------
|
||||
The macro `BITS64' can be defined to indicate that 64-bit integer types are
|
||||
supported by the compiler.
|
||||
-------------------------------------------------------------------------------
|
||||
*/
|
||||
#define BITS64
|
||||
|
||||
/*
|
||||
-------------------------------------------------------------------------------
|
||||
Each of the following `typedef's defines the most convenient type that holds
|
||||
integers of at least as many bits as specified. For example, `uint8' should
|
||||
be the most convenient type that can hold unsigned integers of as many as
|
||||
8 bits. The `flag' type must be able to hold either a 0 or 1. For most
|
||||
implementations of C, `flag', `uint8', and `int8' should all be `typedef'ed
|
||||
to the same as `int'.
|
||||
-------------------------------------------------------------------------------
|
||||
*/
|
||||
typedef int flag;
|
||||
typedef int uint8;
|
||||
typedef int int8;
|
||||
typedef int uint16;
|
||||
typedef int int16;
|
||||
typedef unsigned int uint32;
|
||||
typedef signed int int32;
|
||||
#ifdef BITS64
|
||||
typedef unsigned long long int uint64;
|
||||
typedef signed long long int int64;
|
||||
#endif
|
||||
|
||||
/*
|
||||
-------------------------------------------------------------------------------
|
||||
Each of the following `typedef's defines a type that holds integers
|
||||
of _exactly_ the number of bits specified. For instance, for most
|
||||
implementation of C, `bits16' and `sbits16' should be `typedef'ed to
|
||||
`unsigned short int' and `signed short int' (or `short int'), respectively.
|
||||
-------------------------------------------------------------------------------
|
||||
*/
|
||||
typedef unsigned char bits8;
|
||||
typedef signed char sbits8;
|
||||
typedef unsigned short int bits16;
|
||||
typedef signed short int sbits16;
|
||||
typedef unsigned int bits32;
|
||||
typedef signed int sbits32;
|
||||
#ifdef BITS64
|
||||
typedef unsigned long long int bits64;
|
||||
typedef signed long long int sbits64;
|
||||
#endif
|
||||
|
||||
#ifdef BITS64
|
||||
/*
|
||||
-------------------------------------------------------------------------------
|
||||
The `LIT64' macro takes as its argument a textual integer literal and
|
||||
if necessary ``marks'' the literal as having a 64-bit integer type.
|
||||
For example, the GNU C Compiler (`gcc') requires that 64-bit literals be
|
||||
appended with the letters `LL' standing for `long long', which is `gcc's
|
||||
name for the 64-bit integer type. Some compilers may allow `LIT64' to be
|
||||
defined as the identity macro: `#define LIT64( a ) a'.
|
||||
-------------------------------------------------------------------------------
|
||||
*/
|
||||
#define LIT64( a ) a##ULL
|
||||
#endif
|
||||
|
||||
/*
|
||||
-------------------------------------------------------------------------------
|
||||
The macro `INLINE' can be used before functions that should be inlined. If
|
||||
a compiler does not support explicit inlining, this macro should be defined
|
||||
to be `static'.
|
||||
-------------------------------------------------------------------------------
|
||||
*/
|
||||
#define INLINE static inline
|
||||
|
||||
/*
|
||||
-------------------------------------------------------------------------------
|
||||
The ARM FPA is odd in that it stores doubles high-order word first, no matter
|
||||
what the endianness of the CPU. VFP is sane.
|
||||
-------------------------------------------------------------------------------
|
||||
*/
|
||||
#if defined(SOFTFLOAT_FOR_GCC)
|
||||
#if defined(__VFP_FP__) || defined(__ARMEB__)
|
||||
#define FLOAT64_DEMANGLE(a) (a)
|
||||
#define FLOAT64_MANGLE(a) (a)
|
||||
#else
|
||||
#define FLOAT64_DEMANGLE(a) (((a) << 32) | ((a) >> 32))
|
||||
#define FLOAT64_MANGLE(a) FLOAT64_DEMANGLE(a)
|
||||
#endif
|
||||
#endif
|
|
@ -1,648 +0,0 @@
|
|||
|
||||
/*
|
||||
===============================================================================
|
||||
|
||||
This C source fragment is part of the SoftFloat IEC/IEEE Floating-point
|
||||
Arithmetic Package, Release 2a.
|
||||
|
||||
Written by John R. Hauser. This work was made possible in part by the
|
||||
International Computer Science Institute, located at Suite 600, 1947 Center
|
||||
Street, Berkeley, California 94704. Funding was partially provided by the
|
||||
National Science Foundation under grant MIP-9311980. The original version
|
||||
of this code was written as part of a project to build a fixed-point vector
|
||||
processor in collaboration with the University of California at Berkeley,
|
||||
overseen by Profs. Nelson Morgan and John Wawrzynek. More information
|
||||
is available through the Web page `http://HTTP.CS.Berkeley.EDU/~jhauser/
|
||||
arithmetic/SoftFloat.html'.
|
||||
|
||||
THIS SOFTWARE IS DISTRIBUTED AS IS, FOR FREE. Although reasonable effort
|
||||
has been made to avoid it, THIS SOFTWARE MAY CONTAIN FAULTS THAT WILL AT
|
||||
TIMES RESULT IN INCORRECT BEHAVIOR. USE OF THIS SOFTWARE IS RESTRICTED TO
|
||||
PERSONS AND ORGANIZATIONS WHO CAN AND WILL TAKE FULL RESPONSIBILITY FOR ANY
|
||||
AND ALL LOSSES, COSTS, OR OTHER PROBLEMS ARISING FROM ITS USE.
|
||||
|
||||
Derivative works are acceptable, even for commercial purposes, so long as
|
||||
(1) they include prominent notice that the work is derivative, and (2) they
|
||||
include prominent notice akin to these four paragraphs for those parts of
|
||||
this code that are retained.
|
||||
|
||||
===============================================================================
|
||||
*/
|
||||
|
||||
/*
|
||||
-------------------------------------------------------------------------------
|
||||
Shifts `a' right by the number of bits given in `count'. If any nonzero
|
||||
bits are shifted off, they are ``jammed'' into the least significant bit of
|
||||
the result by setting the least significant bit to 1. The value of `count'
|
||||
can be arbitrarily large; in particular, if `count' is greater than 32, the
|
||||
result will be either 0 or 1, depending on whether `a' is zero or nonzero.
|
||||
The result is stored in the location pointed to by `zPtr'.
|
||||
-------------------------------------------------------------------------------
|
||||
*/
|
||||
INLINE void shift32RightJamming( bits32 a, int16 count, bits32 *zPtr )
|
||||
{
|
||||
bits32 z;
|
||||
|
||||
if ( count == 0 ) {
|
||||
z = a;
|
||||
}
|
||||
else if ( count < 32 ) {
|
||||
z = ( a>>count ) | ( ( a<<( ( - count ) & 31 ) ) != 0 );
|
||||
}
|
||||
else {
|
||||
z = ( a != 0 );
|
||||
}
|
||||
*zPtr = z;
|
||||
|
||||
}
|
||||
|
||||
/*
|
||||
-------------------------------------------------------------------------------
|
||||
Shifts the 64-bit value formed by concatenating `a0' and `a1' right by the
|
||||
number of bits given in `count'. Any bits shifted off are lost. The value
|
||||
of `count' can be arbitrarily large; in particular, if `count' is greater
|
||||
than 64, the result will be 0. The result is broken into two 32-bit pieces
|
||||
which are stored at the locations pointed to by `z0Ptr' and `z1Ptr'.
|
||||
-------------------------------------------------------------------------------
|
||||
*/
|
||||
INLINE void
|
||||
shift64Right(
|
||||
bits32 a0, bits32 a1, int16 count, bits32 *z0Ptr, bits32 *z1Ptr )
|
||||
{
|
||||
bits32 z0, z1;
|
||||
int8 negCount = ( - count ) & 31;
|
||||
|
||||
if ( count == 0 ) {
|
||||
z1 = a1;
|
||||
z0 = a0;
|
||||
}
|
||||
else if ( count < 32 ) {
|
||||
z1 = ( a0<<negCount ) | ( a1>>count );
|
||||
z0 = a0>>count;
|
||||
}
|
||||
else {
|
||||
z1 = ( count < 64 ) ? ( a0>>( count & 31 ) ) : 0;
|
||||
z0 = 0;
|
||||
}
|
||||
*z1Ptr = z1;
|
||||
*z0Ptr = z0;
|
||||
|
||||
}
|
||||
|
||||
/*
|
||||
-------------------------------------------------------------------------------
|
||||
Shifts the 64-bit value formed by concatenating `a0' and `a1' right by the
|
||||
number of bits given in `count'. If any nonzero bits are shifted off, they
|
||||
are ``jammed'' into the least significant bit of the result by setting the
|
||||
least significant bit to 1. The value of `count' can be arbitrarily large;
|
||||
in particular, if `count' is greater than 64, the result will be either 0
|
||||
or 1, depending on whether the concatenation of `a0' and `a1' is zero or
|
||||
nonzero. The result is broken into two 32-bit pieces which are stored at
|
||||
the locations pointed to by `z0Ptr' and `z1Ptr'.
|
||||
-------------------------------------------------------------------------------
|
||||
*/
|
||||
INLINE void
|
||||
shift64RightJamming(
|
||||
bits32 a0, bits32 a1, int16 count, bits32 *z0Ptr, bits32 *z1Ptr )
|
||||
{
|
||||
bits32 z0, z1;
|
||||
int8 negCount = ( - count ) & 31;
|
||||
|
||||
if ( count == 0 ) {
|
||||
z1 = a1;
|
||||
z0 = a0;
|
||||
}
|
||||
else if ( count < 32 ) {
|
||||
z1 = ( a0<<negCount ) | ( a1>>count ) | ( ( a1<<negCount ) != 0 );
|
||||
z0 = a0>>count;
|
||||
}
|
||||
else {
|
||||
if ( count == 32 ) {
|
||||
z1 = a0 | ( a1 != 0 );
|
||||
}
|
||||
else if ( count < 64 ) {
|
||||
z1 = ( a0>>( count & 31 ) ) | ( ( ( a0<<negCount ) | a1 ) != 0 );
|
||||
}
|
||||
else {
|
||||
z1 = ( ( a0 | a1 ) != 0 );
|
||||
}
|
||||
z0 = 0;
|
||||
}
|
||||
*z1Ptr = z1;
|
||||
*z0Ptr = z0;
|
||||
|
||||
}
|
||||
|
||||
/*
|
||||
-------------------------------------------------------------------------------
|
||||
Shifts the 96-bit value formed by concatenating `a0', `a1', and `a2' right
|
||||
by 32 _plus_ the number of bits given in `count'. The shifted result is
|
||||
at most 64 nonzero bits; these are broken into two 32-bit pieces which are
|
||||
stored at the locations pointed to by `z0Ptr' and `z1Ptr'. The bits shifted
|
||||
off form a third 32-bit result as follows: The _last_ bit shifted off is
|
||||
the most-significant bit of the extra result, and the other 31 bits of the
|
||||
extra result are all zero if and only if _all_but_the_last_ bits shifted off
|
||||
were all zero. This extra result is stored in the location pointed to by
|
||||
`z2Ptr'. The value of `count' can be arbitrarily large.
|
||||
(This routine makes more sense if `a0', `a1', and `a2' are considered
|
||||
to form a fixed-point value with binary point between `a1' and `a2'. This
|
||||
fixed-point value is shifted right by the number of bits given in `count',
|
||||
and the integer part of the result is returned at the locations pointed to
|
||||
by `z0Ptr' and `z1Ptr'. The fractional part of the result may be slightly
|
||||
corrupted as described above, and is returned at the location pointed to by
|
||||
`z2Ptr'.)
|
||||
-------------------------------------------------------------------------------
|
||||
*/
|
||||
INLINE void
|
||||
shift64ExtraRightJamming(
|
||||
bits32 a0,
|
||||
bits32 a1,
|
||||
bits32 a2,
|
||||
int16 count,
|
||||
bits32 *z0Ptr,
|
||||
bits32 *z1Ptr,
|
||||
bits32 *z2Ptr
|
||||
)
|
||||
{
|
||||
bits32 z0, z1, z2;
|
||||
int8 negCount = ( - count ) & 31;
|
||||
|
||||
if ( count == 0 ) {
|
||||
z2 = a2;
|
||||
z1 = a1;
|
||||
z0 = a0;
|
||||
}
|
||||
else {
|
||||
if ( count < 32 ) {
|
||||
z2 = a1<<negCount;
|
||||
z1 = ( a0<<negCount ) | ( a1>>count );
|
||||
z0 = a0>>count;
|
||||
}
|
||||
else {
|
||||
if ( count == 32 ) {
|
||||
z2 = a1;
|
||||
z1 = a0;
|
||||
}
|
||||
else {
|
||||
a2 |= a1;
|
||||
if ( count < 64 ) {
|
||||
z2 = a0<<negCount;
|
||||
z1 = a0>>( count & 31 );
|
||||
}
|
||||
else {
|
||||
z2 = ( count == 64 ) ? a0 : ( a0 != 0 );
|
||||
z1 = 0;
|
||||
}
|
||||
}
|
||||
z0 = 0;
|
||||
}
|
||||
z2 |= ( a2 != 0 );
|
||||
}
|
||||
*z2Ptr = z2;
|
||||
*z1Ptr = z1;
|
||||
*z0Ptr = z0;
|
||||
|
||||
}
|
||||
|
||||
/*
|
||||
-------------------------------------------------------------------------------
|
||||
Shifts the 64-bit value formed by concatenating `a0' and `a1' left by the
|
||||
number of bits given in `count'. Any bits shifted off are lost. The value
|
||||
of `count' must be less than 32. The result is broken into two 32-bit
|
||||
pieces which are stored at the locations pointed to by `z0Ptr' and `z1Ptr'.
|
||||
-------------------------------------------------------------------------------
|
||||
*/
|
||||
INLINE void
|
||||
shortShift64Left(
|
||||
bits32 a0, bits32 a1, int16 count, bits32 *z0Ptr, bits32 *z1Ptr )
|
||||
{
|
||||
|
||||
*z1Ptr = a1<<count;
|
||||
*z0Ptr =
|
||||
( count == 0 ) ? a0 : ( a0<<count ) | ( a1>>( ( - count ) & 31 ) );
|
||||
|
||||
}
|
||||
|
||||
/*
|
||||
-------------------------------------------------------------------------------
|
||||
Shifts the 96-bit value formed by concatenating `a0', `a1', and `a2' left
|
||||
by the number of bits given in `count'. Any bits shifted off are lost.
|
||||
The value of `count' must be less than 32. The result is broken into three
|
||||
32-bit pieces which are stored at the locations pointed to by `z0Ptr',
|
||||
`z1Ptr', and `z2Ptr'.
|
||||
-------------------------------------------------------------------------------
|
||||
*/
|
||||
INLINE void
|
||||
shortShift96Left(
|
||||
bits32 a0,
|
||||
bits32 a1,
|
||||
bits32 a2,
|
||||
int16 count,
|
||||
bits32 *z0Ptr,
|
||||
bits32 *z1Ptr,
|
||||
bits32 *z2Ptr
|
||||
)
|
||||
{
|
||||
bits32 z0, z1, z2;
|
||||
int8 negCount;
|
||||
|
||||
z2 = a2<<count;
|
||||
z1 = a1<<count;
|
||||
z0 = a0<<count;
|
||||
if ( 0 < count ) {
|
||||
negCount = ( ( - count ) & 31 );
|
||||
z1 |= a2>>negCount;
|
||||
z0 |= a1>>negCount;
|
||||
}
|
||||
*z2Ptr = z2;
|
||||
*z1Ptr = z1;
|
||||
*z0Ptr = z0;
|
||||
|
||||
}
|
||||
|
||||
/*
|
||||
-------------------------------------------------------------------------------
|
||||
Adds the 64-bit value formed by concatenating `a0' and `a1' to the 64-bit
|
||||
value formed by concatenating `b0' and `b1'. Addition is modulo 2^64, so
|
||||
any carry out is lost. The result is broken into two 32-bit pieces which
|
||||
are stored at the locations pointed to by `z0Ptr' and `z1Ptr'.
|
||||
-------------------------------------------------------------------------------
|
||||
*/
|
||||
INLINE void
|
||||
add64(
|
||||
bits32 a0, bits32 a1, bits32 b0, bits32 b1, bits32 *z0Ptr, bits32 *z1Ptr )
|
||||
{
|
||||
bits32 z1;
|
||||
|
||||
z1 = a1 + b1;
|
||||
*z1Ptr = z1;
|
||||
*z0Ptr = a0 + b0 + ( z1 < a1 );
|
||||
|
||||
}
|
||||
|
||||
/*
|
||||
-------------------------------------------------------------------------------
|
||||
Adds the 96-bit value formed by concatenating `a0', `a1', and `a2' to the
|
||||
96-bit value formed by concatenating `b0', `b1', and `b2'. Addition is
|
||||
modulo 2^96, so any carry out is lost. The result is broken into three
|
||||
32-bit pieces which are stored at the locations pointed to by `z0Ptr',
|
||||
`z1Ptr', and `z2Ptr'.
|
||||
-------------------------------------------------------------------------------
|
||||
*/
|
||||
INLINE void
|
||||
add96(
|
||||
bits32 a0,
|
||||
bits32 a1,
|
||||
bits32 a2,
|
||||
bits32 b0,
|
||||
bits32 b1,
|
||||
bits32 b2,
|
||||
bits32 *z0Ptr,
|
||||
bits32 *z1Ptr,
|
||||
bits32 *z2Ptr
|
||||
)
|
||||
{
|
||||
bits32 z0, z1, z2;
|
||||
int8 carry0, carry1;
|
||||
|
||||
z2 = a2 + b2;
|
||||
carry1 = ( z2 < a2 );
|
||||
z1 = a1 + b1;
|
||||
carry0 = ( z1 < a1 );
|
||||
z0 = a0 + b0;
|
||||
z1 += carry1;
|
||||
z0 += ( z1 < (bits32)carry1 );
|
||||
z0 += carry0;
|
||||
*z2Ptr = z2;
|
||||
*z1Ptr = z1;
|
||||
*z0Ptr = z0;
|
||||
|
||||
}
|
||||
|
||||
/*
|
||||
-------------------------------------------------------------------------------
|
||||
Subtracts the 64-bit value formed by concatenating `b0' and `b1' from the
|
||||
64-bit value formed by concatenating `a0' and `a1'. Subtraction is modulo
|
||||
2^64, so any borrow out (carry out) is lost. The result is broken into two
|
||||
32-bit pieces which are stored at the locations pointed to by `z0Ptr' and
|
||||
`z1Ptr'.
|
||||
-------------------------------------------------------------------------------
|
||||
*/
|
||||
INLINE void
|
||||
sub64(
|
||||
bits32 a0, bits32 a1, bits32 b0, bits32 b1, bits32 *z0Ptr, bits32 *z1Ptr )
|
||||
{
|
||||
|
||||
*z1Ptr = a1 - b1;
|
||||
*z0Ptr = a0 - b0 - ( a1 < b1 );
|
||||
|
||||
}
|
||||
|
||||
/*
|
||||
-------------------------------------------------------------------------------
|
||||
Subtracts the 96-bit value formed by concatenating `b0', `b1', and `b2' from
|
||||
the 96-bit value formed by concatenating `a0', `a1', and `a2'. Subtraction
|
||||
is modulo 2^96, so any borrow out (carry out) is lost. The result is broken
|
||||
into three 32-bit pieces which are stored at the locations pointed to by
|
||||
`z0Ptr', `z1Ptr', and `z2Ptr'.
|
||||
-------------------------------------------------------------------------------
|
||||
*/
|
||||
INLINE void
|
||||
sub96(
|
||||
bits32 a0,
|
||||
bits32 a1,
|
||||
bits32 a2,
|
||||
bits32 b0,
|
||||
bits32 b1,
|
||||
bits32 b2,
|
||||
bits32 *z0Ptr,
|
||||
bits32 *z1Ptr,
|
||||
bits32 *z2Ptr
|
||||
)
|
||||
{
|
||||
bits32 z0, z1, z2;
|
||||
int8 borrow0, borrow1;
|
||||
|
||||
z2 = a2 - b2;
|
||||
borrow1 = ( a2 < b2 );
|
||||
z1 = a1 - b1;
|
||||
borrow0 = ( a1 < b1 );
|
||||
z0 = a0 - b0;
|
||||
z0 -= ( z1 < (bits32)borrow1 );
|
||||
z1 -= borrow1;
|
||||
z0 -= borrow0;
|
||||
*z2Ptr = z2;
|
||||
*z1Ptr = z1;
|
||||
*z0Ptr = z0;
|
||||
|
||||
}
|
||||
|
||||
/*
|
||||
-------------------------------------------------------------------------------
|
||||
Multiplies `a' by `b' to obtain a 64-bit product. The product is broken
|
||||
into two 32-bit pieces which are stored at the locations pointed to by
|
||||
`z0Ptr' and `z1Ptr'.
|
||||
-------------------------------------------------------------------------------
|
||||
*/
|
||||
INLINE void mul32To64( bits32 a, bits32 b, bits32 *z0Ptr, bits32 *z1Ptr )
|
||||
{
|
||||
bits16 aHigh, aLow, bHigh, bLow;
|
||||
bits32 z0, zMiddleA, zMiddleB, z1;
|
||||
|
||||
aLow = a;
|
||||
aHigh = a>>16;
|
||||
bLow = b;
|
||||
bHigh = b>>16;
|
||||
z1 = ( (bits32) aLow ) * bLow;
|
||||
zMiddleA = ( (bits32) aLow ) * bHigh;
|
||||
zMiddleB = ( (bits32) aHigh ) * bLow;
|
||||
z0 = ( (bits32) aHigh ) * bHigh;
|
||||
zMiddleA += zMiddleB;
|
||||
z0 += ( ( (bits32) ( zMiddleA < zMiddleB ) )<<16 ) + ( zMiddleA>>16 );
|
||||
zMiddleA <<= 16;
|
||||
z1 += zMiddleA;
|
||||
z0 += ( z1 < zMiddleA );
|
||||
*z1Ptr = z1;
|
||||
*z0Ptr = z0;
|
||||
|
||||
}
|
||||
|
||||
/*
|
||||
-------------------------------------------------------------------------------
|
||||
Multiplies the 64-bit value formed by concatenating `a0' and `a1' by `b'
|
||||
to obtain a 96-bit product. The product is broken into three 32-bit pieces
|
||||
which are stored at the locations pointed to by `z0Ptr', `z1Ptr', and
|
||||
`z2Ptr'.
|
||||
-------------------------------------------------------------------------------
|
||||
*/
|
||||
INLINE void
|
||||
mul64By32To96(
|
||||
bits32 a0,
|
||||
bits32 a1,
|
||||
bits32 b,
|
||||
bits32 *z0Ptr,
|
||||
bits32 *z1Ptr,
|
||||
bits32 *z2Ptr
|
||||
)
|
||||
{
|
||||
bits32 z0, z1, z2, more1;
|
||||
|
||||
mul32To64( a1, b, &z1, &z2 );
|
||||
mul32To64( a0, b, &z0, &more1 );
|
||||
add64( z0, more1, 0, z1, &z0, &z1 );
|
||||
*z2Ptr = z2;
|
||||
*z1Ptr = z1;
|
||||
*z0Ptr = z0;
|
||||
|
||||
}
|
||||
|
||||
/*
|
||||
-------------------------------------------------------------------------------
|
||||
Multiplies the 64-bit value formed by concatenating `a0' and `a1' to the
|
||||
64-bit value formed by concatenating `b0' and `b1' to obtain a 128-bit
|
||||
product. The product is broken into four 32-bit pieces which are stored at
|
||||
the locations pointed to by `z0Ptr', `z1Ptr', `z2Ptr', and `z3Ptr'.
|
||||
-------------------------------------------------------------------------------
|
||||
*/
|
||||
INLINE void
|
||||
mul64To128(
|
||||
bits32 a0,
|
||||
bits32 a1,
|
||||
bits32 b0,
|
||||
bits32 b1,
|
||||
bits32 *z0Ptr,
|
||||
bits32 *z1Ptr,
|
||||
bits32 *z2Ptr,
|
||||
bits32 *z3Ptr
|
||||
)
|
||||
{
|
||||
bits32 z0, z1, z2, z3;
|
||||
bits32 more1, more2;
|
||||
|
||||
mul32To64( a1, b1, &z2, &z3 );
|
||||
mul32To64( a1, b0, &z1, &more2 );
|
||||
add64( z1, more2, 0, z2, &z1, &z2 );
|
||||
mul32To64( a0, b0, &z0, &more1 );
|
||||
add64( z0, more1, 0, z1, &z0, &z1 );
|
||||
mul32To64( a0, b1, &more1, &more2 );
|
||||
add64( more1, more2, 0, z2, &more1, &z2 );
|
||||
add64( z0, z1, 0, more1, &z0, &z1 );
|
||||
*z3Ptr = z3;
|
||||
*z2Ptr = z2;
|
||||
*z1Ptr = z1;
|
||||
*z0Ptr = z0;
|
||||
|
||||
}
|
||||
|
||||
/*
|
||||
-------------------------------------------------------------------------------
|
||||
Returns an approximation to the 32-bit integer quotient obtained by dividing
|
||||
`b' into the 64-bit value formed by concatenating `a0' and `a1'. The
|
||||
divisor `b' must be at least 2^31. If q is the exact quotient truncated
|
||||
toward zero, the approximation returned lies between q and q + 2 inclusive.
|
||||
If the exact quotient q is larger than 32 bits, the maximum positive 32-bit
|
||||
unsigned integer is returned.
|
||||
-------------------------------------------------------------------------------
|
||||
*/
|
||||
static bits32 estimateDiv64To32( bits32 a0, bits32 a1, bits32 b )
|
||||
{
|
||||
bits32 b0, b1;
|
||||
bits32 rem0, rem1, term0, term1;
|
||||
bits32 z;
|
||||
|
||||
if ( b <= a0 ) return 0xFFFFFFFF;
|
||||
b0 = b>>16;
|
||||
z = ( b0<<16 <= a0 ) ? 0xFFFF0000 : ( a0 / b0 )<<16;
|
||||
mul32To64( b, z, &term0, &term1 );
|
||||
sub64( a0, a1, term0, term1, &rem0, &rem1 );
|
||||
while ( ( (sbits32) rem0 ) < 0 ) {
|
||||
z -= 0x10000;
|
||||
b1 = b<<16;
|
||||
add64( rem0, rem1, b0, b1, &rem0, &rem1 );
|
||||
}
|
||||
rem0 = ( rem0<<16 ) | ( rem1>>16 );
|
||||
z |= ( b0<<16 <= rem0 ) ? 0xFFFF : rem0 / b0;
|
||||
return z;
|
||||
|
||||
}
|
||||
|
||||
#ifndef SOFTFLOAT_FOR_GCC
|
||||
/*
|
||||
-------------------------------------------------------------------------------
|
||||
Returns an approximation to the square root of the 32-bit significand given
|
||||
by `a'. Considered as an integer, `a' must be at least 2^31. If bit 0 of
|
||||
`aExp' (the least significant bit) is 1, the integer returned approximates
|
||||
2^31*sqrt(`a'/2^31), where `a' is considered an integer. If bit 0 of `aExp'
|
||||
is 0, the integer returned approximates 2^31*sqrt(`a'/2^30). In either
|
||||
case, the approximation returned lies strictly within +/-2 of the exact
|
||||
value.
|
||||
-------------------------------------------------------------------------------
|
||||
*/
|
||||
static bits32 estimateSqrt32( int16 aExp, bits32 a )
|
||||
{
|
||||
static const bits16 sqrtOddAdjustments[] = {
|
||||
0x0004, 0x0022, 0x005D, 0x00B1, 0x011D, 0x019F, 0x0236, 0x02E0,
|
||||
0x039C, 0x0468, 0x0545, 0x0631, 0x072B, 0x0832, 0x0946, 0x0A67
|
||||
};
|
||||
static const bits16 sqrtEvenAdjustments[] = {
|
||||
0x0A2D, 0x08AF, 0x075A, 0x0629, 0x051A, 0x0429, 0x0356, 0x029E,
|
||||
0x0200, 0x0179, 0x0109, 0x00AF, 0x0068, 0x0034, 0x0012, 0x0002
|
||||
};
|
||||
int8 index;
|
||||
bits32 z;
|
||||
|
||||
index = ( a>>27 ) & 15;
|
||||
if ( aExp & 1 ) {
|
||||
z = 0x4000 + ( a>>17 ) - sqrtOddAdjustments[ index ];
|
||||
z = ( ( a / z )<<14 ) + ( z<<15 );
|
||||
a >>= 1;
|
||||
}
|
||||
else {
|
||||
z = 0x8000 + ( a>>17 ) - sqrtEvenAdjustments[ index ];
|
||||
z = a / z + z;
|
||||
z = ( 0x20000 <= z ) ? 0xFFFF8000 : ( z<<15 );
|
||||
if ( z <= a ) return (bits32) ( ( (sbits32) a )>>1 );
|
||||
}
|
||||
return ( ( estimateDiv64To32( a, 0, z ) )>>1 ) + ( z>>1 );
|
||||
|
||||
}
|
||||
#endif
|
||||
|
||||
/*
|
||||
-------------------------------------------------------------------------------
|
||||
Returns the number of leading 0 bits before the most-significant 1 bit of
|
||||
`a'. If `a' is zero, 32 is returned.
|
||||
-------------------------------------------------------------------------------
|
||||
*/
|
||||
static int8 countLeadingZeros32( bits32 a )
|
||||
{
|
||||
static const int8 countLeadingZerosHigh[] = {
|
||||
8, 7, 6, 6, 5, 5, 5, 5, 4, 4, 4, 4, 4, 4, 4, 4,
|
||||
3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,
|
||||
2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
|
||||
2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
|
||||
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
|
||||
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
|
||||
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
|
||||
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
|
||||
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
||||
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
||||
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
||||
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
||||
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
||||
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
||||
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
||||
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
|
||||
};
|
||||
int8 shiftCount;
|
||||
|
||||
shiftCount = 0;
|
||||
if ( a < 0x10000 ) {
|
||||
shiftCount += 16;
|
||||
a <<= 16;
|
||||
}
|
||||
if ( a < 0x1000000 ) {
|
||||
shiftCount += 8;
|
||||
a <<= 8;
|
||||
}
|
||||
shiftCount += countLeadingZerosHigh[ a>>24 ];
|
||||
return shiftCount;
|
||||
|
||||
}
|
||||
|
||||
/*
|
||||
-------------------------------------------------------------------------------
|
||||
Returns 1 if the 64-bit value formed by concatenating `a0' and `a1' is
|
||||
equal to the 64-bit value formed by concatenating `b0' and `b1'. Otherwise,
|
||||
returns 0.
|
||||
-------------------------------------------------------------------------------
|
||||
*/
|
||||
INLINE flag eq64( bits32 a0, bits32 a1, bits32 b0, bits32 b1 )
|
||||
{
|
||||
|
||||
return ( a0 == b0 ) && ( a1 == b1 );
|
||||
|
||||
}
|
||||
|
||||
/*
|
||||
-------------------------------------------------------------------------------
|
||||
Returns 1 if the 64-bit value formed by concatenating `a0' and `a1' is less
|
||||
than or equal to the 64-bit value formed by concatenating `b0' and `b1'.
|
||||
Otherwise, returns 0.
|
||||
-------------------------------------------------------------------------------
|
||||
*/
|
||||
INLINE flag le64( bits32 a0, bits32 a1, bits32 b0, bits32 b1 )
|
||||
{
|
||||
|
||||
return ( a0 < b0 ) || ( ( a0 == b0 ) && ( a1 <= b1 ) );
|
||||
|
||||
}
|
||||
|
||||
/*
|
||||
-------------------------------------------------------------------------------
|
||||
Returns 1 if the 64-bit value formed by concatenating `a0' and `a1' is less
|
||||
than the 64-bit value formed by concatenating `b0' and `b1'. Otherwise,
|
||||
returns 0.
|
||||
-------------------------------------------------------------------------------
|
||||
*/
|
||||
INLINE flag lt64( bits32 a0, bits32 a1, bits32 b0, bits32 b1 )
|
||||
{
|
||||
|
||||
return ( a0 < b0 ) || ( ( a0 == b0 ) && ( a1 < b1 ) );
|
||||
|
||||
}
|
||||
|
||||
/*
|
||||
-------------------------------------------------------------------------------
|
||||
Returns 1 if the 64-bit value formed by concatenating `a0' and `a1' is not
|
||||
equal to the 64-bit value formed by concatenating `b0' and `b1'. Otherwise,
|
||||
returns 0.
|
||||
-------------------------------------------------------------------------------
|
||||
*/
|
||||
INLINE flag ne64( bits32 a0, bits32 a1, bits32 b0, bits32 b1 )
|
||||
{
|
||||
|
||||
return ( a0 != b0 ) || ( a1 != b1 );
|
||||
|
||||
}
|
||||
|
File diff suppressed because it is too large
Load Diff
|
@ -1,38 +0,0 @@
|
|||
/* $NetBSD: milieu.h,v 1.1 2000/12/29 20:13:54 bjh21 Exp $ */
|
||||
|
||||
/*
|
||||
===============================================================================
|
||||
|
||||
This C header file is part of the SoftFloat IEC/IEEE Floating-point
|
||||
Arithmetic Package, Release 2a.
|
||||
|
||||
Written by John R. Hauser. This work was made possible in part by the
|
||||
International Computer Science Institute, located at Suite 600, 1947 Center
|
||||
Street, Berkeley, California 94704. Funding was partially provided by the
|
||||
National Science Foundation under grant MIP-9311980. The original version
|
||||
of this code was written as part of a project to build a fixed-point vector
|
||||
processor in collaboration with the University of California at Berkeley,
|
||||
overseen by Profs. Nelson Morgan and John Wawrzynek. More information
|
||||
is available through the Web page `http://HTTP.CS.Berkeley.EDU/~jhauser/
|
||||
arithmetic/SoftFloat.html'.
|
||||
|
||||
THIS SOFTWARE IS DISTRIBUTED AS IS, FOR FREE. Although reasonable effort
|
||||
has been made to avoid it, THIS SOFTWARE MAY CONTAIN FAULTS THAT WILL AT
|
||||
TIMES RESULT IN INCORRECT BEHAVIOR. USE OF THIS SOFTWARE IS RESTRICTED TO
|
||||
PERSONS AND ORGANIZATIONS WHO CAN AND WILL TAKE FULL RESPONSIBILITY FOR ANY
|
||||
AND ALL LOSSES, COSTS, OR OTHER PROBLEMS ARISING FROM ITS USE.
|
||||
|
||||
Derivative works are acceptable, even for commercial purposes, so long as
|
||||
(1) they include prominent notice that the work is derivative, and (2) they
|
||||
include prominent notice akin to these four paragraphs for those parts of
|
||||
this code that are retained.
|
||||
|
||||
===============================================================================
|
||||
*/
|
||||
|
||||
/*
|
||||
-------------------------------------------------------------------------------
|
||||
Include common integer types and flags.
|
||||
-------------------------------------------------------------------------------
|
||||
*/
|
||||
#include "arm-gcc.h"
|
|
@ -1,242 +0,0 @@
|
|||
/* $NetBSD: softfloat-for-gcc.h,v 1.12 2013/08/01 23:21:19 matt Exp $ */
|
||||
/*-
|
||||
* Copyright (c) 2008 The NetBSD Foundation, Inc.
|
||||
* All rights reserved.
|
||||
*
|
||||
* This code is derived from software contributed to The NetBSD Foundation
|
||||
* by
|
||||
*
|
||||
* Redistribution and use in source and binary forms, with or without
|
||||
* modification, are permitted provided that the following conditions
|
||||
* are met:
|
||||
* 1. Redistributions of source code must retain the above copyright
|
||||
* notice, this list of conditions and the following disclaimer.
|
||||
* 2. Redistributions in binary form must reproduce the above copyright
|
||||
* notice, this list of conditions and the following disclaimer in the
|
||||
* documentation and/or other materials provided with the distribution.
|
||||
*
|
||||
* THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
|
||||
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
|
||||
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
|
||||
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
|
||||
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
|
||||
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
|
||||
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
|
||||
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
|
||||
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
||||
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
||||
* POSSIBILITY OF SUCH DAMAGE.
|
||||
*/
|
||||
|
||||
/*
|
||||
* Move private identifiers with external linkage into implementation
|
||||
* namespace. -- Klaus Klein <kleink@NetBSD.org>, May 5, 1999
|
||||
*/
|
||||
#define float_exception_flags _softfloat_float_exception_flags
|
||||
#define float_exception_mask _softfloat_float_exception_mask
|
||||
#define float_rounding_mode _softfloat_float_rounding_mode
|
||||
#define float_raise _softfloat_float_raise
|
||||
|
||||
/* The following batch are called by GCC through wrappers */
|
||||
#define float32_eq _softfloat_float32_eq
|
||||
#define float32_le _softfloat_float32_le
|
||||
#define float32_lt _softfloat_float32_lt
|
||||
#define float64_eq _softfloat_float64_eq
|
||||
#define float64_le _softfloat_float64_le
|
||||
#define float64_lt _softfloat_float64_lt
|
||||
#define float128_eq _softfloat_float128_eq
|
||||
#define float128_le _softfloat_float128_le
|
||||
#define float128_lt _softfloat_float128_lt
|
||||
|
||||
/*
|
||||
* Macros to define functions with the GCC expected names
|
||||
*/
|
||||
|
||||
#define float32_add __addsf3
|
||||
#define float64_add __adddf3
|
||||
#define floatx80_add __addxf3
|
||||
#define float128_add __addtf3
|
||||
|
||||
#define float32_sub __subsf3
|
||||
#define float64_sub __subdf3
|
||||
#define floatx80_sub __subxf3
|
||||
#define float128_sub __subtf3
|
||||
|
||||
#define float32_mul __mulsf3
|
||||
#define float64_mul __muldf3
|
||||
#define floatx80_mul __mulxf3
|
||||
#define float128_mul __multf3
|
||||
|
||||
#define float32_div __divsf3
|
||||
#define float64_div __divdf3
|
||||
#define floatx80_div __divxf3
|
||||
#define float128_div __divtf3
|
||||
|
||||
#if 0
|
||||
#define float32_neg __negsf2
|
||||
#define float64_neg __negdf2
|
||||
#define floatx80_neg __negxf2
|
||||
#define float128_neg __negtf2
|
||||
#endif
|
||||
|
||||
#define int32_to_float32 __floatsisf
|
||||
#define int32_to_float64 __floatsidf
|
||||
#define int32_to_floatx80 __floatsixf
|
||||
#define int32_to_float128 __floatsitf
|
||||
|
||||
#define int64_to_float32 __floatdisf
|
||||
#define int64_to_float64 __floatdidf
|
||||
#define int64_to_floatx80 __floatdixf
|
||||
#define int64_to_float128 __floatditf
|
||||
|
||||
#define int128_to_float32 __floattisf
|
||||
#define int128_to_float64 __floattidf
|
||||
#define int128_to_floatx80 __floattixf
|
||||
#define int128_to_float128 __floattitf
|
||||
|
||||
#define uint32_to_float32 __floatunsisf
|
||||
#define uint32_to_float64 __floatunsidf
|
||||
#define uint32_to_floatx80 __floatunsixf
|
||||
#define uint32_to_float128 __floatunsitf
|
||||
|
||||
#define uint64_to_float32 __floatundisf
|
||||
#define uint64_to_float64 __floatundidf
|
||||
#define uint64_to_floatx80 __floatundixf
|
||||
#define uint64_to_float128 __floatunditf
|
||||
|
||||
#define uint128_to_float32 __floatuntisf
|
||||
#define uint128_to_float64 __floatuntidf
|
||||
#define uint128_to_floatx80 __floatuntixf
|
||||
#define uint128_to_float128 __floatuntitf
|
||||
|
||||
#define float32_to_int32_round_to_zero __fixsfsi
|
||||
#define float64_to_int32_round_to_zero __fixdfsi
|
||||
#define floatx80_to_int32_round_to_zero __fixxfsi
|
||||
#define float128_to_int32_round_to_zero __fixtfsi
|
||||
|
||||
#define float32_to_int64_round_to_zero __fixsfdi
|
||||
#define float64_to_int64_round_to_zero __fixdfdi
|
||||
#define floatx80_to_int64_round_to_zero __fixxfdi
|
||||
#define float128_to_int64_round_to_zero __fixtfdi
|
||||
|
||||
#define float32_to_int128_round_to_zero __fixsfti
|
||||
#define float64_to_int128_round_to_zero __fixdfti
|
||||
#define floatx80_to_int128_round_to_zero __fixxfti
|
||||
#define float128_to_int128_round_to_zero __fixtfti
|
||||
|
||||
#define float32_to_uint32_round_to_zero __fixunssfsi
|
||||
#define float64_to_uint32_round_to_zero __fixunsdfsi
|
||||
#define floatx80_to_uint32_round_to_zero __fixunsxfsi
|
||||
#define float128_to_uint32_round_to_zero __fixunstfsi
|
||||
|
||||
#define float32_to_uint64_round_to_zero __fixunssfdi
|
||||
#define float64_to_uint64_round_to_zero __fixunsdfdi
|
||||
#define floatx80_to_uint64_round_to_zero __fixunsxfdi
|
||||
#define float128_to_uint64_round_to_zero __fixunstfdi
|
||||
|
||||
#define float32_to_uint128_round_to_zero __fixunssfti
|
||||
#define float64_to_uint128_round_to_zero __fixunsdfti
|
||||
#define floatx80_to_uint128_round_to_zero __fixunsxfti
|
||||
#define float128_to_uint128_round_to_zero __fixunstfti
|
||||
|
||||
#define float32_to_float64 __extendsfdf2
|
||||
#define float32_to_floatx80 __extendsfxf2
|
||||
#define float32_to_float128 __extendsftf2
|
||||
#define float64_to_floatx80 __extenddfxf2
|
||||
#define float64_to_float128 __extenddftf2
|
||||
|
||||
#define float128_to_float64 __trunctfdf2
|
||||
#define floatx80_to_float64 __truncxfdf2
|
||||
#define float128_to_float32 __trunctfsf2
|
||||
#define floatx80_to_float32 __truncxfsf2
|
||||
#define float64_to_float32 __truncdfsf2
|
||||
|
||||
#if 0
|
||||
#define float32_cmp __cmpsf2
|
||||
#define float32_unord __unordsf2
|
||||
#define float32_eq __eqsf2
|
||||
#define float32_ne __nesf2
|
||||
#define float32_ge __gesf2
|
||||
#define float32_lt __ltsf2
|
||||
#define float32_le __lesf2
|
||||
#define float32_gt __gtsf2
|
||||
#endif
|
||||
|
||||
#if 0
|
||||
#define float64_cmp __cmpdf2
|
||||
#define float64_unord __unorddf2
|
||||
#define float64_eq __eqdf2
|
||||
#define float64_ne __nedf2
|
||||
#define float64_ge __gedf2
|
||||
#define float64_lt __ltdf2
|
||||
#define float64_le __ledf2
|
||||
#define float64_gt __gtdf2
|
||||
#endif
|
||||
|
||||
/* XXX not in libgcc */
|
||||
#if 1
|
||||
#define floatx80_cmp __cmpxf2
|
||||
#define floatx80_unord __unordxf2
|
||||
#define floatx80_eq __eqxf2
|
||||
#define floatx80_ne __nexf2
|
||||
#define floatx80_ge __gexf2
|
||||
#define floatx80_lt __ltxf2
|
||||
#define floatx80_le __lexf2
|
||||
#define floatx80_gt __gtxf2
|
||||
#endif
|
||||
|
||||
#if 0
|
||||
#define float128_cmp __cmptf2
|
||||
#define float128_unord __unordtf2
|
||||
#define float128_eq __eqtf2
|
||||
#define float128_ne __netf2
|
||||
#define float128_ge __getf2
|
||||
#define float128_lt __lttf2
|
||||
#define float128_le __letf2
|
||||
#define float128_gt __gttf2
|
||||
#endif
|
||||
|
||||
#if defined (__ARM_EABI__) || defined (__CC_ARM)
|
||||
#ifdef __ARM_PCS_VFP
|
||||
#include <arm/aeabi.h>
|
||||
#endif
|
||||
#define __addsf3 __aeabi_fadd
|
||||
#define __adddf3 __aeabi_dadd
|
||||
|
||||
#define __subsf3 __aeabi_fsub
|
||||
#define __subdf3 __aeabi_dsub
|
||||
|
||||
#define __mulsf3 __aeabi_fmul
|
||||
#define __muldf3 __aeabi_dmul
|
||||
|
||||
#define __divsf3 __aeabi_fdiv
|
||||
#define __divdf3 __aeabi_ddiv
|
||||
|
||||
#define __floatsisf __aeabi_i2f
|
||||
#define __floatsidf __aeabi_i2d
|
||||
|
||||
#define __floatdisf __aeabi_l2f
|
||||
#define __floatdidf __aeabi_l2d
|
||||
|
||||
#define __floatunsisf __aeabi_ui2f
|
||||
#define __floatunsidf __aeabi_ui2d
|
||||
|
||||
#define __floatundisf __aeabi_ul2f
|
||||
#define __floatundidf __aeabi_ul2d
|
||||
|
||||
#define __fixsfsi __aeabi_f2iz
|
||||
#define __fixdfsi __aeabi_d2iz
|
||||
|
||||
#define __fixsfdi __aeabi_f2lz
|
||||
#define __fixdfdi __aeabi_d2lz
|
||||
|
||||
#define __fixunssfsi __aeabi_f2uiz
|
||||
#define __fixunsdfsi __aeabi_d2uiz
|
||||
|
||||
#define __fixunssfdi __aeabi_f2ulz
|
||||
#define __fixunsdfdi __aeabi_d2ulz
|
||||
|
||||
#define __extendsfdf2 __aeabi_f2d
|
||||
#define __truncdfsf2 __aeabi_d2f
|
||||
|
||||
#endif /* __ARM_EABI__ */
|
|
@ -1,525 +0,0 @@
|
|||
/* $NetBSD: softfloat-specialize,v 1.8 2013/01/10 08:16:10 matt Exp $ */
|
||||
|
||||
/* This is a derivative work. */
|
||||
|
||||
/*
|
||||
===============================================================================
|
||||
|
||||
This C source fragment is part of the SoftFloat IEC/IEEE Floating-point
|
||||
Arithmetic Package, Release 2a.
|
||||
|
||||
Written by John R. Hauser. This work was made possible in part by the
|
||||
International Computer Science Institute, located at Suite 600, 1947 Center
|
||||
Street, Berkeley, California 94704. Funding was partially provided by the
|
||||
National Science Foundation under grant MIP-9311980. The original version
|
||||
of this code was written as part of a project to build a fixed-point vector
|
||||
processor in collaboration with the University of California at Berkeley,
|
||||
overseen by Profs. Nelson Morgan and John Wawrzynek. More information
|
||||
is available through the Web page `http://HTTP.CS.Berkeley.EDU/~jhauser/
|
||||
arithmetic/SoftFloat.html'.
|
||||
|
||||
THIS SOFTWARE IS DISTRIBUTED AS IS, FOR FREE. Although reasonable effort
|
||||
has been made to avoid it, THIS SOFTWARE MAY CONTAIN FAULTS THAT WILL AT
|
||||
TIMES RESULT IN INCORRECT BEHAVIOR. USE OF THIS SOFTWARE IS RESTRICTED TO
|
||||
PERSONS AND ORGANIZATIONS WHO CAN AND WILL TAKE FULL RESPONSIBILITY FOR ANY
|
||||
AND ALL LOSSES, COSTS, OR OTHER PROBLEMS ARISING FROM ITS USE.
|
||||
|
||||
Derivative works are acceptable, even for commercial purposes, so long as
|
||||
(1) they include prominent notice that the work is derivative, and (2) they
|
||||
include prominent notice akin to these four paragraphs for those parts of
|
||||
this code that are retained.
|
||||
|
||||
===============================================================================
|
||||
*/
|
||||
|
||||
/*
|
||||
-------------------------------------------------------------------------------
|
||||
Underflow tininess-detection mode, statically initialized to default value.
|
||||
(The declaration in `softfloat.h' must match the `int8' type here.)
|
||||
-------------------------------------------------------------------------------
|
||||
*/
|
||||
#ifdef SOFTFLOAT_FOR_GCC
|
||||
static
|
||||
#endif
|
||||
int8 float_detect_tininess = float_tininess_after_rounding;
|
||||
|
||||
/*
|
||||
-------------------------------------------------------------------------------
|
||||
Raises the exceptions specified by `flags'. Floating-point traps can be
|
||||
defined here if desired. It is currently not possible for such a trap to
|
||||
substitute a result value. If traps are not implemented, this routine
|
||||
should be simply `float_exception_flags |= flags;'.
|
||||
-------------------------------------------------------------------------------
|
||||
*/
|
||||
#ifdef SOFTFLOAT_FOR_GCC
|
||||
#ifndef set_float_exception_mask
|
||||
#define float_exception_mask _softfloat_float_exception_mask
|
||||
#endif
|
||||
#endif
|
||||
#ifndef set_float_exception_mask
|
||||
fp_except float_exception_mask = 0;
|
||||
#endif
|
||||
void
|
||||
float_raise( fp_except flags )
|
||||
{
|
||||
|
||||
#if 0 // Don't raise exceptions
|
||||
siginfo_t info;
|
||||
fp_except mask = float_exception_mask;
|
||||
|
||||
#ifdef set_float_exception_mask
|
||||
flags |= set_float_exception_flags(flags, 0);
|
||||
#else
|
||||
float_exception_flags |= flags;
|
||||
flags = float_exception_flags;
|
||||
#endif
|
||||
|
||||
flags &= mask;
|
||||
if ( flags ) {
|
||||
memset(&info, 0, sizeof info);
|
||||
info.si_signo = SIGFPE;
|
||||
info.si_pid = getpid();
|
||||
info.si_uid = geteuid();
|
||||
if (flags & float_flag_underflow)
|
||||
info.si_code = FPE_FLTUND;
|
||||
else if (flags & float_flag_overflow)
|
||||
info.si_code = FPE_FLTOVF;
|
||||
else if (flags & float_flag_divbyzero)
|
||||
info.si_code = FPE_FLTDIV;
|
||||
else if (flags & float_flag_invalid)
|
||||
info.si_code = FPE_FLTINV;
|
||||
else if (flags & float_flag_inexact)
|
||||
info.si_code = FPE_FLTRES;
|
||||
sigqueueinfo(getpid(), &info);
|
||||
}
|
||||
#else // Don't raise exceptions
|
||||
float_exception_flags |= flags;
|
||||
#endif // Don't raise exceptions
|
||||
}
|
||||
#undef float_exception_mask
|
||||
|
||||
/*
|
||||
-------------------------------------------------------------------------------
|
||||
Internal canonical NaN format.
|
||||
-------------------------------------------------------------------------------
|
||||
*/
|
||||
typedef struct {
|
||||
flag sign;
|
||||
bits64 high, low;
|
||||
} commonNaNT;
|
||||
|
||||
/*
|
||||
-------------------------------------------------------------------------------
|
||||
The pattern for a default generated single-precision NaN.
|
||||
-------------------------------------------------------------------------------
|
||||
*/
|
||||
#define float32_default_nan 0xFFFFFFFF
|
||||
|
||||
/*
|
||||
-------------------------------------------------------------------------------
|
||||
Returns 1 if the single-precision floating-point value `a' is a NaN;
|
||||
otherwise returns 0.
|
||||
-------------------------------------------------------------------------------
|
||||
*/
|
||||
#ifdef SOFTFLOAT_FOR_GCC
|
||||
static
|
||||
#endif
|
||||
flag float32_is_nan( float32 a )
|
||||
{
|
||||
|
||||
return ( (bits32)0xFF000000 < (bits32) ( a<<1 ) );
|
||||
|
||||
}
|
||||
|
||||
/*
|
||||
-------------------------------------------------------------------------------
|
||||
Returns 1 if the single-precision floating-point value `a' is a signaling
|
||||
NaN; otherwise returns 0.
|
||||
-------------------------------------------------------------------------------
|
||||
*/
|
||||
#if defined(SOFTFLOAT_FOR_GCC) && !defined(SOFTFLOATSPARC64_FOR_GCC) && \
|
||||
!defined(SOFTFLOAT_M68K_FOR_GCC)
|
||||
static
|
||||
#endif
|
||||
flag float32_is_signaling_nan( float32 a )
|
||||
{
|
||||
|
||||
return ( ( ( a>>22 ) & 0x1FF ) == 0x1FE ) && ( a & 0x003FFFFF );
|
||||
|
||||
}
|
||||
|
||||
/*
|
||||
-------------------------------------------------------------------------------
|
||||
Returns the result of converting the single-precision floating-point NaN
|
||||
`a' to the canonical NaN format. If `a' is a signaling NaN, the invalid
|
||||
exception is raised.
|
||||
-------------------------------------------------------------------------------
|
||||
*/
|
||||
static commonNaNT float32ToCommonNaN( float32 a )
|
||||
{
|
||||
commonNaNT z;
|
||||
|
||||
if ( float32_is_signaling_nan( a ) ) float_raise( float_flag_invalid );
|
||||
z.sign = a>>31;
|
||||
z.low = 0;
|
||||
z.high = ( (bits64) a )<<41;
|
||||
return z;
|
||||
|
||||
}
|
||||
|
||||
/*
|
||||
-------------------------------------------------------------------------------
|
||||
Returns the result of converting the canonical NaN `a' to the single-
|
||||
precision floating-point format.
|
||||
-------------------------------------------------------------------------------
|
||||
*/
|
||||
static float32 commonNaNToFloat32( commonNaNT a )
|
||||
{
|
||||
|
||||
return ( ( (bits32) a.sign )<<31 ) | 0x7FC00000 | (bits32)( a.high>>41 );
|
||||
|
||||
}
|
||||
|
||||
/*
|
||||
-------------------------------------------------------------------------------
|
||||
Takes two single-precision floating-point values `a' and `b', one of which
|
||||
is a NaN, and returns the appropriate NaN result. If either `a' or `b' is a
|
||||
signaling NaN, the invalid exception is raised.
|
||||
-------------------------------------------------------------------------------
|
||||
*/
|
||||
static float32 propagateFloat32NaN( float32 a, float32 b )
|
||||
{
|
||||
flag aIsNaN, aIsSignalingNaN, bIsNaN, bIsSignalingNaN;
|
||||
|
||||
aIsNaN = float32_is_nan( a );
|
||||
aIsSignalingNaN = float32_is_signaling_nan( a );
|
||||
bIsNaN = float32_is_nan( b );
|
||||
bIsSignalingNaN = float32_is_signaling_nan( b );
|
||||
a |= 0x00400000;
|
||||
b |= 0x00400000;
|
||||
if ( aIsSignalingNaN | bIsSignalingNaN ) float_raise( float_flag_invalid );
|
||||
if ( aIsNaN ) {
|
||||
return ( aIsSignalingNaN & bIsNaN ) ? b : a;
|
||||
}
|
||||
else {
|
||||
return b;
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
/*
|
||||
-------------------------------------------------------------------------------
|
||||
The pattern for a default generated double-precision NaN.
|
||||
-------------------------------------------------------------------------------
|
||||
*/
|
||||
#define float64_default_nan LIT64( 0xFFFFFFFFFFFFFFFF )
|
||||
|
||||
/*
|
||||
-------------------------------------------------------------------------------
|
||||
Returns 1 if the double-precision floating-point value `a' is a NaN;
|
||||
otherwise returns 0.
|
||||
-------------------------------------------------------------------------------
|
||||
*/
|
||||
#ifdef SOFTFLOAT_FOR_GCC
|
||||
static
|
||||
#endif
|
||||
flag float64_is_nan( float64 a )
|
||||
{
|
||||
|
||||
return ( (bits64)LIT64( 0xFFE0000000000000 ) <
|
||||
(bits64) ( FLOAT64_DEMANGLE(a)<<1 ) );
|
||||
|
||||
}
|
||||
|
||||
/*
|
||||
-------------------------------------------------------------------------------
|
||||
Returns 1 if the double-precision floating-point value `a' is a signaling
|
||||
NaN; otherwise returns 0.
|
||||
-------------------------------------------------------------------------------
|
||||
*/
|
||||
#if defined(SOFTFLOAT_FOR_GCC) && !defined(SOFTFLOATSPARC64_FOR_GCC) && \
|
||||
!defined(SOFTFLOATM68K_FOR_GCC)
|
||||
static
|
||||
#endif
|
||||
flag float64_is_signaling_nan( float64 a )
|
||||
{
|
||||
|
||||
return
|
||||
( ( ( FLOAT64_DEMANGLE(a)>>51 ) & 0xFFF ) == 0xFFE )
|
||||
&& ( FLOAT64_DEMANGLE(a) & LIT64( 0x0007FFFFFFFFFFFF ) );
|
||||
|
||||
}
|
||||
|
||||
/*
|
||||
-------------------------------------------------------------------------------
|
||||
Returns the result of converting the double-precision floating-point NaN
|
||||
`a' to the canonical NaN format. If `a' is a signaling NaN, the invalid
|
||||
exception is raised.
|
||||
-------------------------------------------------------------------------------
|
||||
*/
|
||||
static commonNaNT float64ToCommonNaN( float64 a )
|
||||
{
|
||||
commonNaNT z;
|
||||
|
||||
if ( float64_is_signaling_nan( a ) ) float_raise( float_flag_invalid );
|
||||
z.sign = (flag)(FLOAT64_DEMANGLE(a)>>63);
|
||||
z.low = 0;
|
||||
z.high = FLOAT64_DEMANGLE(a)<<12;
|
||||
return z;
|
||||
|
||||
}
|
||||
|
||||
/*
|
||||
-------------------------------------------------------------------------------
|
||||
Returns the result of converting the canonical NaN `a' to the double-
|
||||
precision floating-point format.
|
||||
-------------------------------------------------------------------------------
|
||||
*/
|
||||
static float64 commonNaNToFloat64( commonNaNT a )
|
||||
{
|
||||
|
||||
return FLOAT64_MANGLE(
|
||||
( ( (bits64) a.sign )<<63 )
|
||||
| LIT64( 0x7FF8000000000000 )
|
||||
| ( a.high>>12 ) );
|
||||
|
||||
}
|
||||
|
||||
/*
|
||||
-------------------------------------------------------------------------------
|
||||
Takes two double-precision floating-point values `a' and `b', one of which
|
||||
is a NaN, and returns the appropriate NaN result. If either `a' or `b' is a
|
||||
signaling NaN, the invalid exception is raised.
|
||||
-------------------------------------------------------------------------------
|
||||
*/
|
||||
static float64 propagateFloat64NaN( float64 a, float64 b )
|
||||
{
|
||||
flag aIsNaN, aIsSignalingNaN, bIsNaN, bIsSignalingNaN;
|
||||
|
||||
aIsNaN = float64_is_nan( a );
|
||||
aIsSignalingNaN = float64_is_signaling_nan( a );
|
||||
bIsNaN = float64_is_nan( b );
|
||||
bIsSignalingNaN = float64_is_signaling_nan( b );
|
||||
a |= FLOAT64_MANGLE(LIT64( 0x0008000000000000 ));
|
||||
b |= FLOAT64_MANGLE(LIT64( 0x0008000000000000 ));
|
||||
if ( aIsSignalingNaN | bIsSignalingNaN ) float_raise( float_flag_invalid );
|
||||
if ( aIsNaN ) {
|
||||
return ( aIsSignalingNaN & bIsNaN ) ? b : a;
|
||||
}
|
||||
else {
|
||||
return b;
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
#ifdef FLOATX80
|
||||
|
||||
/*
|
||||
-------------------------------------------------------------------------------
|
||||
The pattern for a default generated extended double-precision NaN. The
|
||||
`high' and `low' values hold the most- and least-significant bits,
|
||||
respectively.
|
||||
-------------------------------------------------------------------------------
|
||||
*/
|
||||
#define floatx80_default_nan_high 0xFFFF
|
||||
#define floatx80_default_nan_low LIT64( 0xFFFFFFFFFFFFFFFF )
|
||||
|
||||
/*
|
||||
-------------------------------------------------------------------------------
|
||||
Returns 1 if the extended double-precision floating-point value `a' is a
|
||||
NaN; otherwise returns 0.
|
||||
-------------------------------------------------------------------------------
|
||||
*/
|
||||
flag floatx80_is_nan( floatx80 a )
|
||||
{
|
||||
|
||||
return ( ( a.high & 0x7FFF ) == 0x7FFF ) && (bits64) ( a.low<<1 );
|
||||
|
||||
}
|
||||
|
||||
/*
|
||||
-------------------------------------------------------------------------------
|
||||
Returns 1 if the extended double-precision floating-point value `a' is a
|
||||
signaling NaN; otherwise returns 0.
|
||||
-------------------------------------------------------------------------------
|
||||
*/
|
||||
flag floatx80_is_signaling_nan( floatx80 a )
|
||||
{
|
||||
bits64 aLow;
|
||||
|
||||
aLow = a.low & ~ LIT64( 0x4000000000000000 );
|
||||
return
|
||||
( ( a.high & 0x7FFF ) == 0x7FFF )
|
||||
&& (bits64) ( aLow<<1 )
|
||||
&& ( a.low == aLow );
|
||||
|
||||
}
|
||||
|
||||
/*
|
||||
-------------------------------------------------------------------------------
|
||||
Returns the result of converting the extended double-precision floating-
|
||||
point NaN `a' to the canonical NaN format. If `a' is a signaling NaN, the
|
||||
invalid exception is raised.
|
||||
-------------------------------------------------------------------------------
|
||||
*/
|
||||
static commonNaNT floatx80ToCommonNaN( floatx80 a )
|
||||
{
|
||||
commonNaNT z;
|
||||
|
||||
if ( floatx80_is_signaling_nan( a ) ) float_raise( float_flag_invalid );
|
||||
z.sign = a.high>>15;
|
||||
z.low = 0;
|
||||
z.high = a.low<<1;
|
||||
return z;
|
||||
|
||||
}
|
||||
|
||||
/*
|
||||
-------------------------------------------------------------------------------
|
||||
Returns the result of converting the canonical NaN `a' to the extended
|
||||
double-precision floating-point format.
|
||||
-------------------------------------------------------------------------------
|
||||
*/
|
||||
static floatx80 commonNaNToFloatx80( commonNaNT a )
|
||||
{
|
||||
floatx80 z;
|
||||
|
||||
z.low = LIT64( 0xC000000000000000 ) | ( a.high>>1 );
|
||||
z.high = ( ( (bits16) a.sign )<<15 ) | 0x7FFF;
|
||||
return z;
|
||||
|
||||
}
|
||||
|
||||
/*
|
||||
-------------------------------------------------------------------------------
|
||||
Takes two extended double-precision floating-point values `a' and `b', one
|
||||
of which is a NaN, and returns the appropriate NaN result. If either `a' or
|
||||
`b' is a signaling NaN, the invalid exception is raised.
|
||||
-------------------------------------------------------------------------------
|
||||
*/
|
||||
static floatx80 propagateFloatx80NaN( floatx80 a, floatx80 b )
|
||||
{
|
||||
flag aIsNaN, aIsSignalingNaN, bIsNaN, bIsSignalingNaN;
|
||||
|
||||
aIsNaN = floatx80_is_nan( a );
|
||||
aIsSignalingNaN = floatx80_is_signaling_nan( a );
|
||||
bIsNaN = floatx80_is_nan( b );
|
||||
bIsSignalingNaN = floatx80_is_signaling_nan( b );
|
||||
a.low |= LIT64( 0xC000000000000000 );
|
||||
b.low |= LIT64( 0xC000000000000000 );
|
||||
if ( aIsSignalingNaN | bIsSignalingNaN ) float_raise( float_flag_invalid );
|
||||
if ( aIsNaN ) {
|
||||
return ( aIsSignalingNaN & bIsNaN ) ? b : a;
|
||||
}
|
||||
else {
|
||||
return b;
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
#endif
|
||||
|
||||
#ifdef FLOAT128
|
||||
|
||||
/*
|
||||
-------------------------------------------------------------------------------
|
||||
The pattern for a default generated quadruple-precision NaN. The `high' and
|
||||
`low' values hold the most- and least-significant bits, respectively.
|
||||
-------------------------------------------------------------------------------
|
||||
*/
|
||||
#define float128_default_nan_high LIT64( 0xFFFFFFFFFFFFFFFF )
|
||||
#define float128_default_nan_low LIT64( 0xFFFFFFFFFFFFFFFF )
|
||||
|
||||
/*
|
||||
-------------------------------------------------------------------------------
|
||||
Returns 1 if the quadruple-precision floating-point value `a' is a NaN;
|
||||
otherwise returns 0.
|
||||
-------------------------------------------------------------------------------
|
||||
*/
|
||||
flag float128_is_nan( float128 a )
|
||||
{
|
||||
|
||||
return
|
||||
( (bits64)LIT64( 0xFFFE000000000000 ) <= (bits64) ( a.high<<1 ) )
|
||||
&& ( a.low || ( a.high & LIT64( 0x0000FFFFFFFFFFFF ) ) );
|
||||
|
||||
}
|
||||
|
||||
/*
|
||||
-------------------------------------------------------------------------------
|
||||
Returns 1 if the quadruple-precision floating-point value `a' is a
|
||||
signaling NaN; otherwise returns 0.
|
||||
-------------------------------------------------------------------------------
|
||||
*/
|
||||
flag float128_is_signaling_nan( float128 a )
|
||||
{
|
||||
|
||||
return
|
||||
( ( ( a.high>>47 ) & 0xFFFF ) == 0xFFFE )
|
||||
&& ( a.low || ( a.high & LIT64( 0x00007FFFFFFFFFFF ) ) );
|
||||
|
||||
}
|
||||
|
||||
/*
|
||||
-------------------------------------------------------------------------------
|
||||
Returns the result of converting the quadruple-precision floating-point NaN
|
||||
`a' to the canonical NaN format. If `a' is a signaling NaN, the invalid
|
||||
exception is raised.
|
||||
-------------------------------------------------------------------------------
|
||||
*/
|
||||
static commonNaNT float128ToCommonNaN( float128 a )
|
||||
{
|
||||
commonNaNT z;
|
||||
|
||||
if ( float128_is_signaling_nan( a ) ) float_raise( float_flag_invalid );
|
||||
z.sign = (flag)(a.high>>63);
|
||||
shortShift128Left( a.high, a.low, 16, &z.high, &z.low );
|
||||
return z;
|
||||
|
||||
}
|
||||
|
||||
/*
|
||||
-------------------------------------------------------------------------------
|
||||
Returns the result of converting the canonical NaN `a' to the quadruple-
|
||||
precision floating-point format.
|
||||
-------------------------------------------------------------------------------
|
||||
*/
|
||||
static float128 commonNaNToFloat128( commonNaNT a )
|
||||
{
|
||||
float128 z;
|
||||
|
||||
shift128Right( a.high, a.low, 16, &z.high, &z.low );
|
||||
z.high |= ( ( (bits64) a.sign )<<63 ) | LIT64( 0x7FFF800000000000 );
|
||||
return z;
|
||||
|
||||
}
|
||||
|
||||
/*
|
||||
-------------------------------------------------------------------------------
|
||||
Takes two quadruple-precision floating-point values `a' and `b', one of
|
||||
which is a NaN, and returns the appropriate NaN result. If either `a' or
|
||||
`b' is a signaling NaN, the invalid exception is raised.
|
||||
-------------------------------------------------------------------------------
|
||||
*/
|
||||
static float128 propagateFloat128NaN( float128 a, float128 b )
|
||||
{
|
||||
flag aIsNaN, aIsSignalingNaN, bIsNaN, bIsSignalingNaN;
|
||||
|
||||
aIsNaN = float128_is_nan( a );
|
||||
aIsSignalingNaN = float128_is_signaling_nan( a );
|
||||
bIsNaN = float128_is_nan( b );
|
||||
bIsSignalingNaN = float128_is_signaling_nan( b );
|
||||
a.high |= LIT64( 0x0000800000000000 );
|
||||
b.high |= LIT64( 0x0000800000000000 );
|
||||
if ( aIsSignalingNaN | bIsSignalingNaN ) float_raise( float_flag_invalid );
|
||||
if ( aIsNaN ) {
|
||||
return ( aIsSignalingNaN & bIsNaN ) ? b : a;
|
||||
}
|
||||
else {
|
||||
return b;
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
#endif
|
||||
|
Loading…
Reference in New Issue