Update IoLib to add MemoryFence for x86 Mmio function.

Correct IoLibGCC function comments.

git-svn-id: https://edk2.svn.sourceforge.net/svnroot/edk2/trunk/edk2@7082 6f19259b-4bc3-4df7-8a09-765794883524
This commit is contained in:
lgao4 2008-12-19 05:08:03 +00:00
parent ca08e40b90
commit 9de780dcd6
4 changed files with 255 additions and 723 deletions

View File

@ -66,3 +66,252 @@ IoWrite64 (
return 0; return 0;
} }
/**
Reads an 8-bit MMIO register.
Reads the 8-bit MMIO register specified by Address. The 8-bit read value is
returned. This function must guarantee that all MMIO read and write
operations are serialized.
If 8-bit MMIO register operations are not supported, then ASSERT().
@param Address The MMIO register to read.
@return The value read.
**/
UINT8
EFIAPI
MmioRead8 (
IN UINTN Address
)
{
UINT8 Value;
MemoryFence ();
Value = *(volatile UINT8*)Address;
MemoryFence ();
return Value;
}
/**
Writes an 8-bit MMIO register.
Writes the 8-bit MMIO register specified by Address with the value specified
by Value and returns Value. This function must guarantee that all MMIO read
and write operations are serialized.
If 8-bit MMIO register operations are not supported, then ASSERT().
@param Address The MMIO register to write.
@param Value The value to write to the MMIO register.
@return Value.
**/
UINT8
EFIAPI
MmioWrite8 (
IN UINTN Address,
IN UINT8 Value
)
{
MemoryFence ();
*(volatile UINT8*)Address = Value;
MemoryFence ();
return Value;
}
/**
Reads a 16-bit MMIO register.
Reads the 16-bit MMIO register specified by Address. The 16-bit read value is
returned. This function must guarantee that all MMIO read and write
operations are serialized.
If 16-bit MMIO register operations are not supported, then ASSERT().
If Address is not aligned on a 16-bit boundary, then ASSERT().
@param Address The MMIO register to read.
@return The value read.
**/
UINT16
EFIAPI
MmioRead16 (
IN UINTN Address
)
{
UINT16 Value;
ASSERT ((Address & 1) == 0);
MemoryFence ();
Value = *(volatile UINT16*)Address;
MemoryFence ();
return Value;
}
/**
Writes a 16-bit MMIO register.
Writes the 16-bit MMIO register specified by Address with the value specified
by Value and returns Value. This function must guarantee that all MMIO read
and write operations are serialized.
If 16-bit MMIO register operations are not supported, then ASSERT().
If Address is not aligned on a 16-bit boundary, then ASSERT().
@param Address The MMIO register to write.
@param Value The value to write to the MMIO register.
@return Value.
**/
UINT16
EFIAPI
MmioWrite16 (
IN UINTN Address,
IN UINT16 Value
)
{
ASSERT ((Address & 1) == 0);
MemoryFence ();
*(volatile UINT16*)Address = Value;
MemoryFence ();
return Value;
}
/**
Reads a 32-bit MMIO register.
Reads the 32-bit MMIO register specified by Address. The 32-bit read value is
returned. This function must guarantee that all MMIO read and write
operations are serialized.
If 32-bit MMIO register operations are not supported, then ASSERT().
If Address is not aligned on a 32-bit boundary, then ASSERT().
@param Address The MMIO register to read.
@return The value read.
**/
UINT32
EFIAPI
MmioRead32 (
IN UINTN Address
)
{
UINT32 Value;
ASSERT ((Address & 3) == 0);
MemoryFence ();
Value = *(volatile UINT32*)Address;
MemoryFence ();
return Value;
}
/**
Writes a 32-bit MMIO register.
Writes the 32-bit MMIO register specified by Address with the value specified
by Value and returns Value. This function must guarantee that all MMIO read
and write operations are serialized.
If 32-bit MMIO register operations are not supported, then ASSERT().
If Address is not aligned on a 32-bit boundary, then ASSERT().
@param Address The MMIO register to write.
@param Value The value to write to the MMIO register.
@return Value.
**/
UINT32
EFIAPI
MmioWrite32 (
IN UINTN Address,
IN UINT32 Value
)
{
ASSERT ((Address & 3) == 0);
MemoryFence ();
*(volatile UINT32*)Address = Value;
MemoryFence ();
return Value;
}
/**
Reads a 64-bit MMIO register.
Reads the 64-bit MMIO register specified by Address. The 64-bit read value is
returned. This function must guarantee that all MMIO read and write
operations are serialized.
If 64-bit MMIO register operations are not supported, then ASSERT().
If Address is not aligned on a 64-bit boundary, then ASSERT().
@param Address The MMIO register to read.
@return The value read.
**/
UINT64
EFIAPI
MmioRead64 (
IN UINTN Address
)
{
UINT64 Value;
ASSERT ((Address & 7) == 0);
MemoryFence ();
Value = *(volatile UINT64*)Address;
MemoryFence ();
return Value;
}
/**
Writes a 64-bit MMIO register.
Writes the 64-bit MMIO register specified by Address with the value specified
by Value and returns Value. This function must guarantee that all MMIO read
and write operations are serialized.
If 64-bit MMIO register operations are not supported, then ASSERT().
If Address is not aligned on a 64-bit boundary, then ASSERT().
@param Address The MMIO register to write.
@param Value The value to write to the MMIO register.
**/
UINT64
EFIAPI
MmioWrite64 (
IN UINTN Address,
IN UINT64 Value
)
{
ASSERT ((Address & 7) == 0);
MemoryFence ();
*(volatile UINT64*)Address = Value;
MemoryFence ();
return Value;
}

View File

@ -24,210 +24,6 @@
#include "BaseIoLibIntrinsicInternal.h" #include "BaseIoLibIntrinsicInternal.h"
/**
Reads an 8-bit MMIO register.
Reads the 8-bit MMIO register specified by Address. The 8-bit read value is
returned. This function must guarantee that all MMIO read and write
operations are serialized.
If 8-bit MMIO register operations are not supported, then ASSERT().
@param Address The MMIO register to read.
@return The value read.
**/
UINT8
EFIAPI
MmioRead8 (
IN UINTN Address
)
{
return *(volatile UINT8*)Address;
}
/**
Writes an 8-bit MMIO register.
Writes the 8-bit MMIO register specified by Address with the value specified
by Value and returns Value. This function must guarantee that all MMIO read
and write operations are serialized.
If 8-bit MMIO register operations are not supported, then ASSERT().
@param Address The MMIO register to write.
@param Value The value to write to the MMIO register.
@return Value.
**/
UINT8
EFIAPI
MmioWrite8 (
IN UINTN Address,
IN UINT8 Value
)
{
return *(volatile UINT8*)Address = Value;
}
/**
Reads a 16-bit MMIO register.
Reads the 16-bit MMIO register specified by Address. The 16-bit read value is
returned. This function must guarantee that all MMIO read and write
operations are serialized.
If 16-bit MMIO register operations are not supported, then ASSERT().
If Address is not aligned on a 16-bit boundary, then ASSERT().
@param Address The MMIO register to read.
@return The value read.
**/
UINT16
EFIAPI
MmioRead16 (
IN UINTN Address
)
{
ASSERT ((Address & 1) == 0);
return *(volatile UINT16*)Address;
}
/**
Writes a 16-bit MMIO register.
Writes the 16-bit MMIO register specified by Address with the value specified
by Value and returns Value. This function must guarantee that all MMIO read
and write operations are serialized.
If 16-bit MMIO register operations are not supported, then ASSERT().
If Address is not aligned on a 16-bit boundary, then ASSERT().
@param Address The MMIO register to write.
@param Value The value to write to the MMIO register.
@return Value.
**/
UINT16
EFIAPI
MmioWrite16 (
IN UINTN Address,
IN UINT16 Value
)
{
ASSERT ((Address & 1) == 0);
return *(volatile UINT16*)Address = Value;
}
/**
Reads a 32-bit MMIO register.
Reads the 32-bit MMIO register specified by Address. The 32-bit read value is
returned. This function must guarantee that all MMIO read and write
operations are serialized.
If 32-bit MMIO register operations are not supported, then ASSERT().
If Address is not aligned on a 32-bit boundary, then ASSERT().
@param Address The MMIO register to read.
@return The value read.
**/
UINT32
EFIAPI
MmioRead32 (
IN UINTN Address
)
{
ASSERT ((Address & 3) == 0);
return *(volatile UINT32*)Address;
}
/**
Writes a 32-bit MMIO register.
Writes the 32-bit MMIO register specified by Address with the value specified
by Value and returns Value. This function must guarantee that all MMIO read
and write operations are serialized.
If 32-bit MMIO register operations are not supported, then ASSERT().
If Address is not aligned on a 32-bit boundary, then ASSERT().
@param Address The MMIO register to write.
@param Value The value to write to the MMIO register.
@return Value.
**/
UINT32
EFIAPI
MmioWrite32 (
IN UINTN Address,
IN UINT32 Value
)
{
ASSERT ((Address & 3) == 0);
return *(volatile UINT32*)Address = Value;
}
/**
Reads a 64-bit MMIO register.
Reads the 64-bit MMIO register specified by Address. The 64-bit read value is
returned. This function must guarantee that all MMIO read and write
operations are serialized.
If 64-bit MMIO register operations are not supported, then ASSERT().
If Address is not aligned on a 64-bit boundary, then ASSERT().
@param Address The MMIO register to read.
@return The value read.
**/
UINT64
EFIAPI
MmioRead64 (
IN UINTN Address
)
{
ASSERT ((Address & 7) == 0);
return *(volatile UINT64*)Address;
}
/**
Writes a 64-bit MMIO register.
Writes the 64-bit MMIO register specified by Address with the value specified
by Value and returns Value. This function must guarantee that all MMIO read
and write operations are serialized.
If 64-bit MMIO register operations are not supported, then ASSERT().
If Address is not aligned on a 64-bit boundary, then ASSERT().
@param Address The MMIO register to write.
@param Value The value to write to the MMIO register.
**/
UINT64
EFIAPI
MmioWrite64 (
IN UINTN Address,
IN UINT64 Value
)
{
ASSERT ((Address & 7) == 0);
return *(volatile UINT64*)Address = Value;
}
/** /**
Reads an 8-bit I/O port. Reads an 8-bit I/O port.
@ -239,24 +35,10 @@ MmioWrite64 (
@param Port The I/O port to read. @param Port The I/O port to read.
@return The value read from Port. @return The value read.
**/ **/
__inline__ __inline__
/**
Reads an 8-bit I/O port.
Reads the 8-bit I/O port specified by Port. The 8-bit read value is returned.
This function must guarantee that all I/O read and write operations are
serialized.
If 8-bit I/O port operations are not supported, then ASSERT().
@param Port The I/O port to read.
@return The value read.
**/
UINT8 UINT8
EFIAPI EFIAPI
IoRead8 ( IoRead8 (
@ -269,24 +51,6 @@ IoRead8 (
return Data; return Data;
} }
/**
Writes an 8-bit I/O port.
Writes the 8-bit I/O port specified by Port with the value specified by Value
and returns Value. This function must guarantee that all I/O read and write
operations are serialized.
If 8-bit I/O port operations are not supported, then ASSERT().
@param Port The I/O port to write.
@param Value The value to write to the I/O port.
@return The value written to the I/O port. It equals to the
input Value instead of the actual value read back from
the I/O port.
**/
__inline__
/** /**
Writes an 8-bit I/O port. Writes an 8-bit I/O port.
@ -302,6 +66,7 @@ __inline__
@return The value written the I/O port. @return The value written the I/O port.
**/ **/
__inline__
UINT8 UINT8
EFIAPI EFIAPI
IoWrite8 ( IoWrite8 (
@ -313,21 +78,6 @@ IoWrite8 (
return Value;; return Value;;
} }
/**
Reads a 16-bit I/O port.
Reads the 16-bit I/O port specified by Port. The 16-bit read value is returned.
This function must guarantee that all I/O read and write operations are
serialized.
If 16-bit I/O port operations are not supported, then ASSERT().
@param Port The I/O port to read.
@return The value read from Port.
**/
__inline__
/** /**
Reads a 16-bit I/O port. Reads a 16-bit I/O port.
@ -343,6 +93,7 @@ __inline__
@return The value read. @return The value read.
**/ **/
__inline__
UINT16 UINT16
EFIAPI EFIAPI
IoRead16 ( IoRead16 (
@ -356,24 +107,6 @@ IoRead16 (
return Data; return Data;
} }
/**
Writes a 16-bit I/O port.
Writes the 16-bit I/O port specified by Port with the value specified by Value
and returns Value. This function must guarantee that all I/O read and write
operations are serialized.
If 16-bit I/O port operations are not supported, then ASSERT().
@param Port The I/O port to write.
@param Value The value to write to the I/O port.
@return The value written to the I/O port. It equals to the
input Value instead of the actual value read back from
the I/O port.
**/
__inline__
/** /**
Writes a 16-bit I/O port. Writes a 16-bit I/O port.
@ -390,6 +123,7 @@ __inline__
@return The value written the I/O port. @return The value written the I/O port.
**/ **/
__inline__
UINT16 UINT16
EFIAPI EFIAPI
IoWrite16 ( IoWrite16 (
@ -402,21 +136,6 @@ IoWrite16 (
return Value;; return Value;;
} }
/**
Reads a 32-bit I/O port.
Reads the 32-bit I/O port specified by Port. The 32-bit read value is returned.
This function must guarantee that all I/O read and write operations are
serialized.
If 32-bit I/O port operations are not supported, then ASSERT().
@param Port The I/O port to read.
@return The value read from Port.
**/
__inline__
/** /**
Reads a 32-bit I/O port. Reads a 32-bit I/O port.
@ -432,6 +151,7 @@ __inline__
@return The value read. @return The value read.
**/ **/
__inline__
UINT32 UINT32
EFIAPI EFIAPI
IoRead32 ( IoRead32 (
@ -445,24 +165,6 @@ IoRead32 (
return Data; return Data;
} }
/**
Writes a 32-bit I/O port.
Writes the 32-bit I/O port specified by Port with the value specified by Value
and returns Value. This function must guarantee that all I/O read and write
operations are serialized.
If 32-bit I/O port operations are not supported, then ASSERT().
@param Port The I/O port to write.
@param Value The value to write to the I/O port.
@return The value written to the I/O port. It equals to the
input Value instead of the actual value read back from
the I/O port.
**/
__inline__
/** /**
Writes a 32-bit I/O port. Writes a 32-bit I/O port.
@ -479,6 +181,7 @@ __inline__
@return The value written the I/O port. @return The value written the I/O port.
**/ **/
__inline__
UINT32 UINT32
EFIAPI EFIAPI
IoWrite32 ( IoWrite32 (

View File

@ -15,210 +15,6 @@
#include "BaseIoLibIntrinsicInternal.h" #include "BaseIoLibIntrinsicInternal.h"
/**
Reads an 8-bit MMIO register.
Reads the 8-bit MMIO register specified by Address. The 8-bit read value is
returned. This function must guarantee that all MMIO read and write
operations are serialized.
If 8-bit MMIO register operations are not supported, then ASSERT().
@param Address The MMIO register to read.
@return The value read.
**/
UINT8
EFIAPI
MmioRead8 (
IN UINTN Address
)
{
return *(volatile UINT8*)Address;
}
/**
Writes an 8-bit MMIO register.
Writes the 8-bit MMIO register specified by Address with the value specified
by Value and returns Value. This function must guarantee that all MMIO read
and write operations are serialized.
If 8-bit MMIO register operations are not supported, then ASSERT().
@param Address The MMIO register to write.
@param Value The value to write to the MMIO register.
@return Value.
**/
UINT8
EFIAPI
MmioWrite8 (
IN UINTN Address,
IN UINT8 Value
)
{
return *(volatile UINT8*)Address = Value;
}
/**
Reads a 16-bit MMIO register.
Reads the 16-bit MMIO register specified by Address. The 16-bit read value is
returned. This function must guarantee that all MMIO read and write
operations are serialized.
If 16-bit MMIO register operations are not supported, then ASSERT().
If Address is not aligned on a 16-bit boundary, then ASSERT().
@param Address The MMIO register to read.
@return The value read.
**/
UINT16
EFIAPI
MmioRead16 (
IN UINTN Address
)
{
ASSERT ((Address & 1) == 0);
return *(volatile UINT16*)Address;
}
/**
Writes a 16-bit MMIO register.
Writes the 16-bit MMIO register specified by Address with the value specified
by Value and returns Value. This function must guarantee that all MMIO read
and write operations are serialized.
If 16-bit MMIO register operations are not supported, then ASSERT().
If Address is not aligned on a 16-bit boundary, then ASSERT().
@param Address The MMIO register to write.
@param Value The value to write to the MMIO register.
@return Value.
**/
UINT16
EFIAPI
MmioWrite16 (
IN UINTN Address,
IN UINT16 Value
)
{
ASSERT ((Address & 1) == 0);
return *(volatile UINT16*)Address = Value;
}
/**
Reads a 32-bit MMIO register.
Reads the 32-bit MMIO register specified by Address. The 32-bit read value is
returned. This function must guarantee that all MMIO read and write
operations are serialized.
If 32-bit MMIO register operations are not supported, then ASSERT().
If Address is not aligned on a 32-bit boundary, then ASSERT().
@param Address The MMIO register to read.
@return The value read.
**/
UINT32
EFIAPI
MmioRead32 (
IN UINTN Address
)
{
ASSERT ((Address & 3) == 0);
return *(volatile UINT32*)Address;
}
/**
Writes a 32-bit MMIO register.
Writes the 32-bit MMIO register specified by Address with the value specified
by Value and returns Value. This function must guarantee that all MMIO read
and write operations are serialized.
If 32-bit MMIO register operations are not supported, then ASSERT().
If Address is not aligned on a 32-bit boundary, then ASSERT().
@param Address The MMIO register to write.
@param Value The value to write to the MMIO register.
@return Value.
**/
UINT32
EFIAPI
MmioWrite32 (
IN UINTN Address,
IN UINT32 Value
)
{
ASSERT ((Address & 3) == 0);
return *(volatile UINT32*)Address = Value;
}
/**
Reads a 64-bit MMIO register.
Reads the 64-bit MMIO register specified by Address. The 64-bit read value is
returned. This function must guarantee that all MMIO read and write
operations are serialized.
If 64-bit MMIO register operations are not supported, then ASSERT().
If Address is not aligned on a 64-bit boundary, then ASSERT().
@param Address The MMIO register to read.
@return The value read.
**/
UINT64
EFIAPI
MmioRead64 (
IN UINTN Address
)
{
ASSERT ((Address & 7) == 0);
return *(volatile UINT64*)Address;
}
/**
Writes a 64-bit MMIO register.
Writes the 64-bit MMIO register specified by Address with the value specified
by Value and returns Value. This function must guarantee that all MMIO read
and write operations are serialized.
If 64-bit MMIO register operations are not supported, then ASSERT().
If Address is not aligned on a 64-bit boundary, then ASSERT().
@param Address The MMIO register to write.
@param Value The value to write to the MMIO register.
**/
UINT64
EFIAPI
MmioWrite64 (
IN UINTN Address,
IN UINT64 Value
)
{
ASSERT ((Address & 7) == 0);
return *(volatile UINT64*)Address = Value;
}
/** /**
Reads an 8-bit I/O port. Reads an 8-bit I/O port.

View File

@ -226,219 +226,3 @@ IoWrite32 (
_ReadWriteBarrier (); _ReadWriteBarrier ();
return Value; return Value;
} }
/**
Reads an 8-bit MMIO register.
Reads the 8-bit MMIO register specified by Address. The 8-bit read value is
returned. This function must guarantee that all MMIO read and write
operations are serialized.
If 8-bit MMIO register operations are not supported, then ASSERT().
@param Address The MMIO register to read.
@return The value read.
**/
UINT8
EFIAPI
MmioRead8 (
IN UINTN Address
)
{
UINT8 Value;
Value = *(volatile UINT8*)Address;
return Value;
}
/**
Writes an 8-bit MMIO register.
Writes the 8-bit MMIO register specified by Address with the value specified
by Value and returns Value. This function must guarantee that all MMIO read
and write operations are serialized.
If 8-bit MMIO register operations are not supported, then ASSERT().
@param Address The MMIO register to write.
@param Value The value to write to the MMIO register.
@return Value.
**/
UINT8
EFIAPI
MmioWrite8 (
IN UINTN Address,
IN UINT8 Value
)
{
return *(volatile UINT8*)Address = Value;
}
/**
Reads a 16-bit MMIO register.
Reads the 16-bit MMIO register specified by Address. The 16-bit read value is
returned. This function must guarantee that all MMIO read and write
operations are serialized.
If 16-bit MMIO register operations are not supported, then ASSERT().
If Address is not aligned on a 16-bit boundary, then ASSERT().
@param Address The MMIO register to read.
@return The value read.
**/
UINT16
EFIAPI
MmioRead16 (
IN UINTN Address
)
{
UINT16 Value;
ASSERT ((Address & 1) == 0);
Value = *(volatile UINT16*)Address;
return Value;
}
/**
Writes a 16-bit MMIO register.
Writes the 16-bit MMIO register specified by Address with the value specified
by Value and returns Value. This function must guarantee that all MMIO read
and write operations are serialized.
If 16-bit MMIO register operations are not supported, then ASSERT().
If Address is not aligned on a 16-bit boundary, then ASSERT().
@param Address The MMIO register to write.
@param Value The value to write to the MMIO register.
@return Value.
**/
UINT16
EFIAPI
MmioWrite16 (
IN UINTN Address,
IN UINT16 Value
)
{
ASSERT ((Address & 1) == 0);
return *(volatile UINT16*)Address = Value;
}
/**
Reads a 32-bit MMIO register.
Reads the 32-bit MMIO register specified by Address. The 32-bit read value is
returned. This function must guarantee that all MMIO read and write
operations are serialized.
If 32-bit MMIO register operations are not supported, then ASSERT().
If Address is not aligned on a 32-bit boundary, then ASSERT().
@param Address The MMIO register to read.
@return The value read.
**/
UINT32
EFIAPI
MmioRead32 (
IN UINTN Address
)
{
UINT32 Value;
ASSERT ((Address & 3) == 0);
Value = *(volatile UINT32*)Address;
return Value;
}
/**
Writes a 32-bit MMIO register.
Writes the 32-bit MMIO register specified by Address with the value specified
by Value and returns Value. This function must guarantee that all MMIO read
and write operations are serialized.
If 32-bit MMIO register operations are not supported, then ASSERT().
If Address is not aligned on a 32-bit boundary, then ASSERT().
@param Address The MMIO register to write.
@param Value The value to write to the MMIO register.
@return Value.
**/
UINT32
EFIAPI
MmioWrite32 (
IN UINTN Address,
IN UINT32 Value
)
{
ASSERT ((Address & 3) == 0);
return *(volatile UINT32*)Address = Value;
}
/**
Reads a 64-bit MMIO register.
Reads the 64-bit MMIO register specified by Address. The 64-bit read value is
returned. This function must guarantee that all MMIO read and write
operations are serialized.
If 64-bit MMIO register operations are not supported, then ASSERT().
If Address is not aligned on a 64-bit boundary, then ASSERT().
@param Address The MMIO register to read.
@return The value read.
**/
UINT64
EFIAPI
MmioRead64 (
IN UINTN Address
)
{
UINT64 Value;
ASSERT ((Address & 7) == 0);
Value = *(volatile UINT64*)Address;
return Value;
}
/**
Writes a 64-bit MMIO register.
Writes the 64-bit MMIO register specified by Address with the value specified
by Value and returns Value. This function must guarantee that all MMIO read
and write operations are serialized.
If 64-bit MMIO register operations are not supported, then ASSERT().
If Address is not aligned on a 64-bit boundary, then ASSERT().
@param Address The MMIO register to write.
@param Value The value to write to the MMIO register.
**/
UINT64
EFIAPI
MmioWrite64 (
IN UINTN Address,
IN UINT64 Value
)
{
ASSERT ((Address & 7) == 0);
return *(volatile UINT64*)Address = Value;
}