EmbeddedPkg: remove DwEmmcDxe host controller driver

The Synopsys DesignWare eMMC host controller driver does not implement
that SD/MMC host controller protocol that the UEFI spec defines, but an
obsolete EDK2-specific one that predates it. It also does not implement
the UEFI driver model.

Due to this, it has been moved into the edk2-platforms repository,
alongside its remaining users, which have been updated to refer to it in
its new location. So drop this version from EmbeddedPkg.

Signed-off-by: Ard Biesheuvel <ard.biesheuvel@arm.com>
Reviewed-by: Philippe Mathieu-Daude <philmd@redhat.com>
Reviewed-by: Leif Lindholm <leif@nuviainc.com>
This commit is contained in:
Ard Biesheuvel 2020-04-30 18:50:38 +02:00 committed by mergify[bot]
parent e54310451f
commit 9ad9dc9d4f
4 changed files with 0 additions and 870 deletions

View File

@ -1,127 +0,0 @@
/** @file
*
* Copyright (c) 2014-2017, Linaro Limited. All rights reserved.
*
* SPDX-License-Identifier: BSD-2-Clause-Patent
*
**/
#ifndef __DWEMMC_H__
#define __DWEMMC_H__
#include <Protocol/EmbeddedGpio.h>
// DW MMC Registers
#define DWEMMC_CTRL ((UINT32)PcdGet32 (PcdDwEmmcDxeBaseAddress) + 0x000)
#define DWEMMC_PWREN ((UINT32)PcdGet32 (PcdDwEmmcDxeBaseAddress) + 0x004)
#define DWEMMC_CLKDIV ((UINT32)PcdGet32 (PcdDwEmmcDxeBaseAddress) + 0x008)
#define DWEMMC_CLKSRC ((UINT32)PcdGet32 (PcdDwEmmcDxeBaseAddress) + 0x00c)
#define DWEMMC_CLKENA ((UINT32)PcdGet32 (PcdDwEmmcDxeBaseAddress) + 0x010)
#define DWEMMC_TMOUT ((UINT32)PcdGet32 (PcdDwEmmcDxeBaseAddress) + 0x014)
#define DWEMMC_CTYPE ((UINT32)PcdGet32 (PcdDwEmmcDxeBaseAddress) + 0x018)
#define DWEMMC_BLKSIZ ((UINT32)PcdGet32 (PcdDwEmmcDxeBaseAddress) + 0x01c)
#define DWEMMC_BYTCNT ((UINT32)PcdGet32 (PcdDwEmmcDxeBaseAddress) + 0x020)
#define DWEMMC_INTMASK ((UINT32)PcdGet32 (PcdDwEmmcDxeBaseAddress) + 0x024)
#define DWEMMC_CMDARG ((UINT32)PcdGet32 (PcdDwEmmcDxeBaseAddress) + 0x028)
#define DWEMMC_CMD ((UINT32)PcdGet32 (PcdDwEmmcDxeBaseAddress) + 0x02c)
#define DWEMMC_RESP0 ((UINT32)PcdGet32 (PcdDwEmmcDxeBaseAddress) + 0x030)
#define DWEMMC_RESP1 ((UINT32)PcdGet32 (PcdDwEmmcDxeBaseAddress) + 0x034)
#define DWEMMC_RESP2 ((UINT32)PcdGet32 (PcdDwEmmcDxeBaseAddress) + 0x038)
#define DWEMMC_RESP3 ((UINT32)PcdGet32 (PcdDwEmmcDxeBaseAddress) + 0x03c)
#define DWEMMC_RINTSTS ((UINT32)PcdGet32 (PcdDwEmmcDxeBaseAddress) + 0x044)
#define DWEMMC_STATUS ((UINT32)PcdGet32 (PcdDwEmmcDxeBaseAddress) + 0x048)
#define DWEMMC_FIFOTH ((UINT32)PcdGet32 (PcdDwEmmcDxeBaseAddress) + 0x04c)
#define DWEMMC_TCBCNT ((UINT32)PcdGet32 (PcdDwEmmcDxeBaseAddress) + 0x05c)
#define DWEMMC_TBBCNT ((UINT32)PcdGet32 (PcdDwEmmcDxeBaseAddress) + 0x060)
#define DWEMMC_DEBNCE ((UINT32)PcdGet32 (PcdDwEmmcDxeBaseAddress) + 0x064)
#define DWEMMC_HCON ((UINT32)PcdGet32 (PcdDwEmmcDxeBaseAddress) + 0x070)
#define DWEMMC_UHSREG ((UINT32)PcdGet32 (PcdDwEmmcDxeBaseAddress) + 0x074)
#define DWEMMC_BMOD ((UINT32)PcdGet32 (PcdDwEmmcDxeBaseAddress) + 0x080)
#define DWEMMC_DBADDR ((UINT32)PcdGet32 (PcdDwEmmcDxeBaseAddress) + 0x088)
#define DWEMMC_IDSTS ((UINT32)PcdGet32 (PcdDwEmmcDxeBaseAddress) + 0x08c)
#define DWEMMC_IDINTEN ((UINT32)PcdGet32 (PcdDwEmmcDxeBaseAddress) + 0x090)
#define DWEMMC_DSCADDR ((UINT32)PcdGet32 (PcdDwEmmcDxeBaseAddress) + 0x094)
#define DWEMMC_BUFADDR ((UINT32)PcdGet32 (PcdDwEmmcDxeBaseAddress) + 0x098)
#define DWEMMC_CARDTHRCTL ((UINT32)PcdGet32 (PcdDwEmmcDxeBaseAddress) + 0X100)
#define DWEMMC_DATA ((UINT32)PcdGet32 (PcdDwEmmcDxeBaseAddress) + 0X200)
#define CMD_UPDATE_CLK 0x80202000
#define CMD_START_BIT (1 << 31)
#define MMC_8BIT_MODE (1 << 16)
#define BIT_CMD_RESPONSE_EXPECT (1 << 6)
#define BIT_CMD_LONG_RESPONSE (1 << 7)
#define BIT_CMD_CHECK_RESPONSE_CRC (1 << 8)
#define BIT_CMD_DATA_EXPECTED (1 << 9)
#define BIT_CMD_READ (0 << 10)
#define BIT_CMD_WRITE (1 << 10)
#define BIT_CMD_BLOCK_TRANSFER (0 << 11)
#define BIT_CMD_STREAM_TRANSFER (1 << 11)
#define BIT_CMD_SEND_AUTO_STOP (1 << 12)
#define BIT_CMD_WAIT_PRVDATA_COMPLETE (1 << 13)
#define BIT_CMD_STOP_ABORT_CMD (1 << 14)
#define BIT_CMD_SEND_INIT (1 << 15)
#define BIT_CMD_UPDATE_CLOCK_ONLY (1 << 21)
#define BIT_CMD_READ_CEATA_DEVICE (1 << 22)
#define BIT_CMD_CCS_EXPECTED (1 << 23)
#define BIT_CMD_ENABLE_BOOT (1 << 24)
#define BIT_CMD_EXPECT_BOOT_ACK (1 << 25)
#define BIT_CMD_DISABLE_BOOT (1 << 26)
#define BIT_CMD_MANDATORY_BOOT (0 << 27)
#define BIT_CMD_ALTERNATE_BOOT (1 << 27)
#define BIT_CMD_VOLT_SWITCH (1 << 28)
#define BIT_CMD_USE_HOLD_REG (1 << 29)
#define BIT_CMD_START (1 << 31)
#define DWEMMC_INT_EBE (1 << 15) /* End-bit Err */
#define DWEMMC_INT_SBE (1 << 13) /* Start-bit Err */
#define DWEMMC_INT_HLE (1 << 12) /* Hardware-lock Err */
#define DWEMMC_INT_FRUN (1 << 11) /* FIFO UN/OV RUN */
#define DWEMMC_INT_DRT (1 << 9) /* Data timeout */
#define DWEMMC_INT_RTO (1 << 8) /* Response timeout */
#define DWEMMC_INT_DCRC (1 << 7) /* Data CRC err */
#define DWEMMC_INT_RCRC (1 << 6) /* Response CRC err */
#define DWEMMC_INT_RXDR (1 << 5)
#define DWEMMC_INT_TXDR (1 << 4)
#define DWEMMC_INT_DTO (1 << 3) /* Data trans over */
#define DWEMMC_INT_CMD_DONE (1 << 2)
#define DWEMMC_INT_RE (1 << 1)
#define DWEMMC_IDMAC_DES0_DIC (1 << 1)
#define DWEMMC_IDMAC_DES0_LD (1 << 2)
#define DWEMMC_IDMAC_DES0_FS (1 << 3)
#define DWEMMC_IDMAC_DES0_CH (1 << 4)
#define DWEMMC_IDMAC_DES0_ER (1 << 5)
#define DWEMMC_IDMAC_DES0_CES (1 << 30)
#define DWEMMC_IDMAC_DES0_OWN (1 << 31)
#define DWEMMC_IDMAC_DES1_BS1(x) ((x) & 0x1fff)
#define DWEMMC_IDMAC_DES2_BS2(x) (((x) & 0x1fff) << 13)
#define DWEMMC_IDMAC_SWRESET (1 << 0)
#define DWEMMC_IDMAC_FB (1 << 1)
#define DWEMMC_IDMAC_ENABLE (1 << 7)
#define EMMC_FIX_RCA 6
/* bits in MMC0_CTRL */
#define DWEMMC_CTRL_RESET (1 << 0)
#define DWEMMC_CTRL_FIFO_RESET (1 << 1)
#define DWEMMC_CTRL_DMA_RESET (1 << 2)
#define DWEMMC_CTRL_INT_EN (1 << 4)
#define DWEMMC_CTRL_DMA_EN (1 << 5)
#define DWEMMC_CTRL_IDMAC_EN (1 << 25)
#define DWEMMC_CTRL_RESET_ALL (DWEMMC_CTRL_RESET | DWEMMC_CTRL_FIFO_RESET | DWEMMC_CTRL_DMA_RESET)
#define DWEMMC_STS_DATA_BUSY (1 << 9)
#define DWEMMC_FIFO_TWMARK(x) (x & 0xfff)
#define DWEMMC_FIFO_RWMARK(x) ((x & 0x1ff) << 16)
#define DWEMMC_DMA_BURST_SIZE(x) ((x & 0x7) << 28)
#define DWEMMC_CARD_RD_THR(x) ((x & 0xfff) << 16)
#define DWEMMC_CARD_RD_THR_EN (1 << 0)
#define DWEMMC_GET_HDATA_WIDTH(x) (((x) >> 7) & 0x7)
#endif // __DWEMMC_H__

View File

@ -1,688 +0,0 @@
/** @file
This file implement the MMC Host Protocol for the DesignWare eMMC.
Copyright (c) 2014-2017, Linaro Limited. All rights reserved.
SPDX-License-Identifier: BSD-2-Clause-Patent
**/
#include <Library/BaseMemoryLib.h>
#include <Library/CacheMaintenanceLib.h>
#include <Library/DebugLib.h>
#include <Library/DevicePathLib.h>
#include <Library/IoLib.h>
#include <Library/MemoryAllocationLib.h>
#include <Library/PcdLib.h>
#include <Library/TimerLib.h>
#include <Library/UefiBootServicesTableLib.h>
#include <Library/UefiLib.h>
#include <Protocol/MmcHost.h>
#include "DwEmmc.h"
#define DWEMMC_DESC_PAGE 1
#define DWEMMC_BLOCK_SIZE 512
#define DWEMMC_DMA_BUF_SIZE (512 * 8)
#define DWEMMC_MAX_DESC_PAGES 512
typedef struct {
UINT32 Des0;
UINT32 Des1;
UINT32 Des2;
UINT32 Des3;
} DWEMMC_IDMAC_DESCRIPTOR;
EFI_MMC_HOST_PROTOCOL *gpMmcHost;
DWEMMC_IDMAC_DESCRIPTOR *gpIdmacDesc;
EFI_GUID mDwEmmcDevicePathGuid = EFI_CALLER_ID_GUID;
STATIC UINT32 mDwEmmcCommand;
STATIC UINT32 mDwEmmcArgument;
EFI_STATUS
DwEmmcReadBlockData (
IN EFI_MMC_HOST_PROTOCOL *This,
IN EFI_LBA Lba,
IN UINTN Length,
IN UINT32* Buffer
);
BOOLEAN
DwEmmcIsPowerOn (
VOID
)
{
return TRUE;
}
EFI_STATUS
DwEmmcInitialize (
VOID
)
{
DEBUG ((DEBUG_BLKIO, "DwEmmcInitialize()"));
return EFI_SUCCESS;
}
BOOLEAN
DwEmmcIsCardPresent (
IN EFI_MMC_HOST_PROTOCOL *This
)
{
return TRUE;
}
BOOLEAN
DwEmmcIsReadOnly (
IN EFI_MMC_HOST_PROTOCOL *This
)
{
return FALSE;
}
BOOLEAN
DwEmmcIsDmaSupported (
IN EFI_MMC_HOST_PROTOCOL *This
)
{
return TRUE;
}
EFI_STATUS
DwEmmcBuildDevicePath (
IN EFI_MMC_HOST_PROTOCOL *This,
IN EFI_DEVICE_PATH_PROTOCOL **DevicePath
)
{
EFI_DEVICE_PATH_PROTOCOL *NewDevicePathNode;
NewDevicePathNode = CreateDeviceNode (HARDWARE_DEVICE_PATH, HW_VENDOR_DP, sizeof (VENDOR_DEVICE_PATH));
CopyGuid (& ((VENDOR_DEVICE_PATH*)NewDevicePathNode)->Guid, &mDwEmmcDevicePathGuid);
*DevicePath = NewDevicePathNode;
return EFI_SUCCESS;
}
EFI_STATUS
DwEmmcUpdateClock (
VOID
)
{
UINT32 Data;
/* CMD_UPDATE_CLK */
Data = BIT_CMD_WAIT_PRVDATA_COMPLETE | BIT_CMD_UPDATE_CLOCK_ONLY |
BIT_CMD_START;
MmioWrite32 (DWEMMC_CMD, Data);
while (1) {
Data = MmioRead32 (DWEMMC_CMD);
if (!(Data & CMD_START_BIT)) {
break;
}
Data = MmioRead32 (DWEMMC_RINTSTS);
if (Data & DWEMMC_INT_HLE) {
Print (L"failed to update mmc clock frequency\n");
return EFI_DEVICE_ERROR;
}
}
return EFI_SUCCESS;
}
EFI_STATUS
DwEmmcSetClock (
IN UINTN ClockFreq
)
{
UINT32 Divider, Rate, Data;
EFI_STATUS Status;
BOOLEAN Found = FALSE;
for (Divider = 1; Divider < 256; Divider++) {
Rate = PcdGet32 (PcdDwEmmcDxeClockFrequencyInHz);
if ((Rate / (2 * Divider)) <= ClockFreq) {
Found = TRUE;
break;
}
}
if (Found == FALSE) {
return EFI_NOT_FOUND;
}
// Wait until MMC is idle
do {
Data = MmioRead32 (DWEMMC_STATUS);
} while (Data & DWEMMC_STS_DATA_BUSY);
// Disable MMC clock first
MmioWrite32 (DWEMMC_CLKENA, 0);
Status = DwEmmcUpdateClock ();
ASSERT (!EFI_ERROR (Status));
MmioWrite32 (DWEMMC_CLKDIV, Divider);
Status = DwEmmcUpdateClock ();
ASSERT (!EFI_ERROR (Status));
// Enable MMC clock
MmioWrite32 (DWEMMC_CLKENA, 1);
MmioWrite32 (DWEMMC_CLKSRC, 0);
Status = DwEmmcUpdateClock ();
ASSERT (!EFI_ERROR (Status));
return EFI_SUCCESS;
}
EFI_STATUS
DwEmmcNotifyState (
IN EFI_MMC_HOST_PROTOCOL *This,
IN MMC_STATE State
)
{
UINT32 Data;
EFI_STATUS Status;
switch (State) {
case MmcInvalidState:
return EFI_INVALID_PARAMETER;
case MmcHwInitializationState:
MmioWrite32 (DWEMMC_PWREN, 1);
// If device already turn on then restart it
Data = DWEMMC_CTRL_RESET_ALL;
MmioWrite32 (DWEMMC_CTRL, Data);
do {
// Wait until reset operation finished
Data = MmioRead32 (DWEMMC_CTRL);
} while (Data & DWEMMC_CTRL_RESET_ALL);
// Setup clock that could not be higher than 400KHz.
Status = DwEmmcSetClock (400000);
ASSERT (!EFI_ERROR (Status));
// Wait clock stable
MicroSecondDelay (100);
MmioWrite32 (DWEMMC_RINTSTS, ~0);
MmioWrite32 (DWEMMC_INTMASK, 0);
MmioWrite32 (DWEMMC_TMOUT, ~0);
MmioWrite32 (DWEMMC_IDINTEN, 0);
MmioWrite32 (DWEMMC_BMOD, DWEMMC_IDMAC_SWRESET);
MmioWrite32 (DWEMMC_BLKSIZ, DWEMMC_BLOCK_SIZE);
do {
Data = MmioRead32 (DWEMMC_BMOD);
} while (Data & DWEMMC_IDMAC_SWRESET);
break;
case MmcIdleState:
break;
case MmcReadyState:
break;
case MmcIdentificationState:
break;
case MmcStandByState:
break;
case MmcTransferState:
break;
case MmcSendingDataState:
break;
case MmcReceiveDataState:
break;
case MmcProgrammingState:
break;
case MmcDisconnectState:
break;
default:
return EFI_INVALID_PARAMETER;
}
return EFI_SUCCESS;
}
// Need to prepare DMA buffer first before sending commands to MMC card
BOOLEAN
IsPendingReadCommand (
IN MMC_CMD MmcCmd
)
{
UINTN Mask;
Mask = BIT_CMD_DATA_EXPECTED | BIT_CMD_READ;
if ((MmcCmd & Mask) == Mask) {
return TRUE;
}
return FALSE;
}
BOOLEAN
IsPendingWriteCommand (
IN MMC_CMD MmcCmd
)
{
UINTN Mask;
Mask = BIT_CMD_DATA_EXPECTED | BIT_CMD_WRITE;
if ((MmcCmd & Mask) == Mask) {
return TRUE;
}
return FALSE;
}
EFI_STATUS
SendCommand (
IN MMC_CMD MmcCmd,
IN UINT32 Argument
)
{
UINT32 Data, ErrMask;
// Wait until MMC is idle
do {
Data = MmioRead32 (DWEMMC_STATUS);
} while (Data & DWEMMC_STS_DATA_BUSY);
MmioWrite32 (DWEMMC_RINTSTS, ~0);
MmioWrite32 (DWEMMC_CMDARG, Argument);
MmioWrite32 (DWEMMC_CMD, MmcCmd);
ErrMask = DWEMMC_INT_EBE | DWEMMC_INT_HLE | DWEMMC_INT_RTO |
DWEMMC_INT_RCRC | DWEMMC_INT_RE;
ErrMask |= DWEMMC_INT_DCRC | DWEMMC_INT_DRT | DWEMMC_INT_SBE;
do {
MicroSecondDelay(500);
Data = MmioRead32 (DWEMMC_RINTSTS);
if (Data & ErrMask) {
return EFI_DEVICE_ERROR;
}
if (Data & DWEMMC_INT_DTO) { // Transfer Done
break;
}
} while (!(Data & DWEMMC_INT_CMD_DONE));
return EFI_SUCCESS;
}
EFI_STATUS
DwEmmcSendCommand (
IN EFI_MMC_HOST_PROTOCOL *This,
IN MMC_CMD MmcCmd,
IN UINT32 Argument
)
{
UINT32 Cmd = 0;
EFI_STATUS Status = EFI_SUCCESS;
switch (MMC_GET_INDX(MmcCmd)) {
case MMC_INDX(0):
Cmd = BIT_CMD_SEND_INIT;
break;
case MMC_INDX(1):
Cmd = BIT_CMD_RESPONSE_EXPECT;
break;
case MMC_INDX(2):
Cmd = BIT_CMD_RESPONSE_EXPECT | BIT_CMD_LONG_RESPONSE |
BIT_CMD_CHECK_RESPONSE_CRC | BIT_CMD_SEND_INIT;
break;
case MMC_INDX(3):
Cmd = BIT_CMD_RESPONSE_EXPECT | BIT_CMD_CHECK_RESPONSE_CRC |
BIT_CMD_SEND_INIT;
break;
case MMC_INDX(7):
if (Argument)
Cmd = BIT_CMD_RESPONSE_EXPECT | BIT_CMD_CHECK_RESPONSE_CRC;
else
Cmd = 0;
break;
case MMC_INDX(8):
Cmd = BIT_CMD_RESPONSE_EXPECT | BIT_CMD_CHECK_RESPONSE_CRC |
BIT_CMD_DATA_EXPECTED | BIT_CMD_READ |
BIT_CMD_WAIT_PRVDATA_COMPLETE;
break;
case MMC_INDX(9):
Cmd = BIT_CMD_RESPONSE_EXPECT | BIT_CMD_CHECK_RESPONSE_CRC |
BIT_CMD_LONG_RESPONSE;
break;
case MMC_INDX(12):
Cmd = BIT_CMD_RESPONSE_EXPECT | BIT_CMD_CHECK_RESPONSE_CRC |
BIT_CMD_STOP_ABORT_CMD;
break;
case MMC_INDX(13):
Cmd = BIT_CMD_RESPONSE_EXPECT | BIT_CMD_CHECK_RESPONSE_CRC |
BIT_CMD_WAIT_PRVDATA_COMPLETE;
break;
case MMC_INDX(16):
Cmd = BIT_CMD_RESPONSE_EXPECT | BIT_CMD_CHECK_RESPONSE_CRC |
BIT_CMD_DATA_EXPECTED | BIT_CMD_READ |
BIT_CMD_WAIT_PRVDATA_COMPLETE;
break;
case MMC_INDX(17):
case MMC_INDX(18):
Cmd = BIT_CMD_RESPONSE_EXPECT | BIT_CMD_CHECK_RESPONSE_CRC |
BIT_CMD_DATA_EXPECTED | BIT_CMD_READ |
BIT_CMD_WAIT_PRVDATA_COMPLETE;
break;
case MMC_INDX(24):
case MMC_INDX(25):
Cmd = BIT_CMD_RESPONSE_EXPECT | BIT_CMD_CHECK_RESPONSE_CRC |
BIT_CMD_DATA_EXPECTED | BIT_CMD_WRITE |
BIT_CMD_WAIT_PRVDATA_COMPLETE;
break;
case MMC_INDX(30):
Cmd = BIT_CMD_RESPONSE_EXPECT | BIT_CMD_CHECK_RESPONSE_CRC |
BIT_CMD_DATA_EXPECTED;
break;
default:
Cmd = BIT_CMD_RESPONSE_EXPECT | BIT_CMD_CHECK_RESPONSE_CRC;
break;
}
Cmd |= MMC_GET_INDX(MmcCmd) | BIT_CMD_USE_HOLD_REG | BIT_CMD_START;
if (IsPendingReadCommand (Cmd) || IsPendingWriteCommand (Cmd)) {
mDwEmmcCommand = Cmd;
mDwEmmcArgument = Argument;
} else {
Status = SendCommand (Cmd, Argument);
}
return Status;
}
EFI_STATUS
DwEmmcReceiveResponse (
IN EFI_MMC_HOST_PROTOCOL *This,
IN MMC_RESPONSE_TYPE Type,
IN UINT32* Buffer
)
{
if (Buffer == NULL) {
return EFI_INVALID_PARAMETER;
}
if ( (Type == MMC_RESPONSE_TYPE_R1)
|| (Type == MMC_RESPONSE_TYPE_R1b)
|| (Type == MMC_RESPONSE_TYPE_R3)
|| (Type == MMC_RESPONSE_TYPE_R6)
|| (Type == MMC_RESPONSE_TYPE_R7))
{
Buffer[0] = MmioRead32 (DWEMMC_RESP0);
} else if (Type == MMC_RESPONSE_TYPE_R2) {
Buffer[0] = MmioRead32 (DWEMMC_RESP0);
Buffer[1] = MmioRead32 (DWEMMC_RESP1);
Buffer[2] = MmioRead32 (DWEMMC_RESP2);
Buffer[3] = MmioRead32 (DWEMMC_RESP3);
}
return EFI_SUCCESS;
}
VOID
DwEmmcAdjustFifoThreshold (
VOID
)
{
/* DMA multiple transaction size map to reg value as array index */
CONST UINT32 BurstSize[] = {1, 4, 8, 16, 32, 64, 128, 256};
UINT32 BlkDepthInFifo, FifoThreshold, FifoWidth, FifoDepth;
UINT32 BlkSize = DWEMMC_BLOCK_SIZE, Idx = 0, RxWatermark = 1, TxWatermark, TxWatermarkInvers;
/* Skip FIFO adjustment if we do not have platform FIFO depth info */
FifoDepth = PcdGet32 (PcdDwEmmcDxeFifoDepth);
if (!FifoDepth) {
return;
}
TxWatermark = FifoDepth / 2;
TxWatermarkInvers = FifoDepth - TxWatermark;
FifoWidth = DWEMMC_GET_HDATA_WIDTH (MmioRead32 (DWEMMC_HCON));
if (!FifoWidth) {
FifoWidth = 2;
} else if (FifoWidth == 2) {
FifoWidth = 8;
} else {
FifoWidth = 4;
}
BlkDepthInFifo = BlkSize / FifoWidth;
Idx = ARRAY_SIZE (BurstSize) - 1;
while (Idx && ((BlkDepthInFifo % BurstSize[Idx]) || (TxWatermarkInvers % BurstSize[Idx]))) {
Idx--;
}
RxWatermark = BurstSize[Idx] - 1;
FifoThreshold = DWEMMC_DMA_BURST_SIZE (Idx) | DWEMMC_FIFO_TWMARK (TxWatermark)
| DWEMMC_FIFO_RWMARK (RxWatermark);
MmioWrite32 (DWEMMC_FIFOTH, FifoThreshold);
}
EFI_STATUS
PrepareDmaData (
IN DWEMMC_IDMAC_DESCRIPTOR* IdmacDesc,
IN UINTN Length,
IN UINT32* Buffer
)
{
UINTN Cnt, Blks, Idx, LastIdx;
Cnt = (Length + DWEMMC_DMA_BUF_SIZE - 1) / DWEMMC_DMA_BUF_SIZE;
Blks = (Length + DWEMMC_BLOCK_SIZE - 1) / DWEMMC_BLOCK_SIZE;
Length = DWEMMC_BLOCK_SIZE * Blks;
for (Idx = 0; Idx < Cnt; Idx++) {
(IdmacDesc + Idx)->Des0 = DWEMMC_IDMAC_DES0_OWN | DWEMMC_IDMAC_DES0_CH |
DWEMMC_IDMAC_DES0_DIC;
(IdmacDesc + Idx)->Des1 = DWEMMC_IDMAC_DES1_BS1(DWEMMC_DMA_BUF_SIZE);
/* Buffer Address */
(IdmacDesc + Idx)->Des2 = (UINT32)((UINTN)Buffer + DWEMMC_DMA_BUF_SIZE * Idx);
/* Next Descriptor Address */
(IdmacDesc + Idx)->Des3 = (UINT32)((UINTN)IdmacDesc +
(sizeof(DWEMMC_IDMAC_DESCRIPTOR) * (Idx + 1)));
}
/* First Descriptor */
IdmacDesc->Des0 |= DWEMMC_IDMAC_DES0_FS;
/* Last Descriptor */
LastIdx = Cnt - 1;
(IdmacDesc + LastIdx)->Des0 |= DWEMMC_IDMAC_DES0_LD;
(IdmacDesc + LastIdx)->Des0 &= ~(DWEMMC_IDMAC_DES0_DIC | DWEMMC_IDMAC_DES0_CH);
(IdmacDesc + LastIdx)->Des1 = DWEMMC_IDMAC_DES1_BS1(Length -
(LastIdx * DWEMMC_DMA_BUF_SIZE));
/* Set the Next field of Last Descriptor */
(IdmacDesc + LastIdx)->Des3 = 0;
MmioWrite32 (DWEMMC_DBADDR, (UINT32)((UINTN)IdmacDesc));
return EFI_SUCCESS;
}
VOID
StartDma (
UINTN Length
)
{
UINT32 Data;
Data = MmioRead32 (DWEMMC_CTRL);
Data |= DWEMMC_CTRL_INT_EN | DWEMMC_CTRL_DMA_EN | DWEMMC_CTRL_IDMAC_EN;
MmioWrite32 (DWEMMC_CTRL, Data);
Data = MmioRead32 (DWEMMC_BMOD);
Data |= DWEMMC_IDMAC_ENABLE | DWEMMC_IDMAC_FB;
MmioWrite32 (DWEMMC_BMOD, Data);
MmioWrite32 (DWEMMC_BLKSIZ, DWEMMC_BLOCK_SIZE);
MmioWrite32 (DWEMMC_BYTCNT, Length);
}
EFI_STATUS
DwEmmcReadBlockData (
IN EFI_MMC_HOST_PROTOCOL *This,
IN EFI_LBA Lba,
IN UINTN Length,
IN UINT32* Buffer
)
{
EFI_STATUS Status;
UINT32 DescPages, CountPerPage, Count;
EFI_TPL Tpl;
Tpl = gBS->RaiseTPL (TPL_NOTIFY);
CountPerPage = EFI_PAGE_SIZE / 16;
Count = (Length + DWEMMC_DMA_BUF_SIZE - 1) / DWEMMC_DMA_BUF_SIZE;
DescPages = (Count + CountPerPage - 1) / CountPerPage;
InvalidateDataCacheRange (Buffer, Length);
Status = PrepareDmaData (gpIdmacDesc, Length, Buffer);
if (EFI_ERROR (Status)) {
goto out;
}
WriteBackDataCacheRange (gpIdmacDesc, DescPages * EFI_PAGE_SIZE);
StartDma (Length);
Status = SendCommand (mDwEmmcCommand, mDwEmmcArgument);
if (EFI_ERROR (Status)) {
DEBUG ((DEBUG_ERROR, "Failed to read data, mDwEmmcCommand:%x, mDwEmmcArgument:%x, Status:%r\n", mDwEmmcCommand, mDwEmmcArgument, Status));
goto out;
}
out:
// Restore Tpl
gBS->RestoreTPL (Tpl);
return Status;
}
EFI_STATUS
DwEmmcWriteBlockData (
IN EFI_MMC_HOST_PROTOCOL *This,
IN EFI_LBA Lba,
IN UINTN Length,
IN UINT32* Buffer
)
{
EFI_STATUS Status;
UINT32 DescPages, CountPerPage, Count;
EFI_TPL Tpl;
Tpl = gBS->RaiseTPL (TPL_NOTIFY);
CountPerPage = EFI_PAGE_SIZE / 16;
Count = (Length + DWEMMC_DMA_BUF_SIZE - 1) / DWEMMC_DMA_BUF_SIZE;
DescPages = (Count + CountPerPage - 1) / CountPerPage;
WriteBackDataCacheRange (Buffer, Length);
Status = PrepareDmaData (gpIdmacDesc, Length, Buffer);
if (EFI_ERROR (Status)) {
goto out;
}
WriteBackDataCacheRange (gpIdmacDesc, DescPages * EFI_PAGE_SIZE);
StartDma (Length);
Status = SendCommand (mDwEmmcCommand, mDwEmmcArgument);
if (EFI_ERROR (Status)) {
DEBUG ((DEBUG_ERROR, "Failed to write data, mDwEmmcCommand:%x, mDwEmmcArgument:%x, Status:%r\n", mDwEmmcCommand, mDwEmmcArgument, Status));
goto out;
}
out:
// Restore Tpl
gBS->RestoreTPL (Tpl);
return Status;
}
EFI_STATUS
DwEmmcSetIos (
IN EFI_MMC_HOST_PROTOCOL *This,
IN UINT32 BusClockFreq,
IN UINT32 BusWidth,
IN UINT32 TimingMode
)
{
EFI_STATUS Status = EFI_SUCCESS;
UINT32 Data;
if ((PcdGet32 (PcdDwEmmcDxeMaxClockFreqInHz) != 0) &&
(BusClockFreq > PcdGet32 (PcdDwEmmcDxeMaxClockFreqInHz))) {
return EFI_UNSUPPORTED;
}
if (TimingMode != EMMCBACKWARD) {
Data = MmioRead32 (DWEMMC_UHSREG);
switch (TimingMode) {
case EMMCHS52DDR1V2:
case EMMCHS52DDR1V8:
Data |= 1 << 16;
break;
case EMMCHS52:
case EMMCHS26:
Data &= ~(1 << 16);
break;
default:
return EFI_UNSUPPORTED;
}
MmioWrite32 (DWEMMC_UHSREG, Data);
}
switch (BusWidth) {
case 1:
MmioWrite32 (DWEMMC_CTYPE, 0);
break;
case 4:
MmioWrite32 (DWEMMC_CTYPE, 1);
break;
case 8:
MmioWrite32 (DWEMMC_CTYPE, 1 << 16);
break;
default:
return EFI_UNSUPPORTED;
}
if (BusClockFreq) {
Status = DwEmmcSetClock (BusClockFreq);
}
return Status;
}
BOOLEAN
DwEmmcIsMultiBlock (
IN EFI_MMC_HOST_PROTOCOL *This
)
{
return TRUE;
}
EFI_MMC_HOST_PROTOCOL gMciHost = {
MMC_HOST_PROTOCOL_REVISION,
DwEmmcIsCardPresent,
DwEmmcIsReadOnly,
DwEmmcBuildDevicePath,
DwEmmcNotifyState,
DwEmmcSendCommand,
DwEmmcReceiveResponse,
DwEmmcReadBlockData,
DwEmmcWriteBlockData,
DwEmmcSetIos,
DwEmmcIsMultiBlock
};
EFI_STATUS
DwEmmcDxeInitialize (
IN EFI_HANDLE ImageHandle,
IN EFI_SYSTEM_TABLE *SystemTable
)
{
EFI_STATUS Status;
EFI_HANDLE Handle;
Handle = NULL;
DwEmmcAdjustFifoThreshold ();
gpIdmacDesc = (DWEMMC_IDMAC_DESCRIPTOR *)AllocatePages (DWEMMC_MAX_DESC_PAGES);
if (gpIdmacDesc == NULL) {
return EFI_BUFFER_TOO_SMALL;
}
DEBUG ((DEBUG_BLKIO, "DwEmmcDxeInitialize()\n"));
//Publish Component Name, BlockIO protocol interfaces
Status = gBS->InstallMultipleProtocolInterfaces (
&Handle,
&gEmbeddedMmcHostProtocolGuid, &gMciHost,
NULL
);
ASSERT_EFI_ERROR (Status);
return EFI_SUCCESS;
}

View File

@ -1,49 +0,0 @@
#/** @file
# INF file for the eMMC Host Protocol implementation for the DesignWare MMC.
#
# Copyright (c) 2014-2017, Linaro Limited. All rights reserved.
#
# SPDX-License-Identifier: BSD-2-Clause-Patent
#
#**/
[Defines]
INF_VERSION = 0x00010019
BASE_NAME = DwEmmcDxe
FILE_GUID = b549f005-4bd4-4020-a0cb-06f42bda68c3
MODULE_TYPE = DXE_DRIVER
VERSION_STRING = 1.0
ENTRY_POINT = DwEmmcDxeInitialize
[Sources.common]
DwEmmcDxe.c
[Packages]
EmbeddedPkg/EmbeddedPkg.dec
MdePkg/MdePkg.dec
[LibraryClasses]
ArmLib
BaseLib
BaseMemoryLib
CacheMaintenanceLib
IoLib
MemoryAllocationLib
TimerLib
UefiDriverEntryPoint
UefiLib
[Protocols]
gEfiCpuArchProtocolGuid
gEfiDevicePathProtocolGuid
gEmbeddedMmcHostProtocolGuid
[Pcd]
gEmbeddedTokenSpaceGuid.PcdDwEmmcDxeBaseAddress
gEmbeddedTokenSpaceGuid.PcdDwEmmcDxeClockFrequencyInHz
gEmbeddedTokenSpaceGuid.PcdDwEmmcDxeMaxClockFreqInHz
gEmbeddedTokenSpaceGuid.PcdDwEmmcDxeFifoDepth
[Depex]
TRUE

View File

@ -144,12 +144,6 @@
# LAN91x Ethernet Driver PCDs
gEmbeddedTokenSpaceGuid.PcdLan91xDxeBaseAddress|0x0|UINT32|0x00000029
# DwEmmc Driver PCDs
gEmbeddedTokenSpaceGuid.PcdDwEmmcDxeBaseAddress|0x0|UINT32|0x00000035
gEmbeddedTokenSpaceGuid.PcdDwEmmcDxeClockFrequencyInHz|0x0|UINT32|0x00000036
gEmbeddedTokenSpaceGuid.PcdDwEmmcDxeMaxClockFreqInHz|0x0|UINT32|0x00000037
gEmbeddedTokenSpaceGuid.PcdDwEmmcDxeFifoDepth|0x0|UINT32|0x00000038
#
# Android FastBoot
#