ArmPkg: Fix coding style to follow EDK2 coding convention

git-svn-id: https://edk2.svn.sourceforge.net/svnroot/edk2/trunk/edk2@11789 6f19259b-4bc3-4df7-8a09-765794883524
This commit is contained in:
oliviermartin 2011-06-11 11:15:55 +00:00
parent 838725abd7
commit 9e2b420ee9
4 changed files with 327 additions and 289 deletions

View File

@ -126,7 +126,7 @@ EnableInterruptSource (
RegShift = Source % 32;
// write set-enable register
MmioWrite32 (PcdGet32(PcdGicDistributorBase) + GIC_ICDISER+(4*RegOffset), 1 << RegShift);
MmioWrite32 (PcdGet32(PcdGicDistributorBase) + GIC_ICDISER + (4*RegOffset), 1 << RegShift);
return EFI_SUCCESS;
}
@ -156,12 +156,12 @@ DisableInterruptSource (
return EFI_UNSUPPORTED;
}
// calculate enable register offset and bit position
// Calculate enable register offset and bit position
RegOffset = Source / 32;
RegShift = Source % 32;
// write set-enable register
MmioWrite32 (PcdGet32(PcdGicDistributorBase) + GIC_ICDICER+(4*RegOffset), 1 << RegShift);
// Write set-enable register
MmioWrite32 (PcdGet32(PcdGicDistributorBase) + GIC_ICDICER + (4*RegOffset), 1 << RegShift);
return EFI_SUCCESS;
}
@ -197,7 +197,7 @@ GetInterruptSourceState (
RegOffset = Source / 32;
RegShift = Source % 32;
if ((MmioRead32 (PcdGet32(PcdGicDistributorBase) + GIC_ICDISER+(4*RegOffset)) & (1<<RegShift)) == 0) {
if ((MmioRead32 (PcdGet32(PcdGicDistributorBase) + GIC_ICDISER + (4*RegOffset)) & (1<<RegShift)) == 0) {
*InterruptState = FALSE;
} else {
*InterruptState = TRUE;
@ -389,27 +389,27 @@ InterruptDxeInitialize (
RegOffset = i / 4;
RegShift = (i % 4) * 8;
MmioAndThenOr32 (
PcdGet32(PcdGicDistributorBase) + GIC_ICDIPR+(4*RegOffset),
PcdGet32(PcdGicDistributorBase) + GIC_ICDIPR + (4*RegOffset),
~(0xff << RegShift),
GIC_DEFAULT_PRIORITY << RegShift
);
}
// configure interrupts for cpu 0
// Configure interrupts for cpu 0
for (i = 0; i < GIC_NUM_REG_PER_INT_BYTES; i++) {
MmioWrite32 (PcdGet32(PcdGicDistributorBase) + GIC_ICDIPTR + (i*4), 0x01010101);
}
// set binary point reg to 0x7 (no preemption)
// Set binary point reg to 0x7 (no preemption)
MmioWrite32 (PcdGet32(PcdGicInterruptInterfaceBase) + GIC_ICCBPR, 0x7);
// set priority mask reg to 0xff to allow all priorities through
// Set priority mask reg to 0xff to allow all priorities through
MmioWrite32 (PcdGet32(PcdGicInterruptInterfaceBase) + GIC_ICCPMR, 0xff);
// enable gic cpu interface
// Enable gic cpu interface
MmioWrite32 (PcdGet32(PcdGicInterruptInterfaceBase) + GIC_ICCICR, 0x1);
// enable gic distributor
// Enable gic distributor
MmioWrite32 (PcdGet32(PcdGicDistributorBase) + GIC_ICDDCR, 0x1);
ZeroMem (&gRegisteredInterruptHandlers, sizeof (gRegisteredInterruptHandlers));

View File

@ -12,6 +12,7 @@
*
**/
#include <Uefi.h>
#include <Library/IoLib.h>
#include <Drivers/PL390Gic.h>
@ -26,28 +27,27 @@ PL390GicSetupNonSecure (
IN INTN GicInterruptInterfaceBase
)
{
UINTN CachedPriorityMask = MmioRead32(GicInterruptInterfaceBase + GIC_ICCPMR);
UINTN CachedPriorityMask = MmioRead32(GicInterruptInterfaceBase + GIC_ICCPMR);
//Set priority Mask so that no interrupts get through to CPU
MmioWrite32(GicInterruptInterfaceBase + GIC_ICCPMR, 0);
// Set priority Mask so that no interrupts get through to CPU
MmioWrite32(GicInterruptInterfaceBase + GIC_ICCPMR, 0);
//Check if there are any pending interrupts
while(0 != (MmioRead32(GicDistributorBase + GIC_ICDICPR) & 0xF))
{
//Some of the SGI's are still pending, read Ack register and send End of Interrupt Signal
UINTN InterruptId = MmioRead32(GicInterruptInterfaceBase + GIC_ICCIAR);
// Check if there are any pending interrupts
while(0 != (MmioRead32(GicDistributorBase + GIC_ICDICPR) & 0xF)) {
// Some of the SGI's are still pending, read Ack register and send End of Interrupt Signal
UINTN InterruptId = MmioRead32(GicInterruptInterfaceBase + GIC_ICCIAR);
//Write to End of interrupt signal
MmioWrite32(GicInterruptInterfaceBase + GIC_ICCEIOR, InterruptId);
}
// Write to End of interrupt signal
MmioWrite32(GicInterruptInterfaceBase + GIC_ICCEIOR, InterruptId);
}
// Ensure all GIC interrupts are Non-Secure
MmioWrite32(GicDistributorBase + GIC_ICDISR, 0xffffffff); // IRQs 0-31 are Non-Secure : Private Peripheral Interrupt[31:16] & Software Generated Interrupt[15:0]
MmioWrite32(GicDistributorBase + GIC_ICDISR + 4, 0xffffffff); // IRQs 32-63 are Non-Secure : Shared Peripheral Interrupt
MmioWrite32(GicDistributorBase + GIC_ICDISR + 8, 0xffffffff); // And another 32 in case we're on the testchip : Shared Peripheral Interrupt (2)
MmioWrite32(GicDistributorBase + GIC_ICDISR, 0xffffffff); // IRQs 0-31 are Non-Secure : Private Peripheral Interrupt[31:16] & Software Generated Interrupt[15:0]
MmioWrite32(GicDistributorBase + GIC_ICDISR + 4, 0xffffffff); // IRQs 32-63 are Non-Secure : Shared Peripheral Interrupt
MmioWrite32(GicDistributorBase + GIC_ICDISR + 8, 0xffffffff); // And another 32 in case we're on the testchip : Shared Peripheral Interrupt (2)
// Ensure all interrupts can get through the priority mask
MmioWrite32(GicInterruptInterfaceBase + GIC_ICCPMR, CachedPriorityMask);
MmioWrite32(GicInterruptInterfaceBase + GIC_ICCPMR, CachedPriorityMask);
}
VOID
@ -63,12 +63,12 @@ PL390GicEnableInterruptInterface (
* Enable CPU inteface in Non-secure World
* Signal Secure Interrupts to CPU using FIQ line *
*/
MmioWrite32(GicInterruptInterfaceBase + GIC_ICCICR,
GIC_ICCICR_ENABLE_SECURE(1) |
GIC_ICCICR_ENABLE_NS(1) |
GIC_ICCICR_ACK_CTL(0) |
GIC_ICCICR_SIGNAL_SECURE_TO_FIQ(1) |
GIC_ICCICR_USE_SBPR(0));
MmioWrite32(GicInterruptInterfaceBase + GIC_ICCICR,
GIC_ICCICR_ENABLE_SECURE(1) |
GIC_ICCICR_ENABLE_NS(1) |
GIC_ICCICR_ACK_CTL(0) |
GIC_ICCICR_SIGNAL_SECURE_TO_FIQ(1) |
GIC_ICCICR_USE_SBPR(0));
}
VOID
@ -77,7 +77,7 @@ PL390GicEnableDistributor (
IN INTN GicDistributorBase
)
{
MmioWrite32(GicDistributorBase + GIC_ICDDCR, 1); // turn on the GIC distributor
MmioWrite32(GicDistributorBase + GIC_ICDDCR, 1); // turn on the GIC distributor
}
VOID
@ -98,18 +98,18 @@ PL390GicAcknowledgeSgiFrom (
IN INTN CoreId
)
{
INTN InterruptId;
INTN InterruptId;
InterruptId = MmioRead32(GicInterruptInterfaceBase + GIC_ICCIAR);
InterruptId = MmioRead32(GicInterruptInterfaceBase + GIC_ICCIAR);
//Check if the Interrupt ID is valid, The read from Interrupt Ack register returns CPU ID and Interrupt ID
// Check if the Interrupt ID is valid, The read from Interrupt Ack register returns CPU ID and Interrupt ID
if (((CoreId & 0x7) << 10) == (InterruptId & 0x1C00)) {
//Got SGI number 0 hence signal End of Interrupt by writing to ICCEOIR
// Got SGI number 0 hence signal End of Interrupt by writing to ICCEOIR
MmioWrite32(GicInterruptInterfaceBase + GIC_ICCEIOR, InterruptId);
return 1;
} else {
return 0;
}
return 1;
} else {
return 0;
}
}
UINT32
@ -120,16 +120,16 @@ PL390GicAcknowledgeSgi2From (
IN INTN SgiId
)
{
INTN InterruptId;
INTN InterruptId;
InterruptId = MmioRead32(GicInterruptInterfaceBase + GIC_ICCIAR);
InterruptId = MmioRead32(GicInterruptInterfaceBase + GIC_ICCIAR);
//Check if the Interrupt ID is valid, The read from Interrupt Ack register returns CPU ID and Interrupt ID
// Check if the Interrupt ID is valid, The read from Interrupt Ack register returns CPU ID and Interrupt ID
if((((CoreId & 0x7) << 10) | (SgiId & 0x3FF)) == (InterruptId & 0x1FFF)) {
//Got SGI number 0 hence signal End of Interrupt by writing to ICCEOIR
// Got SGI number 0 hence signal End of Interrupt by writing to ICCEOIR
MmioWrite32(GicInterruptInterfaceBase + GIC_ICCEIOR, InterruptId);
return 1;
} else {
return 0;
}
return 1;
} else {
return 0;
}
}

View File

@ -339,7 +339,7 @@ ArmGetScuBaseAddress (
UINT32
EFIAPI
ArmIsScuEnable(
ArmIsScuEnable (
VOID
);
@ -370,35 +370,35 @@ ArmSetupSmpNonSecure (
UINTN
EFIAPI
ArmReadCbar(
VOID
);
ArmReadCbar (
VOID
);
VOID
EFIAPI
ArmInvalidateInstructionAndDataTlb(
VOID
);
ArmInvalidateInstructionAndDataTlb (
VOID
);
UINTN
EFIAPI
ArmReadMpidr(
VOID
);
ArmReadMpidr (
VOID
);
UINTN
EFIAPI
ArmReadTpidrurw(
VOID
);
ArmReadTpidrurw (
VOID
);
VOID
EFIAPI
ArmWriteTpidrurw(
UINTN Value
);
ArmWriteTpidrurw (
UINTN Value
);
#endif // __ARM_V7_H__

View File

@ -67,247 +67,285 @@
typedef enum { Level0, Level1,Level2 } MMU_LEVEL;
typedef struct {
MMU_LEVEL Level;
UINT32 Value;
UINT32 Index;
UINT32* Table;
MMU_LEVEL Level;
UINT32 Value;
UINT32 Index;
UINT32* Table;
} MMU_ENTRY;
MMU_ENTRY MmuEntryCreate(MMU_LEVEL Level,UINT32* Table,UINT32 Index) {
MMU_ENTRY Entry;
Entry.Level = Level;
Entry.Value = Table[Index];
Entry.Table = Table;
Entry.Index = Index;
return Entry;
MMU_ENTRY
MmuEntryCreate (
IN MMU_LEVEL Level,
IN UINT32* Table,
IN UINT32 Index
)
{
MMU_ENTRY Entry;
Entry.Level = Level;
Entry.Value = Table[Index];
Entry.Table = Table;
Entry.Index = Index;
return Entry;
}
UINT32 MmuEntryIsValidAddress(MMU_LEVEL Level, UINT32 Entry) {
if (Level == Level0) {
return 0;
} else if (Level == Level1) {
if ((Entry & 0x3) == 0) { // Ignored
return 0;
} else if ((Entry & 0x3) == 2) { // Section Type
return 1;
} else { // Page Type
return 0;
}
} else if (Level == Level2){
if ((Entry & 0x3) == 0) { // Ignored
return 0;
} else { // Page Type
return 1;
}
} else {
DEBUG((EFI_D_ERROR,"MmuEntryIsValidAddress: Level:%d Entry:0x%X\n",(UINT32)Level,(UINT32)Entry));
ASSERT(0);
return 0;
UINT32
MmuEntryIsValidAddress (
IN MMU_LEVEL Level,
IN UINT32 Entry
)
{
if (Level == Level0) {
return 0;
} else if (Level == Level1) {
if ((Entry & 0x3) == 0) { // Ignored
return 0;
} else if ((Entry & 0x3) == 2) { // Section Type
return 1;
} else { // Page Type
return 0;
}
}
UINT32 MmuEntryGetAddress(MMU_ENTRY Entry) {
if (Entry.Level == Level1) {
if ((Entry.Value & 0x3) == 0) {
return 0;
} else if ((Entry.Value & 0x3) == 2) { // Section Type
return Entry.Value & TT_DESCRIPTOR_SECTION_BASE_ADDRESS_MASK;
} else if ((Entry.Value & 0x3) == 1) { // Level2 Table
MMU_ENTRY Entry = MmuEntryCreate(Level2,(UINT32*)(Entry.Value & 0xFFFFC000),0);
return MmuEntryGetAddress(Entry);
} else { // Page Type
return 0;
}
} else if (Entry.Level == Level2) {
if ((Entry.Value & 0x3) == 0) { // Ignored
return 0;
} else if ((Entry.Value & 0x3) == 1) { // Large Page
return Entry.Value & 0xFFFF0000;
} else if ((Entry.Value & 0x2) == 2) { // Small Page
return Entry.Value & 0xFFFFF000;
} else {
return 0;
}
} else {
ASSERT(0);
return 0;
} else if (Level == Level2){
if ((Entry & 0x3) == 0) { // Ignored
return 0;
} else { // Page Type
return 1;
}
} else {
DEBUG((EFI_D_ERROR,"MmuEntryIsValidAddress: Level:%d Entry:0x%X\n",(UINT32)Level,(UINT32)Entry));
ASSERT(0);
return 0;
}
}
UINT32 MmuEntryGetSize(MMU_ENTRY Entry) {
if (Entry.Level == Level1) {
if ((Entry.Value & 0x3) == 0) {
return 0;
} else if ((Entry.Value & 0x3) == 2) {
if (Entry.Value & (1 << 18))
return 16*SIZE_1MB;
else
return SIZE_1MB;
} else if ((Entry.Value & 0x3) == 1) { // Level2 Table split 1MB section
return SIZE_1MB;
} else {
DEBUG((EFI_D_ERROR, "MmuEntryGetSize: Value:0x%X",Entry.Value));
ASSERT(0);
return 0;
}
} else if (Entry.Level == Level2) {
if ((Entry.Value & 0x3) == 0) { // Ignored
return 0;
} else if ((Entry.Value & 0x3) == 1) { // Large Page
return SIZE_64KB;
} else if ((Entry.Value & 0x2) == 2) { // Small Page
return SIZE_4KB;
} else {
ASSERT(0);
return 0;
}
} else {
ASSERT(0);
return 0;
UINT32
MmuEntryGetAddress (
IN MMU_ENTRY Entry
)
{
if (Entry.Level == Level1) {
if ((Entry.Value & 0x3) == 0) {
return 0;
} else if ((Entry.Value & 0x3) == 2) { // Section Type
return Entry.Value & TT_DESCRIPTOR_SECTION_BASE_ADDRESS_MASK;
} else if ((Entry.Value & 0x3) == 1) { // Level2 Table
MMU_ENTRY Entry = MmuEntryCreate(Level2,(UINT32*)(Entry.Value & 0xFFFFC000),0);
return MmuEntryGetAddress(Entry);
} else { // Page Type
return 0;
}
}
CONST CHAR8* MmuEntryGetAttributesName(MMU_ENTRY Entry) {
if (Entry.Level == Level1) {
if (GET_TT_ATTRIBUTES(Entry.Value) == TT_DESCRIPTOR_SECTION_WRITE_BACK(0))
return "TT_DESCRIPTOR_SECTION_WRITE_BACK";
else if (GET_TT_ATTRIBUTES(Entry.Value) == TT_DESCRIPTOR_SECTION_WRITE_THROUGH(0))
return "TT_DESCRIPTOR_SECTION_WRITE_THROUGH";
else if (GET_TT_ATTRIBUTES(Entry.Value) == TT_DESCRIPTOR_SECTION_DEVICE(0))
return "TT_DESCRIPTOR_SECTION_DEVICE";
else if (GET_TT_ATTRIBUTES(Entry.Value) == TT_DESCRIPTOR_SECTION_UNCACHED(0))
return "TT_DESCRIPTOR_SECTION_UNCACHED";
else if (GET_TT_ATTRIBUTES(Entry.Value) == TT_DESCRIPTOR_SECTION_STRONGLY_ORDER)
return "TT_DESCRIPTOR_SECTION_STRONGLY_ORDERED";
else {
return "SectionUnknown";
}
} else if ((Entry.Level == Level2) && ((Entry.Value & 0x2) == 2)) { //Small Page
if (GET_TT_PAGE_ATTRIBUTES(Entry.Value) == TT_DESCRIPTOR_PAGE_WRITE_BACK)
return "TT_DESCRIPTOR_PAGE_WRITE_BACK";
else if (GET_TT_PAGE_ATTRIBUTES(Entry.Value) == TT_DESCRIPTOR_PAGE_WRITE_THROUGH)
return "TT_DESCRIPTOR_PAGE_WRITE_THROUGH";
else if (GET_TT_PAGE_ATTRIBUTES(Entry.Value) == TT_DESCRIPTOR_PAGE_DEVICE)
return "TT_DESCRIPTOR_PAGE_DEVICE";
else if (GET_TT_PAGE_ATTRIBUTES(Entry.Value) == TT_DESCRIPTOR_PAGE_UNCACHED)
return "TT_DESCRIPTOR_PAGE_UNCACHED";
else if (GET_TT_PAGE_ATTRIBUTES(Entry.Value) == TT_DESCRIPTOR_PAGE_STRONGLY_ORDER)
return "TT_DESCRIPTOR_PAGE_STRONGLY_ORDERED";
else {
return "PageUnknown";
}
} else if ((Entry.Level == Level2) && ((Entry.Value & 0x3) == 1)) { //Large Page
if (GET_TT_LARGEPAGE_ATTRIBUTES(Entry.Value) == TT_DESCRIPTOR_LARGEPAGE_WRITE_BACK)
return "TT_DESCRIPTOR_LARGEPAGE_WRITE_BACK";
else if (GET_TT_LARGEPAGE_ATTRIBUTES(Entry.Value) == TT_DESCRIPTOR_LARGEPAGE_WRITE_THROUGH)
return "TT_DESCRIPTOR_LARGEPAGE_WRITE_THROUGH";
else if (GET_TT_LARGEPAGE_ATTRIBUTES(Entry.Value) == TT_DESCRIPTOR_LARGEPAGE_DEVICE)
return "TT_DESCRIPTOR_LARGEPAGE_DEVICE";
else if (GET_TT_LARGEPAGE_ATTRIBUTES(Entry.Value) == TT_DESCRIPTOR_LARGEPAGE_UNCACHED)
return "TT_DESCRIPTOR_LARGEPAGE_UNCACHED";
else {
return "LargePageUnknown";
}
} else if (Entry.Level == Level2) {
if ((Entry.Value & 0x3) == 0) { // Ignored
return 0;
} else if ((Entry.Value & 0x3) == 1) { // Large Page
return Entry.Value & 0xFFFF0000;
} else if ((Entry.Value & 0x2) == 2) { // Small Page
return Entry.Value & 0xFFFFF000;
} else {
ASSERT(0);
return "";
return 0;
}
} else {
ASSERT(0);
return 0;
}
}
UINT32 MmuEntryGetAttributes(MMU_ENTRY Entry) {
if (Entry.Level == Level1) {
if ((Entry.Value & 0x3) == 0) {
return 0;
} else if ((Entry.Value & 0x3) == 2) {
return GET_TT_ATTRIBUTES(Entry.Value);
} else {
return 0;
}
} else if ((Entry.Level == Level2) && ((Entry.Value & 0x2) == 2)) { //Small Page
if (GET_TT_PAGE_ATTRIBUTES(Entry.Value) == TT_DESCRIPTOR_PAGE_WRITE_BACK)
return TT_DESCRIPTOR_SECTION_WRITE_BACK(0);
else if (GET_TT_PAGE_ATTRIBUTES(Entry.Value) == TT_DESCRIPTOR_PAGE_WRITE_THROUGH)
return TT_DESCRIPTOR_SECTION_WRITE_THROUGH(0);
else if (GET_TT_PAGE_ATTRIBUTES(Entry.Value) == TT_DESCRIPTOR_PAGE_DEVICE)
return TT_DESCRIPTOR_SECTION_DEVICE(0);
else if (GET_TT_PAGE_ATTRIBUTES(Entry.Value) == TT_DESCRIPTOR_PAGE_UNCACHED)
return TT_DESCRIPTOR_SECTION_UNCACHED(0);
else if (GET_TT_PAGE_ATTRIBUTES(Entry.Value) == TT_DESCRIPTOR_PAGE_STRONGLY_ORDER)
return TT_DESCRIPTOR_SECTION_STRONGLY_ORDER;
else {
return 0;
}
} else if ((Entry.Level == Level2) && ((Entry.Value & 0x3) == 1)) { //Large Page
if (GET_TT_LARGEPAGE_ATTRIBUTES(Entry.Value) == TT_DESCRIPTOR_LARGEPAGE_WRITE_BACK)
return TT_DESCRIPTOR_SECTION_WRITE_BACK(0);
else if (GET_TT_LARGEPAGE_ATTRIBUTES(Entry.Value) == TT_DESCRIPTOR_LARGEPAGE_WRITE_THROUGH)
return TT_DESCRIPTOR_SECTION_WRITE_THROUGH(0);
else if (GET_TT_LARGEPAGE_ATTRIBUTES(Entry.Value) == TT_DESCRIPTOR_LARGEPAGE_DEVICE)
return TT_DESCRIPTOR_SECTION_DEVICE(0);
else if (GET_TT_LARGEPAGE_ATTRIBUTES(Entry.Value) == TT_DESCRIPTOR_LARGEPAGE_UNCACHED)
return TT_DESCRIPTOR_SECTION_UNCACHED(0);
else {
return 0;
}
UINT32
MmuEntryGetSize (
IN MMU_ENTRY Entry
)
{
if (Entry.Level == Level1) {
if ((Entry.Value & 0x3) == 0) {
return 0;
} else if ((Entry.Value & 0x3) == 2) {
if (Entry.Value & (1 << 18))
return 16*SIZE_1MB;
else
return SIZE_1MB;
} else if ((Entry.Value & 0x3) == 1) { // Level2 Table split 1MB section
return SIZE_1MB;
} else {
return 0;
DEBUG((EFI_D_ERROR, "MmuEntryGetSize: Value:0x%X",Entry.Value));
ASSERT(0);
return 0;
}
} else if (Entry.Level == Level2) {
if ((Entry.Value & 0x3) == 0) { // Ignored
return 0;
} else if ((Entry.Value & 0x3) == 1) { // Large Page
return SIZE_64KB;
} else if ((Entry.Value & 0x2) == 2) { // Small Page
return SIZE_4KB;
} else {
ASSERT(0);
return 0;
}
} else {
ASSERT(0);
return 0;
}
}
CONST CHAR8*
MmuEntryGetAttributesName (
IN MMU_ENTRY Entry
)
{
UINT32 Value;
if (Entry.Level == Level1) {
Value = GET_TT_ATTRIBUTES(Entry.Value) | TT_DESCRIPTOR_SECTION_NS_MASK;
if (Value == TT_DESCRIPTOR_SECTION_WRITE_BACK(0))
return "TT_DESCRIPTOR_SECTION_WRITE_BACK";
else if (Value == TT_DESCRIPTOR_SECTION_WRITE_THROUGH(0))
return "TT_DESCRIPTOR_SECTION_WRITE_THROUGH";
else if (Value == TT_DESCRIPTOR_SECTION_DEVICE(0))
return "TT_DESCRIPTOR_SECTION_DEVICE";
else if (Value == TT_DESCRIPTOR_SECTION_UNCACHED(0))
return "TT_DESCRIPTOR_SECTION_UNCACHED";
else if (Value == TT_DESCRIPTOR_SECTION_STRONGLY_ORDER)
return "TT_DESCRIPTOR_SECTION_STRONGLY_ORDERED";
else {
return "SectionUnknown";
}
} else if ((Entry.Level == Level2) && ((Entry.Value & 0x2) == 2)) { //Small Page
Value = GET_TT_PAGE_ATTRIBUTES(Entry.Value);
if (Value == TT_DESCRIPTOR_PAGE_WRITE_BACK)
return "TT_DESCRIPTOR_PAGE_WRITE_BACK";
else if (Value == TT_DESCRIPTOR_PAGE_WRITE_THROUGH)
return "TT_DESCRIPTOR_PAGE_WRITE_THROUGH";
else if (Value == TT_DESCRIPTOR_PAGE_DEVICE)
return "TT_DESCRIPTOR_PAGE_DEVICE";
else if (Value == TT_DESCRIPTOR_PAGE_UNCACHED)
return "TT_DESCRIPTOR_PAGE_UNCACHED";
else if (Value == TT_DESCRIPTOR_PAGE_STRONGLY_ORDER)
return "TT_DESCRIPTOR_PAGE_STRONGLY_ORDERED";
else {
return "PageUnknown";
}
} else if ((Entry.Level == Level2) && ((Entry.Value & 0x3) == 1)) { //Large Page
Value = GET_TT_LARGEPAGE_ATTRIBUTES(Entry.Value);
if (Value == TT_DESCRIPTOR_LARGEPAGE_WRITE_BACK)
return "TT_DESCRIPTOR_LARGEPAGE_WRITE_BACK";
else if (Value == TT_DESCRIPTOR_LARGEPAGE_WRITE_THROUGH)
return "TT_DESCRIPTOR_LARGEPAGE_WRITE_THROUGH";
else if (Value == TT_DESCRIPTOR_LARGEPAGE_DEVICE)
return "TT_DESCRIPTOR_LARGEPAGE_DEVICE";
else if (Value == TT_DESCRIPTOR_LARGEPAGE_UNCACHED)
return "TT_DESCRIPTOR_LARGEPAGE_UNCACHED";
else {
return "LargePageUnknown";
}
} else {
ASSERT(0);
return "";
}
}
UINT32
MmuEntryGetAttributes (
IN MMU_ENTRY Entry
)
{
if (Entry.Level == Level1) {
if ((Entry.Value & 0x3) == 0) {
return 0;
} else if ((Entry.Value & 0x3) == 2) {
return GET_TT_ATTRIBUTES(Entry.Value);
} else {
return 0;
}
} else if ((Entry.Level == Level2) && ((Entry.Value & 0x2) == 2)) { //Small Page
if (GET_TT_PAGE_ATTRIBUTES(Entry.Value) == TT_DESCRIPTOR_PAGE_WRITE_BACK)
return TT_DESCRIPTOR_SECTION_WRITE_BACK(0);
else if (GET_TT_PAGE_ATTRIBUTES(Entry.Value) == TT_DESCRIPTOR_PAGE_WRITE_THROUGH)
return TT_DESCRIPTOR_SECTION_WRITE_THROUGH(0);
else if (GET_TT_PAGE_ATTRIBUTES(Entry.Value) == TT_DESCRIPTOR_PAGE_DEVICE)
return TT_DESCRIPTOR_SECTION_DEVICE(0);
else if (GET_TT_PAGE_ATTRIBUTES(Entry.Value) == TT_DESCRIPTOR_PAGE_UNCACHED)
return TT_DESCRIPTOR_SECTION_UNCACHED(0);
else if (GET_TT_PAGE_ATTRIBUTES(Entry.Value) == TT_DESCRIPTOR_PAGE_STRONGLY_ORDER)
return TT_DESCRIPTOR_SECTION_STRONGLY_ORDER;
else {
return 0;
}
} else if ((Entry.Level == Level2) && ((Entry.Value & 0x3) == 1)) { //Large Page
if (GET_TT_LARGEPAGE_ATTRIBUTES(Entry.Value) == TT_DESCRIPTOR_LARGEPAGE_WRITE_BACK)
return TT_DESCRIPTOR_SECTION_WRITE_BACK(0);
else if (GET_TT_LARGEPAGE_ATTRIBUTES(Entry.Value) == TT_DESCRIPTOR_LARGEPAGE_WRITE_THROUGH)
return TT_DESCRIPTOR_SECTION_WRITE_THROUGH(0);
else if (GET_TT_LARGEPAGE_ATTRIBUTES(Entry.Value) == TT_DESCRIPTOR_LARGEPAGE_DEVICE)
return TT_DESCRIPTOR_SECTION_DEVICE(0);
else if (GET_TT_LARGEPAGE_ATTRIBUTES(Entry.Value) == TT_DESCRIPTOR_LARGEPAGE_UNCACHED)
return TT_DESCRIPTOR_SECTION_UNCACHED(0);
else {
return 0;
}
} else {
return 0;
}
}
MMU_ENTRY DumpMmuLevel(MMU_LEVEL Level, UINT32* Table, MMU_ENTRY PreviousEntry) {
UINT32 Index = 0, Count;
MMU_ENTRY LastEntry, Entry;
MMU_ENTRY
DumpMmuLevel (
IN MMU_LEVEL Level,
IN UINT32* Table,
IN MMU_ENTRY PreviousEntry
)
{
UINT32 Index = 0, Count;
MMU_ENTRY LastEntry, Entry;
ASSERT((Level == Level1) || (Level == Level2));
if (Level == Level1) Count = 4096;
else Count = 256;
if (Level == Level1) Count = 4096;
else Count = 256;
// At Level1, we will get into this function because PreviousEntry is not valid
if (!MmuEntryIsValidAddress((MMU_LEVEL)(Level-1),PreviousEntry.Value)) {
// Find the first valid address
for (; (Index < Count) && (!MmuEntryIsValidAddress(Level,Table[Index])); Index++);
// At Level1, we will get into this function because PreviousEntry is not valid
if (!MmuEntryIsValidAddress((MMU_LEVEL)(Level-1),PreviousEntry.Value)) {
// Find the first valid address
for (; (Index < Count) && (!MmuEntryIsValidAddress(Level,Table[Index])); Index++);
LastEntry = MmuEntryCreate(Level,Table,Index);
Index++;
LastEntry = MmuEntryCreate(Level,Table,Index);
Index++;
} else {
LastEntry = PreviousEntry;
}
for (; Index < Count; Index++) {
Entry = MmuEntryCreate(Level,Table,Index);
if ((Level == Level1) && ((Entry.Value & 0x3) == 1)) { // We have got a Level2 table redirection
LastEntry = DumpMmuLevel(Level2,(UINT32*)(Entry.Value & 0xFFFFFC00),LastEntry);
} else if (!MmuEntryIsValidAddress(Level,Table[Index])) {
if (MmuEntryIsValidAddress(LastEntry.Level,LastEntry.Value)) {
AsciiPrint("0x%08X-0x%08X\t%a\n",
MmuEntryGetAddress(LastEntry),MmuEntryGetAddress(PreviousEntry)+MmuEntryGetSize(PreviousEntry)-1,
MmuEntryGetAttributesName(LastEntry));
}
LastEntry = Entry;
} else {
LastEntry = PreviousEntry;
if (MmuEntryGetAttributes(LastEntry) != MmuEntryGetAttributes(Entry)) {
if (MmuEntryIsValidAddress(Level,LastEntry.Value)) {
AsciiPrint("0x%08X-0x%08X\t%a\n",
MmuEntryGetAddress(LastEntry),MmuEntryGetAddress(PreviousEntry)+MmuEntryGetSize(PreviousEntry)-1,
MmuEntryGetAttributesName(LastEntry));
}
LastEntry = Entry;
} else {
ASSERT(LastEntry.Value != 0);
}
}
PreviousEntry = Entry;
}
for (; Index < Count; Index++) {
Entry = MmuEntryCreate(Level,Table,Index);
if ((Level == Level1) && ((Entry.Value & 0x3) == 1)) { // We have got a Level2 table redirection
LastEntry = DumpMmuLevel(Level2,(UINT32*)(Entry.Value & 0xFFFFFC00),LastEntry);
} else if (!MmuEntryIsValidAddress(Level,Table[Index])) {
if (MmuEntryIsValidAddress(LastEntry.Level,LastEntry.Value)) {
AsciiPrint("0x%08X-0x%08X\t%a\n",
MmuEntryGetAddress(LastEntry),MmuEntryGetAddress(PreviousEntry)+MmuEntryGetSize(PreviousEntry)-1,
MmuEntryGetAttributesName(LastEntry));
}
LastEntry = Entry;
} else {
if (MmuEntryGetAttributes(LastEntry) != MmuEntryGetAttributes(Entry)) {
if (MmuEntryIsValidAddress(Level,LastEntry.Value)) {
AsciiPrint("0x%08X-0x%08X\t%a\n",
MmuEntryGetAddress(LastEntry),MmuEntryGetAddress(PreviousEntry)+MmuEntryGetSize(PreviousEntry)-1,
MmuEntryGetAttributesName(LastEntry));
}
LastEntry = Entry;
} else {
ASSERT(LastEntry.Value != 0);
}
}
PreviousEntry = Entry;
}
if ((Level == Level1) && (LastEntry.Index != Index) && MmuEntryIsValidAddress(Level,LastEntry.Value)) {
AsciiPrint("0x%08X-0x%08X\t%a\n",
MmuEntryGetAddress(LastEntry),MmuEntryGetAddress(PreviousEntry)+MmuEntryGetSize(PreviousEntry)-1,
MmuEntryGetAttributesName(LastEntry));
}
if ((Level == Level1) && (LastEntry.Index != Index) && MmuEntryIsValidAddress(Level,LastEntry.Value)) {
AsciiPrint("0x%08X-0x%08X\t%a\n",
MmuEntryGetAddress(LastEntry),MmuEntryGetAddress(PreviousEntry)+MmuEntryGetSize(PreviousEntry)-1,
MmuEntryGetAttributesName(LastEntry));
}
return LastEntry;
return LastEntry;
}
@ -317,17 +355,17 @@ EblDumpMmu (
IN CHAR8 **Argv
)
{
UINT32 *TTEntry;
MMU_ENTRY NoEntry;
UINT32 *TTEntry;
MMU_ENTRY NoEntry;
TTEntry = ArmGetTTBR0BaseAddress();
TTEntry = ArmGetTTBR0BaseAddress();
AsciiPrint ("\nTranslation Table:0x%X\n",TTEntry);
AsciiPrint ("Address Range\t\tAttributes\n");
AsciiPrint ("____________________________________________________\n");
NoEntry.Level = (MMU_LEVEL)200;
DumpMmuLevel(Level1,TTEntry,NoEntry);
AsciiPrint ("\nTranslation Table:0x%X\n",TTEntry);
AsciiPrint ("Address Range\t\tAttributes\n");
AsciiPrint ("____________________________________________________\n");
return EFI_SUCCESS;
NoEntry.Level = (MMU_LEVEL)200;
DumpMmuLevel(Level1,TTEntry,NoEntry);
return EFI_SUCCESS;
}