Update CryptoPkg for new ciphers (HMAC, Block Cipher, etc) supports.

git-svn-id: https://edk2.svn.sourceforge.net/svnroot/edk2/trunk/edk2@10997 6f19259b-4bc3-4df7-8a09-765794883524
This commit is contained in:
qlong 2010-11-02 06:06:38 +00:00
parent 85c0b5ee7f
commit a8c4464502
32 changed files with 5292 additions and 610 deletions

View File

@ -12,11 +12,7 @@ WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED.
**/
#include <Library/BaseLib.h>
#include <Library/BaseMemoryLib.h>
#include <Library/MemoryAllocationLib.h>
#include <Library/BaseCryptLib.h>
#include "Cryptest.h"
//
// DER encoding of SpcIndirectDataContent (Authenticode-specific Structure)
@ -656,3 +652,30 @@ AuthenticodeVerify (
return Status;
}
/**
Validate UEFI-OpenSSL PKCS#7 Verification Interfaces.
@retval EFI_SUCCESS Validation succeeded.
@retval EFI_ABORTED Validation failed.
**/
EFI_STATUS
ValidateAuthenticode (
VOID
)
{
Print (L"\nUEFI-OpenSSL PKCS#7-Signed-Data Testing: ");
Print (L"\n- Authenticode (PKCS#7 Signed Data) Verification ... ");
if (AuthenticodeVerify ()) {
Print (L"[Pass]");
} else {
Print (L"[Fail]");
}
Print (L"\n");
return EFI_SUCCESS;
}

View File

@ -0,0 +1,473 @@
/** @file
Application for Block Cipher Primitives Validation.
Copyright (c) 2010, Intel Corporation. All rights reserved.<BR>
This program and the accompanying materials
are licensed and made available under the terms and conditions of the BSD License
which accompanies this distribution. The full text of the license may be found at
http://opensource.org/licenses/bsd-license.php
THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS,
WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED.
**/
#include "Cryptest.h"
//
// TDES test vectors are extracted from OpenSSL 0.9.8l, crypto\des\destest.c
//
GLOBAL_REMOVE_IF_UNREFERENCED CONST UINT8 TdesEcbData[] = {
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
};
GLOBAL_REMOVE_IF_UNREFERENCED CONST UINT8 TdesEcbKey[] = {
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF
};
GLOBAL_REMOVE_IF_UNREFERENCED CONST UINT8 TdesEcbCipher[] = {
0x8C, 0xA6, 0x4D, 0xE9, 0xC1, 0xB1, 0x23, 0xA7,
};
GLOBAL_REMOVE_IF_UNREFERENCED CONST UINT8 TdesEcb2Cipher[] = {
0x92, 0x95, 0xB5, 0x9B, 0xB3, 0x84, 0x73, 0x6E,
};
GLOBAL_REMOVE_IF_UNREFERENCED CONST UINT8 TdesCbcData[] = {
0x37, 0x36, 0x35, 0x34, 0x33, 0x32, 0x31, 0x20,
0x4E, 0x6F, 0x77, 0x20, 0x69, 0x73, 0x20, 0x74,
0x68, 0x65, 0x20, 0x74, 0x69, 0x6D, 0x65, 0x20
};
GLOBAL_REMOVE_IF_UNREFERENCED CONST UINT8 TdesCbcKey[] = {
0x01, 0x23, 0x45, 0x67, 0x89, 0xab, 0xcd, 0xef,
0xf1, 0xe0, 0xd3, 0xc2, 0xb5, 0xa4, 0x97, 0x86,
0xfe, 0xdc, 0xba, 0x98, 0x76, 0x54, 0x32, 0x10
};
GLOBAL_REMOVE_IF_UNREFERENCED UINT8 TdesCbcIvec[] = {
0xfe, 0xdc, 0xba, 0x98, 0x76, 0x54, 0x32, 0x10
};
GLOBAL_REMOVE_IF_UNREFERENCED CONST UINT8 TdesCbc3Cipher[] = {
0x3F, 0xE3, 0x01, 0xC9, 0x62, 0xAC, 0x01, 0xD0,
0x22, 0x13, 0x76, 0x3C, 0x1C, 0xBD, 0x4C, 0xDC,
0x79, 0x96, 0x57, 0xC0, 0x64, 0xEC, 0xF5, 0xD4
};
//
// AES test vectors are from NIST KAT of AES
//
GLOBAL_REMOVE_IF_UNREFERENCED CONST UINT8 Aes128EcbData[] = {
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
};
GLOBAL_REMOVE_IF_UNREFERENCED CONST UINT8 Aes128EcbKey[] = {
0x10, 0xa5, 0x88, 0x69, 0xd7, 0x4b, 0xe5, 0xa3, 0x74, 0xcf, 0x86, 0x7c, 0xfb, 0x47, 0x38, 0x59
};
GLOBAL_REMOVE_IF_UNREFERENCED CONST UINT8 Aes128EcbCipher[] = {
0x6d, 0x25, 0x1e, 0x69, 0x44, 0xb0, 0x51, 0xe0, 0x4e, 0xaa, 0x6f, 0xb4, 0xdb, 0xf7, 0x84, 0x65
};
GLOBAL_REMOVE_IF_UNREFERENCED CONST UINT8 Aes192EcbData[] = {
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
};
GLOBAL_REMOVE_IF_UNREFERENCED CONST UINT8 Aes192EcbKey[] = {
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff
};
GLOBAL_REMOVE_IF_UNREFERENCED CONST UINT8 Aes192EcbCipher[] = {
0xdd, 0x8a, 0x49, 0x35, 0x14, 0x23, 0x1c, 0xbf, 0x56, 0xec, 0xce, 0xe4, 0xc4, 0x08, 0x89, 0xfb
};
GLOBAL_REMOVE_IF_UNREFERENCED CONST UINT8 Aes256EcbData[] = {
0x01, 0x47, 0x30, 0xf8, 0x0a, 0xc6, 0x25, 0xfe, 0x84, 0xf0, 0x26, 0xc6, 0x0b, 0xfd, 0x54, 0x7d
};
GLOBAL_REMOVE_IF_UNREFERENCED CONST UINT8 Aes256EcbKey[] = {
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
};
GLOBAL_REMOVE_IF_UNREFERENCED CONST UINT8 Aes256EcbCipher[] = {
0x5c, 0x9d, 0x84, 0x4e, 0xd4, 0x6f, 0x98, 0x85, 0x08, 0x5e, 0x5d, 0x6a, 0x4f, 0x94, 0xc7, 0xd7
};
GLOBAL_REMOVE_IF_UNREFERENCED CONST UINT8 Aes128CbcData[] = {
0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f,
0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17, 0x18, 0x19, 0x1a, 0x1b, 0x1c, 0x1d, 0x1e, 0x1f
};
GLOBAL_REMOVE_IF_UNREFERENCED CONST UINT8 Aes128CbcKey[] = {
0xc2, 0x86, 0x69, 0x6d, 0x88, 0x7c, 0x9a, 0xa0, 0x61, 0x1b, 0xbb, 0x3e, 0x20, 0x25, 0xa4, 0x5a
};
GLOBAL_REMOVE_IF_UNREFERENCED CONST UINT8 Aes128CbcIvec[] = {
0x56, 0x2e, 0x17, 0x99, 0x6d, 0x09, 0x3d, 0x28, 0xdd, 0xb3, 0xba, 0x69, 0x5a, 0x2e, 0x6f, 0x58
};
GLOBAL_REMOVE_IF_UNREFERENCED CONST UINT8 Aes128CbcCipher[] = {
0xd2, 0x96, 0xcd, 0x94, 0xc2, 0xcc, 0xcf, 0x8a, 0x3a, 0x86, 0x30, 0x28, 0xb5, 0xe1, 0xdc, 0x0a,
0x75, 0x86, 0x60, 0x2d, 0x25, 0x3c, 0xff, 0xf9, 0x1b, 0x82, 0x66, 0xbe, 0xa6, 0xd6, 0x1a, 0xb1
};
//
// ARC4 Test Vector defined in "Appendix A.1 Test Vectors from [CRYPTLIB]" of
// IETF Draft draft-kaukonen-cipher-arcfour-03 ("A Stream Cipher Encryption Algorithm 'Arcfour'").
//
GLOBAL_REMOVE_IF_UNREFERENCED CONST UINT8 Arc4Data[] = {
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
};
GLOBAL_REMOVE_IF_UNREFERENCED CONST UINT8 Arc4Key[] = {
0x01, 0x23, 0x45, 0x67, 0x89, 0xAB, 0xCD, 0xEF
};
GLOBAL_REMOVE_IF_UNREFERENCED CONST UINT8 Arc4Cipher[] = {
0x74, 0x94, 0xC2, 0xE7, 0x10, 0x4B, 0x08, 0x79
};
/**
Validate UEFI-OpenSSL Block Ciphers (Symmetric Crypto) Interfaces.
@retval EFI_SUCCESS Validation succeeded.
@retval EFI_ABORTED Validation failed.
**/
EFI_STATUS
ValidateCryptBlockCipher (
VOID
)
{
UINTN CtxSize;
VOID *CipherCtx;
UINT8 Encrypt[256];
UINT8 Decrypt[256];
BOOLEAN Status;
Print (L"\nUEFI-OpenSSL Block Cipher Engine Testing: ");
CtxSize = TdesGetContextSize ();
CipherCtx = AllocatePool (CtxSize);
Print (L"\n- TDES Validation: ");
Print (L"ECB... ");
//
// TDES ECB Validation
//
ZeroMem (Encrypt, sizeof (Encrypt));
ZeroMem (Decrypt, sizeof (Decrypt));
Status = TdesInit (CipherCtx, TdesEcbKey, 64);
if (!Status) {
Print (L"[Fail]");
return EFI_ABORTED;
}
Status = TdesEcbEncrypt (CipherCtx, TdesEcbData, 8, Encrypt);
if (!Status) {
Print (L"[Fail]");
return EFI_ABORTED;
}
Status = TdesEcbDecrypt (CipherCtx, Encrypt, 8, Decrypt);
if (!Status) {
Print (L"[Fail]");
return EFI_ABORTED;
}
if (CompareMem (Encrypt, TdesEcbCipher, 8) != 0) {
Print (L"[Fail]");
return EFI_ABORTED;
}
if (CompareMem (Decrypt, TdesEcbData, 8) != 0) {
Print (L"[Fail]");
return EFI_ABORTED;
}
Print (L"EDE2 ECB... ");
//
// TDES EDE2 ECB Validation
//
ZeroMem (Encrypt, sizeof (Encrypt));
ZeroMem (Decrypt, sizeof (Decrypt));
Status = TdesInit (CipherCtx, TdesEcbKey, 128);
if (!Status) {
Print (L"[Fail]");
return EFI_ABORTED;
}
Status = TdesEcbEncrypt (CipherCtx, TdesEcbData, 8, Encrypt);
if (!Status) {
Print (L"[Fail]");
return EFI_ABORTED;
}
Status = TdesEcbDecrypt (CipherCtx, Encrypt, 8, Decrypt);
if (!Status) {
Print (L"[Fail]");
return EFI_ABORTED;
}
if (CompareMem (Encrypt, TdesEcb2Cipher, 8) != 0) {
Print (L"[Fail]");
return EFI_ABORTED;
}
if (CompareMem (Decrypt, TdesEcbData, 8) != 0) {
Print (L"[Fail]");
return EFI_ABORTED;
}
Print (L"EDE3 CBC... ");
//
// TDES EDE3 CBC Validation
//
ZeroMem (Encrypt, 256);
ZeroMem (Decrypt, 256);
Status = TdesInit (CipherCtx, TdesCbcKey, 192);
if (!Status) {
Print (L"[Fail]");
return EFI_ABORTED;
}
Status = TdesCbcEncrypt (CipherCtx, TdesCbcData, sizeof (TdesCbcData), TdesCbcIvec, Encrypt);
if (!Status) {
Print (L"[Fail]");
return EFI_ABORTED;
}
Status = TdesCbcDecrypt (CipherCtx, Encrypt, sizeof (TdesCbcData), TdesCbcIvec, Decrypt);
if (!Status) {
Print (L"[Fail]");
return EFI_ABORTED;
}
if (CompareMem (Encrypt, TdesCbc3Cipher, sizeof (TdesCbc3Cipher)) != 0) {
Print (L"[Fail]");
return EFI_ABORTED;
}
if (CompareMem (Decrypt, TdesCbcData, sizeof (TdesCbcData)) != 0) {
Print (L"[Fail]");
return EFI_ABORTED;
}
Print (L"[Pass]");
FreePool (CipherCtx);
CtxSize = AesGetContextSize ();
CipherCtx = AllocatePool (CtxSize);
Print (L"\n- AES Validation: ");
Print (L"ECB-128... ");
//
// AES-128 ECB Validation
//
ZeroMem (Encrypt, sizeof (Encrypt));
ZeroMem (Decrypt, sizeof (Decrypt));
Status = AesInit (CipherCtx, Aes128EcbKey, 128);
if (!Status) {
Print (L"[Fail]");
return EFI_ABORTED;
}
Status = AesEcbEncrypt (CipherCtx, Aes128EcbData, sizeof (Aes128EcbData), Encrypt);
if (!Status) {
Print (L"[Fail]");
return EFI_ABORTED;
}
Status = AesEcbDecrypt (CipherCtx, Encrypt, sizeof (Aes128EcbData), Decrypt);
if (!Status) {
Print (L"[Fail]");
return EFI_ABORTED;
}
if (CompareMem (Encrypt, Aes128EcbCipher, sizeof (Aes128EcbCipher)) != 0) {
Print (L"[Fail]");
return EFI_ABORTED;
}
if (CompareMem (Decrypt, Aes128EcbData, sizeof (Aes128EcbData)) != 0) {
Print (L"[Fail]");
return EFI_ABORTED;
}
Print (L"ECB-192... ");
//
// AES-192 ECB Validation
//
ZeroMem (Encrypt, sizeof (Encrypt));
ZeroMem (Decrypt, sizeof (Decrypt));
Status = AesInit (CipherCtx, Aes192EcbKey, 192);
if (!Status) {
Print (L"[Fail]");
return EFI_ABORTED;
}
Status = AesEcbEncrypt (CipherCtx, Aes192EcbData, sizeof (Aes192EcbData), Encrypt);
if (!Status) {
Print (L"[Fail]");
return EFI_ABORTED;
}
Status = AesEcbDecrypt (CipherCtx, Encrypt, sizeof (Aes192EcbData), Decrypt);
if (!Status) {
Print (L"[Fail]");
return EFI_ABORTED;
}
if (CompareMem (Encrypt, Aes192EcbCipher, sizeof (Aes192EcbCipher)) != 0) {
Print (L"[Fail]");
return EFI_ABORTED;
}
if (CompareMem (Decrypt, Aes192EcbData, sizeof (Aes192EcbData)) != 0) {
Print (L"[Fail]");
return EFI_ABORTED;
}
Print (L"ECB-256... ");
//
// AES-256 ECB Validation
//
ZeroMem (Encrypt, sizeof (Encrypt));
ZeroMem (Decrypt, sizeof (Decrypt));
Status = AesInit (CipherCtx, Aes256EcbKey, 256);
if (!Status) {
Print (L"[Fail]");
return EFI_ABORTED;
}
Status = AesEcbEncrypt (CipherCtx, Aes256EcbData, sizeof (Aes256EcbData), Encrypt);
if (!Status) {
Print (L"[Fail]");
return EFI_ABORTED;
}
Status = AesEcbDecrypt (CipherCtx, Encrypt, sizeof (Aes256EcbData), Decrypt);
if (!Status) {
Print (L"[Fail]");
return EFI_ABORTED;
}
if (CompareMem (Encrypt, Aes256EcbCipher, sizeof (Aes256EcbCipher)) != 0) {
Print (L"[Fail]");
return EFI_ABORTED;
}
if (CompareMem (Decrypt, Aes256EcbData, sizeof (Aes256EcbData)) != 0) {
Print (L"[Fail]");
return EFI_ABORTED;
}
Print (L"CBC-128... ");
//
// AES-128 CBC Validation
//
ZeroMem (Encrypt, sizeof (Encrypt));
ZeroMem (Decrypt, sizeof (Decrypt));
Status = AesInit (CipherCtx, Aes128CbcKey, 128);
if (!Status) {
Print (L"[Fail]");
return EFI_ABORTED;
}
Status = AesCbcEncrypt (CipherCtx, Aes128CbcData, sizeof (Aes128CbcData), Aes128CbcIvec, Encrypt);
if (!Status) {
Print (L"[Fail]");
return EFI_ABORTED;
}
Status = AesCbcDecrypt (CipherCtx, Encrypt, sizeof (Aes128CbcData), Aes128CbcIvec, Decrypt);
if (!Status) {
Print (L"[Fail]");
return EFI_ABORTED;
}
if (CompareMem (Encrypt, Aes128CbcCipher, sizeof (Aes128CbcCipher)) != 0) {
Print (L"[Fail]");
return EFI_ABORTED;
}
if (CompareMem (Decrypt, Aes128CbcData, sizeof (Aes128CbcData)) != 0) {
Print (L"[Fail]");
return EFI_ABORTED;
}
Print (L"[Pass]");
Print (L"\n- ARC4 Validation: ");
//
// ARC4 Validation
//
CtxSize = Arc4GetContextSize ();
CipherCtx = AllocatePool (CtxSize);
ZeroMem (Encrypt, sizeof (Encrypt));
ZeroMem (Decrypt, sizeof (Decrypt));
Status = Arc4Init (CipherCtx, Arc4Key, sizeof (Arc4Key));
if (!Status) {
Print (L"[Fail]");
return EFI_ABORTED;
}
Status = Arc4Encrypt (CipherCtx, Arc4Data, sizeof (Arc4Data), Encrypt);
if (!Status) {
Print (L"[Fail]");
return EFI_ABORTED;
}
Status = Arc4Reset (CipherCtx);
if (!Status) {
Print (L"[Fail]");
return EFI_ABORTED;
}
Status = Arc4Decrypt (CipherCtx, Encrypt, sizeof (Arc4Data), Decrypt);
if (!Status) {
Print (L"[Fail]");
return EFI_ABORTED;
}
if (CompareMem (Encrypt, Arc4Cipher, sizeof (Arc4Cipher)) != 0) {
Print (L"[Fail]");
return EFI_ABORTED;
}
if (CompareMem (Decrypt, Arc4Data, sizeof (Arc4Data)) != 0) {
Print (L"[Fail]");
return EFI_ABORTED;
}
Print (L"[Pass]");
Print (L"\n");
return EFI_SUCCESS;
}

View File

@ -12,332 +12,7 @@ WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED.
**/
#include <Uefi.h>
#include <Library/BaseLib.h>
#include <Library/BaseMemoryLib.h>
#include <Library/MemoryAllocationLib.h>
#include <Library/UefiLib.h>
#include <Library/UefiApplicationEntryPoint.h>
#include <Library/DebugLib.h>
#include <Library/BaseCryptLib.h>
//
// Max Known Digest Size is SHA512 Output (64 bytes) by far
//
#define MAX_DIGEST_SIZE 64
//
// Message string for digest validation
//
GLOBAL_REMOVE_IF_UNREFERENCED CONST CHAR8 *HashData = "abc";
//
// Result for MD5("abc"). (From "A.5 Test suite" of IETF RFC1321)
//
GLOBAL_REMOVE_IF_UNREFERENCED CONST UINT8 Md5Digest[MD5_DIGEST_SIZE] = {
0x90, 0x01, 0x50, 0x98, 0x3c, 0xd2, 0x4f, 0xb0, 0xd6, 0x96, 0x3f, 0x7d, 0x28, 0xe1, 0x7f, 0x72
};
//
// Result for SHA-1("abc"). (From "A.1 SHA-1 Example" of NIST FIPS 180-2)
//
GLOBAL_REMOVE_IF_UNREFERENCED CONST UINT8 Sha1Digest[SHA1_DIGEST_SIZE] = {
0xa9, 0x99, 0x3e, 0x36, 0x47, 0x06, 0x81, 0x6a, 0xba, 0x3e, 0x25, 0x71, 0x78, 0x50, 0xc2, 0x6c,
0x9c, 0xd0, 0xd8, 0x9d
};
//
// Result for SHA-256("abc"). (From "B.1 SHA-256 Example" of NIST FIPS 180-2)
//
GLOBAL_REMOVE_IF_UNREFERENCED CONST UINT8 Sha256Digest[SHA256_DIGEST_SIZE] = {
0xba, 0x78, 0x16, 0xbf, 0x8f, 0x01, 0xcf, 0xea, 0x41, 0x41, 0x40, 0xde, 0x5d, 0xae, 0x22, 0x23,
0xb0, 0x03, 0x61, 0xa3, 0x96, 0x17, 0x7a, 0x9c, 0xb4, 0x10, 0xff, 0x61, 0xf2, 0x00, 0x15, 0xad
};
//
// RSA PKCS#1 Validation Data from OpenSSL "Fips_rsa_selftest.c"
//
// Public Modulus of RSA Key
GLOBAL_REMOVE_IF_UNREFERENCED CONST UINT8 RsaN[] = {
0xBB, 0xF8, 0x2F, 0x09, 0x06, 0x82, 0xCE, 0x9C, 0x23, 0x38, 0xAC, 0x2B, 0x9D, 0xA8, 0x71, 0xF7,
0x36, 0x8D, 0x07, 0xEE, 0xD4, 0x10, 0x43, 0xA4, 0x40, 0xD6, 0xB6, 0xF0, 0x74, 0x54, 0xF5, 0x1F,
0xB8, 0xDF, 0xBA, 0xAF, 0x03, 0x5C, 0x02, 0xAB, 0x61, 0xEA, 0x48, 0xCE, 0xEB, 0x6F, 0xCD, 0x48,
0x76, 0xED, 0x52, 0x0D, 0x60, 0xE1, 0xEC, 0x46, 0x19, 0x71, 0x9D, 0x8A, 0x5B, 0x8B, 0x80, 0x7F,
0xAF, 0xB8, 0xE0, 0xA3, 0xDF, 0xC7, 0x37, 0x72, 0x3E, 0xE6, 0xB4, 0xB7, 0xD9, 0x3A, 0x25, 0x84,
0xEE, 0x6A, 0x64, 0x9D, 0x06, 0x09, 0x53, 0x74, 0x88, 0x34, 0xB2, 0x45, 0x45, 0x98, 0x39, 0x4E,
0xE0, 0xAA, 0xB1, 0x2D, 0x7B, 0x61, 0xA5, 0x1F, 0x52, 0x7A, 0x9A, 0x41, 0xF6, 0xC1, 0x68, 0x7F,
0xE2, 0x53, 0x72, 0x98, 0xCA, 0x2A, 0x8F, 0x59, 0x46, 0xF8, 0xE5, 0xFD, 0x09, 0x1D, 0xBD, 0xCB
};
// Public Exponent of RSA Key
GLOBAL_REMOVE_IF_UNREFERENCED CONST UINT8 RsaE[] = { 0x11 };
// Known Answer Test (KAT) Data for RSA PKCS#1 Signing
GLOBAL_REMOVE_IF_UNREFERENCED CONST CHAR8 RsaSignData[] = "OpenSSL FIPS 140-2 Public Key RSA KAT";
// Known Signature for the above message, under SHA-1 Digest
GLOBAL_REMOVE_IF_UNREFERENCED CONST UINT8 RsaPkcs1Signature[] = {
0x71, 0xEE, 0x1A, 0xC0, 0xFE, 0x01, 0x93, 0x54, 0x79, 0x5C, 0xF2, 0x4C, 0x4A, 0xFD, 0x1A, 0x05,
0x8F, 0x64, 0xB1, 0x6D, 0x61, 0x33, 0x8D, 0x9B, 0xE7, 0xFD, 0x60, 0xA3, 0x83, 0xB5, 0xA3, 0x51,
0x55, 0x77, 0x90, 0xCF, 0xDC, 0x22, 0x37, 0x8E, 0xD0, 0xE1, 0xAE, 0x09, 0xE3, 0x3D, 0x1E, 0xF8,
0x80, 0xD1, 0x8B, 0xC2, 0xEC, 0x0A, 0xD7, 0x6B, 0x88, 0x8B, 0x8B, 0xA1, 0x20, 0x22, 0xBE, 0x59,
0x5B, 0xE0, 0x23, 0x24, 0xA1, 0x49, 0x30, 0xBA, 0xA9, 0x9E, 0xE8, 0xB1, 0x8A, 0x62, 0x16, 0xBF,
0x4E, 0xCA, 0x2E, 0x4E, 0xBC, 0x29, 0xA8, 0x67, 0x13, 0xB7, 0x9F, 0x1D, 0x04, 0x44, 0xE5, 0x5F,
0x35, 0x07, 0x11, 0xBC, 0xED, 0x19, 0x37, 0x21, 0xCF, 0x23, 0x48, 0x1F, 0x72, 0x05, 0xDE, 0xE6,
0xE8, 0x7F, 0x33, 0x8A, 0x76, 0x4B, 0x2F, 0x95, 0xDF, 0xF1, 0x5F, 0x84, 0x80, 0xD9, 0x46, 0xB4
};
/**
Validate MSFT Authenticode using PKCS#7 Verification Interfaces.
@return EFI_SUCCESS Validation succeeds.
**/
BOOLEAN
AuthenticodeVerify (
VOID
);
/**
Validate UEFI-OpenSSL Digest Interfaces.
@return EFI_SUCCESS Validation succeeded.
**/
EFI_STATUS
ValidateCryptDigest (
VOID
)
{
UINTN CtxSize;
VOID *HashCtx;
UINTN DataSize;
UINT8 Digest[MAX_DIGEST_SIZE];
UINTN Index;
BOOLEAN Status;
Print (L" UEFI-OpenSSL Hash Engine Testing (Hashing(\"abc\")): ");
DataSize = AsciiStrLen (HashData);
//
// MD5 Digest Validation
//
ZeroMem (Digest, MAX_DIGEST_SIZE);
CtxSize = Md5GetContextSize ();
HashCtx = AllocatePool (CtxSize);
Status = Md5Init (HashCtx);
Status = Md5Update (HashCtx, HashData, DataSize);
Status = Md5Final (HashCtx, Digest);
FreePool (HashCtx);
Print (L"\n - MD5 Digest: \n = 0x");
for (Index = 0; Index < MD5_DIGEST_SIZE; Index++) {
Print (L"%02x", Digest[Index]);
}
if (CompareMem (Digest, Md5Digest, MD5_DIGEST_SIZE) == 0) {
Print (L" [Pass]");
} else {
Print (L" [Failed]");
}
//
// SHA-1 Digest Validation
//
ZeroMem (Digest, MAX_DIGEST_SIZE);
CtxSize = Sha1GetContextSize ();
HashCtx = AllocatePool (CtxSize);
Status = Sha1Init (HashCtx);
Status = Sha1Update (HashCtx, HashData, DataSize);
Status = Sha1Final (HashCtx, Digest);
FreePool (HashCtx);
Print (L"\n - SHA-1 Digest: \n = 0x");
for (Index = 0; Index < SHA1_DIGEST_SIZE; Index++) {
Print (L"%02x", Digest[Index]);
}
if (CompareMem (Digest, Sha1Digest, SHA1_DIGEST_SIZE) == 0) {
Print (L" [Pass]");
} else {
Print (L" [Failed]");
}
//
// SHA256 Digest Validation
//
ZeroMem (Digest, MAX_DIGEST_SIZE);
CtxSize = Sha256GetContextSize ();
HashCtx = AllocatePool (CtxSize);
Status = Sha256Init (HashCtx);
Status = Sha256Update (HashCtx, HashData, DataSize);
Status = Sha256Final (HashCtx, Digest);
FreePool (HashCtx);
Print (L"\n - SHA-256 Digest: \n = 0x");
for (Index = 0; Index < SHA256_DIGEST_SIZE; Index++) {
Print (L"%02x", Digest[Index]);
}
if (CompareMem (Digest, Sha256Digest, SHA256_DIGEST_SIZE) == 0) {
Print (L" [Pass]");
} else {
Print (L" [Failed]");
}
Print (L"\n");
return EFI_SUCCESS;
}
/**
Validate UEFI-OpenSSL Message Authentication Codes Interfaces.
@return EFI_SUCCESS Validation succeeded.
**/
EFI_STATUS
ValidateCryptHmac (
VOID
)
{
Print (L"\n UEFI-OpenSSL HMAC Engine Testing: ");
Print (L"\n ==> No HMAC Support in Base Crypto Library!\n");
return EFI_SUCCESS;
}
/**
Validate UEFI-OpenSSL Block Ciphers (Symmetric Crypto) Interfaces.
@return EFI_SUCCESS Validation succeeded.
**/
EFI_STATUS
ValidateCryptBlockCipher (
VOID
)
{
Print (L"\n UEFI-OpenSSL Block Cipher Engine Testing: ");
Print (L"\n ==> No Block Cipher Support in Base Crypto Library!\n");
return EFI_SUCCESS;
}
/**
Validate UEFI-OpenSSL RSA Interfaces.
@return EFI_SUCCESS Validation succeeded.
**/
EFI_STATUS
ValidateCryptRsa (
VOID
)
{
VOID *Rsa;
UINT8 mHash[SHA1_DIGEST_SIZE];
UINTN HashSize;
UINTN CtxSize;
VOID *Sha1Ctx;
UINT8 *Signature;
UINTN SigSize;
BOOLEAN Status;
Print (L"\n UEFI-OpenSSL RSA Engine Testing: ");
//
// Generate & Initialize RSA Context
//
Rsa = RsaNew ();
Print (L"\n - Generate RSA Context .............. ");
if (Rsa != NULL) {
Print (L"[Pass]");
} else {
Print (L"[Failed]");
}
//
// Set RSA Key Components
// NOTE: Only N and E are needed to be set as RSA public key for signature verification
//
Print (L"\n - Set RSA Key Components ............ ");
Status = RsaSetKey (Rsa, RsaKeyN, RsaN, sizeof (RsaN));
Status = RsaSetKey (Rsa, RsaKeyE, RsaE, sizeof (RsaE));
if (Status) {
Print (L"[Pass]");
} else {
Print (L"[Failed]");
}
//
// SHA-1 Digest Message for PKCS#1 Signature
//
Print (L"\n - Hash Original Message ............. ");
HashSize = SHA1_DIGEST_SIZE;
ZeroMem (mHash, HashSize);
CtxSize = Sha1GetContextSize ();
Sha1Ctx = AllocatePool (CtxSize);
Status = Sha1Init (Sha1Ctx);
Status = Sha1Update (Sha1Ctx, RsaSignData, AsciiStrLen (RsaSignData));
Status = Sha1Final (Sha1Ctx, mHash);
FreePool (Sha1Ctx);
if (Status) {
Print (L"[Pass]");
} else {
Print (L"[Failed]");
}
//
// Verify RSA PKCS#1-encoded Signature
//
Print (L"\n - PKCS#1 Signature Verification ..... ");
SigSize = sizeof (RsaPkcs1Signature);
Signature = (UINT8 *)AllocatePool (SigSize);
CopyMem (Signature, RsaPkcs1Signature, SigSize);
Status = RsaPkcs1Verify (Rsa, mHash, HashSize, Signature, SigSize);
if (Status) {
Print (L"[Pass]");
} else {
Print (L"[Failed]");
}
//
// Release Resources
//
RsaFree (Rsa);
Print (L"\n - Release RSA Context ............... [Pass]");
Print (L"\n");
return EFI_SUCCESS;
}
/**
Validate UEFI-OpenSSL PKCS#7 Verification Interfaces.
@return EFI_SUCCESS Validation succeeded.
**/
EFI_STATUS
ValidateAuthenticode (
VOID
)
{
Print (L"\n UEFI-OpenSSL PKCS#7-Signed-Data Testing: ");
Print (L"\n - Authenticode (PKCS#7 Signed Data) Verification ... ");
if (AuthenticodeVerify ()) {
Print (L"[Pass]");
} else {
Print (L"[Failed]");
}
Print (L"\n");
return EFI_SUCCESS;
}
#include "Cryptest.h"
/**
Entry Point of Cryptographic Validation Utility.
@ -361,12 +36,42 @@ CryptestMain (
Print (L"\nUEFI-OpenSSL Wrapper Cryptosystem Testing: \n");
Print (L"-------------------------------------------- \n");
Status = EFI_SUCCESS;
Status = ValidateCryptDigest ();
Status = ValidateCryptHmac ();
Status = ValidateCryptBlockCipher ();
Status = ValidateCryptRsa ();
Status = ValidateAuthenticode ();
RandomSeed (NULL, 0);
return Status;
Status = ValidateCryptDigest ();
if (EFI_ERROR (Status)) {
return Status;
}
Status = ValidateCryptHmac ();
if (EFI_ERROR (Status)) {
return Status;
}
Status = ValidateCryptBlockCipher ();
if (EFI_ERROR (Status)) {
return Status;
}
Status = ValidateCryptRsa ();
if (EFI_ERROR (Status)) {
return Status;
}
Status = ValidateAuthenticode ();
if (EFI_ERROR (Status)) {
return Status;
}
Status = ValidateCryptDh ();
if (EFI_ERROR (Status)) {
return Status;
}
Status = ValidateCryptPrng ();
if (EFI_ERROR (Status)) {
return Status;
}
return EFI_SUCCESS;
}

View File

@ -0,0 +1,111 @@
/** @file
Application for Cryptographic Primitives Validation.
Copyright (c) 2009 - 2010, Intel Corporation. All rights reserved.<BR>
This program and the accompanying materials
are licensed and made available under the terms and conditions of the BSD License
which accompanies this distribution. The full text of the license may be found at
http://opensource.org/licenses/bsd-license.php
THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS,
WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED.
**/
#ifndef __CRYPTEST_H__
#define __CRYPTEST_H__
#include <Uefi.h>
#include <Library/BaseLib.h>
#include <Library/BaseMemoryLib.h>
#include <Library/MemoryAllocationLib.h>
#include <Library/UefiLib.h>
#include <Library/UefiApplicationEntryPoint.h>
#include <Library/DebugLib.h>
#include <Library/BaseCryptLib.h>
/**
Validate UEFI-OpenSSL Digest Interfaces.
@retval EFI_SUCCESS Validation succeeded.
@retval EFI_ABORTED Validation failed.
**/
EFI_STATUS
ValidateCryptDigest (
VOID
);
/**
Validate UEFI-OpenSSL Message Authentication Codes Interfaces.
@retval EFI_SUCCESS Validation succeeded.
@retval EFI_ABORTED Validation failed.
**/
EFI_STATUS
ValidateCryptHmac (
VOID
);
/**
Validate UEFI-OpenSSL Block Ciphers (Symmetric Crypto) Interfaces.
@retval EFI_SUCCESS Validation succeeded.
@retval EFI_ABORTED Validation failed.
**/
EFI_STATUS
ValidateCryptBlockCipher (
VOID
);
/**
Validate UEFI-OpenSSL RSA Interfaces.
@retval EFI_SUCCESS Validation succeeded.
@retval EFI_ABORTED Validation failed.
**/
EFI_STATUS
ValidateCryptRsa (
VOID
);
/**
Validate UEFI-OpenSSL PKCS#7 Verification Interfaces.
@retval EFI_SUCCESS Validation succeeded.
@retval EFI_ABORTED Validation failed.
**/
EFI_STATUS
ValidateAuthenticode (
VOID
);
/**
Validate UEFI-OpenSSL DH Interfaces.
@retval EFI_SUCCESS Validation succeeded.
@retval EFI_ABORTED Validation failed.
**/
EFI_STATUS
ValidateCryptDh (
VOID
);
/**
Validate UEFI-OpenSSL pseudorandom number generator interfaces.
@retval EFI_SUCCESS Validation succeeded.
@retval EFI_ABORTED Validation failed.
**/
EFI_STATUS
ValidateCryptPrng (
VOID
);
#endif

View File

@ -29,9 +29,16 @@
#
[Sources]
Cryptest.h
Cryptest.c
HashVerify.c
HmacVerify.c
BlockCipherVerify.c
RsaVerify.c
AuthenticodeVerify.c
DhVerify.c
RandVerify.c
[Packages]
MdePkg/MdePkg.dec
CryptoPkg/CryptoPkg.dec

View File

@ -0,0 +1,117 @@
/** @file
Application for Diffie-Hellman Primitives Validation.
Copyright (c) 2010, Intel Corporation. All rights reserved.<BR>
This program and the accompanying materials
are licensed and made available under the terms and conditions of the BSD License
which accompanies this distribution. The full text of the license may be found at
http://opensource.org/licenses/bsd-license.php
THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS,
WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED.
**/
#include "Cryptest.h"
/**
Validate UEFI-OpenSSL DH Interfaces.
@retval EFI_SUCCESS Validation succeeded.
@retval EFI_ABORTED Validation failed.
**/
EFI_STATUS
ValidateCryptDh (
VOID
)
{
VOID *Dh1;
VOID *Dh2;
UINT8 Prime[64];
UINT8 PublicKey1[64];
UINTN PublicKey1Length;
UINT8 PublicKey2[64];
UINTN PublicKey2Length;
UINT8 Key1[64];
UINTN Key1Length;
UINT8 Key2[64];
UINTN Key2Length;
BOOLEAN Status;
Print (L"\nUEFI-OpenSSL DH Engine Testing:\n");
//
// Generate & Initialize DH Context
//
Print (L"- Context1 ... ");
Dh1 = DhNew ();
if (Dh1 == NULL) {
Print (L"[Fail]");
return EFI_ABORTED;
}
Print (L"Context2 ... ");
Dh2 = DhNew ();
if (Dh2 == NULL) {
Print (L"[Fail]");
return EFI_ABORTED;
}
Print (L"Parameter1 ... ");
Status = DhGenerateParameter (Dh1, 2, 64, Prime);
if (!Status) {
Print (L"[Fail]");
return EFI_ABORTED;
}
Print (L"Parameter2 ... ");
Status = DhSetParameter (Dh2, 2, 64, Prime);
if (!Status) {
Print (L"[Fail]");
return EFI_ABORTED;
}
Print (L"Generate key1 ... ");
Status = DhGenerateKey (Dh1, PublicKey1, &PublicKey1Length);
if (!Status) {
Print (L"[Fail]");
return EFI_ABORTED;
}
Print (L"Generate key2 ... ");
Status = DhGenerateKey (Dh2, PublicKey2, &PublicKey2Length);
if (!Status) {
Print (L"[Fail]");
return EFI_ABORTED;
}
Print (L"Compute key1 ... ");
Status = DhComputeKey (Dh1, PublicKey2, PublicKey2Length, Key1, &Key1Length);
if (!Status) {
Print (L"[Fail]");
return EFI_ABORTED;
}
Print (L"Compute key2 ... ");
Status = DhComputeKey (Dh2, PublicKey1, PublicKey1Length, Key2, &Key2Length);
if (!Status) {
Print (L"[Fail]");
return EFI_ABORTED;
}
Print (L"Compare Keys ... ");
if (Key1Length != Key2Length) {
Print (L"[Fail]");
return EFI_ABORTED;
}
if (CompareMem (Key1, Key2, Key1Length) != 0) {
Print (L"[Fail]");
return EFI_ABORTED;
}
Print (L"[Pass]\n");
return EFI_SUCCESS;
}

View File

@ -0,0 +1,192 @@
/** @file
Application for Hash Primitives Validation.
Copyright (c) 2010, Intel Corporation. All rights reserved.<BR>
This program and the accompanying materials
are licensed and made available under the terms and conditions of the BSD License
which accompanies this distribution. The full text of the license may be found at
http://opensource.org/licenses/bsd-license.php
THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS,
WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED.
**/
#include "Cryptest.h"
//
// Max Known Digest Size is SHA512 Output (64 bytes) by far
//
#define MAX_DIGEST_SIZE 64
//
// Message string for digest validation
//
GLOBAL_REMOVE_IF_UNREFERENCED CONST CHAR8 *HashData = "abc";
//
// Result for MD5("abc"). (From "A.5 Test suite" of IETF RFC1321)
//
GLOBAL_REMOVE_IF_UNREFERENCED CONST UINT8 Md5Digest[MD5_DIGEST_SIZE] = {
0x90, 0x01, 0x50, 0x98, 0x3c, 0xd2, 0x4f, 0xb0, 0xd6, 0x96, 0x3f, 0x7d, 0x28, 0xe1, 0x7f, 0x72
};
//
// Result for SHA-1("abc"). (From "A.1 SHA-1 Example" of NIST FIPS 180-2)
//
GLOBAL_REMOVE_IF_UNREFERENCED CONST UINT8 Sha1Digest[SHA1_DIGEST_SIZE] = {
0xa9, 0x99, 0x3e, 0x36, 0x47, 0x06, 0x81, 0x6a, 0xba, 0x3e, 0x25, 0x71, 0x78, 0x50, 0xc2, 0x6c,
0x9c, 0xd0, 0xd8, 0x9d
};
//
// Result for SHA-256("abc"). (From "B.1 SHA-256 Example" of NIST FIPS 180-2)
//
GLOBAL_REMOVE_IF_UNREFERENCED CONST UINT8 Sha256Digest[SHA256_DIGEST_SIZE] = {
0xba, 0x78, 0x16, 0xbf, 0x8f, 0x01, 0xcf, 0xea, 0x41, 0x41, 0x40, 0xde, 0x5d, 0xae, 0x22, 0x23,
0xb0, 0x03, 0x61, 0xa3, 0x96, 0x17, 0x7a, 0x9c, 0xb4, 0x10, 0xff, 0x61, 0xf2, 0x00, 0x15, 0xad
};
/**
Validate UEFI-OpenSSL Digest Interfaces.
@retval EFI_SUCCESS Validation succeeded.
@retval EFI_ABORTED Validation failed.
**/
EFI_STATUS
ValidateCryptDigest (
VOID
)
{
UINTN CtxSize;
VOID *HashCtx;
UINTN DataSize;
UINT8 Digest[MAX_DIGEST_SIZE];
BOOLEAN Status;
Print (L" UEFI-OpenSSL Hash Engine Testing:\n");
DataSize = AsciiStrLen (HashData);
Print (L"- MD5: ");
//
// MD5 Digest Validation
//
ZeroMem (Digest, MAX_DIGEST_SIZE);
CtxSize = Md5GetContextSize ();
HashCtx = AllocatePool (CtxSize);
Print (L"Init... ");
Status = Md5Init (HashCtx);
if (!Status) {
Print (L"[Fail]");
return EFI_ABORTED;
}
Print (L"Update... ");
Status = Md5Update (HashCtx, HashData, DataSize);
if (!Status) {
Print (L"[Fail]");
return EFI_ABORTED;
}
Print (L"Finalize... ");
Status = Md5Final (HashCtx, Digest);
if (!Status) {
Print (L"[Fail]");
return EFI_ABORTED;
}
FreePool (HashCtx);
Print (L"Check Value... ");
if (CompareMem (Digest, Md5Digest, MD5_DIGEST_SIZE) != 0) {
Print (L"[Fail]");
return EFI_ABORTED;
}
Print (L"[Pass]\n");
Print (L"- SHA1: ");
//
// SHA-1 Digest Validation
//
ZeroMem (Digest, MAX_DIGEST_SIZE);
CtxSize = Sha1GetContextSize ();
HashCtx = AllocatePool (CtxSize);
Print (L"Init... ");
Status = Sha1Init (HashCtx);
if (!Status) {
Print (L"[Fail]");
return EFI_ABORTED;
}
Print (L"Update... ");
Status = Sha1Update (HashCtx, HashData, DataSize);
if (!Status) {
Print (L"[Fail]");
return EFI_ABORTED;
}
Print (L"Finalize... ");
Status = Sha1Final (HashCtx, Digest);
if (!Status) {
Print (L"[Fail]");
return EFI_ABORTED;
}
FreePool (HashCtx);
Print (L"Check Value... ");
if (CompareMem (Digest, Sha1Digest, SHA1_DIGEST_SIZE) != 0) {
Print (L"[Fail]");
return EFI_ABORTED;
}
Print (L"[Pass]\n");
Print (L"- SHA256: ");
//
// SHA256 Digest Validation
//
ZeroMem (Digest, MAX_DIGEST_SIZE);
CtxSize = Sha256GetContextSize ();
HashCtx = AllocatePool (CtxSize);
Print (L"Init... ");
Status = Sha256Init (HashCtx);
if (!Status) {
Print (L"[Fail]");
return EFI_ABORTED;
}
Print (L"Update... ");
Status = Sha256Update (HashCtx, HashData, DataSize);
if (!Status) {
Print (L"[Fail]");
return EFI_ABORTED;
}
Print (L"Finalize... ");
Status = Sha256Final (HashCtx, Digest);
if (!Status) {
Print (L"[Fail]");
return EFI_ABORTED;
}
FreePool (HashCtx);
Print (L"Check Value... ");
if (CompareMem (Digest, Sha256Digest, SHA256_DIGEST_SIZE) != 0) {
Print (L"[Fail]");
return EFI_ABORTED;
}
Print (L"[Pass]\n");
return EFI_SUCCESS;
}

View File

@ -0,0 +1,157 @@
/** @file
Application for HMAC Primitives Validation.
Copyright (c) 2010, Intel Corporation. All rights reserved.<BR>
This program and the accompanying materials
are licensed and made available under the terms and conditions of the BSD License
which accompanies this distribution. The full text of the license may be found at
http://opensource.org/licenses/bsd-license.php
THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS,
WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED.
**/
#include "Cryptest.h"
//
// Max Known Digest Size is SHA512 Output (64 bytes) by far
//
#define MAX_DIGEST_SIZE 64
//
// Data string for HMAC validation
//
GLOBAL_REMOVE_IF_UNREFERENCED CONST CHAR8 *HmacData = "Hi There";
//
// Key value for HMAC-MD5 validation. (From "2. Test Cases for HMAC-MD5" of IETF RFC2202)
//
GLOBAL_REMOVE_IF_UNREFERENCED CONST UINT8 HmacMd5Key[16] = {
0x0b, 0x0b, 0x0b, 0x0b, 0x0b, 0x0b, 0x0b, 0x0b, 0x0b, 0x0b, 0x0b, 0x0b, 0x0b, 0x0b, 0x0b, 0x0b
};
//
// Result for HMAC-MD5("Hi There"). (From "2. Test Cases for HMAC-MD5" of IETF RFC2202)
//
GLOBAL_REMOVE_IF_UNREFERENCED CONST UINT8 HmacMd5Digest[] = {
0x92, 0x94, 0x72, 0x7a, 0x36, 0x38, 0xbb, 0x1c, 0x13, 0xf4, 0x8e, 0xf8, 0x15, 0x8b, 0xfc, 0x9d
};
//
// Key value for HMAC-SHA-1 validation. (From "3. Test Cases for HMAC-SHA-1" of IETF RFC2202)
//
GLOBAL_REMOVE_IF_UNREFERENCED CONST UINT8 HmacSha1Key[20] = {
0x0b, 0x0b, 0x0b, 0x0b, 0x0b, 0x0b, 0x0b, 0x0b, 0x0b, 0x0b, 0x0b, 0x0b, 0x0b, 0x0b, 0x0b, 0x0b,
0x0b, 0x0b, 0x0b, 0x0b
};
//
// Result for HMAC-SHA-1 ("Hi There"). (From "3. Test Cases for HMAC-SHA-1" of IETF RFC2202)
//
GLOBAL_REMOVE_IF_UNREFERENCED CONST UINT8 HmacSha1Digest[] = {
0xb6, 0x17, 0x31, 0x86, 0x55, 0x05, 0x72, 0x64, 0xe2, 0x8b, 0xc0, 0xb6, 0xfb, 0x37, 0x8c, 0x8e,
0xf1, 0x46, 0xbe, 0x00
};
/**
Validate UEFI-OpenSSL Message Authentication Codes Interfaces.
@retval EFI_SUCCESS Validation succeeded.
@retval EFI_ABORTED Validation failed.
**/
EFI_STATUS
ValidateCryptHmac (
VOID
)
{
UINTN CtxSize;
VOID *HmacCtx;
UINT8 Digest[MAX_DIGEST_SIZE];
BOOLEAN Status;
Print (L" \nUEFI-OpenSSL HMAC Engine Testing:\n");
Print (L"- HMAC-MD5: ");
//
// HMAC-MD5 Digest Validation
//
ZeroMem (Digest, MAX_DIGEST_SIZE);
CtxSize = HmacMd5GetContextSize ();
HmacCtx = AllocatePool (CtxSize);
Print (L"Init... ");
Status = HmacMd5Init (HmacCtx, HmacMd5Key, sizeof (HmacMd5Key));
if (!Status) {
Print (L"[Fail]");
return EFI_ABORTED;
}
Print (L"Update... ");
Status = HmacMd5Update (HmacCtx, HmacData, 8);
if (!Status) {
Print (L"[Fail]");
return EFI_ABORTED;
}
Print (L"Finalize... ");
Status = HmacMd5Final (HmacCtx, Digest);
if (!Status) {
Print (L"[Fail]");
return EFI_ABORTED;
}
FreePool (HmacCtx);
Print (L"Check Value... ");
if (CompareMem (Digest, HmacMd5Digest, MD5_DIGEST_SIZE) != 0) {
Print (L"[Fail]");
return EFI_ABORTED;
}
Print (L"[Pass]\n");
Print (L"- HMAC-SHA1: ");
//
// HMAC-SHA1 Digest Validation
//
ZeroMem (Digest, MAX_DIGEST_SIZE);
CtxSize = HmacSha1GetContextSize ();
HmacCtx = AllocatePool (CtxSize);
Print (L"Init... ");
Status = HmacSha1Init (HmacCtx, HmacSha1Key, sizeof (HmacSha1Key));
if (!Status) {
Print (L"[Fail]");
return EFI_ABORTED;
}
Print (L"Update... ");
Status = HmacSha1Update (HmacCtx, HmacData, 8);
if (!Status) {
Print (L"[Fail]");
return EFI_ABORTED;
}
Print (L"Finalize... ");
Status = HmacSha1Final (HmacCtx, Digest);
if (!Status) {
Print (L"[Fail]");
return EFI_ABORTED;
}
FreePool (HmacCtx);
Print (L"Check Value... ");
if (CompareMem (Digest, HmacSha1Digest, SHA1_DIGEST_SIZE) != 0) {
Print (L"[Fail]");
return EFI_ABORTED;
}
Print (L"[Pass]\n");
return EFI_SUCCESS;
}

View File

@ -0,0 +1,69 @@
/** @file
Application for Pseudorandom Number Generator Validation.
Copyright (c) 2010, Intel Corporation. All rights reserved.<BR>
This program and the accompanying materials
are licensed and made available under the terms and conditions of the BSD License
which accompanies this distribution. The full text of the license may be found at
http://opensource.org/licenses/bsd-license.php
THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS,
WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED.
**/
#include "Cryptest.h"
#define RANDOM_NUMBER_SIZE 256
CONST UINT8 SeedString[] = "This is the random seed for PRNG verification.";
UINT8 PreviousRandomBuffer[RANDOM_NUMBER_SIZE] = { 0x0 };
UINT8 RandomBuffer[RANDOM_NUMBER_SIZE] = { 0x0 };
/**
Validate UEFI-OpenSSL pseudorandom number generator interfaces.
@retval EFI_SUCCESS Validation succeeded.
@retval EFI_ABORTED Validation failed.
**/
EFI_STATUS
ValidateCryptPrng (
VOID
)
{
UINTN Index;
BOOLEAN Status;
Print (L" \nUEFI-OpenSSL PRNG Engine Testing:\n");
Print (L"- Random Generation...");
Status = RandomSeed (SeedString, sizeof (SeedString));
if (!Status) {
Print (L"[Fail]");
return EFI_ABORTED;
}
for (Index = 0; Index < 10; Index ++) {
Status = RandomBytes (RandomBuffer, RANDOM_NUMBER_SIZE);
if (!Status) {
Print (L"[Fail]");
return EFI_ABORTED;
}
if (CompareMem (PreviousRandomBuffer, RandomBuffer, RANDOM_NUMBER_SIZE) == 0) {
Print (L"[Fail]");
return EFI_ABORTED;
}
CopyMem (PreviousRandomBuffer, RandomBuffer, RANDOM_NUMBER_SIZE);
}
Print (L"[Pass]\n");
return EFI_SUCCESS;
}

View File

@ -0,0 +1,406 @@
/** @file
Application for RSA Primitives Validation.
Copyright (c) 2010, Intel Corporation. All rights reserved.<BR>
This program and the accompanying materials
are licensed and made available under the terms and conditions of the BSD License
which accompanies this distribution. The full text of the license may be found at
http://opensource.org/licenses/bsd-license.php
THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS,
WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED.
**/
#include "Cryptest.h"
#define RSA_MODULUS_LENGTH 512
//
// RSA PKCS#1 Validation Data from OpenSSL "Fips_rsa_selftest.c"
//
//
// Public Modulus of RSA Key
//
GLOBAL_REMOVE_IF_UNREFERENCED CONST UINT8 RsaN[] = {
0xBB, 0xF8, 0x2F, 0x09, 0x06, 0x82, 0xCE, 0x9C, 0x23, 0x38, 0xAC, 0x2B, 0x9D, 0xA8, 0x71, 0xF7,
0x36, 0x8D, 0x07, 0xEE, 0xD4, 0x10, 0x43, 0xA4, 0x40, 0xD6, 0xB6, 0xF0, 0x74, 0x54, 0xF5, 0x1F,
0xB8, 0xDF, 0xBA, 0xAF, 0x03, 0x5C, 0x02, 0xAB, 0x61, 0xEA, 0x48, 0xCE, 0xEB, 0x6F, 0xCD, 0x48,
0x76, 0xED, 0x52, 0x0D, 0x60, 0xE1, 0xEC, 0x46, 0x19, 0x71, 0x9D, 0x8A, 0x5B, 0x8B, 0x80, 0x7F,
0xAF, 0xB8, 0xE0, 0xA3, 0xDF, 0xC7, 0x37, 0x72, 0x3E, 0xE6, 0xB4, 0xB7, 0xD9, 0x3A, 0x25, 0x84,
0xEE, 0x6A, 0x64, 0x9D, 0x06, 0x09, 0x53, 0x74, 0x88, 0x34, 0xB2, 0x45, 0x45, 0x98, 0x39, 0x4E,
0xE0, 0xAA, 0xB1, 0x2D, 0x7B, 0x61, 0xA5, 0x1F, 0x52, 0x7A, 0x9A, 0x41, 0xF6, 0xC1, 0x68, 0x7F,
0xE2, 0x53, 0x72, 0x98, 0xCA, 0x2A, 0x8F, 0x59, 0x46, 0xF8, 0xE5, 0xFD, 0x09, 0x1D, 0xBD, 0xCB
};
//
// Public Exponent of RSA Key
//
GLOBAL_REMOVE_IF_UNREFERENCED CONST UINT8 RsaE[] = { 0x11 };
//
// Private Exponent of RSA Key
//
GLOBAL_REMOVE_IF_UNREFERENCED CONST UINT8 RsaD[] = {
0xA5, 0xDA, 0xFC, 0x53, 0x41, 0xFA, 0xF2, 0x89, 0xC4, 0xB9, 0x88, 0xDB, 0x30, 0xC1, 0xCD, 0xF8,
0x3F, 0x31, 0x25, 0x1E, 0x06, 0x68, 0xB4, 0x27, 0x84, 0x81, 0x38, 0x01, 0x57, 0x96, 0x41, 0xB2,
0x94, 0x10, 0xB3, 0xC7, 0x99, 0x8D, 0x6B, 0xC4, 0x65, 0x74, 0x5E, 0x5C, 0x39, 0x26, 0x69, 0xD6,
0x87, 0x0D, 0xA2, 0xC0, 0x82, 0xA9, 0x39, 0xE3, 0x7F, 0xDC, 0xB8, 0x2E, 0xC9, 0x3E, 0xDA, 0xC9,
0x7F, 0xF3, 0xAD, 0x59, 0x50, 0xAC, 0xCF, 0xBC, 0x11, 0x1C, 0x76, 0xF1, 0xA9, 0x52, 0x94, 0x44,
0xE5, 0x6A, 0xAF, 0x68, 0xC5, 0x6C, 0x09, 0x2C, 0xD3, 0x8D, 0xC3, 0xBE, 0xF5, 0xD2, 0x0A, 0x93,
0x99, 0x26, 0xED, 0x4F, 0x74, 0xA1, 0x3E, 0xDD, 0xFB, 0xE1, 0xA1, 0xCE, 0xCC, 0x48, 0x94, 0xAF,
0x94, 0x28, 0xC2, 0xB7, 0xB8, 0x88, 0x3F, 0xE4, 0x46, 0x3A, 0x4B, 0xC8, 0x5B, 0x1C, 0xB3, 0xC1
};
//
// Known Answer Test (KAT) Data for RSA PKCS#1 Signing
//
GLOBAL_REMOVE_IF_UNREFERENCED CONST CHAR8 RsaSignData[] = "OpenSSL FIPS 140-2 Public Key RSA KAT";
//
// Known Signature for the above message, under SHA-1 Digest
//
GLOBAL_REMOVE_IF_UNREFERENCED CONST UINT8 RsaPkcs1Signature[] = {
0x71, 0xEE, 0x1A, 0xC0, 0xFE, 0x01, 0x93, 0x54, 0x79, 0x5C, 0xF2, 0x4C, 0x4A, 0xFD, 0x1A, 0x05,
0x8F, 0x64, 0xB1, 0x6D, 0x61, 0x33, 0x8D, 0x9B, 0xE7, 0xFD, 0x60, 0xA3, 0x83, 0xB5, 0xA3, 0x51,
0x55, 0x77, 0x90, 0xCF, 0xDC, 0x22, 0x37, 0x8E, 0xD0, 0xE1, 0xAE, 0x09, 0xE3, 0x3D, 0x1E, 0xF8,
0x80, 0xD1, 0x8B, 0xC2, 0xEC, 0x0A, 0xD7, 0x6B, 0x88, 0x8B, 0x8B, 0xA1, 0x20, 0x22, 0xBE, 0x59,
0x5B, 0xE0, 0x23, 0x24, 0xA1, 0x49, 0x30, 0xBA, 0xA9, 0x9E, 0xE8, 0xB1, 0x8A, 0x62, 0x16, 0xBF,
0x4E, 0xCA, 0x2E, 0x4E, 0xBC, 0x29, 0xA8, 0x67, 0x13, 0xB7, 0x9F, 0x1D, 0x04, 0x44, 0xE5, 0x5F,
0x35, 0x07, 0x11, 0xBC, 0xED, 0x19, 0x37, 0x21, 0xCF, 0x23, 0x48, 0x1F, 0x72, 0x05, 0xDE, 0xE6,
0xE8, 0x7F, 0x33, 0x8A, 0x76, 0x4B, 0x2F, 0x95, 0xDF, 0xF1, 0x5F, 0x84, 0x80, 0xD9, 0x46, 0xB4
};
//
// Default public key 0x10001 = 65537
//
GLOBAL_REMOVE_IF_UNREFERENCED CONST UINT8 DefaultPublicKey[] = {
0x01, 0x00, 0x01
};
/**
Validate UEFI-OpenSSL RSA Interfaces.
@retval EFI_SUCCESS Validation succeeded.
@retval EFI_ABORTED Validation failed.
**/
EFI_STATUS
ValidateCryptRsa (
VOID
)
{
VOID *Rsa;
UINT8 HashValue[SHA1_DIGEST_SIZE];
UINTN HashSize;
UINTN CtxSize;
VOID *Sha1Ctx;
UINT8 *Signature;
UINTN SigSize;
BOOLEAN Status;
UINTN KeySize;
UINT8 *KeyBuffer;
Print (L"\nUEFI-OpenSSL RSA Engine Testing: ");
//
// Generate & Initialize RSA Context
//
Rsa = RsaNew ();
Print (L"\n- Generate RSA Context ... ");
if (Rsa == NULL) {
Print (L"[Fail]");
return EFI_ABORTED;
}
//
// Set/Get RSA Key Components
//
Print (L"Set/Get RSA Key Components ... ");
//
// Set/Get RSA Key N
//
Status = RsaSetKey (Rsa, RsaKeyN, RsaN, sizeof (RsaN));
if (!Status) {
Print (L"[Fail]");
return EFI_ABORTED;
}
KeySize = 0;
Status = RsaGetKey (Rsa, RsaKeyN, NULL, &KeySize);
if (Status || KeySize != sizeof (RsaN)) {
Print (L"[Fail]");
return EFI_ABORTED;
}
KeyBuffer = AllocatePool (KeySize);
Status = RsaGetKey (Rsa, RsaKeyN, KeyBuffer, &KeySize);
if (!Status || KeySize != sizeof (RsaN)) {
Print (L"[Fail]");
return EFI_ABORTED;
}
if (CompareMem (KeyBuffer, RsaN, KeySize) != 0) {
Print (L"[Fail]");
return EFI_ABORTED;
}
FreePool (KeyBuffer);
//
// Set/Get RSA Key E
//
Status = RsaSetKey (Rsa, RsaKeyE, RsaE, sizeof (RsaE));
if (!Status) {
Print (L"[Fail]");
return EFI_ABORTED;
}
KeySize = 0;
Status = RsaGetKey (Rsa, RsaKeyE, NULL, &KeySize);
if (Status || KeySize != sizeof (RsaE)) {
Print (L"[Fail]");
return EFI_ABORTED;
}
KeyBuffer = AllocatePool (KeySize);
Status = RsaGetKey (Rsa, RsaKeyE, KeyBuffer, &KeySize);
if (!Status || KeySize != sizeof (RsaE)) {
Print (L"[Fail]");
return EFI_ABORTED;
}
if (CompareMem (KeyBuffer, RsaE, KeySize) != 0) {
Print (L"[Fail]");
return EFI_ABORTED;
}
FreePool (KeyBuffer);
//
// Clear/Get RSA Key Components
//
Print (L"Clear/Get RSA Key Components ... ");
//
// Clear/Get RSA Key N
//
Status = RsaSetKey (Rsa, RsaKeyN, NULL, 0);
if (!Status) {
Print (L"[Fail]");
return EFI_ABORTED;
}
KeySize = 1;
Status = RsaGetKey (Rsa, RsaKeyN, NULL, &KeySize);
if (!Status || KeySize != 0) {
Print (L"[Fail]");
return EFI_ABORTED;
}
//
// Clear/Get RSA Key E
//
Status = RsaSetKey (Rsa, RsaKeyE, NULL, 0);
if (!Status) {
Print (L"[Fail]");
return EFI_ABORTED;
}
KeySize = 1;
Status = RsaGetKey (Rsa, RsaKeyE, NULL, &KeySize);
if (!Status || KeySize != 0) {
Print (L"[Fail]");
return EFI_ABORTED;
}
//
// Generate RSA Key Components
//
Print (L"Generate RSA Key Components ... ");
Status = RsaGenerateKey (Rsa, RSA_MODULUS_LENGTH, NULL, 0);
if (!Status) {
Print (L"[Fail]");
return EFI_ABORTED;
}
KeySize = RSA_MODULUS_LENGTH / 8;
KeyBuffer = AllocatePool (KeySize);
Status = RsaGetKey (Rsa, RsaKeyE, KeyBuffer, &KeySize);
if (!Status) {
Print (L"[Fail]");
return EFI_ABORTED;
}
if (KeySize != 3 ||
CompareMem (KeyBuffer, DefaultPublicKey, 3) != 0) {
Print (L"[Fail]");
return EFI_ABORTED;
}
KeySize = RSA_MODULUS_LENGTH / 8;
Status = RsaGetKey (Rsa, RsaKeyN, KeyBuffer, &KeySize);
if (!Status) {
Print (L"[Fail]");
return EFI_ABORTED;
}
if (KeySize != RSA_MODULUS_LENGTH / 8) {
Print (L"[Fail]");
return EFI_ABORTED;
}
if (!RsaCheckKey (Rsa)) {
Print (L"[Fail]");
return EFI_ABORTED;
}
//
// Check invalid RSA key components
//
Print (L"Check Invalid RSA Key Components ... ");
Status = RsaSetKey (Rsa, RsaKeyN, RsaN, sizeof (RsaN));
if (!Status) {
Print (L"[Fail]");
return EFI_ABORTED;
}
if (RsaCheckKey (Rsa)) {
Print (L"[Fail]");
return EFI_ABORTED;
}
Status = RsaSetKey (Rsa, RsaKeyN, KeyBuffer, KeySize);
if (!Status) {
Print (L"[Fail]");
return EFI_ABORTED;
}
if (!RsaCheckKey (Rsa)) {
Print (L"[Fail]");
return EFI_ABORTED;
}
Status = RsaSetKey (Rsa, RsaKeyE, RsaE, sizeof (RsaE));
if (!Status) {
Print (L"[Fail]");
return EFI_ABORTED;
}
if (RsaCheckKey (Rsa)) {
Print (L"[Fail]");
return EFI_ABORTED;
}
FreePool (KeyBuffer);
//
// SHA-1 Digest Message for PKCS#1 Signature
//
Print (L"Hash Original Message ... ");
HashSize = SHA1_DIGEST_SIZE;
ZeroMem (HashValue, HashSize);
CtxSize = Sha1GetContextSize ();
Sha1Ctx = AllocatePool (CtxSize);
Status = Sha1Init (Sha1Ctx);
if (!Status) {
Print (L"[Fail]");
return EFI_ABORTED;
}
Status = Sha1Update (Sha1Ctx, RsaSignData, AsciiStrLen (RsaSignData));
if (!Status) {
Print (L"[Fail]");
return EFI_ABORTED;
}
Status = Sha1Final (Sha1Ctx, HashValue);
if (!Status) {
Print (L"[Fail]");
return EFI_ABORTED;
}
FreePool (Sha1Ctx);
//
// Sign RSA PKCS#1-encoded Signature
//
Print (L"PKCS#1 Signature ... ");
RsaFree (Rsa);
Rsa = RsaNew ();
if (Rsa == NULL) {
Print (L"[Fail]");
return EFI_ABORTED;
}
Status = RsaSetKey (Rsa, RsaKeyN, RsaN, sizeof (RsaN));
if (!Status) {
Print (L"[Fail]");
return EFI_ABORTED;
}
Status = RsaSetKey (Rsa, RsaKeyE, RsaE, sizeof (RsaE));
if (!Status) {
Print (L"[Fail]");
return EFI_ABORTED;
}
Status = RsaSetKey (Rsa, RsaKeyD, RsaD, sizeof (RsaD));
if (!Status) {
Print (L"[Fail]");
return EFI_ABORTED;
}
SigSize = 0;
Status = RsaPkcs1Sign (Rsa, HashValue, HashSize, NULL, &SigSize);
if (Status || SigSize == 0) {
Print (L"[Fail]");
return EFI_ABORTED;
}
Signature = AllocatePool (SigSize);
Status = RsaPkcs1Sign (Rsa, HashValue, HashSize, Signature, &SigSize);
if (!Status) {
Print (L"[Fail]");
return EFI_ABORTED;
}
if (SigSize != sizeof (RsaPkcs1Signature)) {
Print (L"[Fail]");
return EFI_ABORTED;
}
if (CompareMem (Signature, RsaPkcs1Signature, SigSize) != 0) {
Print (L"[Fail]");
return EFI_ABORTED;
}
//
// Verify RSA PKCS#1-encoded Signature
//
Print (L"PKCS#1 Signature Verification ... ");
Status = RsaPkcs1Verify (Rsa, HashValue, HashSize, Signature, SigSize);
if (!Status) {
Print (L"[Fail]");
return EFI_ABORTED;
}
//
// Release Resources
//
RsaFree (Rsa);
Print (L"Release RSA Context ... [Pass]");
Print (L"\n");
return EFI_SUCCESS;
}

View File

@ -74,23 +74,13 @@
#
################################################################################
[PcdsFeatureFlag]
gEfiMdePkgTokenSpaceGuid.PcdComponentNameDisable|FALSE
gEfiMdePkgTokenSpaceGuid.PcdDriverDiagnosticsDisable|FALSE
gEfiMdePkgTokenSpaceGuid.PcdComponentName2Disable|TRUE
gEfiMdePkgTokenSpaceGuid.PcdDriverDiagnostics2Disable|TRUE
[PcdsFixedAtBuild]
gEfiMdePkgTokenSpaceGuid.PcdMaximumUnicodeStringLength|1000000
gEfiMdePkgTokenSpaceGuid.PcdMaximumAsciiStringLength|1000000
gEfiMdePkgTokenSpaceGuid.PcdMaximumLinkedListLength|1000000
gEfiMdePkgTokenSpaceGuid.PcdDebugPropertyMask|0x0f
gEfiMdePkgTokenSpaceGuid.PcdDebugPrintErrorLevel|0x80000000
gEfiMdePkgTokenSpaceGuid.PcdReportStatusCodePropertyMask|0x06
gEfiMdePkgTokenSpaceGuid.PcdDebugClearMemoryValue|0xAF
gEfiMdePkgTokenSpaceGuid.PcdPerformanceLibraryPropertyMask|0
gEfiMdePkgTokenSpaceGuid.PcdPostCodePropertyMask|0
gEfiMdePkgTokenSpaceGuid.PcdUefiLibMaxPrintBufferSize|320
###################################################################################################
#
@ -119,5 +109,8 @@
CryptoPkg/CryptRuntimeDxe/CryptRuntimeDxe.inf
[Components.IA32, Components.X64]
CryptoPkg/Library/BaseCryptLib/SmmCryptLib.inf
[Components.IPF]
CryptoPkg/Library/BaseCryptLibRuntimeCryptProtocol/BaseCryptLibRuntimeCryptProtocol.inf

File diff suppressed because it is too large Load Diff

View File

@ -27,11 +27,19 @@
#
[Sources]
InternalCryptLib.h
Hash/CryptMd5.c
Hash/CryptSha1.c
Hash/CryptSha256.c
Hmac/CryptHmacMd5.c
Hmac/CryptHmacSha1.c
Cipher/CryptAes.c
Cipher/CryptTdes.c
Cipher/CryptArc4.c
Rand/CryptRand.c
Pk/CryptRsa.c
Pk/CryptPkcs7.c
Pk/CryptDh.c
SysCall/CrtWrapper.c
SysCall/TimerWrapper.c
@ -58,8 +66,6 @@
SysCall/Ia32/MathLShiftS64.S | GCC
SysCall/Ia32/MathRShiftU64.S | GCC
SysCall/Ia32/Alloca.S | GCC
[Packages]
MdePkg/MdePkg.dec
CryptoPkg/CryptoPkg.dec

View File

@ -0,0 +1,309 @@
/** @file
AES Wrapper Implementation over OpenSSL.
Copyright (c) 2010, Intel Corporation. All rights reserved.<BR>
This program and the accompanying materials
are licensed and made available under the terms and conditions of the BSD License
which accompanies this distribution. The full text of the license may be found at
http://opensource.org/licenses/bsd-license.php
THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS,
WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED.
**/
#include "InternalCryptLib.h"
#include <openssl/aes.h>
/**
Retrieves the size, in bytes, of the context buffer required for AES operations.
@return The size, in bytes, of the context buffer required for AES operations.
**/
UINTN
EFIAPI
AesGetContextSize (
VOID
)
{
//
// AES uses different key contexts for encryption and decryption, so here memory
// for 2 copies of AES_KEY is allocated.
//
return (UINTN) (2 * sizeof (AES_KEY));
}
/**
Initializes user-supplied memory as AES context for subsequent use.
This function initializes user-supplied memory pointed by AesContext as AES context.
In addtion, it sets up all AES key materials for subsequent encryption and decryption
operations.
There are 3 options for key length, 128 bits, 192 bits, and 256 bits.
If AesContext is NULL, then ASSERT().
If Key is NULL, then ASSERT().
If KeyLength is not valid, then ASSERT().
@param[out] AesContext Pointer to AES context being initialized.
@param[in] Key Pointer to the user-supplied AES key.
@param[in] KeyLength Length of AES key in bits.
@retval TRUE AES context initialization succeeded.
@retval FALSE AES context initialization failed.
**/
BOOLEAN
EFIAPI
AesInit (
OUT VOID *AesContext,
IN CONST UINT8 *Key,
IN UINTN KeyLength
)
{
AES_KEY *AesKey;
ASSERT (AesContext != NULL);
//
// AES Key Checking
//
ASSERT (Key != NULL);
ASSERT ((KeyLength == 128) || (KeyLength == 192) || (KeyLength == 256));
//
// Initialize AES encryption & decryption key schedule.
//
AesKey = (AES_KEY *) AesContext;
if (AES_set_encrypt_key (Key, (UINT32) KeyLength, AesKey) != 0) {
return FALSE;
}
if (AES_set_decrypt_key (Key, (UINT32) KeyLength, AesKey + 1) != 0) {
return FALSE;
}
return TRUE;
}
/**
Performs AES encryption on a data buffer of the specified size in ECB mode.
This function performs AES encryption on data buffer pointed by Input, of specified
size of InputSize, in ECB mode.
InputSize must be multiple of block size (16 bytes). This function does not perform
padding. Caller must perform padding, if necessary, to ensure valid input data size.
AesContext should be already correctly initialized by AesInit(). Behavior with
invalid AES context is undefined.
If AesContext is NULL, then ASSERT().
If Input is NULL, then ASSERT().
If InputSize is not multiple of block size (16 bytes), then ASSERT().
If Output is NULL, then ASSERT().
@param[in] AesContext Pointer to the AES context.
@param[in] Input Pointer to the buffer containing the data to be encrypted.
@param[in] InputSize Size of the Input buffer in bytes.
@param[out] Output Pointer to a buffer that receives the AES encryption output.
@retval TRUE AES encryption succeeded.
@retval FALSE AES encryption failed.
**/
BOOLEAN
EFIAPI
AesEcbEncrypt (
IN VOID *AesContext,
IN CONST UINT8 *Input,
IN UINTN InputSize,
OUT UINT8 *Output
)
{
AES_KEY *AesKey;
ASSERT (AesContext != NULL);
ASSERT (Input != NULL);
ASSERT ((InputSize % AES_BLOCK_SIZE) == 0);
ASSERT (Output != NULL);
AesKey = (AES_KEY *) AesContext;
//
// Perform AES data encryption with ECB mode (block-by-block)
//
while (InputSize > 0) {
AES_ecb_encrypt (Input, Output, AesKey, AES_ENCRYPT);
Input += AES_BLOCK_SIZE;
Output += AES_BLOCK_SIZE;
InputSize -= AES_BLOCK_SIZE;
}
return TRUE;
}
/**
Performs AES decryption on a data buffer of the specified size in ECB mode.
This function performs AES decryption on data buffer pointed by Input, of specified
size of InputSize, in ECB mode.
InputSize must be multiple of block size (16 bytes). This function does not perform
padding. Caller must perform padding, if necessary, to ensure valid input data size.
AesContext should be already correctly initialized by AesInit(). Behavior with
invalid AES context is undefined.
If AesContext is NULL, then ASSERT().
If Input is NULL, then ASSERT().
If InputSize is not multiple of block size (16 bytes), then ASSERT().
If Output is NULL, then ASSERT().
@param[in] AesContext Pointer to the AES context.
@param[in] Input Pointer to the buffer containing the data to be decrypted.
@param[in] InputSize Size of the Input buffer in bytes.
@param[out] Output Pointer to a buffer that receives the AES decryption output.
@retval TRUE AES decryption succeeded.
@retval FALSE AES decryption failed.
**/
BOOLEAN
EFIAPI
AesEcbDecrypt (
IN VOID *AesContext,
IN CONST UINT8 *Input,
IN UINTN InputSize,
OUT UINT8 *Output
)
{
AES_KEY *AesKey;
ASSERT (AesContext != NULL);
ASSERT (Input != NULL);
ASSERT ((InputSize % AES_BLOCK_SIZE) == 0);
ASSERT (Output != NULL);
AesKey = (AES_KEY *) AesContext;
//
// Perform AES data decryption with ECB mode (block-by-block)
//
while (InputSize > 0) {
AES_ecb_encrypt (Input, Output, AesKey + 1, AES_DECRYPT);
Input += AES_BLOCK_SIZE;
Output += AES_BLOCK_SIZE;
InputSize -= AES_BLOCK_SIZE;
}
return TRUE;
}
/**
Performs AES encryption on a data buffer of the specified size in CBC mode.
This function performs AES encryption on data buffer pointed by Input, of specified
size of InputSize, in CBC mode.
InputSize must be multiple of block size (16 bytes). This function does not perform
padding. Caller must perform padding, if necessary, to ensure valid input data size.
Initialization vector should be one block size (16 bytes).
AesContext should be already correctly initialized by AesInit(). Behavior with
invalid AES context is undefined.
If AesContext is NULL, then ASSERT().
If Input is NULL, then ASSERT().
If InputSize is not multiple of block size (16 bytes), then ASSERT().
If Ivec is NULL, then ASSERT().
If Output is NULL, then ASSERT().
@param[in] AesContext Pointer to the AES context.
@param[in] Input Pointer to the buffer containing the data to be encrypted.
@param[in] InputSize Size of the Input buffer in bytes.
@param[in] Ivec Pointer to initialization vector.
@param[out] Output Pointer to a buffer that receives the AES encryption output.
@retval TRUE AES encryption succeeded.
@retval FALSE AES encryption failed.
**/
BOOLEAN
EFIAPI
AesCbcEncrypt (
IN VOID *AesContext,
IN CONST UINT8 *Input,
IN UINTN InputSize,
IN CONST UINT8 *Ivec,
OUT UINT8 *Output
)
{
AES_KEY *AesKey;
UINT8 IvecBuffer[AES_BLOCK_SIZE];
ASSERT (AesContext != NULL);
ASSERT (Input != NULL);
ASSERT ((InputSize % AES_BLOCK_SIZE) == 0);
ASSERT (Ivec != NULL);
ASSERT (Output != NULL);
AesKey = (AES_KEY *) AesContext;
CopyMem (IvecBuffer, Ivec, AES_BLOCK_SIZE);
//
// Perform AES data encryption with CBC mode
//
AES_cbc_encrypt (Input, Output, (UINT32) InputSize, AesKey, IvecBuffer, AES_ENCRYPT);
return TRUE;
}
/**
Performs AES decryption on a data buffer of the specified size in CBC mode.
This function performs AES decryption on data buffer pointed by Input, of specified
size of InputSize, in CBC mode.
InputSize must be multiple of block size (16 bytes). This function does not perform
padding. Caller must perform padding, if necessary, to ensure valid input data size.
Initialization vector should be one block size (16 bytes).
AesContext should be already correctly initialized by AesInit(). Behavior with
invalid AES context is undefined.
If AesContext is NULL, then ASSERT().
If Input is NULL, then ASSERT().
If InputSize is not multiple of block size (16 bytes), then ASSERT().
If Ivec is NULL, then ASSERT().
If Output is NULL, then ASSERT().
@param[in] AesContext Pointer to the AES context.
@param[in] Input Pointer to the buffer containing the data to be encrypted.
@param[in] InputSize Size of the Input buffer in bytes.
@param[in] Ivec Pointer to initialization vector.
@param[out] Output Pointer to a buffer that receives the AES encryption output.
@retval TRUE AES decryption succeeded.
@retval FALSE AES decryption failed.
**/
BOOLEAN
EFIAPI
AesCbcDecrypt (
IN VOID *AesContext,
IN CONST UINT8 *Input,
IN UINTN InputSize,
IN CONST UINT8 *Ivec,
OUT UINT8 *Output
)
{
AES_KEY *AesKey;
UINT8 IvecBuffer[AES_BLOCK_SIZE];
ASSERT (AesContext != NULL);
ASSERT (Input != NULL);
ASSERT ((InputSize % AES_BLOCK_SIZE) == 0);
ASSERT (Ivec != NULL);
ASSERT (Output != NULL);
AesKey = (AES_KEY *) AesContext;
CopyMem (IvecBuffer, Ivec, AES_BLOCK_SIZE);
//
// Perform AES data decryption with CBC mode
//
AES_cbc_encrypt (Input, Output, (UINT32) InputSize, AesKey + 1, IvecBuffer, AES_DECRYPT);
return TRUE;
}

View File

@ -0,0 +1,197 @@
/** @file
ARC4 Wrapper Implementation over OpenSSL.
Copyright (c) 2010, Intel Corporation. All rights reserved.<BR>
This program and the accompanying materials
are licensed and made available under the terms and conditions of the BSD License
which accompanies this distribution. The full text of the license may be found at
http://opensource.org/licenses/bsd-license.php
THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS,
WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED.
**/
#include "InternalCryptLib.h"
#include <openssl/rc4.h>
/**
Retrieves the size, in bytes, of the context buffer required for ARC4 operations.
@return The size, in bytes, of the context buffer required for ARC4 operations.
**/
UINTN
EFIAPI
Arc4GetContextSize (
VOID
)
{
//
// Memory for 2 copies of RC4_KEY is allocated, one for working copy, and the other
// for backup copy. When Arc4Reset() is called, we can use the backup copy to restore
// the working copy to the initial state.
//
return (UINTN) (2 * sizeof(RC4_KEY));
}
/**
Initializes user-supplied memory as ARC4 context for subsequent use.
This function initializes user-supplied memory pointed by Arc4Context as ARC4 context.
In addtion, it sets up all ARC4 key materials for subsequent encryption and decryption
operations.
If Arc4Context is NULL, then ASSERT().
If Key is NULL, then ASSERT().
If KeySize does not in the range of [5, 256] bytes, then ASSERT().
@param[out] Arc4Context Pointer to ARC4 context being initialized.
@param[in] Key Pointer to the user-supplied ARC4 key.
@param[in] KeySize Size of ARC4 key in bytes.
@retval TRUE ARC4 context initialization succeeded.
@retval FALSE ARC4 context initialization failed.
**/
BOOLEAN
EFIAPI
Arc4Init (
OUT VOID *Arc4Context,
IN CONST UINT8 *Key,
IN UINTN KeySize
)
{
RC4_KEY *Rc4Key;
ASSERT (Arc4Context != NULL);
ASSERT (Key != NULL);
ASSERT ((KeySize >= 5) && (KeySize <= 256));
Rc4Key = (RC4_KEY *) Arc4Context;
RC4_set_key (Rc4Key, (UINT32) KeySize, Key);
CopyMem (Rc4Key + 1, Rc4Key, sizeof(RC4_KEY));
return TRUE;
}
/**
Performs ARC4 encryption on a data buffer of the specified size.
This function performs ARC4 encryption on data buffer pointed by Input, of specified
size of InputSize.
Arc4Context should be already correctly initialized by Arc4Init(). Behavior with
invalid ARC4 context is undefined.
If Arc4Context is NULL, then ASSERT().
If Input is NULL, then ASSERT().
If Output is NULL, then ASSERT().
@param[in, out] Arc4Context Pointer to the ARC4 context.
@param[in] Input Pointer to the buffer containing the data to be encrypted.
@param[in] InputSize Size of the Input buffer in bytes.
@param[out] Output Pointer to a buffer that receives the ARC4 encryption output.
@retval TRUE ARC4 encryption succeeded.
@retval FALSE ARC4 encryption failed.
**/
BOOLEAN
EFIAPI
Arc4Encrypt (
IN OUT VOID *Arc4Context,
IN CONST UINT8 *Input,
IN UINTN InputSize,
OUT UINT8 *Output
)
{
RC4_KEY *Rc4Key;
ASSERT (Arc4Context != NULL);
ASSERT (Input != NULL);
ASSERT (Output != NULL);
Rc4Key = (RC4_KEY *) Arc4Context;
RC4 (Rc4Key, (UINT32) InputSize, Input, Output);
return TRUE;
}
/**
Performs ARC4 decryption on a data buffer of the specified size.
This function performs ARC4 decryption on data buffer pointed by Input, of specified
size of InputSize.
Arc4Context should be already correctly initialized by Arc4Init(). Behavior with
invalid ARC4 context is undefined.
If Arc4Context is NULL, then ASSERT().
If Input is NULL, then ASSERT().
If Output is NULL, then ASSERT().
@param[in, out] Arc4Context Pointer to the ARC4 context.
@param[in] Input Pointer to the buffer containing the data to be decrypted.
@param[in] InputSize Size of the Input buffer in bytes.
@param[out] Output Pointer to a buffer that receives the ARC4 decryption output.
@retval TRUE ARC4 decryption succeeded.
@retval FALSE ARC4 decryption failed.
**/
BOOLEAN
EFIAPI
Arc4Decrypt (
IN OUT VOID *Arc4Context,
IN UINT8 *Input,
IN UINTN InputSize,
OUT UINT8 *Output
)
{
RC4_KEY *Rc4Key;
ASSERT (Arc4Context != NULL);
ASSERT (Input != NULL);
ASSERT (Output != NULL);
Rc4Key = (RC4_KEY *) Arc4Context;
RC4 (Rc4Key, (UINT32) InputSize, Input, Output);
return TRUE;
}
/**
Resets the ARC4 context to the initial state.
The function resets the ARC4 context to the state it had immediately after the
ARC4Init() function call.
Contrary to ARC4Init(), Arc4Reset() requires no secret key as input, but ARC4 context
should be already correctly initialized by ARC4Init().
If Arc4Context is NULL, then ASSERT().
@param[in, out] Arc4Context Pointer to the ARC4 context.
@retval TRUE ARC4 reset succeeded.
@retval FALSE ARC4 reset failed.
**/
BOOLEAN
EFIAPI
Arc4Reset (
IN OUT VOID *Arc4Context
)
{
RC4_KEY *Rc4Key;
ASSERT (Arc4Context != NULL);
Rc4Key = (RC4_KEY *) Arc4Context;
CopyMem (Rc4Key, Rc4Key + 1, sizeof(RC4_KEY));
return TRUE;
}

View File

@ -0,0 +1,353 @@
/** @file
TDES Wrapper Implementation over OpenSSL.
Copyright (c) 2010, Intel Corporation. All rights reserved.<BR>
This program and the accompanying materials
are licensed and made available under the terms and conditions of the BSD License
which accompanies this distribution. The full text of the license may be found at
http://opensource.org/licenses/bsd-license.php
THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS,
WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED.
**/
#include "InternalCryptLib.h"
#include <openssl/des.h>
/**
Retrieves the size, in bytes, of the context buffer required for TDES operations.
@return The size, in bytes, of the context buffer required for TDES operations.
**/
UINTN
EFIAPI
TdesGetContextSize (
VOID
)
{
//
// Memory for 3 copies of DES_key_schedule is allocated, for K1, K2 and K3 each.
//
return (UINTN) (3 * sizeof (DES_key_schedule));
}
/**
Initializes user-supplied memory as TDES context for subsequent use.
This function initializes user-supplied memory pointed by TdesContext as TDES context.
In addtion, it sets up all TDES key materials for subsequent encryption and decryption
operations.
There are 3 key options as follows:
KeyLength = 64, Keying option 1: K1 == K2 == K3 (Backward compatibility with DES)
KeyLength = 128, Keying option 2: K1 != K2 and K3 = K1 (Less Security)
KeyLength = 192 Keying option 3: K1 != K2 != K3 (Strongest)
If TdesContext is NULL, then ASSERT().
If Key is NULL, then ASSERT().
If KeyLength is not valid, then ASSERT().
@param[out] TdesContext Pointer to TDES context being initialized.
@param[in] Key Pointer to the user-supplied TDES key.
@param[in] KeyLength Length of TDES key in bits.
@retval TRUE TDES context initialization succeeded.
@retval FALSE TDES context initialization failed.
**/
BOOLEAN
EFIAPI
TdesInit (
OUT VOID *TdesContext,
IN CONST UINT8 *Key,
IN UINTN KeyLength
)
{
DES_key_schedule *KeySchedule;
ASSERT (TdesContext != NULL);
ASSERT (Key != NULL);
ASSERT ((KeyLength == 64) || (KeyLength == 128) || (KeyLength == 192));
KeySchedule = (DES_key_schedule *) TdesContext;
//
//
//
if (DES_is_weak_key ((const_DES_cblock *) Key)) {
return FALSE;
}
DES_set_key_unchecked ((const_DES_cblock *) Key, KeySchedule);
if (KeyLength == 64) {
CopyMem (KeySchedule + 1, KeySchedule, sizeof (DES_key_schedule));
CopyMem (KeySchedule + 2, KeySchedule, sizeof (DES_key_schedule));
return TRUE;
}
if (DES_is_weak_key ((const_DES_cblock *) Key + 8)) {
return FALSE;
}
DES_set_key_unchecked ((const_DES_cblock *) (Key + 8), KeySchedule + 1);
if (KeyLength == 128) {
CopyMem (KeySchedule + 2, KeySchedule, sizeof (DES_key_schedule));
return TRUE;
}
if (DES_is_weak_key ((const_DES_cblock *) Key + 16)) {
return FALSE;
}
DES_set_key_unchecked ((const_DES_cblock *) (Key + 16), KeySchedule + 2);
return TRUE;
}
/**
Performs TDES encryption on a data buffer of the specified size in ECB mode.
This function performs TDES encryption on data buffer pointed by Input, of specified
size of InputSize, in ECB mode.
InputSize must be multiple of block size (8 bytes). This function does not perform
padding. Caller must perform padding, if necessary, to ensure valid input data size.
TdesContext should be already correctly initialized by TdesInit(). Behavior with
invalid TDES context is undefined.
If TdesContext is NULL, then ASSERT().
If Input is NULL, then ASSERT().
If InputSize is not multiple of block size (8 bytes), then ASSERT().
If Output is NULL, then ASSERT().
@param[in] TdesContext Pointer to the TDES context.
@param[in] Input Pointer to the buffer containing the data to be encrypted.
@param[in] InputSize Size of the Input buffer in bytes.
@param[out] Output Pointer to a buffer that receives the TDES encryption output.
@retval TRUE TDES encryption succeeded.
@retval FALSE TDES encryption failed.
**/
BOOLEAN
EFIAPI
TdesEcbEncrypt (
IN VOID *TdesContext,
IN CONST UINT8 *Input,
IN UINTN InputSize,
OUT UINT8 *Output
)
{
DES_key_schedule *KeySchedule;
ASSERT (TdesContext != NULL);
ASSERT (Input != NULL);
ASSERT ((InputSize % TDES_BLOCK_SIZE) == 0);
ASSERT (Output != NULL);
KeySchedule = (DES_key_schedule *) TdesContext;
while (InputSize > 0) {
DES_ecb3_encrypt (
(const_DES_cblock *) Input,
(DES_cblock *) Output,
KeySchedule,
KeySchedule + 1,
KeySchedule + 2,
DES_ENCRYPT
);
Input += TDES_BLOCK_SIZE;
Output += TDES_BLOCK_SIZE;
InputSize -= TDES_BLOCK_SIZE;
}
return TRUE;
}
/**
Performs TDES decryption on a data buffer of the specified size in ECB mode.
This function performs TDES decryption on data buffer pointed by Input, of specified
size of InputSize, in ECB mode.
InputSize must be multiple of block size (8 bytes). This function does not perform
padding. Caller must perform padding, if necessary, to ensure valid input data size.
TdesContext should be already correctly initialized by TdesInit(). Behavior with
invalid TDES context is undefined.
If TdesContext is NULL, then ASSERT().
If Input is NULL, then ASSERT().
If InputSize is not multiple of block size (8 bytes), then ASSERT().
If Output is NULL, then ASSERT().
@param[in] TdesContext Pointer to the TDES context.
@param[in] Input Pointer to the buffer containing the data to be decrypted.
@param[in] InputSize Size of the Input buffer in bytes.
@param[out] Output Pointer to a buffer that receives the TDES decryption output.
@retval TRUE TDES decryption succeeded.
@retval FALSE TDES decryption failed.
**/
BOOLEAN
EFIAPI
TdesEcbDecrypt (
IN VOID *TdesContext,
IN CONST UINT8 *Input,
IN UINTN InputSize,
OUT UINT8 *Output
)
{
DES_key_schedule *KeySchedule;
ASSERT (TdesContext != NULL);
ASSERT (Input != NULL);
ASSERT ((InputSize % TDES_BLOCK_SIZE) == 0);
ASSERT (Output != NULL);
KeySchedule = (DES_key_schedule *) TdesContext;
while (InputSize > 0) {
DES_ecb3_encrypt (
(const_DES_cblock *) Input,
(DES_cblock *) Output,
KeySchedule,
KeySchedule + 1,
KeySchedule + 2,
DES_DECRYPT
);
Input += TDES_BLOCK_SIZE;
Output += TDES_BLOCK_SIZE;
InputSize -= TDES_BLOCK_SIZE;
}
return TRUE;
}
/**
Performs TDES encryption on a data buffer of the specified size in CBC mode.
This function performs TDES encryption on data buffer pointed by Input, of specified
size of InputSize, in CBC mode.
InputSize must be multiple of block size (8 bytes). This function does not perform
padding. Caller must perform padding, if necessary, to ensure valid input data size.
Initialization vector should be one block size (8 bytes).
TdesContext should be already correctly initialized by TdesInit(). Behavior with
invalid TDES context is undefined.
If TdesContext is NULL, then ASSERT().
If Input is NULL, then ASSERT().
If InputSize is not multiple of block size (8 bytes), then ASSERT().
If Ivec is NULL, then ASSERT().
If Output is NULL, then ASSERT().
@param[in] TdesContext Pointer to the TDES context.
@param[in] Input Pointer to the buffer containing the data to be encrypted.
@param[in] InputSize Size of the Input buffer in bytes.
@param[in] Ivec Pointer to initialization vector.
@param[out] Output Pointer to a buffer that receives the TDES encryption output.
@retval TRUE TDES encryption succeeded.
@retval FALSE TDES encryption failed.
**/
BOOLEAN
EFIAPI
TdesCbcEncrypt (
IN VOID *TdesContext,
IN CONST UINT8 *Input,
IN UINTN InputSize,
IN CONST UINT8 *Ivec,
OUT UINT8 *Output
)
{
DES_key_schedule *KeySchedule;
UINT8 IvecBuffer[TDES_BLOCK_SIZE];
ASSERT (TdesContext != NULL);
ASSERT (Input != NULL);
ASSERT ((InputSize % TDES_BLOCK_SIZE) == 0);
ASSERT (Ivec != NULL);
ASSERT (Output != NULL);
KeySchedule = (DES_key_schedule *) TdesContext;
CopyMem (IvecBuffer, Ivec, TDES_BLOCK_SIZE);
DES_ede3_cbc_encrypt (
Input,
Output,
(UINT32) InputSize,
KeySchedule,
KeySchedule + 1,
KeySchedule + 2,
(DES_cblock *) IvecBuffer,
DES_ENCRYPT
);
return TRUE;
}
/**
Performs TDES decryption on a data buffer of the specified size in CBC mode.
This function performs TDES decryption on data buffer pointed by Input, of specified
size of InputSize, in CBC mode.
InputSize must be multiple of block size (8 bytes). This function does not perform
padding. Caller must perform padding, if necessary, to ensure valid input data size.
Initialization vector should be one block size (8 bytes).
TdesContext should be already correctly initialized by TdesInit(). Behavior with
invalid TDES context is undefined.
If TdesContext is NULL, then ASSERT().
If Input is NULL, then ASSERT().
If InputSize is not multiple of block size (8 bytes), then ASSERT().
If Ivec is NULL, then ASSERT().
If Output is NULL, then ASSERT().
@param[in] TdesContext Pointer to the TDES context.
@param[in] Input Pointer to the buffer containing the data to be encrypted.
@param[in] InputSize Size of the Input buffer in bytes.
@param[in] Ivec Pointer to initialization vector.
@param[out] Output Pointer to a buffer that receives the TDES encryption output.
@retval TRUE TDES decryption succeeded.
@retval FALSE TDES decryption failed.
**/
BOOLEAN
EFIAPI
TdesCbcDecrypt (
IN VOID *TdesContext,
IN CONST UINT8 *Input,
IN UINTN InputSize,
IN CONST UINT8 *Ivec,
OUT UINT8 *Output
)
{
DES_key_schedule *KeySchedule;
UINT8 IvecBuffer[TDES_BLOCK_SIZE];
ASSERT (TdesContext != NULL);
ASSERT (Input != NULL);
ASSERT ((InputSize % TDES_BLOCK_SIZE) == 0);
ASSERT (Ivec != NULL);
ASSERT (Output != NULL);
KeySchedule = (DES_key_schedule *) TdesContext;
CopyMem (IvecBuffer, Ivec, TDES_BLOCK_SIZE);
DES_ede3_cbc_encrypt (
Input,
Output,
(UINT32) InputSize,
KeySchedule,
KeySchedule + 1,
KeySchedule + 2,
(DES_cblock *) IvecBuffer,
DES_DECRYPT
);
return TRUE;
}

View File

@ -12,10 +12,7 @@ WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED.
**/
#include <Library/BaseLib.h>
#include <Library/DebugLib.h>
#include <Library/BaseCryptLib.h>
#include "InternalCryptLib.h"
#include <openssl/md5.h>
@ -44,7 +41,7 @@ Md5GetContextSize (
If Md5Context is NULL, then ASSERT().
@param[in, out] Md5Context Pointer to MD5 Context being initialized.
@param[out] Md5Context Pointer to MD5 context being initialized.
@retval TRUE MD5 context initialization succeeded.
@retval FALSE MD5 context initialization failed.
@ -53,7 +50,7 @@ Md5GetContextSize (
BOOLEAN
EFIAPI
Md5Init (
IN OUT VOID *Md5Context
OUT VOID *Md5Context
)
{
//
@ -67,20 +64,47 @@ Md5Init (
return (BOOLEAN) (MD5_Init ((MD5_CTX *)Md5Context));
}
/**
Makes a copy of an existing MD5 context.
If Md5Context is NULL, then ASSERT().
If NewMd5Context is NULL, then ASSERT().
@param[in] Md5Context Pointer to MD5 context being copied.
@param[out] NewMd5Context Pointer to new MD5 context.
@retval TRUE MD5 context copy succeeded.
@retval FALSE MD5 context copy failed.
**/
BOOLEAN
EFIAPI
Md5Duplicate (
IN CONST VOID *Md5Context,
OUT VOID *NewMd5Context
)
{
CopyMem (NewMd5Context, Md5Context, sizeof (MD5_CTX));
return TRUE;
}
/**
Performs MD5 digest on a data buffer of the specified length. This function can
be called multiple times to compute the digest of long or discontinuous data streams.
Digests the input data and updates MD5 context.
This function performs MD5 digest on a data buffer of the specified size.
It can be called multiple times to compute the digest of long or discontinuous data streams.
MD5 context should be already correctly intialized by Md5Init(), and should not be finalized
by Md5Final(). Behavior with invalid context is undefined.
If Md5Context is NULL, then ASSERT().
@param[in, out] Md5Context Pointer to the MD5 context.
@param[in] Data Pointer to the buffer containing the data to be hashed.
@param[in] DataLength Length of Data buffer in bytes.
@param[in] DataSize Size of Data buffer in bytes.
@retval TRUE MD5 data digest succeeded.
@retval FALSE Invalid MD5 context. After Md5Final function has been called, the
MD5 context cannot be reused.
@retval FALSE MD5 data digest failed.
**/
BOOLEAN
@ -88,7 +112,7 @@ EFIAPI
Md5Update (
IN OUT VOID *Md5Context,
IN CONST VOID *Data,
IN UINTN DataLength
IN UINTN DataSize
)
{
//
@ -100,24 +124,28 @@ Md5Update (
// ASSERT if invalid parameters, in case that only DataLength was checked in OpenSSL
//
if (Data == NULL) {
ASSERT (DataLength == 0);
ASSERT (DataSize == 0);
}
//
// OpenSSL MD5 Hash Update
//
return (BOOLEAN) (MD5_Update ((MD5_CTX *)Md5Context, Data, DataLength));
return (BOOLEAN) (MD5_Update ((MD5_CTX *)Md5Context, Data, DataSize));
}
/**
Completes MD5 hash computation and retrieves the digest value into the specified
memory. After this function has been called, the MD5 context cannot be used again.
Completes computation of the MD5 digest value.
This function completes MD5 hash computation and retrieves the digest value into
the specified memory. After this function has been called, the MD5 context cannot
be used again.
MD5 context should be already correctly intialized by Md5Init(), and should not be
finalized by Md5Final(). Behavior with invalid MD5 context is undefined.
If Md5Context is NULL, then ASSERT().
If HashValue is NULL, then ASSERT().
@param[in, out] Md5Context Pointer to the MD5 context
@param[in, out] Md5Context Pointer to the MD5 context.
@param[out] HashValue Pointer to a buffer that receives the MD5 digest
value (16 bytes).

View File

@ -12,10 +12,7 @@ WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED.
**/
#include <Library/BaseLib.h>
#include <Library/DebugLib.h>
#include <Library/BaseCryptLib.h>
#include "InternalCryptLib.h"
#include <openssl/sha.h>
@ -37,23 +34,22 @@ Sha1GetContextSize (
return (UINTN)(sizeof (SHA_CTX));
}
/**
Initializes user-supplied memory pointed by Sha1Context as the SHA-1 hash context for
Initializes user-supplied memory pointed by Sha1Context as SHA-1 hash context for
subsequent use.
If Sha1Context is NULL, then ASSERT().
@param[in, out] Sha1Context Pointer to the SHA-1 Context being initialized.
@param[out] Sha1Context Pointer to SHA-1 context being initialized.
@retval TRUE SHA-1 initialization succeeded.
@retval FALSE SHA-1 initialization failed.
@retval TRUE SHA-1 context initialization succeeded.
@retval FALSE SHA-1 context initialization failed.
**/
BOOLEAN
EFIAPI
Sha1Init (
IN OUT VOID *Sha1Context
OUT VOID *Sha1Context
)
{
//
@ -67,20 +63,47 @@ Sha1Init (
return (BOOLEAN) (SHA1_Init ((SHA_CTX *)Sha1Context));
}
/**
Makes a copy of an existing SHA-1 context.
If Sha1Context is NULL, then ASSERT().
If NewSha1Context is NULL, then ASSERT().
@param[in] Sha1Context Pointer to SHA-1 context being copied.
@param[out] NewSha1Context Pointer to new SHA-1 context.
@retval TRUE SHA-1 context copy succeeded.
@retval FALSE SHA-1 context copy failed.
**/
BOOLEAN
EFIAPI
Sha1Duplicate (
IN CONST VOID *Sha1Context,
OUT VOID *NewSha1Context
)
{
CopyMem (NewSha1Context, Sha1Context, sizeof (SHA_CTX));
return TRUE;
}
/**
Performs SHA-1 digest on a data buffer of the specified length. This function can
be called multiple times to compute the digest of long or discontinuous data streams.
Digests the input data and updates SHA-1 context.
This function performs SHA-1 digest on a data buffer of the specified size.
It can be called multiple times to compute the digest of long or discontinuous data streams.
SHA-1 context should be already correctly intialized by Sha1Init(), and should not be finalized
by Sha1Final(). Behavior with invalid context is undefined.
If Sha1Context is NULL, then ASSERT().
@param[in, out] Sha1Context Pointer to the SHA-1 context.
@param[in] Data Pointer to the buffer containing the data to be hashed.
@param[in] DataLength Length of Data buffer in bytes.
@param[in] DataSize Size of Data buffer in bytes.
@retval TRUE SHA-1 data digest succeeded.
@retval FALSE Invalid SHA-1 context. After Sha1Final function has been called, the
SHA-1 context cannot be reused.
@retval FALSE SHA-1 data digest failed.
**/
BOOLEAN
@ -88,7 +111,7 @@ EFIAPI
Sha1Update (
IN OUT VOID *Sha1Context,
IN CONST VOID *Data,
IN UINTN DataLength
IN UINTN DataSize
)
{
//
@ -100,24 +123,28 @@ Sha1Update (
// ASSERT if invalid parameters, in case that only DataLength was checked in OpenSSL
//
if (Data == NULL) {
ASSERT (DataLength == 0);
ASSERT (DataSize == 0);
}
//
// OpenSSL SHA-1 Hash Update
//
return (BOOLEAN) (SHA1_Update ((SHA_CTX *)Sha1Context, Data, DataLength));
return (BOOLEAN) (SHA1_Update ((SHA_CTX *)Sha1Context, Data, DataSize));
}
/**
Completes SHA-1 hash computation and retrieves the digest value into the specified
memory. After this function has been called, the SHA-1 context cannot be used again.
Completes computation of the SHA-1 digest value.
This function completes SHA-1 hash computation and retrieves the digest value into
the specified memory. After this function has been called, the SHA-1 context cannot
be used again.
SHA-1 context should be already correctly intialized by Sha1Init(), and should not be
finalized by Sha1Final(). Behavior with invalid SHA-1 context is undefined.
If Sha1Context is NULL, then ASSERT().
If HashValue is NULL, then ASSERT().
@param[in, out] Sha1Context Pointer to the SHA-1 context
@param[in, out] Sha1Context Pointer to the SHA-1 context.
@param[out] HashValue Pointer to a buffer that receives the SHA-1 digest
value (20 bytes).

View File

@ -12,17 +12,13 @@ WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED.
**/
#include <Library/BaseLib.h>
#include <Library/DebugLib.h>
#include <Library/BaseCryptLib.h>
#include "InternalCryptLib.h"
#include <openssl/sha.h>
/**
Retrieves the size, in bytes, of the context buffer required for SHA-256 operations.
Retrieves the size, in bytes, of the context buffer required for SHA-256 hash operations.
@return The size, in bytes, of the context buffer required for SHA-256 operations.
@return The size, in bytes, of the context buffer required for SHA-256 hash operations.
**/
UINTN
@ -37,14 +33,13 @@ Sha256GetContextSize (
return (UINTN)(sizeof (SHA256_CTX));
}
/**
Initializes user-supplied memory pointed by Sha256Context as SHA-256 hash context for
subsequent use.
If Sha256Context is NULL, then ASSERT().
@param[in, out] Sha256Context Pointer to SHA-256 Context being initialized.
@param[out] Sha256Context Pointer to SHA-256 context being initialized.
@retval TRUE SHA-256 context initialization succeeded.
@retval FALSE SHA-256 context initialization failed.
@ -53,7 +48,7 @@ Sha256GetContextSize (
BOOLEAN
EFIAPI
Sha256Init (
IN OUT VOID *Sha256Context
OUT VOID *Sha256Context
)
{
//
@ -67,20 +62,47 @@ Sha256Init (
return (BOOLEAN) (SHA256_Init ((SHA256_CTX *)Sha256Context));
}
/**
Makes a copy of an existing SHA-256 context.
If Sha256Context is NULL, then ASSERT().
If NewSha256Context is NULL, then ASSERT().
@param[in] Sha256Context Pointer to SHA-256 context being copied.
@param[out] NewSha256Context Pointer to new SHA-256 context.
@retval TRUE SHA-256 context copy succeeded.
@retval FALSE SHA-256 context copy failed.
**/
BOOLEAN
EFIAPI
Sha256Duplicate (
IN CONST VOID *Sha256Context,
OUT VOID *NewSha256Context
)
{
CopyMem (NewSha256Context, Sha256Context, sizeof (SHA256_CTX));
return TRUE;
}
/**
Performs SHA-256 digest on a data buffer of the specified length. This function can
be called multiple times to compute the digest of long or discontinuous data streams.
Digests the input data and updates SHA-256 context.
This function performs SHA-256 digest on a data buffer of the specified size.
It can be called multiple times to compute the digest of long or discontinuous data streams.
SHA-256 context should be already correctly intialized by Sha256Init(), and should not be finalized
by Sha256Final(). Behavior with invalid context is undefined.
If Sha256Context is NULL, then ASSERT().
@param[in, out] Sha256Context Pointer to the SHA-256 context.
@param[in] Data Pointer to the buffer containing the data to be hashed.
@param[in] DataLength Length of Data buffer in bytes.
@param[in] DataSize Size of Data buffer in bytes.
@retval TRUE SHA-256 data digest succeeded.
@retval FALSE Invalid SHA-256 context. After Sha256Final function has been called, the
SHA-256 context cannot be reused.
@retval FALSE SHA-256 data digest failed.
**/
BOOLEAN
@ -88,7 +110,7 @@ EFIAPI
Sha256Update (
IN OUT VOID *Sha256Context,
IN CONST VOID *Data,
IN UINTN DataLength
IN UINTN DataSize
)
{
//
@ -100,24 +122,28 @@ Sha256Update (
// ASSERT if invalid parameters, in case that only DataLength was checked in OpenSSL
//
if (Data == NULL) {
ASSERT (DataLength == 0);
ASSERT (DataSize == 0);
}
//
// OpenSSL SHA-256 Hash Update
//
return (BOOLEAN) (SHA256_Update ((SHA256_CTX *)Sha256Context, Data, DataLength));
return (BOOLEAN) (SHA256_Update ((SHA256_CTX *)Sha256Context, Data, DataSize));
}
/**
Completes SHA-256 hash computation and retrieves the digest value into the specified
memory. After this function has been called, the SHA-256 context cannot be used again.
Completes computation of the SHA-256 digest value.
This function completes SHA-256 hash computation and retrieves the digest value into
the specified memory. After this function has been called, the SHA-256 context cannot
be used again.
SHA-256 context should be already correctly intialized by Sha256Init(), and should not be
finalized by Sha256Final(). Behavior with invalid SHA-256 context is undefined.
If Sha256Context is NULL, then ASSERT().
If HashValue is NULL, then ASSERT().
@param[in, out] Sha256Context Pointer to SHA-256 context
@param[in, out] Sha256Context Pointer to the SHA-256 context.
@param[out] HashValue Pointer to a buffer that receives the SHA-256 digest
value (32 bytes).

View File

@ -0,0 +1,185 @@
/** @file
HMAC-MD5 Wrapper Implementation over OpenSSL.
Copyright (c) 2010, Intel Corporation. All rights reserved.<BR>
This program and the accompanying materials
are licensed and made available under the terms and conditions of the BSD License
which accompanies this distribution. The full text of the license may be found at
http://opensource.org/licenses/bsd-license.php
THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS,
WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED.
**/
#include "InternalCryptLib.h"
#include <openssl/hmac.h>
/**
Retrieves the size, in bytes, of the context buffer required for HMAC-MD5 operations.
@return The size, in bytes, of the context buffer required for HMAC-MD5 operations.
**/
UINTN
EFIAPI
HmacMd5GetContextSize (
VOID
)
{
//
// Retrieves the OpenSSL HMAC-MD5 Context Size
//
return (UINTN)(sizeof (HMAC_CTX));
}
/**
Initializes user-supplied memory pointed by HmacMd5Context as HMAC-MD5 context for
subsequent use.
If HmacMd5Context is NULL, then ASSERT().
@param[out] HmacMd5Context Pointer to HMAC-MD5 context being initialized.
@param[in] Key Pointer to the user-supplied key.
@param[in] KeySize Key size in bytes.
@retval TRUE HMAC-MD5 context initialization succeeded.
@retval FALSE HMAC-MD5 context initialization failed.
**/
BOOLEAN
EFIAPI
HmacMd5Init (
OUT VOID *HmacMd5Context,
IN CONST UINT8 *Key,
IN UINTN KeySize
)
{
//
// ASSERT if HmacMd5Context is NULL.
//
ASSERT (HmacMd5Context != NULL);
//
// OpenSSL HMAC-MD5 Context Initialization
//
HMAC_CTX_init (HmacMd5Context);
HMAC_Init_ex (HmacMd5Context, Key, (UINT32) KeySize, EVP_md5(), NULL);
return TRUE;
}
/**
Makes a copy of an existing HMAC-MD5 context.
If HmacMd5Context is NULL, then ASSERT().
If NewHmacMd5Context is NULL, then ASSERT().
@param[in] HmacMd5Context Pointer to HMAC-MD5 context being copied.
@param[out] NewHmacMd5Context Pointer to new HMAC-MD5 context.
@retval TRUE HMAC-MD5 context copy succeeded.
@retval FALSE HMAC-MD5 context copy failed.
**/
BOOLEAN
EFIAPI
HmacMd5Duplicate (
IN CONST VOID *HmacMd5Context,
OUT VOID *NewHmacMd5Context
)
{
CopyMem (NewHmacMd5Context, HmacMd5Context, sizeof (HMAC_CTX));
return TRUE;
}
/**
Digests the input data and updates HMAC-MD5 context.
This function performs HMAC-MD5 digest on a data buffer of the specified size.
It can be called multiple times to compute the digest of long or discontinuous data streams.
HMAC-MD5 context should be already correctly intialized by HmacMd5Init(), and should not be
finalized by HmacMd5Final(). Behavior with invalid context is undefined.
If HmacMd5Context is NULL, then ASSERT().
@param[in, out] HmacMd5Context Pointer to the HMAC-MD5 context.
@param[in] Data Pointer to the buffer containing the data to be digested.
@param[in] DataSize Size of Data buffer in bytes.
@retval TRUE HMAC-MD5 data digest succeeded.
@retval FALSE HMAC-MD5 data digest failed.
**/
BOOLEAN
EFIAPI
HmacMd5Update (
IN OUT VOID *HmacMd5Context,
IN CONST VOID *Data,
IN UINTN DataSize
)
{
//
// ASSERT if HmacMd5Context is NULL
//
ASSERT (HmacMd5Context != NULL);
//
// ASSERT if invalid parameters, in case that only DataLength was checked in OpenSSL
//
if (Data == NULL) {
ASSERT (DataSize == 0);
}
//
// OpenSSL HMAC-MD5 digest update
//
HMAC_Update (HmacMd5Context, Data, DataSize);
return TRUE;
}
/**
Completes computation of the HMAC-MD5 digest value.
This function completes HMAC-MD5 digest computation and retrieves the digest value into
the specified memory. After this function has been called, the HMAC-MD5 context cannot
be used again.
HMAC-MD5 context should be already correctly intialized by HmacMd5Init(), and should not be
finalized by HmacMd5Final(). Behavior with invalid HMAC-MD5 context is undefined.
If HmacMd5Context is NULL, then ASSERT().
If HmacValue is NULL, then ASSERT().
@param[in, out] HmacMd5Context Pointer to the HMAC-MD5 context.
@param[out] HmacValue Pointer to a buffer that receives the HMAC-MD5 digest
value (16 bytes).
@retval TRUE HMAC-MD5 digest computation succeeded.
@retval FALSE HMAC-MD5 digest computation failed.
**/
BOOLEAN
EFIAPI
HmacMd5Final (
IN OUT VOID *HmacMd5Context,
OUT UINT8 *HmacValue
)
{
UINT32 Length;
//
// ASSERT if HmacMd5Context is NULL or HmacValue is NULL
//
ASSERT (HmacMd5Context != NULL);
ASSERT (HmacValue != NULL);
//
// OpenSSL HMAC-MD5 digest finalization
//
HMAC_Final (HmacMd5Context, HmacValue, &Length);
HMAC_CTX_cleanup (HmacMd5Context);
return TRUE;
}

View File

@ -0,0 +1,185 @@
/** @file
HMAC-SHA1 Wrapper Implementation over OpenSSL.
Copyright (c) 2010, Intel Corporation. All rights reserved.<BR>
This program and the accompanying materials
are licensed and made available under the terms and conditions of the BSD License
which accompanies this distribution. The full text of the license may be found at
http://opensource.org/licenses/bsd-license.php
THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS,
WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED.
**/
#include "InternalCryptLib.h"
#include <openssl/hmac.h>
/**
Retrieves the size, in bytes, of the context buffer required for HMAC-SHA1 operations.
@return The size, in bytes, of the context buffer required for HMAC-SHA1 operations.
**/
UINTN
EFIAPI
HmacSha1GetContextSize (
VOID
)
{
//
// Retrieves the OpenSSL HMAC-SHA1 Context Size
//
return (UINTN)(sizeof (HMAC_CTX));
}
/**
Initializes user-supplied memory pointed by HmacSha1Context as HMAC-SHA1 context for
subsequent use.
If HmacSha1Context is NULL, then ASSERT().
@param[out] HmacSha1Context Pointer to HMAC-SHA1 context being initialized.
@param[in] Key Pointer to the user-supplied key.
@param[in] KeySize Key size in bytes.
@retval TRUE HMAC-SHA1 context initialization succeeded.
@retval FALSE HMAC-SHA1 context initialization failed.
**/
BOOLEAN
EFIAPI
HmacSha1Init (
OUT VOID *HmacSha1Context,
IN CONST UINT8 *Key,
IN UINTN KeySize
)
{
//
// ASSERT if HmacSha1Context is NULL.
//
ASSERT (HmacSha1Context != NULL);
//
// OpenSSL HMAC-SHA1 Context Initialization
//
HMAC_CTX_init (HmacSha1Context);
HMAC_Init_ex (HmacSha1Context, Key, (UINT32) KeySize, EVP_sha1(), NULL);
return TRUE;
}
/**
Makes a copy of an existing HMAC-SHA1 context.
If HmacSha1Context is NULL, then ASSERT().
If NewHmacSha1Context is NULL, then ASSERT().
@param[in] HmacSha1Context Pointer to HMAC-SHA1 context being copied.
@param[out] NewHmacSha1Context Pointer to new HMAC-SHA1 context.
@retval TRUE HMAC-SHA1 context copy succeeded.
@retval FALSE HMAC-SHA1 context copy failed.
**/
BOOLEAN
EFIAPI
HmacSha1Duplicate (
IN CONST VOID *HmacSha1Context,
OUT VOID *NewHmacSha1Context
)
{
CopyMem (NewHmacSha1Context, HmacSha1Context, sizeof (HMAC_CTX));
return TRUE;
}
/**
Digests the input data and updates HMAC-SHA1 context.
This function performs HMAC-SHA1 digest on a data buffer of the specified size.
It can be called multiple times to compute the digest of long or discontinuous data streams.
HMAC-SHA1 context should be already correctly intialized by HmacSha1Init(), and should not
be finalized by HmacSha1Final(). Behavior with invalid context is undefined.
If HmacSha1Context is NULL, then ASSERT().
@param[in, out] HmacSha1Context Pointer to the HMAC-SHA1 context.
@param[in] Data Pointer to the buffer containing the data to be digested.
@param[in] DataSize Size of Data buffer in bytes.
@retval TRUE HMAC-SHA1 data digest succeeded.
@retval FALSE HMAC-SHA1 data digest failed.
**/
BOOLEAN
EFIAPI
HmacSha1Update (
IN OUT VOID *HmacSha1Context,
IN CONST VOID *Data,
IN UINTN DataSize
)
{
//
// ASSERT if HmacSha1Context is NULL
//
ASSERT (HmacSha1Context != NULL);
//
// ASSERT if invalid parameters, in case that only DataLength was checked in OpenSSL
//
if (Data == NULL) {
ASSERT (DataSize == 0);
}
//
// OpenSSL HMAC-SHA1 digest update
//
HMAC_Update (HmacSha1Context, Data, DataSize);
return TRUE;
}
/**
Completes computation of the HMAC-SHA1 digest value.
This function completes HMAC-SHA1 digest computation and retrieves the digest value into
the specified memory. After this function has been called, the HMAC-SHA1 context cannot
be used again.
HMAC-SHA1 context should be already correctly intialized by HmacSha1Init(), and should
not be finalized by HmacSha1Final(). Behavior with invalid HMAC-SHA1 context is undefined.
If HmacSha1Context is NULL, then ASSERT().
If HmacValue is NULL, then ASSERT().
@param[in, out] HmacSha1Context Pointer to the HMAC-SHA1 context.
@param[out] HmacValue Pointer to a buffer that receives the HMAC-SHA1 digest
value (20 bytes).
@retval TRUE HMAC-SHA1 digest computation succeeded.
@retval FALSE HMAC-SHA1 digest computation failed.
**/
BOOLEAN
EFIAPI
HmacSha1Final (
IN OUT VOID *HmacSha1Context,
OUT UINT8 *HmacValue
)
{
UINT32 Length;
//
// ASSERT if HmacSha1Context is NULL or HmacValue is NULL
//
ASSERT (HmacSha1Context != NULL);
ASSERT (HmacValue != NULL);
//
// OpenSSL HMAC-SHA1 digest finalization
//
HMAC_Final (HmacSha1Context, HmacValue, &Length);
HMAC_CTX_cleanup (HmacSha1Context);
return TRUE;
}

View File

@ -0,0 +1,32 @@
/** @file
Internal include file for BaseCryptLib.
Copyright (c) 2010, Intel Corporation. All rights reserved.<BR>
This program and the accompanying materials
are licensed and made available under the terms and conditions of the BSD License
which accompanies this distribution. The full text of the license may be found at
http://opensource.org/licenses/bsd-license.php
THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS,
WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED.
**/
#ifndef __INTERNAL_CRYPT_LIB_H__
#define __INTERNAL_CRYPT_LIB_H__
#include <Library/BaseLib.h>
#include <Library/BaseMemoryLib.h>
#include <Library/MemoryAllocationLib.h>
#include <Library/DebugLib.h>
#include <Library/BaseCryptLib.h>
//
// Environment Setting for OpenSSL-based UEFI Crypto Library.
//
#ifndef OPENSSL_SYSNAME_UWIN
#define OPENSSL_SYSNAME_UWIN
#endif
#endif

View File

@ -55,8 +55,6 @@
SysCall/Ia32/MathLShiftS64.S | GCC
SysCall/Ia32/MathRShiftU64.S | GCC
SysCall/Ia32/Alloca.S | GCC
[Packages]
MdePkg/MdePkg.dec
CryptoPkg/CryptoPkg.dec

View File

@ -0,0 +1,238 @@
/** @file
Diffie-Hellman Wrapper Implementation over OpenSSL.
Copyright (c) 2010, Intel Corporation. All rights reserved.<BR>
This program and the accompanying materials
are licensed and made available under the terms and conditions of the BSD License
which accompanies this distribution. The full text of the license may be found at
http://opensource.org/licenses/bsd-license.php
THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS,
WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED.
**/
#include "InternalCryptLib.h"
#include <openssl/dh.h>
/**
Allocates and Initializes one Diffie-Hellman Context for subsequent use.
@return Pointer to the Diffie-Hellman Context that has been initialized.
If the allocations fails, DhNew() returns NULL.
**/
VOID *
EFIAPI
DhNew (
VOID
)
{
//
// Allocates & Initializes DH Context by OpenSSL DH_new()
//
return (VOID *)DH_new ();
}
/**
Release the specified DH context.
If DhContext is NULL, then ASSERT().
@param[in] DhContext Pointer to the DH context to be released.
**/
VOID
EFIAPI
DhFree (
IN VOID *DhContext
)
{
//
// Free OpenSSL DH Context
//
DH_free ((DH *)DhContext);
}
/**
Generates DH parameter.
Given generator g, and length of prime number p in bits, this function generates p,
and sets DH context according to value of g and p.
Before this function can be invoked, pseudorandom number generator must be correctly
initialized by RandomSeed().
If DhContext is NULL, then ASSERT().
If Prime is NULL, then ASSERT().
@param[in, out] DhContext Pointer to the DH context.
@param[in] Generator Value of generator.
@param[in] PrimeLength Length in bits of prime to be generated.
@param[out] Prime Pointer to the buffer to receive the generated prime number.
@retval TRUE DH pamameter generation succeeded.
@retval FALSE Value of Generator is not supported.
@retval FALSE PRNG fails to generate random prime number with PrimeLength.
**/
BOOLEAN
EFIAPI
DhGenerateParameter (
IN OUT VOID *DhContext,
IN UINTN Generator,
IN UINTN PrimeLength,
OUT UINT8 *Prime
)
{
BOOLEAN RetVal;
if (Generator != DH_GENERATOR_2 && Generator != DH_GENERATOR_5) {
return FALSE;
}
RetVal = (BOOLEAN) DH_generate_parameters_ex (DhContext, (UINT32) PrimeLength, (UINT32) Generator, NULL);
if (!RetVal) {
return FALSE;
}
BN_bn2bin (((DH *) DhContext)->p, Prime);
return TRUE;
}
/**
Sets generator and prime parameters for DH.
Given generator g, and prime number p, this function and sets DH
context accordingly.
If DhContext is NULL, then ASSERT().
If Prime is NULL, then ASSERT().
@param[in, out] DhContext Pointer to the DH context.
@param[in] Generator Value of generator.
@param[in] PrimeLength Length in bits of prime to be generated.
@param[in] Prime Pointer to the prime number.
@retval TRUE DH pamameter setting succeeded.
@retval FALSE Value of Generator is not supported.
@retval FALSE Value of Generator is not suitable for the Prime.
@retval FALSE Value of Prime is not a prime number.
@retval FALSE Value of Prime is not a safe prime number.
**/
BOOLEAN
EFIAPI
DhSetParameter (
IN OUT VOID *DhContext,
IN UINTN Generator,
IN UINTN PrimeLength,
IN CONST UINT8 *Prime
)
{
DH *Dh;
if (Generator != DH_GENERATOR_2 && Generator != DH_GENERATOR_5) {
return FALSE;
}
Dh = (DH *) DhContext;
Dh->p = BN_new();
Dh->g = BN_new();
BN_bin2bn (Prime, (UINT32) (PrimeLength / 8), Dh->p);
BN_set_word (Dh->g, (UINT32) Generator);
return TRUE;
}
/**
Generates DH public key.
This function generates random secret exponent, and computes the public key, which is
returned via parameter PublicKey and PublicKeySize. DH context is updated accordingly.
If the PublicKey buffer is too small to hold the public key, FALSE is returned and
PublicKeySize is set to the required buffer size to obtain the public key.
If DhContext is NULL, then ASSERT().
If PublicKeySize is NULL, then ASSERT().
If PublicKeySize is large enough but PublicKey is NULL, then ASSERT().
@param[in, out] DhContext Pointer to the DH context.
@param[out] PublicKey Pointer to the buffer to receive generated public key.
@param[in, out] PublicKeySize On input, the size of PublicKey buffer in bytes.
On output, the size of data returned in PublicKey buffer in bytes.
@retval TRUE DH public key generation succeeded.
@retval FALSE DH public key generation failed.
@retval FALSE PublicKeySize is not large enough.
**/
BOOLEAN
EFIAPI
DhGenerateKey (
IN OUT VOID *DhContext,
OUT UINT8 *PublicKey,
IN OUT UINTN *PublicKeySize
)
{
BOOLEAN RetVal;
DH *Dh;
Dh = (DH *) DhContext;
*PublicKeySize = 0;
RetVal = (BOOLEAN) DH_generate_key (DhContext);
if (RetVal) {
BN_bn2bin (Dh->pub_key, PublicKey);
*PublicKeySize = BN_num_bytes (Dh->pub_key);
}
return RetVal;
}
/**
Computes exchanged common key.
Given peer's public key, this function computes the exchanged common key, based on its own
context including value of prime modulus and random secret exponent.
If DhContext is NULL, then ASSERT().
If PeerPublicKey is NULL, then ASSERT().
If KeySize is NULL, then ASSERT().
If KeySize is large enough but Key is NULL, then ASSERT().
@param[in, out] DhContext Pointer to the DH context.
@param[in] PeerPublicKey Pointer to the peer's public key.
@param[in] PeerPublicKeySize Size of peer's public key in bytes.
@param[out] Key Pointer to the buffer to receive generated key.
@param[in, out] KeySize On input, the size of Key buffer in bytes.
On output, the size of data returned in Key buffer in bytes.
@retval TRUE DH exchanged key generation succeeded.
@retval FALSE DH exchanged key generation failed.
@retval FALSE KeySize is not large enough.
**/
BOOLEAN
EFIAPI
DhComputeKey (
IN OUT VOID *DhContext,
IN CONST UINT8 *PeerPublicKey,
IN UINTN PeerPublicKeySize,
OUT UINT8 *Key,
IN OUT UINTN *KeySize
)
{
BIGNUM *Bn;
Bn = BN_bin2bn (PeerPublicKey, (UINT32) PeerPublicKeySize, NULL);
*KeySize = (BOOLEAN) DH_compute_key (Key, Bn, DhContext);
BN_free (Bn);
return TRUE;
}

View File

@ -12,11 +12,8 @@ WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED.
**/
#include <Library/BaseLib.h>
#include <Library/BaseMemoryLib.h>
#include <Library/DebugLib.h>
#include "InternalCryptLib.h"
#include <Library/BaseCryptLib.h>
#include <openssl/objects.h>
#include <openssl/x509.h>
#include <openssl/pkcs7.h>
@ -36,8 +33,8 @@ WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED.
@param[in] InData Pointer to the content to be verified.
@param[in] DataLength Length of InData in bytes.
@return TRUE The specified PKCS#7 signed data is valid.
@return FALSE Invalid PKCS#7 signed data.
@retval TRUE The specified PKCS#7 signed data is valid.
@retval FALSE Invalid PKCS#7 signed data.
**/
BOOLEAN

View File

@ -12,18 +12,36 @@ WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED.
**/
#include <Library/BaseLib.h>
#include <Library/DebugLib.h>
#include <Library/BaseMemoryLib.h>
#include "InternalCryptLib.h"
#include <Library/BaseCryptLib.h>
#include <openssl/rsa.h>
#include <openssl/err.h>
//
// ASN.1 value for Hash Algorithm ID with the Distringuished Encoding Rules (DER)
// Refer to Section 9.2 of PKCS#1 v2.1
//
CONST UINT8 Asn1IdMd5[] = {
0x30, 0x20, 0x30, 0x0c, 0x06, 0x08, 0x2a, 0x86,
0xf7, 0x0d, 0x02, 0x05, 0x05, 0x00, 0x04, 0x10
};
CONST UINT8 Asn1IdSha1[] = {
0x30, 0x21, 0x30, 0x09, 0x06, 0x05, 0x2b, 0x0e,
0x03, 0x02, 0x1a, 0x05, 0x00, 0x04, 0x14
};
CONST UINT8 Asn1IdSha256[] = {
0x30, 0x31, 0x30, 0x0d, 0x06, 0x09, 0x60, 0x86,
0x48, 0x01, 0x65, 0x03, 0x04, 0x02, 0x01, 0x05,
0x00, 0x04, 0x20
};
/**
Allocates and Initializes one RSA Context for subsequent use.
Allocates and initializes one RSA context for subsequent use.
@return Pointer to the RSA Context that has been initialized.
@return Pointer to the RSA context that has been initialized.
If the allocations fails, RsaNew() returns NULL.
**/
@ -39,9 +57,10 @@ RsaNew (
return (VOID *)RSA_new ();
}
/**
Release the specified RSA Context.
Release the specified RSA context.
If RsaContext is NULL, then ASSERT().
@param[in] RsaContext Pointer to the RSA context to be released.
@ -52,36 +71,43 @@ RsaFree (
IN VOID *RsaContext
)
{
ASSERT (RsaContext != NULL);
//
// Free OpenSSL RSA Context
//
RSA_free ((RSA *)RsaContext);
}
/**
Sets the tag-designated RSA key component into the established RSA context from
the user-specified nonnegative integer (octet string format represented in RSA
PKCS#1).
Sets the tag-designated key component into the established RSA context.
This function sets the tag-designated RSA key component into the established
RSA context from the user-specified non-negative integer (octet string format
represented in RSA PKCS#1).
If BigNumber is NULL, then the specified key componenet in RSA context is cleared.
If RsaContext is NULL, then ASSERT().
@param[in, out] RsaContext Pointer to RSA context being set.
@param[in] KeyTag Tag of RSA key component being set.
@param[in] BigNumber Pointer to octet integer buffer.
@param[in] BnLength Length of big number buffer in bytes.
If NULL, then the specified key componenet in RSA
context is cleared.
@param[in] BnSize Size of big number buffer in bytes.
If BigNumber is NULL, then it is ignored.
@return TRUE RSA key component was set successfully.
@return FALSE Invalid RSA key component tag.
@retval TRUE RSA key component was set successfully.
@retval FALSE Invalid RSA key component tag.
**/
BOOLEAN
EFIAPI
RsaSetKey (
IN OUT VOID *RsaContext,
IN RSA_KEY_TAG KeyTag,
IN CONST UINT8 *BigNumber,
IN UINTN BnLength
IN OUT VOID *RsaContext,
IN RSA_KEY_TAG KeyTag,
IN CONST UINT8 *BigNumber,
IN UINTN BnSize
)
{
RSA *RsaKey;
@ -107,7 +133,11 @@ RsaSetKey (
if (RsaKey->n != NULL) {
BN_free (RsaKey->n);
}
RsaKey->n = BN_bin2bn (BigNumber, (int)BnLength, RsaKey->n);
RsaKey->n = NULL;
if (BigNumber == NULL) {
break;
}
RsaKey->n = BN_bin2bn (BigNumber, (UINT32) BnSize, RsaKey->n);
break;
//
@ -117,7 +147,11 @@ RsaSetKey (
if (RsaKey->e != NULL) {
BN_free (RsaKey->e);
}
RsaKey->e = BN_bin2bn (BigNumber, (int)BnLength, RsaKey->e);
RsaKey->e = NULL;
if (BigNumber == NULL) {
break;
}
RsaKey->e = BN_bin2bn (BigNumber, (UINT32) BnSize, RsaKey->e);
break;
//
@ -127,7 +161,11 @@ RsaSetKey (
if (RsaKey->d != NULL) {
BN_free (RsaKey->d);
}
RsaKey->d = BN_bin2bn (BigNumber, (int)BnLength, RsaKey->d);
RsaKey->d = NULL;
if (BigNumber == NULL) {
break;
}
RsaKey->d = BN_bin2bn (BigNumber, (UINT32) BnSize, RsaKey->d);
break;
//
@ -137,7 +175,11 @@ RsaSetKey (
if (RsaKey->p != NULL) {
BN_free (RsaKey->p);
}
RsaKey->p = BN_bin2bn (BigNumber, (int)BnLength, RsaKey->p);
RsaKey->p = NULL;
if (BigNumber == NULL) {
break;
}
RsaKey->p = BN_bin2bn (BigNumber, (UINT32) BnSize, RsaKey->p);
break;
//
@ -147,7 +189,11 @@ RsaSetKey (
if (RsaKey->q != NULL) {
BN_free (RsaKey->q);
}
RsaKey->q = BN_bin2bn (BigNumber, (int)BnLength, RsaKey->q);
RsaKey->q = NULL;
if (BigNumber == NULL) {
break;
}
RsaKey->q = BN_bin2bn (BigNumber, (UINT32) BnSize, RsaKey->q);
break;
//
@ -157,7 +203,11 @@ RsaSetKey (
if (RsaKey->dmp1 != NULL) {
BN_free (RsaKey->dmp1);
}
RsaKey->dmp1 = BN_bin2bn (BigNumber, (int)BnLength, RsaKey->dmp1);
RsaKey->dmp1 = NULL;
if (BigNumber == NULL) {
break;
}
RsaKey->dmp1 = BN_bin2bn (BigNumber, (UINT32) BnSize, RsaKey->dmp1);
break;
//
@ -167,7 +217,11 @@ RsaSetKey (
if (RsaKey->dmq1 != NULL) {
BN_free (RsaKey->dmq1);
}
RsaKey->dmq1 = BN_bin2bn (BigNumber, (int)BnLength, RsaKey->dmq1);
RsaKey->dmq1 = NULL;
if (BigNumber == NULL) {
break;
}
RsaKey->dmq1 = BN_bin2bn (BigNumber, (UINT32) BnSize, RsaKey->dmq1);
break;
//
@ -177,7 +231,11 @@ RsaSetKey (
if (RsaKey->iqmp != NULL) {
BN_free (RsaKey->iqmp);
}
RsaKey->iqmp = BN_bin2bn (BigNumber, (int)BnLength, RsaKey->iqmp);
RsaKey->iqmp = NULL;
if (BigNumber == NULL) {
break;
}
RsaKey->iqmp = BN_bin2bn (BigNumber, (UINT32) BnSize, RsaKey->iqmp);
break;
default:
@ -187,6 +245,368 @@ RsaSetKey (
return TRUE;
}
/**
Gets the tag-designated RSA key component from the established RSA context.
This function retrieves the tag-designated RSA key component from the
established RSA context as a non-negative integer (octet string format
represented in RSA PKCS#1).
If specified key component has not been set or has been cleared, then returned
BnSize is set to 0.
If the BigNumber buffer is too small to hold the contents of the key, FALSE
is returned and BnSize is set to the required buffer size to obtain the key.
If RsaContext is NULL, then ASSERT().
If BnSize is NULL, then ASSERT().
If BnSize is large enough but BigNumber is NULL, then ASSERT().
@param[in, out] RsaContext Pointer to RSA context being set.
@param[in] KeyTag Tag of RSA key component being set.
@param[out] BigNumber Pointer to octet integer buffer.
@param[in, out] BnSize On input, the size of big number buffer in bytes.
On output, the size of data returned in big number buffer in bytes.
@retval TRUE RSA key component was retrieved successfully.
@retval FALSE Invalid RSA key component tag.
@retval FALSE BnSize is too small.
**/
BOOLEAN
EFIAPI
RsaGetKey (
IN OUT VOID *RsaContext,
IN RSA_KEY_TAG KeyTag,
OUT UINT8 *BigNumber,
IN OUT UINTN *BnSize
)
{
RSA *RsaKey;
BIGNUM *BnKey;
UINTN Size;
ASSERT (RsaContext != NULL);
ASSERT (BnSize != NULL);
RsaKey = (RSA *) RsaContext;
Size = *BnSize;
*BnSize = 0;
switch (KeyTag) {
//
// RSA Public Modulus (N)
//
case RsaKeyN:
if (RsaKey->n == NULL) {
return TRUE;
}
BnKey = RsaKey->n;
break;
//
// RSA Public Exponent (e)
//
case RsaKeyE:
if (RsaKey->e == NULL) {
return TRUE;
}
BnKey = RsaKey->e;
break;
//
// RSA Private Exponent (d)
//
case RsaKeyD:
if (RsaKey->d == NULL) {
return TRUE;
}
BnKey = RsaKey->d;
break;
//
// RSA Secret Prime Factor of Modulus (p)
//
case RsaKeyP:
if (RsaKey->p == NULL) {
return TRUE;
}
BnKey = RsaKey->p;
break;
//
// RSA Secret Prime Factor of Modules (q)
//
case RsaKeyQ:
if (RsaKey->q == NULL) {
return TRUE;
}
BnKey = RsaKey->q;
break;
//
// p's CRT Exponent (== d mod (p - 1))
//
case RsaKeyDp:
if (RsaKey->dmp1 == NULL) {
return TRUE;
}
BnKey = RsaKey->dmp1;
break;
//
// q's CRT Exponent (== d mod (q - 1))
//
case RsaKeyDq:
if (RsaKey->dmq1 == NULL) {
return TRUE;
}
BnKey = RsaKey->dmq1;
break;
//
// The CRT Coefficient (== 1/q mod p)
//
case RsaKeyQInv:
if (RsaKey->iqmp == NULL) {
return TRUE;
}
BnKey = RsaKey->iqmp;
break;
default:
return FALSE;
}
*BnSize = Size;
Size = BN_num_bytes (BnKey);
if (*BnSize < Size) {
*BnSize = Size;
return FALSE;
}
ASSERT (BigNumber != NULL);
*BnSize = BN_bn2bin (BnKey, BigNumber) ;
return TRUE;
}
/**
Generates RSA key components.
This function generates RSA key components. It takes RSA public exponent E and
length in bits of RSA modulus N as input, and generates all key components.
If PublicExponent is NULL, the default RSA public exponent (0x10001) will be used.
Before this function can be invoked, pseudorandom number generator must be correctly
initialized by RandomSeed().
If RsaContext is NULL, then ASSERT().
@param[in, out] RsaContext Pointer to RSA context being set.
@param[in] ModulusLength Length of RSA modulus N in bits.
@param[in] PublicExponent Pointer to RSA public exponent.
@param[in] PublicExponentSize Size of RSA public exponent buffer in bytes.
@retval TRUE RSA key component was generated successfully.
@retval FALSE Invalid RSA key component tag.
**/
BOOLEAN
EFIAPI
RsaGenerateKey (
IN OUT VOID *RsaContext,
IN UINTN ModulusLength,
IN CONST UINT8 *PublicExponent,
IN UINTN PublicExponentSize
)
{
BIGNUM *KeyE;
BOOLEAN RetVal;
ASSERT (RsaContext != NULL);
KeyE = BN_new ();
if (PublicExponent == NULL) {
BN_set_word (KeyE, 0x10001);
} else {
BN_bin2bn (PublicExponent, (UINT32) PublicExponentSize, KeyE);
}
RetVal = FALSE;
if (RSA_generate_key_ex ((RSA *) RsaContext, (UINT32) ModulusLength, KeyE, NULL) == 1) {
RetVal = TRUE;
}
BN_free (KeyE);
return RetVal;
}
/**
Validates key components of RSA context.
This function validates key compoents of RSA context in following aspects:
- Whether p is a prime
- Whether q is a prime
- Whether n = p * q
- Whether d*e = 1 mod lcm(p-1,q-1)
If RsaContext is NULL, then ASSERT().
@param[in] RsaContext Pointer to RSA context to check.
@retval TRUE RSA key components are valid.
@retval FALSE RSA key components are not valid.
**/
BOOLEAN
EFIAPI
RsaCheckKey (
IN VOID *RsaContext
)
{
UINTN Reason;
ASSERT (RsaContext != NULL);
if (RSA_check_key ((RSA *) RsaContext) != 1) {
Reason = ERR_GET_REASON (ERR_peek_last_error ());
if (Reason == RSA_R_P_NOT_PRIME ||
Reason == RSA_R_Q_NOT_PRIME ||
Reason == RSA_R_N_DOES_NOT_EQUAL_P_Q ||
Reason == RSA_R_D_E_NOT_CONGRUENT_TO_1) {
return FALSE;
}
}
return TRUE;
}
/**
Performs the PKCS1-v1_5 encoding methods defined in RSA PKCS #1.
@param Message Message buffer to be encoded.
@param MessageSize Size of message buffer in bytes.
@param DigestInfo Pointer to buffer of digest info for output.
@return Size of DigestInfo in bytes.
**/
UINTN
DigestInfoEncoding (
IN CONST UINT8 *Message,
IN UINTN MessageSize,
OUT UINT8 *DigestInfo
)
{
CONST UINT8 *HashDer;
UINTN DerSize;
ASSERT (Message != NULL);
ASSERT (DigestInfo != NULL);
//
// The original message length is used to determine the hash algorithm since
// message is digest value hashed by the specified algorithm.
//
switch (MessageSize) {
case MD5_DIGEST_SIZE:
HashDer = Asn1IdMd5;
DerSize = sizeof (Asn1IdMd5);
break;
case SHA1_DIGEST_SIZE:
HashDer = Asn1IdSha1;
DerSize = sizeof (Asn1IdSha1);
break;
case SHA256_DIGEST_SIZE:
HashDer = Asn1IdSha256;
DerSize = sizeof (Asn1IdSha256);
break;
default:
return FALSE;
}
CopyMem (DigestInfo, HashDer, DerSize);
CopyMem (DigestInfo + DerSize, Message, MessageSize);
return (DerSize + MessageSize);
}
/**
Carries out the RSA-SSA signature generation with EMSA-PKCS1-v1_5 encoding scheme.
This function carries out the RSA-SSA signature generation with EMSA-PKCS1-v1_5 encoding scheme defined in
RSA PKCS#1.
If the Signature buffer is too small to hold the contents of signature, FALSE
is returned and SigSize is set to the required buffer size to obtain the signature.
If RsaContext is NULL, then ASSERT().
If MessageHash is NULL, then ASSERT().
If HashSize is not equal to the size of MD5, SHA-1, SHA-256, SHA-224, SHA-512 or SHA-384 digest, then ASSERT().
If SigSize is large enough but Signature is NULL, then ASSERT().
@param[in] RsaContext Pointer to RSA context for signature generation.
@param[in] MessageHash Pointer to octet message hash to be signed.
@param[in] HashSize Size of the message hash in bytes.
@param[out] Signature Pointer to buffer to receive RSA PKCS1-v1_5 signature.
@param[in, out] SigSize On input, the size of Signature buffer in bytes.
On output, the size of data returned in Signature buffer in bytes.
@retval TRUE Signature successfully generated in PKCS1-v1_5.
@retval FALSE Signature generation failed.
@retval FALSE SigSize is too small.
**/
BOOLEAN
EFIAPI
RsaPkcs1Sign (
IN VOID *RsaContext,
IN CONST UINT8 *MessageHash,
IN UINTN HashSize,
OUT UINT8 *Signature,
IN OUT UINTN *SigSize
)
{
RSA *Rsa;
UINTN Size;
INTN ReturnVal;
ASSERT (RsaContext != NULL);
ASSERT (MessageHash != NULL);
ASSERT ((HashSize == MD5_DIGEST_SIZE) ||
(HashSize == SHA1_DIGEST_SIZE) ||
(HashSize == SHA256_DIGEST_SIZE));
Rsa = (RSA *) RsaContext;
Size = BN_num_bytes (Rsa->n);
if (*SigSize < Size) {
*SigSize = Size;
return FALSE;
}
ASSERT (Signature != NULL);
Size = DigestInfoEncoding (MessageHash, HashSize, Signature);
ReturnVal = RSA_private_encrypt (
(UINT32) Size,
Signature,
Signature,
Rsa,
RSA_PKCS1_PADDING
);
if (ReturnVal < (INTN) Size) {
return FALSE;
}
*SigSize = (UINTN)ReturnVal;
return TRUE;
}
/**
Verifies the RSA-SSA signature with EMSA-PKCS1-v1_5 encoding scheme defined in
@ -195,16 +615,16 @@ RsaSetKey (
If RsaContext is NULL, then ASSERT().
If MessageHash is NULL, then ASSERT().
If Signature is NULL, then ASSERT().
If HashLength is not equal to the size of MD5, SHA-1 or SHA-256 digest, then ASSERT().
If HashSize is not equal to the size of MD5, SHA-1, SHA-256, SHA-224, SHA-512 or SHA-384 digest, then ASSERT().
@param[in] RsaContext Pointer to RSA context for signature verification.
@param[in] MessageHash Pointer to octet message hash to be checked.
@param[in] HashLength Length of the message hash in bytes.
@param[in] HashSize Size of the message hash in bytes.
@param[in] Signature Pointer to RSA PKCS1-v1_5 signature to be verified.
@param[in] SigLength Length of signature in bytes.
@param[in] SigSize Size of signature in bytes.
@return TRUE Valid signature encoded in PKCS1-v1_5.
@return FALSE Invalid signature or invalid RSA context.
@retval TRUE Valid signature encoded in PKCS1-v1_5.
@retval FALSE Invalid signature or invalid RSA context.
**/
BOOLEAN
@ -212,9 +632,9 @@ EFIAPI
RsaPkcs1Verify (
IN VOID *RsaContext,
IN CONST UINT8 *MessageHash,
IN UINTN HashLength,
IN UINTN HashSize,
IN UINT8 *Signature,
IN UINTN SigLength
IN UINTN SigSize
)
{
INTN Length;
@ -227,17 +647,17 @@ RsaPkcs1Verify (
ASSERT (Signature != NULL);
//
// ASSERT if unsupported hash length:
// ASSERT if unsupported hash size:
// Only MD5, SHA-1 or SHA-256 digest size is supported
//
ASSERT ((HashLength == MD5_DIGEST_SIZE) || (HashLength == SHA1_DIGEST_SIZE) ||
(HashLength == SHA256_DIGEST_SIZE));
ASSERT ((HashSize == MD5_DIGEST_SIZE) || (HashSize == SHA1_DIGEST_SIZE) ||
(HashSize == SHA256_DIGEST_SIZE));
//
// RSA PKCS#1 Signature Decoding using OpenSSL RSA Decryption with Public Key
//
Length = RSA_public_decrypt (
(int)SigLength,
(UINT32) SigSize,
Signature,
Signature,
RsaContext,
@ -246,10 +666,10 @@ RsaPkcs1Verify (
//
// Invalid RSA Key or PKCS#1 Padding Checking Failed (if Length < 0)
// NOTE: Length should be the addition of HashLength and some DER value.
// NOTE: Length should be the addition of HashSize and some DER value.
// Ignore more strict length checking here.
//
if (Length < (INTN) HashLength) {
if (Length < (INTN) HashSize) {
return FALSE;
}
@ -263,7 +683,7 @@ RsaPkcs1Verify (
// Then Memory Comparing should skip the DER value of the underlying SEQUENCE
// type and AlgorithmIdentifier.
//
if (CompareMem (MessageHash, Signature + Length - HashLength, HashLength) == 0) {
if (CompareMem (MessageHash, Signature + Length - HashSize, HashSize) == 0) {
//
// Valid RSA PKCS#1 Signature
//

View File

@ -0,0 +1,88 @@
/** @file
Pseudorandom Number Generator Wrapper Implementation over OpenSSL.
Copyright (c) 2010, Intel Corporation. All rights reserved.<BR>
This program and the accompanying materials
are licensed and made available under the terms and conditions of the BSD License
which accompanies this distribution. The full text of the license may be found at
http://opensource.org/licenses/bsd-license.php
THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS,
WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED.
**/
#include "InternalCryptLib.h"
#include <openssl/rand.h>
//
// Default seed for UEFI Crypto Library
//
CONST UINT8 DefaultSeed[] = "UEFI Crypto Library default seed";
/**
Sets up the seed value for the pseudorandom number generator.
This function sets up the seed value for the pseudorandom number generator.
If Seed is not NULL, then the seed passed in is used.
If Seed is NULL, then default seed is used.
@param[in] Seed Pointer to seed value.
If NULL, default seed is used.
@param[in] SeedSize Size of seed value.
If Seed is NULL, this parameter is ignored.
@retval TRUE Pseudorandom number generator has enough entropy for random generation.
@retval FALSE Pseudorandom number generator does not have enough entropy for random generation.
**/
BOOLEAN
EFIAPI
RandomSeed (
IN CONST UINT8 *Seed OPTIONAL,
IN UINTN SeedSize
)
{
//
// Seed the pseudorandom number generator with user-supplied value.
// NOTE: A cryptographic PRNG must be seeded with unpredictable data.
//
if (Seed != NULL) {
RAND_seed (Seed, (UINT32) SeedSize);
} else {
RAND_seed (DefaultSeed, sizeof (DefaultSeed));
}
return TRUE;
}
/**
Generates a pseudorandom byte stream of the specified size.
If Output is NULL, then ASSERT().
@param[out] Output Pointer to buffer to receive random value.
@param[in] Size Size of randome bytes to generate.
@retval TRUE Pseudorandom byte stream generated successfully.
@retval FALSE Pseudorandom number generator fails to generate due to lack of entropy.
**/
BOOLEAN
EFIAPI
RandomBytes (
OUT UINT8 *Output,
IN UINTN Size
)
{
ASSERT (Output != NULL);
//
// Generate random data.
//
if (RAND_bytes (Output, (UINT32) Size) != 1) {
return FALSE;
}
return TRUE;
}

View File

@ -57,8 +57,6 @@
SysCall/Ia32/MathLShiftS64.S | GCC
SysCall/Ia32/MathRShiftU64.S | GCC
SysCall/Ia32/Alloca.S | GCC
[Packages]
MdePkg/MdePkg.dec
CryptoPkg/CryptoPkg.dec

View File

@ -0,0 +1,78 @@
## @file
# Cryptographic Library Instance for SMM driver.
#
# Copyright (c) 2010, Intel Corporation. All rights reserved.<BR>
# This program and the accompanying materials
# are licensed and made available under the terms and conditions of the BSD License
# which accompanies this distribution. The full text of the license may be found at
# http://opensource.org/licenses/bsd-license.php
#
# THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS,
# WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED.
#
##
[Defines]
INF_VERSION = 0x00010005
BASE_NAME = SmmCryptLib
FILE_GUID = 028080a3-8958-4a62-a1a8-0fa1da162007
MODULE_TYPE = DXE_SMM_DRIVER
VERSION_STRING = 1.0
LIBRARY_CLASS = BaseCryptLib|DXE_SMM_DRIVER SMM_CORE
#
# The following information is for reference only and not required by the build tools.
#
# VALID_ARCHITECTURES = IA32 X64
#
[Sources]
Hash/CryptMd5.c
Hash/CryptSha1.c
Hash/CryptSha256.c
Pk/CryptRsa.c
Pk/CryptPkcs7.c
SysCall/CrtWrapper.c
SysCall/RealTimeClock.c
SysCall/BaseMemAllocation.c
[Sources.Ia32]
SysCall/HelperWrapper.c
SysCall/Ia32/MathMultS64x64.c | MSFT
SysCall/Ia32/MathDivU64x64.c | MSFT
SysCall/Ia32/MathReminderU64x64.c | MSFT
SysCall/Ia32/MathLShiftS64.c | MSFT
SysCall/Ia32/MathRShiftU64.c | MSFT
SysCall/Ia32/MathMultS64x64.c | INTEL
SysCall/Ia32/MathDivU64x64.c | INTEL
SysCall/Ia32/MathReminderU64x64.c | INTEL
SysCall/Ia32/MathLShiftS64.c | INTEL
SysCall/Ia32/MathRShiftU64.c | INTEL
SysCall/Ia32/MathMultS64x64.S | GCC
SysCall/Ia32/MathDivU64x64.S | GCC
SysCall/Ia32/MathReminderU64x64.S | GCC
SysCall/Ia32/MathLShiftS64.S | GCC
SysCall/Ia32/MathRShiftU64.S | GCC
[Packages]
MdePkg/MdePkg.dec
CryptoPkg/CryptoPkg.dec
[LibraryClasses]
BaseLib
IoLib
BaseMemoryLib
MemoryAllocationLib
OpensslLib
IntrinsicLib
#
# Remove these [BuildOptions] after this library is cleaned up
#
[BuildOptions]
GCC:*_GCC44_IA32_CC_FLAGS = "-D__cdecl=__attribute__((cdecl))" "-D__declspec(t)=__attribute__((t))"

View File

@ -1,59 +0,0 @@
#------------------------------------------------------------------------------
#
# Copyright (c) 2009 - 2010, Intel Corporation. All rights reserved.<BR>
# This program and the accompanying materials
# are licensed and made available under the terms and conditions of the BSD License
# which accompanies this distribution. The full text of the license may be found at
# http://opensource.org/licenses/bsd-license.php.
#
# THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS,
# WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED.
#
# Module Name:
#
# Alloca.S
#
# Abstract:
#
# Implementation for allocation of automatically reclaimed memory, which is
# used to allocate space off the runtime stack.
# (NOTE: There is a assumption in this code that the page size equal to 4K)
#
#------------------------------------------------------------------------------
.686:
.code:
ASM_GLOBAL ASM_PFX(_alloca)
#------------------------------------------------------------------------------
#
# void __cdecl _alloca (unsigned size)
#
#------------------------------------------------------------------------------
ASM_PFX(_alloca):
pushl %ecx
cmpl $0x1000, %eax
leal 8(%esp), %ecx
jb LastPage
ProbePages:
subl $0x1000, %ecx
subl $0x1000, %eax
testl %eax, 0(%ecx)
cmpl $0x1000, %eax
jae ProbePages
LastPage:
subl %eax, %ecx
movl %esp, %eax
testl %eax, 0(%ecx)
movl %ecx, %esp
movl 0(%eax), %ecx
movl 4(%eax), %eax
pushl %eax
ret

View File

@ -0,0 +1,222 @@
/** @file
C Run-Time Libraries (CRT) Time Management Routines Wrapper Implementation
for OpenSSL-based Cryptographic Library (used in SMM).
Copyright (c) 2010, Intel Corporation. All rights reserved.<BR>
This program and the accompanying materials
are licensed and made available under the terms and conditions of the BSD License
which accompanies this distribution. The full text of the license may be found at
http://opensource.org/licenses/bsd-license.php
THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS,
WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED.
**/
#include <Library/BaseLib.h>
#include <Library/IoLib.h>
#include <OpenSslSupport.h>
#define PCAT_RTC_ADDRESS_REGISTER 0x70
#define PCAT_RTC_DATA_REGISTER 0x71
#define RTC_ADDRESS_SECONDS 0 // R/W Range 0..59
#define RTC_ADDRESS_SECONDS_ALARM 1 // R/W Range 0..59
#define RTC_ADDRESS_MINUTES 2 // R/W Range 0..59
#define RTC_ADDRESS_MINUTES_ALARM 3 // R/W Range 0..59
#define RTC_ADDRESS_HOURS 4 // R/W Range 1..12 or 0..23 Bit 7 is AM/PM
#define RTC_ADDRESS_HOURS_ALARM 5 // R/W Range 1..12 or 0..23 Bit 7 is AM/PM
#define RTC_ADDRESS_DAY_OF_THE_WEEK 6 // R/W Range 1..7
#define RTC_ADDRESS_DAY_OF_THE_MONTH 7 // R/W Range 1..31
#define RTC_ADDRESS_MONTH 8 // R/W Range 1..12
#define RTC_ADDRESS_YEAR 9 // R/W Range 0..99
#define RTC_ADDRESS_REGISTER_A 10 // R/W[0..6] R0[7]
#define RTC_ADDRESS_REGISTER_B 11 // R/W
#define RTC_ADDRESS_REGISTER_C 12 // RO
#define RTC_ADDRESS_REGISTER_D 13 // RO
#define RTC_ADDRESS_CENTURY 50 // R/W Range 19..20 Bit 8 is R/W
//
// Register A
//
typedef struct {
UINT8 RS : 4; // Rate Selection Bits
UINT8 DV : 3; // Divisor
UINT8 UIP : 1; // Update in progress
} RTC_REGISTER_A_BITS;
typedef union {
RTC_REGISTER_A_BITS Bits;
UINT8 Data;
} RTC_REGISTER_A;
//
// Register B
//
typedef struct {
UINT8 DSE : 1; // 0 - Daylight saving disabled 1 - Daylight savings enabled
UINT8 MIL : 1; // 0 - 12 hour mode 1 - 24 hour mode
UINT8 DM : 1; // 0 - BCD Format 1 - Binary Format
UINT8 SQWE : 1; // 0 - Disable SQWE output 1 - Enable SQWE output
UINT8 UIE : 1; // 0 - Update INT disabled 1 - Update INT enabled
UINT8 AIE : 1; // 0 - Alarm INT disabled 1 - Alarm INT Enabled
UINT8 PIE : 1; // 0 - Periodic INT disabled 1 - Periodic INT Enabled
UINT8 SET : 1; // 0 - Normal operation. 1 - Updates inhibited
} RTC_REGISTER_B_BITS;
typedef union {
RTC_REGISTER_B_BITS Bits;
UINT8 Data;
} RTC_REGISTER_B;
//
// -- Time Management Routines --
//
#define IsLeap(y) (((y) % 4) == 0 && (((y) % 100) != 0 || ((y) % 400) == 0))
#define SECSPERHOUR (60 * 60)
#define SECSPERDAY (24 * SECSPERHOUR)
//
// The arrays give the cumulative number of days up to the first of the
// month number used as the index (1 -> 12) for regular and leap years.
// The value at index 13 is for the whole year.
//
UINTN CumulativeDays[2][14] = {
{
0,
0,
31,
31 + 28,
31 + 28 + 31,
31 + 28 + 31 + 30,
31 + 28 + 31 + 30 + 31,
31 + 28 + 31 + 30 + 31 + 30,
31 + 28 + 31 + 30 + 31 + 30 + 31,
31 + 28 + 31 + 30 + 31 + 30 + 31 + 31,
31 + 28 + 31 + 30 + 31 + 30 + 31 + 31 + 30,
31 + 28 + 31 + 30 + 31 + 30 + 31 + 31 + 30 + 31,
31 + 28 + 31 + 30 + 31 + 30 + 31 + 31 + 30 + 31 + 30,
31 + 28 + 31 + 30 + 31 + 30 + 31 + 31 + 30 + 31 + 30 + 31
},
{
0,
0,
31,
31 + 29,
31 + 29 + 31,
31 + 29 + 31 + 30,
31 + 29 + 31 + 30 + 31,
31 + 29 + 31 + 30 + 31 + 30,
31 + 29 + 31 + 30 + 31 + 30 + 31,
31 + 29 + 31 + 30 + 31 + 30 + 31 + 31,
31 + 29 + 31 + 30 + 31 + 30 + 31 + 31 + 30,
31 + 29 + 31 + 30 + 31 + 30 + 31 + 31 + 30 + 31,
31 + 29 + 31 + 30 + 31 + 30 + 31 + 31 + 30 + 31 + 30,
31 + 29 + 31 + 30 + 31 + 30 + 31 + 31 + 30 + 31 + 30 + 31
}
};
/**
Read RTC content through its registers.
@param Address Address offset of RTC. It is recommended to use macros such as
RTC_ADDRESS_SECONDS.
@return The data of UINT8 type read from RTC.
**/
UINT8
RtcRead (
IN UINT8 Address
)
{
IoWrite8 (PCAT_RTC_ADDRESS_REGISTER, (UINT8) (Address | (UINT8) (IoRead8 (PCAT_RTC_ADDRESS_REGISTER) & BIT7)));
return IoRead8 (PCAT_RTC_DATA_REGISTER);
}
/* Get the system time as seconds elapsed since midnight, January 1, 1970. */
//INTN time(
// INTN *timer
// )
time_t time (time_t *timer)
{
UINT16 Year;
UINT8 Month;
UINT8 Day;
UINT8 Hour;
UINT8 Minute;
UINT8 Second;
UINT8 Century;
RTC_REGISTER_A RegisterA;
RTC_REGISTER_B RegisterB;
BOOLEAN IsPM;
UINT16 YearIndex;
RegisterA.Data = RtcRead (RTC_ADDRESS_REGISTER_A);
while (RegisterA.Bits.UIP == 1) {
CpuPause();
RegisterA.Data = RtcRead (RTC_ADDRESS_REGISTER_A);
}
Second = RtcRead (RTC_ADDRESS_SECONDS);
Minute = RtcRead (RTC_ADDRESS_MINUTES);
Hour = RtcRead (RTC_ADDRESS_HOURS);
Day = RtcRead (RTC_ADDRESS_DAY_OF_THE_MONTH);
Month = RtcRead (RTC_ADDRESS_MONTH);
Year = RtcRead (RTC_ADDRESS_YEAR);
Century = RtcRead (RTC_ADDRESS_CENTURY);
RegisterB.Data = RtcRead (RTC_ADDRESS_REGISTER_B);
if ((Hour & BIT7) != 0) {
IsPM = TRUE;
} else {
IsPM = FALSE;
}
Hour = (UINT8) (Hour & 0x7f);
if (RegisterB.Bits.DM == 0) {
Year = BcdToDecimal8 ((UINT8) Year);
Month = BcdToDecimal8 (Month);
Day = BcdToDecimal8 (Day);
Hour = BcdToDecimal8 (Hour);
Minute = BcdToDecimal8 (Minute);
Second = BcdToDecimal8 (Second);
}
Century = BcdToDecimal8 (Century);
Year = (UINT16) (Century * 100 + Year);
//
// If time is in 12 hour format, convert it to 24 hour format
//
if (RegisterB.Bits.MIL == 0) {
if (IsPM && Hour < 12) {
Hour = (UINT8) (Hour + 12);
}
if (!IsPM && Hour == 12) {
Hour = 0;
}
}
//
// Years Handling
// UTime should now be set to 00:00:00 on Jan 1 of the current year.
//
for (YearIndex = 1970, *timer = 0; YearIndex != Year; YearIndex++) {
*timer = *timer + (time_t)(CumulativeDays[IsLeap(YearIndex)][13] * SECSPERDAY);
}
//
// Add in number of seconds for current Month, Day, Hour, Minute, Seconds, and TimeZone adjustment
//
ASSERT (Month <= 12);
*timer = *timer +
(time_t)(CumulativeDays[IsLeap(Year)][Month] * SECSPERDAY) +
(time_t)((Day - 1) * SECSPERDAY) +
(time_t)(Hour * SECSPERHOUR) +
(time_t)(Minute * 60) +
(time_t)Second;
return *timer;
}

View File

@ -21,6 +21,7 @@
LIBRARY_CLASS = OpensslLib
OPENSSL_PATH = openssl-0.9.8l
OPENSSL_FLAGS = -DOPENSSL_SYSNAME_UWIN -DOPENSSL_SYS_UEFI -DL_ENDIAN -D_CRT_SECURE_NO_DEPRECATE -D_CRT_NONSTDC_NO_DEPRECATE -DOPENSSL_NO_CAMELLIA -DOPENSSL_NO_SEED -DOPENSSL_NO_RC5 -DOPENSSL_NO_MDC2 -DOPENSSL_NO_SOCK -DOPENSSL_NO_CMS -DOPENSSL_NO_JPAKE -DOPENSSL_NO_CAPIENG -DOPENSSL_NO_ERR -DOPENSSL_NO_KRB5 -DOPENSSL_NO_DYNAMIC_ENGINE -DGETPID_IS_MEANINGLESS -DOPENSSL_NO_STDIO -DOPENSSL_NO_FP_API -DOPENSSL_NO_DGRAM -DOPENSSL_NO_ASM
OPENSSL_EXFLAGS = -DOPENSSL_SMALL_FOOTPRINT -DOPENSSL_NO_SHA0 -DOPENSSL_NO_SHA512 -DOPENSSL_NO_LHASH -DOPENSSL_NO_HW -DOPENSSL_NO_OCSP -DOPENSSL_NO_LOCKING -DOPENSSL_NO_DEPRECATED
#
# OPENSSL_FLAGS is set to define the following flags to be compatible with
@ -574,6 +575,6 @@
DebugLib
[BuildOptions]
MSFT:*_*_*_CC_FLAGS = -U_WIN32 -U_WIN64 -U_MSC_VER $(OPENSSL_FLAGS) /WX- /GL-
INTEL:*_*_*_CC_FLAGS = -U_WIN32 -U_WIN64 -U_MSC_VER -U__ICC $(OPENSSL_FLAGS) /WX-
GCC:*_*_*_CC_FLAGS = -U_WIN32 -U_WIN64 $(OPENSSL_FLAGS) -w
MSFT:*_*_*_CC_FLAGS = -U_WIN32 -U_WIN64 -U_MSC_VER $(OPENSSL_FLAGS) $(OPENSSL_EXFLAGS) /WX- /GL-
INTEL:*_*_*_CC_FLAGS = -U_WIN32 -U_WIN64 -U_MSC_VER -U__ICC $(OPENSSL_FLAGS) $(OPENSSL_EXFLAGS) /WX-
GCC:*_*_*_CC_FLAGS = -U_WIN32 -U_WIN64 $(OPENSSL_FLAGS) $(OPENSSL_EXFLAGS) -w