NetworkPkg:Enable Http Boot over Ipv6 stack

Add new features to support Http boot over ipv6 stack.

Contributed-under: TianoCore Contribution Agreement 1.0
Signed-off-by: Zhang Lubo <lubo.zhang@intel.com>
Reviewed-by: Fu Siyuan <siyuan.fu@intel.com>
Reviewed-by: Ye Ting <ting.ye@intel.com>
Reviewed-by: Wu Jiaxin <jiaxin.wu@intel.com>

git-svn-id: https://svn.code.sf.net/p/edk2/code/trunk/edk2@18743 6f19259b-4bc3-4df7-8a09-765794883524
This commit is contained in:
Zhang Lubo 2015-11-09 03:30:42 +00:00 committed by luobozhang
parent d1c275c651
commit b659408b93
23 changed files with 5078 additions and 917 deletions

@ -54,14 +54,27 @@ HttpBootUpdateDevicePath (
Node->Ipv4.StaticIpAddress = FALSE;
CopyMem (&Node->Ipv4.GatewayIpAddress, &Private->GatewayIp, sizeof (EFI_IPv4_ADDRESS));
CopyMem (&Node->Ipv4.SubnetMask, &Private->SubnetMask, sizeof (EFI_IPv4_ADDRESS));
TmpDevicePath = AppendDevicePathNode (Private->ParentDevicePath, (EFI_DEVICE_PATH_PROTOCOL*) Node);
FreePool (Node);
if (TmpDevicePath == NULL) {
} else {
Node = AllocateZeroPool (sizeof (IPv6_DEVICE_PATH));
if (Node == NULL) {
return EFI_OUT_OF_RESOURCES;
}
} else {
ASSERT (FALSE);
Node->Ipv6.Header.Type = MESSAGING_DEVICE_PATH;
Node->Ipv6.Header.SubType = MSG_IPv6_DP;
SetDevicePathNodeLength (Node, sizeof (IPv6_DEVICE_PATH));
Node->Ipv6.PrefixLength = IP6_PREFIX_LENGTH;
Node->Ipv6.RemotePort = Private->Port;
Node->Ipv6.Protocol = EFI_IP_PROTO_TCP;
Node->Ipv6.IpAddressOrigin = 0;
CopyMem (&Node->Ipv6.LocalIpAddress, &Private->StationIp.v6, sizeof (EFI_IPv6_ADDRESS));
CopyMem (&Node->Ipv6.RemoteIpAddress, &Private->ServerIp.v6, sizeof (EFI_IPv6_ADDRESS));
CopyMem (&Node->Ipv6.GatewayIpAddress, &Private->GatewayIp.v6, sizeof (EFI_IPv6_ADDRESS));
}
TmpDevicePath = AppendDevicePathNode (Private->ParentDevicePath, (EFI_DEVICE_PATH_PROTOCOL*) Node);
FreePool (Node);
if (TmpDevicePath == NULL) {
return EFI_OUT_OF_RESOURCES;
}
//
@ -85,21 +98,39 @@ HttpBootUpdateDevicePath (
return EFI_OUT_OF_RESOURCES;
}
//
// Reinstall the device path protocol of the child handle.
//
Status = gBS->ReinstallProtocolInterface (
Private->ChildHandle,
&gEfiDevicePathProtocolGuid,
Private->DevicePath,
NewDevicePath
);
if (EFI_ERROR (Status)) {
return Status;
if (!Private->UsingIpv6) {
//
// Reinstall the device path protocol of the child handle.
//
Status = gBS->ReinstallProtocolInterface (
Private->Ip4Nic->Controller,
&gEfiDevicePathProtocolGuid,
Private->Ip4Nic->DevicePath,
NewDevicePath
);
if (EFI_ERROR (Status)) {
return Status;
}
FreePool (Private->Ip4Nic->DevicePath);
Private->Ip4Nic->DevicePath = NewDevicePath;
} else {
//
// Reinstall the device path protocol of the child handle.
//
Status = gBS->ReinstallProtocolInterface (
Private->Ip6Nic->Controller,
&gEfiDevicePathProtocolGuid,
Private->Ip6Nic->DevicePath,
NewDevicePath
);
if (EFI_ERROR (Status)) {
return Status;
}
FreePool (Private->Ip6Nic->DevicePath);
Private->Ip6Nic->DevicePath = NewDevicePath;
}
FreePool (Private->DevicePath);
Private->DevicePath = NewDevicePath;
return EFI_SUCCESS;
}
@ -113,7 +144,7 @@ HttpBootUpdateDevicePath (
**/
EFI_STATUS
HttpBootExtractUriInfo (
HttpBootDhcp4ExtractUriInfo (
IN HTTP_BOOT_PRIVATE_DATA *Private
)
{
@ -192,6 +223,159 @@ HttpBootExtractUriInfo (
return Status;
}
/**
Parse the boot file URI information from the selected Dhcp6 offer packet.
@param[in] Private The pointer to the driver's private data.
@retval EFI_SUCCESS Successfully parsed out all the boot information.
@retval Others Failed to parse out the boot information.
**/
EFI_STATUS
HttpBootDhcp6ExtractUriInfo (
IN HTTP_BOOT_PRIVATE_DATA *Private
)
{
HTTP_BOOT_DHCP6_PACKET_CACHE *SelectOffer;
HTTP_BOOT_DHCP6_PACKET_CACHE *HttpOffer;
UINT32 SelectIndex;
UINT32 ProxyIndex;
EFI_DHCP6_PACKET_OPTION *Option;
EFI_IPv6_ADDRESS IpAddr;
CHAR8 *HostName;
CHAR16 *HostNameStr;
EFI_STATUS Status;
ASSERT (Private != NULL);
ASSERT (Private->SelectIndex != 0);
SelectIndex = Private->SelectIndex - 1;
ASSERT (SelectIndex < HTTP_BOOT_OFFER_MAX_NUM);
Status = EFI_SUCCESS;
HostName = NULL;
//
// SelectOffer contains the IP address configuration and name server configuration.
// HttpOffer contains the boot file URL.
//
SelectOffer = &Private->OfferBuffer[SelectIndex].Dhcp6;
if ((SelectOffer->OfferType == HttpOfferTypeDhcpIpUri) || (SelectOffer->OfferType == HttpOfferTypeDhcpNameUriDns)) {
HttpOffer = SelectOffer;
} else {
ASSERT (Private->SelectProxyType != HttpOfferTypeMax);
ProxyIndex = Private->OfferIndex[Private->SelectProxyType][0];
HttpOffer = &Private->OfferBuffer[ProxyIndex].Dhcp6;
}
//
// Set the Local station address to IP layer.
//
Status = HttpBootSetIp6Address (Private);
if (EFI_ERROR (Status)) {
return Status;
}
//
// Configure the default DNS server if server assigned.
//
if ((SelectOffer->OfferType == HttpOfferTypeDhcpNameUriDns) || (SelectOffer->OfferType == HttpOfferTypeDhcpDns)) {
Option = SelectOffer->OptList[HTTP_BOOT_DHCP6_IDX_DNS_SERVER];
ASSERT (Option != NULL);
Status = HttpBootSetIp6Dns (
Private,
HTONS (Option->OpLen),
Option->Data
);
if (EFI_ERROR (Status)) {
return Status;
}
}
//
// Extract the HTTP server Ip frome URL. This is used to Check route table
// whether can send message to HTTP Server Ip through the GateWay.
//
Status = HttpUrlGetIp6 (
(CHAR8*) HttpOffer->OptList[HTTP_BOOT_DHCP6_IDX_BOOT_FILE_URL]->Data,
HttpOffer->UriParser,
&IpAddr
);
if (EFI_ERROR (Status)) {
//
// The Http server address is expressed by Name Ip, so perform DNS resolution
//
Status = HttpUrlGetHostName (
(CHAR8*) HttpOffer->OptList[HTTP_BOOT_DHCP6_IDX_BOOT_FILE_URL]->Data,
HttpOffer->UriParser,
&HostName
);
if (EFI_ERROR (Status)) {
return Status;
}
HostNameStr = AllocateZeroPool ((AsciiStrLen (HostName) + 1) * sizeof (CHAR16));
if (HostNameStr == NULL) {
Status = EFI_OUT_OF_RESOURCES;
goto Error;
}
AsciiStrToUnicodeStr (HostName, HostNameStr);
Status = HttpBootDns (Private, HostNameStr, &IpAddr);
FreePool (HostNameStr);
if (EFI_ERROR (Status)) {
goto Error;
}
}
CopyMem (&Private->ServerIp.v6, &IpAddr, sizeof (EFI_IPv6_ADDRESS));
//
// register the IPv6 gateway address to the network device.
//
Status = HttpBootSetIp6Gateway (Private);
if (EFI_ERROR (Status)) {
return Status;
}
//
// Extract the port from URL, and use default HTTP port 80 if not provided.
//
Status = HttpUrlGetPort (
(CHAR8*) HttpOffer->OptList[HTTP_BOOT_DHCP6_IDX_BOOT_FILE_URL]->Data,
HttpOffer->UriParser,
&Private->Port
);
if (EFI_ERROR (Status) || Private->Port == 0) {
Private->Port = 80;
}
//
// Record the URI of boot file from the selected HTTP offer.
//
Private->BootFileUriParser = HttpOffer->UriParser;
Private->BootFileUri = (CHAR8*) HttpOffer->OptList[HTTP_BOOT_DHCP6_IDX_BOOT_FILE_URL]->Data;
//
// All boot informations are valid here.
//
AsciiPrint ("\n URI: %a", Private->BootFileUri);
//
// Update the device path to include the IP and boot URI information.
//
Status = HttpBootUpdateDevicePath (Private);
Error:
if (HostName != NULL) {
FreePool (HostName);
}
return Status;
}
/**
Discover all the boot information for boot file.
@ -218,9 +402,9 @@ HttpBootDiscoverBootInfo (
}
if (!Private->UsingIpv6) {
Status = HttpBootExtractUriInfo (Private);
Status = HttpBootDhcp4ExtractUriInfo (Private);
} else {
ASSERT (FALSE);
Status = HttpBootDhcp6ExtractUriInfo (Private);
}
return Status;
@ -247,12 +431,14 @@ HttpBootCreateHttpIo (
ZeroMem (&ConfigData, sizeof (HTTP_IO_CONFIG_DATA));
if (!Private->UsingIpv6) {
ConfigData.Config4.HttpVersion = HttpVersion11;
ConfigData.Config4.HttpVersion = HttpVersion11;
ConfigData.Config4.RequestTimeOut = HTTP_BOOT_REQUEST_TIMEOUT;
IP4_COPY_ADDRESS (&ConfigData.Config4.LocalIp, &Private->StationIp.v4);
IP4_COPY_ADDRESS (&ConfigData.Config4.SubnetMask, &Private->SubnetMask.v4);
} else {
ASSERT (FALSE);
ConfigData.Config6.HttpVersion = HttpVersion11;
ConfigData.Config6.RequestTimeOut = HTTP_BOOT_REQUEST_TIMEOUT;
IP6_COPY_ADDRESS (&ConfigData.Config6.LocalIp, &Private->StationIp.v6);
}
Status = HttpIoCreateIo (

@ -151,7 +151,10 @@ HttpBootDxeComponentNameGetControllerName (
NicHandle = HttpBootGetNicByIp4Children (ControllerHandle);
if (NicHandle == NULL) {
return EFI_UNSUPPORTED;
NicHandle = HttpBootGetNicByIp6Children(ControllerHandle);
if (NicHandle == NULL) {
return EFI_UNSUPPORTED;
}
}
//

@ -319,7 +319,7 @@ HttpBootParseDhcp4Packet (
}
//
// The offer with "HttpClient" is a Http offer.
// The offer with "HTTPClient" is a Http offer.
//
Option = Options[HTTP_BOOT_DHCP4_TAG_INDEX_CLASS_ID];
if ((Option != NULL) && (Option->Length >= 9) &&
@ -461,13 +461,13 @@ HttpBootCacheDhcp4Offer (
}
/**
Select an DHCPv4 offer, and record SelectIndex and SelectProxyType.
Select an DHCPv4 or DHCP6 offer, and record SelectIndex and SelectProxyType.
@param[in] Private Pointer to HTTP boot driver private data.
**/
VOID
HttpBootSelectDhcp4Offer (
HttpBootSelectDhcpOffer (
IN HTTP_BOOT_PRIVATE_DATA *Private
)
{
@ -590,7 +590,7 @@ HttpBootDhcp4CallBack (
// Select offer according to the priority in UEFI spec, and record the SelectIndex
// and SelectProxyType.
//
HttpBootSelectDhcp4Offer (Private);
HttpBootSelectDhcpOffer (Private);
if (Private->SelectIndex == 0) {
Status = EFI_ABORTED;
@ -689,7 +689,7 @@ HttpBootRegisterIp4Dns (
**/
EFI_STATUS
HttpBootSetIpPolicy (
HttpBootSetIp4Policy (
IN HTTP_BOOT_PRIVATE_DATA *Private
)
{
@ -752,7 +752,7 @@ HttpBootDhcp4Dora (
Dhcp4 = Private->Dhcp4;
ASSERT (Dhcp4 != NULL);
Status = HttpBootSetIpPolicy (Private);
Status = HttpBootSetIp4Policy (Private);
if (EFI_ERROR (Status)) {
return Status;
}

@ -245,6 +245,17 @@ typedef struct {
EFI_DHCP4_PACKET_OPTION *OptList[HTTP_BOOT_DHCP4_TAG_INDEX_MAX];
} HTTP_BOOT_DHCP4_PACKET_CACHE;
/**
Select an DHCPv4 or DHCP6 offer, and record SelectIndex and SelectProxyType.
@param[in] Private Pointer to HTTP boot driver private data.
**/
VOID
HttpBootSelectDhcpOffer (
IN HTTP_BOOT_PRIVATE_DATA *Private
);
/**
Start the D.O.R.A DHCPv4 process to acquire the IPv4 address and other Http boot information.

@ -0,0 +1,984 @@
/** @file
Functions implementation related with DHCPv6 for HTTP boot driver.
Copyright (c) 2015, Intel Corporation. All rights reserved.<BR>
This program and the accompanying materials are licensed and made available under
the terms and conditions of the BSD License that accompanies this distribution.
The full text of the license may be found at
http://opensource.org/licenses/bsd-license.php.
THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS,
WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED.
**/
#include "HttpBootDxe.h"
/**
Build the options buffer for the DHCPv6 request packet.
@param[in] Private The pointer to HTTP BOOT driver private data.
@param[out] OptList The pointer to the option pointer array.
@param[in] Buffer The pointer to the buffer to contain the option list.
@return Index The count of the built-in options.
**/
UINT32
HttpBootBuildDhcp6Options (
IN HTTP_BOOT_PRIVATE_DATA *Private,
OUT EFI_DHCP6_PACKET_OPTION **OptList,
IN UINT8 *Buffer
)
{
HTTP_BOOT_DHCP6_OPTION_ENTRY OptEnt;
UINT16 Value;
UINT32 Index;
Index = 0;
OptList[0] = (EFI_DHCP6_PACKET_OPTION *) Buffer;
//
// Append client option request option
//
OptList[Index]->OpCode = HTONS (HTTP_BOOT_DHCP6_OPT_ORO);
OptList[Index]->OpLen = HTONS (8);
OptEnt.Oro = (HTTP_BOOT_DHCP6_OPTION_ORO *) OptList[Index]->Data;
OptEnt.Oro->OpCode[0] = HTONS(HTTP_BOOT_DHCP6_OPT_BOOT_FILE_URL);
OptEnt.Oro->OpCode[1] = HTONS(HTTP_BOOT_DHCP6_OPT_BOOT_FILE_PARAM);
OptEnt.Oro->OpCode[2] = HTONS(HTTP_BOOT_DHCP6_OPT_DNS_SERVERS);
OptEnt.Oro->OpCode[3] = HTONS(HTTP_BOOT_DHCP6_OPT_VENDOR_CLASS);
Index++;
OptList[Index] = GET_NEXT_DHCP6_OPTION (OptList[Index - 1]);
//
// Append client network device interface option
//
OptList[Index]->OpCode = HTONS (HTTP_BOOT_DHCP6_OPT_UNDI);
OptList[Index]->OpLen = HTONS ((UINT16)3);
OptEnt.Undi = (HTTP_BOOT_DHCP6_OPTION_UNDI *) OptList[Index]->Data;
if (Private->Nii != NULL) {
OptEnt.Undi->Type = Private->Nii->Type;
OptEnt.Undi->MajorVer = Private->Nii->MajorVer;
OptEnt.Undi->MinorVer = Private->Nii->MinorVer;
} else {
OptEnt.Undi->Type = DEFAULT_UNDI_TYPE;
OptEnt.Undi->MajorVer = DEFAULT_UNDI_MAJOR;
OptEnt.Undi->MinorVer = DEFAULT_UNDI_MINOR;
}
Index++;
OptList[Index] = GET_NEXT_DHCP6_OPTION (OptList[Index - 1]);
//
// Append client system architecture option
//
OptList[Index]->OpCode = HTONS (HTTP_BOOT_DHCP6_OPT_ARCH);
OptList[Index]->OpLen = HTONS ((UINT16) sizeof (HTTP_BOOT_DHCP6_OPTION_ARCH));
OptEnt.Arch = (HTTP_BOOT_DHCP6_OPTION_ARCH *) OptList[Index]->Data;
Value = HTONS (EFI_HTTP_BOOT_CLIENT_SYSTEM_ARCHITECTURE);
CopyMem (&OptEnt.Arch->Type, &Value, sizeof (UINT16));
Index++;
OptList[Index] = GET_NEXT_DHCP6_OPTION (OptList[Index - 1]);
//
// Append vendor class identify option.
//
OptList[Index]->OpCode = HTONS (HTTP_BOOT_DHCP6_OPT_VENDOR_CLASS);
OptList[Index]->OpLen = HTONS ((UINT16) sizeof (HTTP_BOOT_DHCP6_OPTION_VENDOR_CLASS));
OptEnt.VendorClass = (HTTP_BOOT_DHCP6_OPTION_VENDOR_CLASS *) OptList[Index]->Data;
OptEnt.VendorClass->Vendor = HTONL (HTTP_BOOT_DHCP6_ENTERPRISE_NUM);
OptEnt.VendorClass->ClassLen = HTONS ((UINT16) sizeof (HTTP_BOOT_CLASS_ID));
CopyMem (
&OptEnt.VendorClass->ClassId,
DEFAULT_CLASS_ID_DATA,
sizeof (HTTP_BOOT_CLASS_ID)
);
HttpBootUintnToAscDecWithFormat (
EFI_HTTP_BOOT_CLIENT_SYSTEM_ARCHITECTURE,
OptEnt.VendorClass->ClassId.ArchitectureType,
sizeof (OptEnt.VendorClass->ClassId.ArchitectureType)
);
if (Private->Nii != NULL) {
CopyMem (
OptEnt.VendorClass->ClassId.InterfaceName,
Private->Nii->StringId,
sizeof (OptEnt.VendorClass->ClassId.InterfaceName)
);
HttpBootUintnToAscDecWithFormat (
Private->Nii->MajorVer,
OptEnt.VendorClass->ClassId.UndiMajor,
sizeof (OptEnt.VendorClass->ClassId.UndiMajor)
);
HttpBootUintnToAscDecWithFormat (
Private->Nii->MinorVer,
OptEnt.VendorClass->ClassId.UndiMinor,
sizeof (OptEnt.VendorClass->ClassId.UndiMinor)
);
}
Index++;
return Index;
}
/**
Parse out a DHCPv6 option by OptTag, and find the position in buffer.
@param[in] Buffer The pointer to the option buffer.
@param[in] Length Length of the option buffer.
@param[in] OptTag The required option tag.
@retval NULL Failed to parse the required option.
@retval Others The postion of the required option in buffer.
**/
EFI_DHCP6_PACKET_OPTION *
HttpBootParseDhcp6Options (
IN UINT8 *Buffer,
IN UINT32 Length,
IN UINT16 OptTag
)
{
EFI_DHCP6_PACKET_OPTION *Option;
UINT32 Offset;
Option = (EFI_DHCP6_PACKET_OPTION *) Buffer;
Offset = 0;
//
// OpLen and OpCode here are both stored in network order.
//
while (Offset < Length) {
if (NTOHS (Option->OpCode) == OptTag) {
return Option;
}
Offset += (NTOHS(Option->OpLen) + 4);
Option = (EFI_DHCP6_PACKET_OPTION *) (Buffer + Offset);
}
return NULL;
}
/**
Parse the cached DHCPv6 packet, including all the options.
@param[in] Cache6 The pointer to a cached DHCPv6 packet.
@retval EFI_SUCCESS Parsed the DHCPv6 packet successfully.
@retval EFI_DEVICE_ERROR Failed to parse and invalid the packet.
**/
EFI_STATUS
HttpBootParseDhcp6Packet (
IN HTTP_BOOT_DHCP6_PACKET_CACHE *Cache6
)
{
EFI_DHCP6_PACKET *Offer;
EFI_DHCP6_PACKET_OPTION **Options;
EFI_DHCP6_PACKET_OPTION *Option;
HTTP_BOOT_OFFER_TYPE OfferType;
EFI_IPv6_ADDRESS IpAddr;
BOOLEAN IsProxyOffer;
BOOLEAN IsHttpOffer;
BOOLEAN IsDnsOffer;
BOOLEAN IpExpressedUri;
EFI_STATUS Status;
UINT32 Offset;
UINT32 Length;
IsDnsOffer = FALSE;
IpExpressedUri = FALSE;
IsProxyOffer = TRUE;
IsHttpOffer = FALSE;
Offer = &Cache6->Packet.Offer;
Options = Cache6->OptList;
ZeroMem (Cache6->OptList, sizeof (Cache6->OptList));
Option = (EFI_DHCP6_PACKET_OPTION *) (Offer->Dhcp6.Option);
Offset = 0;
Length = GET_DHCP6_OPTION_SIZE (Offer);
//
// OpLen and OpCode here are both stored in network order, since they are from original packet.
//
while (Offset < Length) {
if (NTOHS (Option->OpCode) == HTTP_BOOT_DHCP6_OPT_IA_NA) {
Options[HTTP_BOOT_DHCP6_IDX_IA_NA] = Option;
} else if (NTOHS (Option->OpCode) == HTTP_BOOT_DHCP6_OPT_BOOT_FILE_URL) {
//
// The server sends this option to inform the client about an URL to a boot file.
//
Options[HTTP_BOOT_DHCP6_IDX_BOOT_FILE_URL] = Option;
} else if (NTOHS (Option->OpCode) == HTTP_BOOT_DHCP6_OPT_BOOT_FILE_PARAM) {
Options[HTTP_BOOT_DHCP6_IDX_BOOT_FILE_PARAM] = Option;
} else if (NTOHS (Option->OpCode) == HTTP_BOOT_DHCP6_OPT_VENDOR_CLASS) {
Options[HTTP_BOOT_DHCP6_IDX_VENDOR_CLASS] = Option;
} else if (NTOHS (Option->OpCode) == HTTP_BOOT_DHCP6_OPT_DNS_SERVERS) {
Options[HTTP_BOOT_DHCP6_IDX_DNS_SERVER] = Option;
}
Offset += (NTOHS (Option->OpLen) + 4);
Option = (EFI_DHCP6_PACKET_OPTION *) (Offer->Dhcp6.Option + Offset);
}
//
// The offer with assigned client address is NOT a proxy offer.
// An ia_na option, embeded with valid ia_addr option and a status_code of success.
//
Option = Options[HTTP_BOOT_DHCP6_IDX_IA_NA];
if (Option != NULL) {
Option = HttpBootParseDhcp6Options (
Option->Data + 12,
NTOHS (Option->OpLen),
HTTP_BOOT_DHCP6_OPT_STATUS_CODE
);
if ((Option != NULL && Option->Data[0] == 0) || (Option == NULL)) {
IsProxyOffer = FALSE;
}
}
//
// The offer with "HTTPClient" is a Http offer.
//
Option = Options[HTTP_BOOT_DHCP6_IDX_VENDOR_CLASS];
if (Option != NULL &&
NTOHS(Option->OpLen) >= 10 &&
CompareMem (Option->Data, DEFAULT_CLASS_ID_DATA, 10) == 0) {
IsHttpOffer = TRUE;
}
//
// The offer with Domain Server is a DNS offer.
//
Option = Options[HTTP_BOOT_DHCP6_IDX_DNS_SERVER];
if (Option != NULL) {
IsDnsOffer = TRUE;
}
//
// Http offer must have a boot URI.
//
if (IsHttpOffer && Options[HTTP_BOOT_DHCP6_IDX_BOOT_FILE_URL] == NULL) {
return EFI_DEVICE_ERROR;
}
//
// Try to retrieve the IP of HTTP server from URI.
//
if (IsHttpOffer) {
Status = HttpParseUrl (
(CHAR8*) Options[HTTP_BOOT_DHCP6_IDX_BOOT_FILE_URL]->Data,
(UINT32) AsciiStrLen ((CHAR8*) Options[HTTP_BOOT_DHCP6_IDX_BOOT_FILE_URL]->Data),
FALSE,
&Cache6->UriParser
);
if (EFI_ERROR (Status)) {
return EFI_DEVICE_ERROR;
}
Status = HttpUrlGetIp6 (
(CHAR8*) Options[HTTP_BOOT_DHCP6_IDX_BOOT_FILE_URL]->Data,
Cache6->UriParser,
&IpAddr
);
IpExpressedUri = !EFI_ERROR (Status);
}
//
// Determine offer type of the DHCPv6 packet.
//
if (IsHttpOffer) {
if (IpExpressedUri) {
OfferType = IsProxyOffer ? HttpOfferTypeProxyIpUri : HttpOfferTypeDhcpIpUri;
} else {
if (!IsProxyOffer) {
OfferType = IsDnsOffer ? HttpOfferTypeDhcpNameUriDns : HttpOfferTypeDhcpNameUri;
} else {
OfferType = HttpOfferTypeProxyNameUri;
}
}
} else {
if (!IsProxyOffer) {
OfferType = IsDnsOffer ? HttpOfferTypeDhcpDns : HttpOfferTypeDhcpOnly;
} else {
return EFI_DEVICE_ERROR;
}
}
Cache6->OfferType = OfferType;
return EFI_SUCCESS;
}
/**
Cache the DHCPv6 packet.
@param[in] Dst The pointer to the cache buffer for DHCPv6 packet.
@param[in] Src The pointer to the DHCPv6 packet to be cached.
**/
VOID
HttpBootCacheDhcp6Packet (
IN EFI_DHCP6_PACKET *Dst,
IN EFI_DHCP6_PACKET *Src
)
{
ASSERT (Dst->Size >= Src->Length);
CopyMem (&Dst->Dhcp6, &Src->Dhcp6, Src->Length);
Dst->Length = Src->Length;
}
/**
Cache all the received DHCPv6 offers, and set OfferIndex and OfferCount.
@param[in] Private The pointer to HTTP_BOOT_PRIVATE_DATA.
@param[in] RcvdOffer The pointer to the received offer packet.
**/
VOID
HttpBootCacheDhcp6Offer (
IN HTTP_BOOT_PRIVATE_DATA *Private,
IN EFI_DHCP6_PACKET *RcvdOffer
)
{
HTTP_BOOT_DHCP6_PACKET_CACHE *Cache6;
EFI_DHCP6_PACKET *Offer;
HTTP_BOOT_OFFER_TYPE OfferType;
Cache6 = &Private->OfferBuffer[Private->OfferNum].Dhcp6;
Offer = &Cache6->Packet.Offer;
//
// Cache the content of DHCPv6 packet firstly.
//
HttpBootCacheDhcp6Packet(Offer, RcvdOffer);
//
// Validate the DHCPv6 packet, and parse the options and offer type.
//
if (EFI_ERROR (HttpBootParseDhcp6Packet (Cache6))) {
return ;
}
//
// Determine whether cache the current offer by type, and record OfferIndex and OfferCount.
//
OfferType = Cache6->OfferType;
ASSERT (OfferType < HttpOfferTypeMax);
ASSERT (Private->OfferCount[OfferType] < HTTP_BOOT_OFFER_MAX_NUM);
Private->OfferIndex[OfferType][Private->OfferCount[OfferType]] = Private->OfferNum;
Private->OfferCount[OfferType]++;
Private->OfferNum++;
}
/**
EFI_DHCP6_CALLBACK is provided by the consumer of the EFI DHCPv6 Protocol driver
to intercept events that occurred in the configuration process.
@param[in] This The pointer to the EFI DHCPv6 Protocol.
@param[in] Context The pointer to the context set by EFI_DHCP6_PROTOCOL.Configure().
@param[in] CurrentState The current operational state of the EFI DHCPv Protocol driver.
@param[in] Dhcp6Event The event that occurs in the current state, which usually means a
state transition.
@param[in] Packet The DHCPv6 packet that is going to be sent or was already received.
@param[out] NewPacket The packet that is used to replace the Packet above.
@retval EFI_SUCCESS Told the EFI DHCPv6 Protocol driver to continue the DHCP process.
@retval EFI_NOT_READY Only used in the Dhcp6Selecting state. The EFI DHCPv6 Protocol
driver will continue to wait for more packets.
@retval EFI_ABORTED Told the EFI DHCPv6 Protocol driver to abort the current process.
**/
EFI_STATUS
EFIAPI
HttpBootDhcp6CallBack (
IN EFI_DHCP6_PROTOCOL *This,
IN VOID *Context,
IN EFI_DHCP6_STATE CurrentState,
IN EFI_DHCP6_EVENT Dhcp6Event,
IN EFI_DHCP6_PACKET *Packet,
OUT EFI_DHCP6_PACKET **NewPacket OPTIONAL
)
{
HTTP_BOOT_PRIVATE_DATA *Private;
EFI_DHCP6_PACKET *SelectAd;
EFI_STATUS Status;
if ((Dhcp6Event != Dhcp6RcvdAdvertise) && (Dhcp6Event != Dhcp6SelectAdvertise)) {
return EFI_SUCCESS;
}
ASSERT (Packet != NULL);
Private = (HTTP_BOOT_PRIVATE_DATA *) Context;
Status = EFI_SUCCESS;
switch (Dhcp6Event) {
case Dhcp6RcvdAdvertise:
Status = EFI_NOT_READY;
if (Private->OfferNum < HTTP_BOOT_OFFER_MAX_NUM) {
//
// Cache the dhcp offers to OfferBuffer[] for select later, and record
// the OfferIndex and OfferCount.
//
HttpBootCacheDhcp6Offer (Private, Packet);
}
break;
case Dhcp6SelectAdvertise:
//
// Select offer by the default policy or by order, and record the SelectIndex
// and SelectProxyType.
//
HttpBootSelectDhcpOffer (Private);
if (Private->SelectIndex == 0) {
Status = EFI_ABORTED;
} else {
ASSERT (NewPacket != NULL);
SelectAd = &Private->OfferBuffer[Private->SelectIndex - 1].Dhcp6.Packet.Offer;
*NewPacket = AllocateZeroPool (SelectAd->Size);
ASSERT (*NewPacket != NULL);
CopyMem (*NewPacket, SelectAd, SelectAd->Size);
}
break;
default:
break;
}
return Status;
}
/**
Check whether IP driver could route the message which will be sent to ServerIp address.
This function will check the IP6 route table every 1 seconds until specified timeout is expired, if a valid
route is found in IP6 route table, the address will be filed in GatewayAddr and return.
@param[in] Private The pointer to HTTP_BOOT_PRIVATE_DATA.
@param[in] TimeOutInSecond Timeout value in seconds.
@param[out] GatewayAddr Pointer to store the gateway IP address.
@retval EFI_SUCCESS Found a valid gateway address successfully.
@retval EFI_TIMEOUT The operation is time out.
@retval Other Unexpect error happened.
**/
EFI_STATUS
HttpBootCheckRouteTable (
IN HTTP_BOOT_PRIVATE_DATA *Private,
IN UINTN TimeOutInSecond,
OUT EFI_IPv6_ADDRESS *GatewayAddr
)
{
EFI_STATUS Status;
EFI_IP6_PROTOCOL *Ip6;
EFI_IP6_MODE_DATA Ip6ModeData;
UINTN Index;
EFI_EVENT TimeOutEvt;
UINTN RetryCount;
BOOLEAN GatewayIsFound;
ASSERT (GatewayAddr != NULL);
ASSERT (Private != NULL);
Ip6 = Private->Ip6;
GatewayIsFound = FALSE;
RetryCount = 0;
TimeOutEvt = NULL;
Status = EFI_SUCCESS;
ZeroMem (GatewayAddr, sizeof (EFI_IPv6_ADDRESS));
while (TRUE) {
Status = Ip6->GetModeData (Ip6, &Ip6ModeData, NULL, NULL);
if (EFI_ERROR (Status)) {
goto ON_EXIT;
}
//
// Find out the gateway address which can route the message which send to ServerIp.
//
for (Index = 0; Index < Ip6ModeData.RouteCount; Index++) {
if (NetIp6IsNetEqual (&Private->ServerIp.v6, &Ip6ModeData.RouteTable[Index].Destination, Ip6ModeData.RouteTable[Index].PrefixLength)) {
IP6_COPY_ADDRESS (GatewayAddr, &Ip6ModeData.RouteTable[Index].Gateway);
GatewayIsFound = TRUE;
break;
}
}
if (Ip6ModeData.AddressList != NULL) {
FreePool (Ip6ModeData.AddressList);
}
if (Ip6ModeData.GroupTable != NULL) {
FreePool (Ip6ModeData.GroupTable);
}
if (Ip6ModeData.RouteTable != NULL) {
FreePool (Ip6ModeData.RouteTable);
}
if (Ip6ModeData.NeighborCache != NULL) {
FreePool (Ip6ModeData.NeighborCache);
}
if (Ip6ModeData.PrefixTable != NULL) {
FreePool (Ip6ModeData.PrefixTable);
}
if (Ip6ModeData.IcmpTypeList != NULL) {
FreePool (Ip6ModeData.IcmpTypeList);
}
if (GatewayIsFound || RetryCount == TimeOutInSecond) {
break;
}
RetryCount++;
//
// Delay 1 second then recheck it again.
//
if (TimeOutEvt == NULL) {
Status = gBS->CreateEvent (
EVT_TIMER,
TPL_CALLBACK,
NULL,
NULL,
&TimeOutEvt
);
if (EFI_ERROR (Status)) {
goto ON_EXIT;
}
}
Status = gBS->SetTimer (TimeOutEvt, TimerRelative, TICKS_PER_SECOND);
if (EFI_ERROR (Status)) {
goto ON_EXIT;
}
while (EFI_ERROR (gBS->CheckEvent (TimeOutEvt))) {
Ip6->Poll (Ip6);
}
}
ON_EXIT:
if (TimeOutEvt != NULL) {
gBS->CloseEvent (TimeOutEvt);
}
if (GatewayIsFound) {
Status = EFI_SUCCESS;
} else if (RetryCount == TimeOutInSecond) {
Status = EFI_TIMEOUT;
}
return Status;
}
/**
Set the IP6 policy to Automatic.
@param[in] Private The pointer to HTTP_BOOT_PRIVATE_DATA.
@retval EFI_SUCCESS Switch the IP policy succesfully.
@retval Others Unexpect error happened.
**/
EFI_STATUS
HttpBootSetIp6Policy (
IN HTTP_BOOT_PRIVATE_DATA *Private
)
{
EFI_IP6_CONFIG_POLICY Policy;
EFI_IP6_CONFIG_PROTOCOL *Ip6Config;
EFI_STATUS Status;
UINTN DataSize;
Ip6Config = Private->Ip6Config;
DataSize = sizeof (EFI_IP6_CONFIG_POLICY);
//
// Get and store the current policy of IP6 driver.
//
Status = Ip6Config->GetData (
Ip6Config,
Ip6ConfigDataTypePolicy,
&DataSize,
&Policy
);
if (EFI_ERROR (Status)) {
return Status;
}
if (Policy == Ip6ConfigPolicyManual) {
Policy = Ip6ConfigPolicyAutomatic;
Status = Ip6Config->SetData (
Ip6Config,
Ip6ConfigDataTypePolicy,
sizeof(EFI_IP6_CONFIG_POLICY),
&Policy
);
if (EFI_ERROR (Status)) {
return Status;
}
}
return EFI_SUCCESS;
}
/**
This function will register the default DNS addresses to the network device.
@param[in] Private The pointer to HTTP_BOOT_PRIVATE_DATA.
@param[in] DataLength Size of the buffer pointed to by DnsServerData in bytes.
@param[in] DnsServerData Point a list of DNS server address in an array
of EFI_IPv6_ADDRESS instances.
@retval EFI_SUCCESS The DNS configuration has been configured successfully.
@retval Others Failed to configure the address.
**/
EFI_STATUS
HttpBootSetIp6Dns (
IN HTTP_BOOT_PRIVATE_DATA *Private,
IN UINTN DataLength,
IN VOID *DnsServerData
)
{
EFI_IP6_CONFIG_PROTOCOL *Ip6Config;
ASSERT (Private->UsingIpv6);
Ip6Config = Private->Ip6Config;
return Ip6Config->SetData (
Ip6Config,
Ip6ConfigDataTypeDnsServer,
DataLength,
DnsServerData
);
}
/**
This function will register the IPv6 gateway address to the network device.
@param[in] Private The pointer to HTTP_BOOT_PRIVATE_DATA.
@retval EFI_SUCCESS The new IP configuration has been configured successfully.
@retval Others Failed to configure the address.
**/
EFI_STATUS
HttpBootSetIp6Gateway (
IN HTTP_BOOT_PRIVATE_DATA *Private
)
{
EFI_IP6_CONFIG_PROTOCOL *Ip6Config;
EFI_STATUS Status;
ASSERT (Private->UsingIpv6);
Ip6Config = Private->Ip6Config;
//
// Set the default gateway address.
//
if (!Private->NoGateway && !NetIp6IsUnspecifiedAddr (&Private->GatewayIp.v6)) {
Status = Ip6Config->SetData (
Ip6Config,
Ip6ConfigDataTypeGateway,
sizeof (EFI_IPv6_ADDRESS),
&Private->GatewayIp.v6
);
if (EFI_ERROR(Status)) {
return Status;
}
}
return EFI_SUCCESS;
}
/**
This function will register the station IP address.
@param[in] Private The pointer to HTTP_BOOT_PRIVATE_DATA.
@retval EFI_SUCCESS The new IP address has been configured successfully.
@retval Others Failed to configure the address.
**/
EFI_STATUS
HttpBootSetIp6Address (
IN HTTP_BOOT_PRIVATE_DATA *Private
)
{
EFI_STATUS Status;
EFI_IP6_PROTOCOL *Ip6;
EFI_IP6_CONFIG_PROTOCOL *Ip6Cfg;
EFI_IP6_CONFIG_POLICY Policy;
EFI_IP6_CONFIG_MANUAL_ADDRESS CfgAddr;
EFI_IPv6_ADDRESS *Ip6Addr;
EFI_IPv6_ADDRESS GatewayAddr;
EFI_IP6_CONFIG_DATA Ip6CfgData;
EFI_EVENT MappedEvt;
UINTN DataSize;
BOOLEAN IsAddressOk;
UINTN Index;
ASSERT (Private->UsingIpv6);
MappedEvt = NULL;
IsAddressOk = FALSE;
Ip6Addr = NULL;
Ip6Cfg = Private->Ip6Config;
Ip6 = Private->Ip6;
ZeroMem (&CfgAddr, sizeof (EFI_IP6_CONFIG_MANUAL_ADDRESS));
CopyMem (&CfgAddr, &Private->StationIp.v6, sizeof (EFI_IPv6_ADDRESS));
ZeroMem (&Ip6CfgData, sizeof (EFI_IP6_CONFIG_DATA));
Ip6CfgData.AcceptIcmpErrors = TRUE;
Ip6CfgData.DefaultProtocol = IP6_ICMP;
Ip6CfgData.HopLimit = HTTP_BOOT_DEFAULT_HOPLIMIT;
Ip6CfgData.ReceiveTimeout = HTTP_BOOT_DEFAULT_LIFETIME;
Ip6CfgData.TransmitTimeout = HTTP_BOOT_DEFAULT_LIFETIME;
Status = Ip6->Configure (Ip6, &Ip6CfgData);
if (EFI_ERROR (Status)) {
goto ON_EXIT;
}
//
// Retrieve the gateway address from IP6 route table.
//
Status = HttpBootCheckRouteTable (Private, HTTP_BOOT_IP6_ROUTE_TABLE_TIMEOUT, &GatewayAddr);
if (EFI_ERROR (Status)) {
Private->NoGateway = TRUE;
} else {
IP6_COPY_ADDRESS (&Private->GatewayIp.v6, &GatewayAddr);
}
//
// Set the new address by Ip6ConfigProtocol manually.
//
Policy = Ip6ConfigPolicyManual;
Status = Ip6Cfg->SetData (
Ip6Cfg,
Ip6ConfigDataTypePolicy,
sizeof(EFI_IP6_CONFIG_POLICY),
&Policy
);
if (EFI_ERROR (Status)) {
goto ON_EXIT;
}
//
// Create a notify event to set address flag when DAD if IP6 driver succeeded.
//
Status = gBS->CreateEvent (
EVT_NOTIFY_SIGNAL,
TPL_NOTIFY,
HttpBootCommonNotify,
&IsAddressOk,
&MappedEvt
);
if (EFI_ERROR (Status)) {
goto ON_EXIT;
}
//
// Set static host ip6 address. This is a asynchronous process.
//
Status = Ip6Cfg->RegisterDataNotify (
Ip6Cfg,
Ip6ConfigDataTypeManualAddress,
MappedEvt
);
if (EFI_ERROR(Status)) {
goto ON_EXIT;
}
Status = Ip6Cfg->SetData (
Ip6Cfg,
Ip6ConfigDataTypeManualAddress,
sizeof (EFI_IP6_CONFIG_MANUAL_ADDRESS),
&CfgAddr
);
if (EFI_ERROR (Status) && Status != EFI_NOT_READY) {
goto ON_EXIT;
} else if (Status == EFI_NOT_READY) {
//
// Poll the network until the asynchronous process is finished.
//
while (!IsAddressOk) {
Ip6->Poll (Ip6);
}
//
// Check whether the Ip6 Address setting is successed.
//
DataSize = 0;
Status = Ip6Cfg->GetData (
Ip6Cfg,
Ip6ConfigDataTypeManualAddress,
&DataSize,
NULL
);
if (Status != EFI_BUFFER_TOO_SMALL || DataSize == 0) {
Status = EFI_DEVICE_ERROR;
goto ON_EXIT;
}
Ip6Addr = AllocatePool (DataSize);
if (Ip6Addr == NULL) {
return EFI_OUT_OF_RESOURCES;
}
Status = Ip6Cfg->GetData (
Ip6Cfg,
Ip6ConfigDataTypeManualAddress,
&DataSize,
(VOID *) Ip6Addr
);
if (EFI_ERROR (Status)) {
Status = EFI_DEVICE_ERROR;
goto ON_EXIT;
}
for (Index = 0; Index < DataSize / sizeof (EFI_IPv6_ADDRESS); Index ++) {
if (CompareMem (Ip6Addr + Index, &CfgAddr, sizeof (EFI_IPv6_ADDRESS)) == 0) {
break;
}
}
if (Index == DataSize / sizeof (EFI_IPv6_ADDRESS)) {
Status = EFI_ABORTED;
goto ON_EXIT;
}
}
ON_EXIT:
if (MappedEvt != NULL) {
Ip6Cfg->UnregisterDataNotify (
Ip6Cfg,
Ip6ConfigDataTypeManualAddress,
MappedEvt
);
gBS->CloseEvent (MappedEvt);
}
if (Ip6Addr != NULL) {
FreePool (Ip6Addr);
}
return Status;
}
/**
Start the S.A.R.R DHCPv6 process to acquire the IPv6 address and other Http boot information.
@param[in] Private Pointer to HTTP_BOOT private data.
@retval EFI_SUCCESS The S.A.R.R process successfully finished.
@retval Others Failed to finish the S.A.R.R process.
**/
EFI_STATUS
HttpBootDhcp6Sarr (
IN HTTP_BOOT_PRIVATE_DATA *Private
)
{
EFI_DHCP6_PROTOCOL *Dhcp6;
EFI_DHCP6_CONFIG_DATA Config;
EFI_DHCP6_MODE_DATA Mode;
EFI_DHCP6_RETRANSMISSION *Retransmit;
EFI_DHCP6_PACKET_OPTION *OptList[HTTP_BOOT_DHCP6_OPTION_MAX_NUM];
UINT32 OptCount;
UINT8 Buffer[HTTP_BOOT_DHCP6_OPTION_MAX_SIZE];
EFI_STATUS Status;
Dhcp6 = Private->Dhcp6;
ASSERT (Dhcp6 != NULL);
//
// Build options list for the request packet.
//
OptCount = HttpBootBuildDhcp6Options (Private, OptList, Buffer);
ASSERT (OptCount >0);
Retransmit = AllocateZeroPool (sizeof (EFI_DHCP6_RETRANSMISSION));
if (Retransmit == NULL) {
return EFI_OUT_OF_RESOURCES;
}
ZeroMem (&Mode, sizeof (EFI_DHCP6_MODE_DATA));
ZeroMem (&Config, sizeof (EFI_DHCP6_CONFIG_DATA));
Config.OptionCount = OptCount;
Config.OptionList = OptList;
Config.Dhcp6Callback = HttpBootDhcp6CallBack;
Config.CallbackContext = Private;
Config.IaInfoEvent = NULL;
Config.RapidCommit = FALSE;
Config.ReconfigureAccept = FALSE;
Config.IaDescriptor.IaId = NET_RANDOM (NetRandomInitSeed ());
Config.IaDescriptor.Type = EFI_DHCP6_IA_TYPE_NA;
Config.SolicitRetransmission = Retransmit;
Retransmit->Irt = 4;
Retransmit->Mrc = 4;
Retransmit->Mrt = 32;
Retransmit->Mrd = 60;
//
// Configure the DHCPv6 instance for HTTP boot.
//
Status = Dhcp6->Configure (Dhcp6, &Config);
FreePool (Retransmit);
if (EFI_ERROR (Status)) {
goto ON_EXIT;
}
//
// Initialize the record fields for DHCPv6 offer in private data.
//
Private->OfferNum = 0;
Private->SelectIndex = 0;
ZeroMem (Private->OfferCount, sizeof (Private->OfferCount));
ZeroMem (Private->OfferIndex, sizeof (Private->OfferIndex));
//
// Start DHCPv6 S.A.R.R. process to acquire IPv6 address.
//
Status = Dhcp6->Start (Dhcp6);
if (EFI_ERROR (Status)) {
goto ON_EXIT;
}
//
// Get the acquired IPv6 address and store them.
//
Status = Dhcp6->GetModeData (Dhcp6, &Mode, NULL);
if (EFI_ERROR (Status)) {
goto ON_EXIT;
}
ASSERT (Mode.Ia->State == Dhcp6Bound);
CopyMem (&Private->StationIp.v6, &Mode.Ia->IaAddress[0].IpAddress, sizeof (EFI_IPv6_ADDRESS));
AsciiPrint ("\n Station IPv6 address is ");
HttpBootShowIp6Addr (&Private->StationIp.v6);
AsciiPrint ("\n");
ON_EXIT:
if (EFI_ERROR (Status)) {
Dhcp6->Stop (Dhcp6);
Dhcp6->Configure (Dhcp6, NULL);
} else {
ZeroMem (&Config, sizeof (EFI_DHCP6_CONFIG_DATA));
ZeroMem (&Mode, sizeof (EFI_DHCP6_MODE_DATA));
Dhcp6->Configure (Dhcp6, &Config);
}
return Status;
}

@ -0,0 +1,198 @@
/** @file
Functions declaration related with DHCPv6 for HTTP boot driver.
Copyright (c) 2015, Intel Corporation. All rights reserved.<BR>
This program and the accompanying materials are licensed and made available under
the terms and conditions of the BSD License that accompanies this distribution.
The full text of the license may be found at
http://opensource.org/licenses/bsd-license.php.
THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS,
WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED.
**/
#ifndef __EFI_HTTP_BOOT_DHCP6_H__
#define __EFI_HTTP_BOOT_DHCP6_H__
#define HTTP_BOOT_OFFER_MAX_NUM 16
#define HTTP_BOOT_DHCP6_OPTION_MAX_NUM 16
#define HTTP_BOOT_DHCP6_OPTION_MAX_SIZE 312
#define HTTP_BOOT_DHCP6_PACKET_MAX_SIZE 1472
#define HTTP_BOOT_IP6_ROUTE_TABLE_TIMEOUT 10
#define HTTP_BOOT_DEFAULT_HOPLIMIT 64
#define HTTP_BOOT_DEFAULT_LIFETIME 50000
#define HTTP_BOOT_DHCP6_OPT_CLIENT_ID 1
#define HTTP_BOOT_DHCP6_OPT_SERVER_ID 2
#define HTTP_BOOT_DHCP6_OPT_IA_NA 3
#define HTTP_BOOT_DHCP6_OPT_IA_TA 4
#define HTTP_BOOT_DHCP6_OPT_IAADDR 5
#define HTTP_BOOT_DHCP6_OPT_ORO 6
#define HTTP_BOOT_DHCP6_OPT_PREFERENCE 7
#define HTTP_BOOT_DHCP6_OPT_ELAPSED_TIME 8
#define HTTP_BOOT_DHCP6_OPT_REPLAY_MSG 9
#define HTTP_BOOT_DHCP6_OPT_AUTH 11
#define HTTP_BOOT_DHCP6_OPT_UNICAST 12
#define HTTP_BOOT_DHCP6_OPT_STATUS_CODE 13
#define HTTP_BOOT_DHCP6_OPT_RAPID_COMMIT 14
#define HTTP_BOOT_DHCP6_OPT_USER_CLASS 15
#define HTTP_BOOT_DHCP6_OPT_VENDOR_CLASS 16
#define HTTP_BOOT_DHCP6_OPT_VENDOR_OPTS 17
#define HTTP_BOOT_DHCP6_OPT_INTERFACE_ID 18
#define HTTP_BOOT_DHCP6_OPT_RECONFIG_MSG 19
#define HTTP_BOOT_DHCP6_OPT_RECONFIG_ACCEPT 20
#define HTTP_BOOT_DHCP6_OPT_DNS_SERVERS 23
#define HTTP_BOOT_DHCP6_OPT_BOOT_FILE_URL 59 // Assigned by IANA, RFC 5970
#define HTTP_BOOT_DHCP6_OPT_BOOT_FILE_PARAM 60 // Assigned by IANA, RFC 5970
#define HTTP_BOOT_DHCP6_OPT_ARCH 61 // Assigned by IANA, RFC 5970
#define HTTP_BOOT_DHCP6_OPT_UNDI 62 // Assigned by IANA, RFC 5970
#define HTTP_BOOT_DHCP6_ENTERPRISE_NUM 343 // TODO: IANA TBD: temporarily using Intel's
#define HTTP_BOOT_DHCP6_MAX_BOOT_FILE_SIZE 65535 // It's a limitation of bit length, 65535*512 bytes.
#define HTTP_BOOT_DHCP6_IDX_IA_NA 0
#define HTTP_BOOT_DHCP6_IDX_BOOT_FILE_URL 1
#define HTTP_BOOT_DHCP6_IDX_BOOT_FILE_PARAM 2
#define HTTP_BOOT_DHCP6_IDX_VENDOR_CLASS 3
#define HTTP_BOOT_DHCP6_IDX_DNS_SERVER 4
#define HTTP_BOOT_DHCP6_IDX_MAX 5
#pragma pack(1)
typedef struct {
UINT16 OpCode[256];
} HTTP_BOOT_DHCP6_OPTION_ORO;
typedef struct {
UINT8 Type;
UINT8 MajorVer;
UINT8 MinorVer;
} HTTP_BOOT_DHCP6_OPTION_UNDI;
typedef struct {
UINT16 Type;
} HTTP_BOOT_DHCP6_OPTION_ARCH;
typedef struct {
UINT8 ClassIdentifier[10];
UINT8 ArchitecturePrefix[5];
UINT8 ArchitectureType[5];
UINT8 Lit3[1];
UINT8 InterfaceName[4];
UINT8 Lit4[1];
UINT8 UndiMajor[3];
UINT8 UndiMinor[3];
} HTTP_BOOT_CLASS_ID;
typedef struct {
UINT32 Vendor;
UINT16 ClassLen;
HTTP_BOOT_CLASS_ID ClassId;
} HTTP_BOOT_DHCP6_OPTION_VENDOR_CLASS;
#pragma pack()
typedef union {
HTTP_BOOT_DHCP6_OPTION_ORO *Oro;
HTTP_BOOT_DHCP6_OPTION_UNDI *Undi;
HTTP_BOOT_DHCP6_OPTION_ARCH *Arch;
HTTP_BOOT_DHCP6_OPTION_VENDOR_CLASS *VendorClass;
} HTTP_BOOT_DHCP6_OPTION_ENTRY;
typedef union {
EFI_DHCP6_PACKET Offer;
EFI_DHCP6_PACKET Ack;
UINT8 Buffer[HTTP_BOOT_DHCP6_PACKET_MAX_SIZE];
} HTTP_BOOT_DHCP6_PACKET;
typedef struct {
HTTP_BOOT_DHCP6_PACKET Packet;
HTTP_BOOT_OFFER_TYPE OfferType;
EFI_DHCP6_PACKET_OPTION *OptList[HTTP_BOOT_DHCP6_IDX_MAX];
VOID *UriParser;
} HTTP_BOOT_DHCP6_PACKET_CACHE;
#define GET_NEXT_DHCP6_OPTION(Opt) \
(EFI_DHCP6_PACKET_OPTION *) ((UINT8 *) (Opt) + \
sizeof (EFI_DHCP6_PACKET_OPTION) + (NTOHS ((Opt)->OpLen)) - 1)
#define GET_DHCP6_OPTION_SIZE(Pkt) \
((Pkt)->Length - sizeof (EFI_DHCP6_HEADER))
/**
Start the S.A.R.R DHCPv6 process to acquire the IPv6 address and other Http boot information.
@param[in] Private Pointer to HTTP_BOOT private data.
@retval EFI_SUCCESS The S.A.R.R process successfully finished.
@retval Others Failed to finish the S.A.R.R process.
**/
EFI_STATUS
HttpBootDhcp6Sarr (
IN HTTP_BOOT_PRIVATE_DATA *Private
);
/**
Set the IP6 policy to Automatic.
@param[in] Private The pointer to HTTP_BOOT_PRIVATE_DATA.
@retval EFI_SUCCESS Switch the IP policy succesfully.
@retval Others Unexpect error happened.
**/
EFI_STATUS
HttpBootSetIp6Policy (
IN HTTP_BOOT_PRIVATE_DATA *Private
);
/**
This function will register the default DNS addresses to the network device.
@param[in] Private The pointer to HTTP_BOOT_PRIVATE_DATA.
@param[in] DataLength Size of the buffer pointed to by DnsServerData in bytes.
@param[in] DnsServerData Point a list of DNS server address in an array
of EFI_IPv6_ADDRESS instances.
@retval EFI_SUCCESS The DNS configuration has been configured successfully.
@retval Others Failed to configure the address.
**/
EFI_STATUS
HttpBootSetIp6Dns (
IN HTTP_BOOT_PRIVATE_DATA *Private,
IN UINTN DataLength,
IN VOID *DnsServerData
);
/**
This function will register the IPv6 gateway address to the network device.
@param[in] Private The pointer to HTTP_BOOT_PRIVATE_DATA.
@retval EFI_SUCCESS The new IP configuration has been configured successfully.
@retval Others Failed to configure the address.
**/
EFI_STATUS
HttpBootSetIp6Gateway (
IN HTTP_BOOT_PRIVATE_DATA *Private
);
/**
This function will register the station IP address.
@param[in] Private The pointer to HTTP_BOOT_PRIVATE_DATA.
@retval EFI_SUCCESS The new IP address has been configured successfully.
@retval Others Failed to configure the address.
**/
EFI_STATUS
HttpBootSetIp6Address (
IN HTTP_BOOT_PRIVATE_DATA *Private
);
#endif

File diff suppressed because it is too large Load Diff

@ -41,9 +41,11 @@ WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED.
//
#include <Protocol/NetworkInterfaceIdentifier.h>
#include <Protocol/Dhcp4.h>
#include <Protocol/Dhcp6.h>
#include <Protocol/Dns6.h>
#include <Protocol/Http.h>
#include <Protocol/Ip4Config2.h>
#include <Protocol/Ip6Config.h>
//
// Produced Protocols
//
@ -65,29 +67,45 @@ extern EFI_COMPONENT_NAME_PROTOCOL gHttpBootDxeComponentName;
// Private data structure
//
typedef struct _HTTP_BOOT_PRIVATE_DATA HTTP_BOOT_PRIVATE_DATA;
typedef struct _HTTP_BOOT_VIRTUAL_NIC HTTP_BOOT_VIRTUAL_NIC;
//
// Include files with internal function prototypes
//
#include "HttpBootComponentName.h"
#include "HttpBootDhcp4.h"
#include "HttpBootDhcp6.h"
#include "HttpBootImpl.h"
#include "HttpBootSupport.h"
#include "HttpBootClient.h"
typedef union {
HTTP_BOOT_DHCP4_PACKET_CACHE Dhcp4;
HTTP_BOOT_DHCP6_PACKET_CACHE Dhcp6;
} HTTP_BOOT_DHCP_PACKET_CACHE;
struct _HTTP_BOOT_VIRTUAL_NIC {
UINT32 Signature;
EFI_HANDLE Controller;
EFI_LOAD_FILE_PROTOCOL LoadFile;
EFI_DEVICE_PATH_PROTOCOL *DevicePath;
HTTP_BOOT_PRIVATE_DATA *Private;
};
struct _HTTP_BOOT_PRIVATE_DATA {
UINT32 Signature;
EFI_HANDLE Controller;
EFI_HANDLE Image;
HTTP_BOOT_VIRTUAL_NIC *Ip4Nic;
HTTP_BOOT_VIRTUAL_NIC *Ip6Nic;
//
// Cousumed children
//
EFI_HANDLE Ip6Child;
EFI_HANDLE Dhcp4Child;
EFI_HANDLE Dhcp6Child;
HTTP_IO HttpIo;
BOOLEAN HttpCreated;
@ -95,14 +113,13 @@ struct _HTTP_BOOT_PRIVATE_DATA {
// Consumed protocol
//
EFI_NETWORK_INTERFACE_IDENTIFIER_PROTOCOL *Nii;
EFI_IP6_PROTOCOL *Ip6;
EFI_IP4_CONFIG2_PROTOCOL *Ip4Config2;
EFI_IP6_CONFIG_PROTOCOL *Ip6Config;
EFI_DHCP4_PROTOCOL *Dhcp4;
EFI_DHCP6_PROTOCOL *Dhcp6;
EFI_DEVICE_PATH_PROTOCOL *ParentDevicePath;
//
// Produced children
//
EFI_HANDLE ChildHandle;
//
// Produced protocol
@ -119,10 +136,12 @@ struct _HTTP_BOOT_PRIVATE_DATA {
EFI_IP_ADDRESS StationIp;
EFI_IP_ADDRESS SubnetMask;
EFI_IP_ADDRESS GatewayIp;
EFI_IP_ADDRESS ServerIp;
UINT16 Port;
CHAR8 *BootFileUri;
VOID *BootFileUriParser;
UINTN BootFileSize;
BOOLEAN NoGateway;
//
// Cached HTTP data
@ -167,9 +186,10 @@ struct _HTTP_BOOT_PRIVATE_DATA {
};
#define HTTP_BOOT_PRIVATE_DATA_SIGNATURE SIGNATURE_32 ('H', 'B', 'P', 'D')
#define HTTP_BOOT_VIRTUAL_NIC_SIGNATURE SIGNATURE_32 ('H', 'B', 'V', 'N')
#define HTTP_BOOT_PRIVATE_DATA_FROM_LOADFILE(a) CR (a, HTTP_BOOT_PRIVATE_DATA, LoadFile, HTTP_BOOT_PRIVATE_DATA_SIGNATURE)
#define HTTP_BOOT_PRIVATE_DATA_FROM_ID(a) CR (a, HTTP_BOOT_PRIVATE_DATA, Id, HTTP_BOOT_PRIVATE_DATA_SIGNATURE)
#define HTTP_BOOT_VIRTUAL_NIC_FROM_LOADFILE(a) CR (a, HTTP_BOOT_VIRTUAL_NIC, LoadFile, HTTP_BOOT_VIRTUAL_NIC_SIGNATURE)
extern EFI_LOAD_FILE_PROTOCOL gHttpBootDxeLoadFile;
/**
@ -300,4 +320,131 @@ HttpBootIp4DxeDriverBindingStop (
IN EFI_HANDLE *ChildHandleBuffer OPTIONAL
);
/**
Tests to see if this driver supports a given controller. If a child device is provided,
it further tests to see if this driver supports creating a handle for the specified child device.
This function checks to see if the driver specified by This supports the device specified by
ControllerHandle. Drivers will typically use the device path attached to
ControllerHandle and/or the services from the bus I/O abstraction attached to
ControllerHandle to determine if the driver supports ControllerHandle. This function
may be called many times during platform initialization. In order to reduce boot times, the tests
performed by this function must be very small, and take as little time as possible to execute. This
function must not change the state of any hardware devices, and this function must be aware that the
device specified by ControllerHandle may already be managed by the same driver or a
different driver. This function must match its calls to AllocatePages() with FreePages(),
AllocatePool() with FreePool(), and OpenProtocol() with CloseProtocol().
Because ControllerHandle may have been previously started by the same driver, if a protocol is
already in the opened state, then it must not be closed with CloseProtocol(). This is required
to guarantee the state of ControllerHandle is not modified by this function.
@param[in] This A pointer to the EFI_DRIVER_BINDING_PROTOCOL instance.
@param[in] ControllerHandle The handle of the controller to test. This handle
must support a protocol interface that supplies
an I/O abstraction to the driver.
@param[in] RemainingDevicePath A pointer to the remaining portion of a device path. This
parameter is ignored by device drivers, and is optional for bus
drivers. For bus drivers, if this parameter is not NULL, then
the bus driver must determine if the bus controller specified
by ControllerHandle and the child controller specified
by RemainingDevicePath are both supported by this
bus driver.
@retval EFI_SUCCESS The device specified by ControllerHandle and
RemainingDevicePath is supported by the driver specified by This.
@retval EFI_ALREADY_STARTED The device specified by ControllerHandle and
RemainingDevicePath is already being managed by the driver
specified by This.
@retval EFI_ACCESS_DENIED The device specified by ControllerHandle and
RemainingDevicePath is already being managed by a different
driver or an application that requires exclusive access.
Currently not implemented.
@retval EFI_UNSUPPORTED The device specified by ControllerHandle and
RemainingDevicePath is not supported by the driver specified by This.
**/
EFI_STATUS
EFIAPI
HttpBootIp6DxeDriverBindingSupported (
IN EFI_DRIVER_BINDING_PROTOCOL *This,
IN EFI_HANDLE ControllerHandle,
IN EFI_DEVICE_PATH_PROTOCOL *RemainingDevicePath OPTIONAL
);
/**
Starts a device controller or a bus controller.
The Start() function is designed to be invoked from the EFI boot service ConnectController().
As a result, much of the error checking on the parameters to Start() has been moved into this
common boot service. It is legal to call Start() from other locations,
but the following calling restrictions must be followed, or the system behavior will not be deterministic.
1. ControllerHandle must be a valid EFI_HANDLE.
2. If RemainingDevicePath is not NULL, then it must be a pointer to a naturally aligned
EFI_DEVICE_PATH_PROTOCOL.
3. Prior to calling Start(), the Supported() function for the driver specified by This must
have been called with the same calling parameters, and Supported() must have returned EFI_SUCCESS.
@param[in] This A pointer to the EFI_DRIVER_BINDING_PROTOCOL instance.
@param[in] ControllerHandle The handle of the controller to start. This handle
must support a protocol interface that supplies
an I/O abstraction to the driver.
@param[in] RemainingDevicePath A pointer to the remaining portion of a device path. This
parameter is ignored by device drivers, and is optional for bus
drivers. For a bus driver, if this parameter is NULL, then handles
for all the children of Controller are created by this driver.
If this parameter is not NULL and the first Device Path Node is
not the End of Device Path Node, then only the handle for the
child device specified by the first Device Path Node of
RemainingDevicePath is created by this driver.
If the first Device Path Node of RemainingDevicePath is
the End of Device Path Node, no child handle is created by this
driver.
@retval EFI_SUCCESS The device was started.
@retval EFI_DEVICE_ERROR The device could not be started due to a device error.Currently not implemented.
@retval EFI_OUT_OF_RESOURCES The request could not be completed due to a lack of resources.
@retval Others The driver failded to start the device.
**/
EFI_STATUS
EFIAPI
HttpBootIp6DxeDriverBindingStart (
IN EFI_DRIVER_BINDING_PROTOCOL *This,
IN EFI_HANDLE ControllerHandle,
IN EFI_DEVICE_PATH_PROTOCOL *RemainingDevicePath OPTIONAL
);
/**
Stops a device controller or a bus controller.
The Stop() function is designed to be invoked from the EFI boot service DisconnectController().
As a result, much of the error checking on the parameters to Stop() has been moved
into this common boot service. It is legal to call Stop() from other locations,
but the following calling restrictions must be followed, or the system behavior will not be deterministic.
1. ControllerHandle must be a valid EFI_HANDLE that was used on a previous call to this
same driver's Start() function.
2. The first NumberOfChildren handles of ChildHandleBuffer must all be a valid
EFI_HANDLE. In addition, all of these handles must have been created in this driver's
Start() function, and the Start() function must have called OpenProtocol() on
ControllerHandle with an Attribute of EFI_OPEN_PROTOCOL_BY_CHILD_CONTROLLER.
@param[in] This A pointer to the EFI_DRIVER_BINDING_PROTOCOL instance.
@param[in] ControllerHandle A handle to the device being stopped. The handle must
support a bus specific I/O protocol for the driver
to use to stop the device.
@param[in] NumberOfChildren The number of child device handles in ChildHandleBuffer.
@param[in] ChildHandleBuffer An array of child handles to be freed. May be NULL
if NumberOfChildren is 0.
@retval EFI_SUCCESS The device was stopped.
@retval EFI_DEVICE_ERROR The device could not be stopped due to a device error.
**/
EFI_STATUS
EFIAPI
HttpBootIp6DxeDriverBindingStop (
IN EFI_DRIVER_BINDING_PROTOCOL *This,
IN EFI_HANDLE ControllerHandle,
IN UINTN NumberOfChildren,
IN EFI_HANDLE *ChildHandleBuffer OPTIONAL
);
#endif

@ -35,6 +35,8 @@
HttpBootImpl.c
HttpBootDhcp4.h
HttpBootDhcp4.c
HttpBootDhcp6.h
HttpBootDhcp6.c
HttpBootSupport.h
HttpBootSupport.c
HttpBootClient.h
@ -62,6 +64,13 @@
gEfiDhcp4ServiceBindingProtocolGuid ## TO_START
gEfiDhcp4ProtocolGuid ## TO_START
gEfiIp4Config2ProtocolGuid ## TO_START
gEfiDhcp6ServiceBindingProtocolGuid ## TO_START
gEfiDhcp6ProtocolGuid ## TO_START
gEfiDns6ServiceBindingProtocolGuid ## SOMETIMES_CONSUMES
gEfiDns6ProtocolGuid ## SOMETIMES_CONSUMES
gEfiIp6ServiceBindingProtocolGuid ## TO_START
gEfiIp6ProtocolGuid ## TO_START
gEfiIp6ConfigProtocolGuid ## TO_START
gEfiNetworkInterfaceIdentifierProtocolGuid_31 ## SOMETIMES_CONSUMES
[UserExtensions.TianoCore."ExtraFiles"]

Binary file not shown.

@ -18,6 +18,9 @@ WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED.
Enable the use of UEFI HTTP boot function.
@param[in] Private The pointer to the driver's private data.
@param[in] UsingIpv6 Specifies the type of IP addresses that are to be
used during the session that is being started.
Set to TRUE for IPv6, and FALSE for IPv4.
@retval EFI_SUCCESS HTTP boot was successfully enabled.
@retval EFI_INVALID_PARAMETER Private is NULL.
@ -26,10 +29,12 @@ WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED.
**/
EFI_STATUS
HttpBootStart (
IN HTTP_BOOT_PRIVATE_DATA *Private
IN HTTP_BOOT_PRIVATE_DATA *Private,
IN BOOLEAN UsingIpv6
)
{
UINTN Index;
UINTN Index;
EFI_STATUS Status;
if (Private == NULL) {
return EFI_INVALID_PARAMETER;
@ -39,25 +44,47 @@ HttpBootStart (
return EFI_ALREADY_STARTED;
}
//
// Detect whether using ipv6 or not, and set it to the private data.
//
if (UsingIpv6 && Private->Ip6Nic != NULL) {
Private->UsingIpv6 = TRUE;
} else if (!UsingIpv6 && Private->Ip4Nic != NULL) {
Private->UsingIpv6 = FALSE;
} else {
return EFI_UNSUPPORTED;
}
//
// Init the content of cached DHCP offer list.
//
ZeroMem (Private->OfferBuffer, sizeof (Private->OfferBuffer));
if (!Private->UsingIpv6) {
//
// Init the content of cached DHCP offer list.
//
ZeroMem (Private->OfferBuffer, sizeof (Private->OfferBuffer));
for (Index = 0; Index < HTTP_BOOT_OFFER_MAX_NUM; Index++) {
Private->OfferBuffer[Index].Dhcp4.Packet.Offer.Size = HTTP_BOOT_DHCP4_PACKET_MAX_SIZE;
}
} else {
ASSERT (FALSE);
for (Index = 0; Index < HTTP_BOOT_OFFER_MAX_NUM; Index++) {
Private->OfferBuffer[Index].Dhcp6.Packet.Offer.Size = HTTP_BOOT_DHCP6_PACKET_MAX_SIZE;
}
}
if (Private->UsingIpv6) {
//
// Set Ip6 policy to Automatic to start the Ip6 router discovery.
//
Status = HttpBootSetIp6Policy (Private);
if (EFI_ERROR (Status)) {
return Status;
}
}
Private->Started = TRUE;
return EFI_SUCCESS;
}
/**
Attempt to complete a DHCPv4 D.O.R.A sequence to retrieve the boot resource information.
Attempt to complete a DHCPv4 D.O.R.A or DHCPv6 S.R.A.A sequence to retrieve the boot resource information.
@param[in] Private The pointer to the driver's private data.
@ -86,9 +113,15 @@ HttpBootDhcp (
Status = EFI_DEVICE_ERROR;
if (!Private->UsingIpv6) {
//
// Start D.O.R.A process to get a IPv4 address and other boot information.
//
Status = HttpBootDhcp4Dora (Private);
} else {
ASSERT (FALSE);
//
// Start S.A.R.R process to get a IPv6 address and other boot information.
//
Status = HttpBootDhcp6Sarr (Private);
}
return Status;
@ -241,7 +274,7 @@ HttpBootStop (
Private->BootFileUriParser = NULL;
Private->BootFileSize = 0;
Private->SelectIndex = 0;
Private->SelectProxyType = HttpOfferTypeMax;
Private->SelectProxyType = HttpOfferTypeMax;
if (!Private->UsingIpv6) {
//
@ -256,7 +289,17 @@ HttpBootStop (
}
}
} else {
ASSERT (FALSE);
//
// Stop and release the DHCP6 child.
//
Private->Dhcp6->Stop (Private->Dhcp6);
Private->Dhcp6->Configure (Private->Dhcp6, NULL);
for (Index = 0; Index < HTTP_BOOT_OFFER_MAX_NUM; Index++) {
if (Private->OfferBuffer[Index].Dhcp6.UriParser) {
HttpUrlFreeParser (Private->OfferBuffer[Index].Dhcp6.UriParser);
}
}
}
ZeroMem (Private->OfferBuffer, sizeof (Private->OfferBuffer));
@ -309,7 +352,9 @@ HttpBootDxeLoadFile (
)
{
HTTP_BOOT_PRIVATE_DATA *Private;
HTTP_BOOT_VIRTUAL_NIC *VirtualNic;
BOOLEAN MediaPresent;
BOOLEAN UsingIpv6;
EFI_STATUS Status;
if (This == NULL || BufferSize == NULL) {
@ -323,8 +368,10 @@ HttpBootDxeLoadFile (
return EFI_UNSUPPORTED;
}
Private = HTTP_BOOT_PRIVATE_DATA_FROM_LOADFILE (This);
VirtualNic = HTTP_BOOT_VIRTUAL_NIC_FROM_LOADFILE (This);
Private = VirtualNic->Private;
UsingIpv6 = FALSE;
//
// Check media status before HTTP boot start
//
@ -334,10 +381,26 @@ HttpBootDxeLoadFile (
return EFI_NO_MEDIA;
}
//
// Check whether the virtual nic is using IPv6 or not.
//
if (VirtualNic == Private->Ip6Nic) {
UsingIpv6 = TRUE;
}
//
// Initialize HTTP boot and load the boot file.
//
Status = HttpBootStart (Private);
Status = HttpBootStart (Private, UsingIpv6);
if (Status == EFI_ALREADY_STARTED && UsingIpv6 != Private->UsingIpv6) {
//
// Http boot Driver has already been started but not on the required IP version, restart it.
//
Status = HttpBootStop (Private);
if (!EFI_ERROR (Status)) {
Status = HttpBootStart (Private, UsingIpv6);
}
}
if (Status == EFI_SUCCESS || Status == EFI_ALREADY_STARTED) {
Status = HttpBootLoadFile (Private, BufferSize, Buffer);
}
@ -345,11 +408,19 @@ HttpBootDxeLoadFile (
if (Status != EFI_SUCCESS && Status != EFI_BUFFER_TOO_SMALL) {
HttpBootStop (Private);
} else {
//
// Stop and release the DHCP4 child.
//
Private->Dhcp4->Stop (Private->Dhcp4);
Private->Dhcp4->Configure (Private->Dhcp4, NULL);
if (!Private->UsingIpv6) {
//
// Stop and release the DHCP4 child.
//
Private->Dhcp4->Stop (Private->Dhcp4);
Private->Dhcp4->Configure (Private->Dhcp4, NULL);
} else {
//
// Stop and release the DHCP6 child.
//
Private->Dhcp6->Stop (Private->Dhcp6);
Private->Dhcp6->Configure (Private->Dhcp6, NULL);
}
}
return Status;

@ -15,7 +15,7 @@ WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED.
#define __EFI_HTTP_BOOT_IMPL_H__
/**
Attempt to complete a DHCPv4 D.O.R.A sequence to retrieve the boot resource information.
Attempt to complete a DHCPv4 D.O.R.A or DHCPv6 S.R.A.A sequence to retrieve the boot resource information.
@param[in] Private The pointer to the driver's private data.

@ -42,6 +42,31 @@ HttpBootGetNicByIp4Children (
return NicHandle;
}
/**
Get the Nic handle using any child handle in the IPv6 stack.
@param[in] ControllerHandle Pointer to child handle over IPv6.
@return NicHandle The pointer to the Nic handle.
@return NULL Can't find the Nic handle.
**/
EFI_HANDLE
HttpBootGetNicByIp6Children (
IN EFI_HANDLE ControllerHandle
)
{
EFI_HANDLE NicHandle;
NicHandle = NetLibGetNicHandle (ControllerHandle, &gEfiHttpProtocolGuid);
if (NicHandle == NULL) {
NicHandle = NetLibGetNicHandle (ControllerHandle, &gEfiDhcp6ProtocolGuid);
if (NicHandle == NULL) {
return NULL;
}
}
return NicHandle;
}
/**
This function is to convert UINTN to ASCII string with the required formatting.
@ -89,6 +114,242 @@ HttpBootShowIp4Addr (
}
}
/**
This function is to display the IPv6 address.
@param[in] Ip The pointer to the IPv6 address.
**/
VOID
HttpBootShowIp6Addr (
IN EFI_IPv6_ADDRESS *Ip
)
{
UINTN Index;
for (Index = 0; Index < 16; Index++) {
if (Ip->Addr[Index] != 0) {
AsciiPrint ("%x", Ip->Addr[Index]);
}
Index++;
if (Index > 15) {
return;
}
if (((Ip->Addr[Index] & 0xf0) == 0) && (Ip->Addr[Index - 1] != 0)) {
AsciiPrint ("0");
}
AsciiPrint ("%x", Ip->Addr[Index]);
if (Index < 15) {
AsciiPrint (":");
}
}
}
/**
Notify the callback function when an event is triggered.
@param[in] Event The triggered event.
@param[in] Context The opaque parameter to the function.
**/
VOID
EFIAPI
HttpBootCommonNotify (
IN EFI_EVENT Event,
IN VOID *Context
)
{
*((BOOLEAN *) Context) = TRUE;
}
/**
Retrieve the host address using the EFI_DNS6_PROTOCOL.
@param[in] Private The pointer to the driver's private data.
@param[in] HostName Pointer to buffer containing hostname.
@param[out] IpAddress On output, pointer to buffer containing IPv6 address.
@retval EFI_SUCCESS Operation succeeded.
@retval EFI_DEVICE_ERROR An unexpected network error occurred.
@retval Others Other errors as indicated.
**/
EFI_STATUS
HttpBootDns (
IN HTTP_BOOT_PRIVATE_DATA *Private,
IN CHAR16 *HostName,
OUT EFI_IPv6_ADDRESS *IpAddress
)
{
EFI_STATUS Status;
EFI_DNS6_PROTOCOL *Dns6;
EFI_DNS6_CONFIG_DATA Dns6ConfigData;
EFI_DNS6_COMPLETION_TOKEN Token;
EFI_HANDLE Dns6Handle;
EFI_IP6_CONFIG_PROTOCOL *Ip6Config;
EFI_IPv6_ADDRESS *DnsServerList;
UINTN DnsServerListCount;
UINTN DataSize;
BOOLEAN IsDone;
DnsServerList = NULL;
DnsServerListCount = 0;
Dns6 = NULL;
Dns6Handle = NULL;
ZeroMem (&Token, sizeof (EFI_DNS6_COMPLETION_TOKEN));
//
// Get DNS server list from EFI IPv6 Configuration protocol.
//
Status = gBS->HandleProtocol (Private->Controller, &gEfiIp6ConfigProtocolGuid, (VOID **) &Ip6Config);
if (!EFI_ERROR (Status)) {
//
// Get the required size.
//
DataSize = 0;
Status = Ip6Config->GetData (Ip6Config, Ip6ConfigDataTypeDnsServer, &DataSize, NULL);
if (Status == EFI_BUFFER_TOO_SMALL) {
DnsServerList = AllocatePool (DataSize);
if (DnsServerList == NULL) {
return EFI_OUT_OF_RESOURCES;
}
Status = Ip6Config->GetData (Ip6Config, Ip6ConfigDataTypeDnsServer, &DataSize, DnsServerList);
if (EFI_ERROR (Status)) {
FreePool (DnsServerList);
DnsServerList = NULL;
} else {
DnsServerListCount = DataSize / sizeof (EFI_IPv6_ADDRESS);
}
}
}
//
// Create a DNSv6 child instance and get the protocol.
//
Status = NetLibCreateServiceChild (
Private->Controller,
Private->Image,
&gEfiDns6ServiceBindingProtocolGuid,
&Dns6Handle
);
if (EFI_ERROR (Status)) {
goto Exit;
}
Status = gBS->OpenProtocol (
Dns6Handle,
&gEfiDns6ProtocolGuid,
(VOID **) &Dns6,
Private->Image,
Private->Controller,
EFI_OPEN_PROTOCOL_BY_DRIVER
);
if (EFI_ERROR (Status)) {
goto Exit;
}
//
// Configure DNS6 instance for the DNS server address and protocol.
//
ZeroMem (&Dns6ConfigData, sizeof (EFI_DNS6_CONFIG_DATA));
Dns6ConfigData.DnsServerCount = (UINT32)DnsServerListCount;
Dns6ConfigData.DnsServerList = DnsServerList;
Dns6ConfigData.EnableDnsCache = TRUE;
Dns6ConfigData.Protocol = EFI_IP_PROTO_UDP;
IP6_COPY_ADDRESS (&Dns6ConfigData.StationIp,&Private->StationIp.v6);
Status = Dns6->Configure (
Dns6,
&Dns6ConfigData
);
if (EFI_ERROR (Status)) {
goto Exit;
}
Token.Status = EFI_NOT_READY;
IsDone = FALSE;
//
// Create event to set the IsDone flag when name resolution is finished.
//
Status = gBS->CreateEvent (
EVT_NOTIFY_SIGNAL,
TPL_NOTIFY,
HttpBootCommonNotify,
&IsDone,
&Token.Event
);
if (EFI_ERROR (Status)) {
goto Exit;
}
//
// Start asynchronous name resolution.
//
Status = Dns6->HostNameToIp (Dns6, HostName, &Token);
if (EFI_ERROR (Status)) {
goto Exit;
}
while (!IsDone) {
Dns6->Poll (Dns6);
}
//
// Name resolution is done, check result.
//
Status = Token.Status;
if (!EFI_ERROR (Status)) {
if (Token.RspData.H2AData == NULL) {
Status = EFI_DEVICE_ERROR;
goto Exit;
}
if (Token.RspData.H2AData->IpCount == 0 || Token.RspData.H2AData->IpList == NULL) {
Status = EFI_DEVICE_ERROR;
goto Exit;
}
//
// We just return the first IPv6 address from DNS protocol.
//
IP6_COPY_ADDRESS (IpAddress, Token.RspData.H2AData->IpList);
Status = EFI_SUCCESS;
}
Exit:
if (Token.Event != NULL) {
gBS->CloseEvent (Token.Event);
}
if (Token.RspData.H2AData != NULL) {
if (Token.RspData.H2AData->IpList != NULL) {
FreePool (Token.RspData.H2AData->IpList);
}
FreePool (Token.RspData.H2AData);
}
if (Dns6 != NULL) {
Dns6->Configure (Dns6, NULL);
gBS->CloseProtocol (
Dns6Handle,
&gEfiDns6ProtocolGuid,
Private->Image,
Private->Controller
);
}
if (Dns6Handle != NULL) {
NetLibDestroyServiceChild (
Private->Controller,
Private->Image,
&gEfiDns6ServiceBindingProtocolGuid,
Dns6Handle
);
}
if (DnsServerList != NULL) {
FreePool (DnsServerList);
}
return Status;
}
/**
Create a HTTP_IO_HEADER to hold the HTTP header items.
@ -100,7 +361,7 @@ HttpBootShowIp4Addr (
HTTP_IO_HEADER *
HttpBootCreateHeader (
UINTN MaxHeaderCount
)
)
{
HTTP_IO_HEADER *HttpIoHeader;
@ -254,23 +515,6 @@ HttpBootSetHeader (
return EFI_SUCCESS;
}
/**
Notify the callback function when an event is triggered.
@param[in] Event The triggered event.
@param[in] Context The opaque parameter to the function.
**/
VOID
EFIAPI
HttpIoCommonNotify (
IN EFI_EVENT Event,
IN VOID *Context
)
{
*((BOOLEAN *) Context) = TRUE;
}
/**
Create a HTTP_IO to access the HTTP service. It will create and configure
a HTTP child handle.
@ -301,6 +545,7 @@ HttpIoCreateIo (
EFI_STATUS Status;
EFI_HTTP_CONFIG_DATA HttpConfigData;
EFI_HTTPv4_ACCESS_POINT Http4AccessPoint;
EFI_HTTPv6_ACCESS_POINT Http6AccessPoint;
EFI_HTTP_PROTOCOL *Http;
EFI_EVENT Event;
@ -359,7 +604,10 @@ HttpIoCreateIo (
IP4_COPY_ADDRESS (&Http4AccessPoint.LocalSubnet, &ConfigData->Config4.SubnetMask);
HttpConfigData.AccessPoint.IPv4Node = &Http4AccessPoint;
} else {
ASSERT (FALSE);
HttpConfigData.LocalAddressIsIPv6 = TRUE;
Http6AccessPoint.LocalPort = ConfigData->Config6.LocalPort;
IP6_COPY_ADDRESS (&Http6AccessPoint.LocalAddress, &ConfigData->Config6.LocalIp);
HttpConfigData.AccessPoint.IPv6Node = &Http6AccessPoint;
}
Status = Http->Configure (Http, &HttpConfigData);
@ -373,7 +621,7 @@ HttpIoCreateIo (
Status = gBS->CreateEvent (
EVT_NOTIFY_SIGNAL,
TPL_NOTIFY,
HttpIoCommonNotify,
HttpBootCommonNotify,
&HttpIo->IsTxDone,
&Event
);
@ -386,7 +634,7 @@ HttpIoCreateIo (
Status = gBS->CreateEvent (
EVT_NOTIFY_SIGNAL,
TPL_NOTIFY,
HttpIoCommonNotify,
HttpBootCommonNotify,
&HttpIo->IsRxDone,
&Event
);
@ -579,7 +827,7 @@ HttpIoRecvResponse (
//
// Store the received data into the wrapper.
//
Status = HttpIo->ReqToken.Status;
Status = HttpIo->RspToken.Status;
if (!EFI_ERROR (Status)) {
ResponseData->HeaderCount = HttpIo->RspToken.Message->HeaderCount;
ResponseData->Headers = HttpIo->RspToken.Message->Headers;

@ -29,6 +29,20 @@ HttpBootGetNicByIp4Children (
IN EFI_HANDLE ControllerHandle
);
/**
Get the Nic handle using any child handle in the IPv6 stack.
@param[in] ControllerHandle Pointer to child handle over IPv6.
@return NicHandle The pointer to the Nic handle.
@return NULL Can't find the Nic handle.
**/
EFI_HANDLE
HttpBootGetNicByIp6Children (
IN EFI_HANDLE ControllerHandle
);
/**
This function is to convert UINTN to ASCII string with the required formatting.
@ -56,6 +70,17 @@ HttpBootShowIp4Addr (
IN EFI_IPv4_ADDRESS *Ip
);
/**
This function is to display the IPv6 address.
@param[in] Ip The pointer to the IPv6 address.
**/
VOID
HttpBootShowIp6Addr (
IN EFI_IPv6_ADDRESS *Ip
);
//
// A wrapper structure to hold the HTTP headers.
//
@ -122,11 +147,24 @@ typedef struct {
UINT16 LocalPort;
} HTTP4_IO_CONFIG_DATA;
//
// HTTP_IO configuration data for IPv6
//
typedef struct {
EFI_HTTP_VERSION HttpVersion;
UINT32 RequestTimeOut; // In milliseconds.
BOOLEAN UseDefaultAddress;
EFI_IPv6_ADDRESS LocalIp;
UINT16 LocalPort;
} HTTP6_IO_CONFIG_DATA;
//
// HTTP_IO configuration
//
typedef union {
HTTP4_IO_CONFIG_DATA Config4;
HTTP6_IO_CONFIG_DATA Config6;
} HTTP_IO_CONFIG_DATA;
//
@ -160,6 +198,38 @@ typedef struct {
CHAR8 *Body;
} HTTP_IO_RESOPNSE_DATA;
/**
Retrieve the host address using the EFI_DNS6_PROTOCOL.
@param[in] Private The pointer to the driver's private data.
@param[in] HostName Pointer to buffer containing hostname.
@param[out] IpAddress On output, pointer to buffer containing IPv6 address.
@retval EFI_SUCCESS Operation succeeded.
@retval EFI_DEVICE_ERROR An unexpected network error occurred.
@retval Others Other errors as indicated.
**/
EFI_STATUS
HttpBootDns (
IN HTTP_BOOT_PRIVATE_DATA *Private,
IN CHAR16 *HostName,
OUT EFI_IPv6_ADDRESS *IpAddress
);
/**
Notify the callback function when an event is triggered.
@param[in] Event The triggered event.
@param[in] Context The opaque parameter to the function.
**/
VOID
EFIAPI
HttpBootCommonNotify (
IN EFI_EVENT Event,
IN VOID *Context
);
/**
Create a HTTP_IO to access the HTTP service. It will create and configure
a HTTP child handle.

@ -194,11 +194,11 @@ Exit:
Dns4->Configure (Dns4, NULL);
gBS->CloseProtocol (
Dns4Handle,
&gEfiDns4ProtocolGuid,
Service->ImageHandle,
Service->ControllerHandle
);
Dns4Handle,
&gEfiDns4ProtocolGuid,
Service->ImageHandle,
Service->ControllerHandle
);
}
if (Dns4Handle != NULL) {
@ -216,3 +216,200 @@ Exit:
return Status;
}
/**
Retrieve the host address using the EFI_DNS6_PROTOCOL.
@param[in] HttpInstance Pointer to HTTP_PROTOCOL instance.
@param[in] HostName Pointer to buffer containing hostname.
@param[out] IpAddress On output, pointer to buffer containing IPv6 address.
@retval EFI_SUCCESS Operation succeeded.
@retval EFI_OUT_OF_RESOURCES Failed to allocate needed resources.
@retval EFI_DEVICE_ERROR An unexpected network error occurred.
@retval Others Other errors as indicated.
**/
EFI_STATUS
HttpDns6 (
IN HTTP_PROTOCOL *HttpInstance,
IN CHAR16 *HostName,
OUT EFI_IPv6_ADDRESS *IpAddress
)
{
EFI_STATUS Status;
HTTP_SERVICE *Service;
EFI_DNS6_PROTOCOL *Dns6;
EFI_DNS6_CONFIG_DATA Dns6ConfigData;
EFI_DNS6_COMPLETION_TOKEN Token;
EFI_HANDLE Dns6Handle;
EFI_IP6_CONFIG_PROTOCOL *Ip6Config;
EFI_IPv6_ADDRESS *DnsServerList;
UINTN DnsServerListCount;
UINTN DataSize;
BOOLEAN IsDone;
Service = HttpInstance->Service;
ASSERT (Service != NULL);
DnsServerList = NULL;
DnsServerListCount = 0;
Dns6 = NULL;
Dns6Handle = NULL;
ZeroMem (&Token, sizeof (EFI_DNS6_COMPLETION_TOKEN));
//
// Get DNS server list from EFI IPv6 Configuration protocol.
//
Status = gBS->HandleProtocol (Service->ControllerHandle, &gEfiIp6ConfigProtocolGuid, (VOID **) &Ip6Config);
if (!EFI_ERROR (Status)) {
//
// Get the required size.
//
DataSize = 0;
Status = Ip6Config->GetData (Ip6Config, Ip6ConfigDataTypeDnsServer, &DataSize, NULL);
if (Status == EFI_BUFFER_TOO_SMALL) {
DnsServerList = AllocatePool (DataSize);
if (DnsServerList == NULL) {
return EFI_OUT_OF_RESOURCES;
}
Status = Ip6Config->GetData (Ip6Config, Ip6ConfigDataTypeDnsServer, &DataSize, DnsServerList);
if (EFI_ERROR (Status)) {
FreePool (DnsServerList);
DnsServerList = NULL;
} else {
DnsServerListCount = DataSize / sizeof (EFI_IPv6_ADDRESS);
}
}
}
//
// Create a DNSv6 child instance and get the protocol.
//
Status = NetLibCreateServiceChild (
Service->ControllerHandle,
Service->ImageHandle,
&gEfiDns6ServiceBindingProtocolGuid,
&Dns6Handle
);
if (EFI_ERROR (Status)) {
goto Exit;
}
Status = gBS->OpenProtocol (
Dns6Handle,
&gEfiDns6ProtocolGuid,
(VOID **) &Dns6,
Service->ImageHandle,
Service->ControllerHandle,
EFI_OPEN_PROTOCOL_BY_DRIVER
);
if (EFI_ERROR (Status)) {
goto Exit;
}
//
// Configure DNS6 instance for the DNS server address and protocol.
//
ZeroMem (&Dns6ConfigData, sizeof (EFI_DNS6_CONFIG_DATA));
Dns6ConfigData.DnsServerCount = (UINT32)DnsServerListCount;
Dns6ConfigData.DnsServerList = DnsServerList;
Dns6ConfigData.EnableDnsCache = TRUE;
Dns6ConfigData.Protocol = EFI_IP_PROTO_UDP;
IP6_COPY_ADDRESS (&Dns6ConfigData.StationIp, &HttpInstance->Ipv6Node.LocalAddress);
Status = Dns6->Configure (
Dns6,
&Dns6ConfigData
);
if (EFI_ERROR (Status)) {
goto Exit;
}
Token.Status = EFI_NOT_READY;
IsDone = FALSE;
//
// Create event to set the IsDone flag when name resolution is finished.
//
Status = gBS->CreateEvent (
EVT_NOTIFY_SIGNAL,
TPL_NOTIFY,
HttpCommonNotify,
&IsDone,
&Token.Event
);
if (EFI_ERROR (Status)) {
goto Exit;
}
//
// Start asynchronous name resolution.
//
Status = Dns6->HostNameToIp (Dns6, HostName, &Token);
if (EFI_ERROR (Status)) {
goto Exit;
}
while (!IsDone) {
Dns6->Poll (Dns6);
}
//
// Name resolution is done, check result.
//
Status = Token.Status;
if (!EFI_ERROR (Status)) {
if (Token.RspData.H2AData == NULL) {
Status = EFI_DEVICE_ERROR;
goto Exit;
}
if (Token.RspData.H2AData->IpCount == 0 || Token.RspData.H2AData->IpList == NULL) {
Status = EFI_DEVICE_ERROR;
goto Exit;
}
//
// We just return the first IPv6 address from DNS protocol.
//
IP6_COPY_ADDRESS (IpAddress, Token.RspData.H2AData->IpList);
Status = EFI_SUCCESS;
}
Exit:
if (Token.Event != NULL) {
gBS->CloseEvent (Token.Event);
}
if (Token.RspData.H2AData != NULL) {
if (Token.RspData.H2AData->IpList != NULL) {
FreePool (Token.RspData.H2AData->IpList);
}
FreePool (Token.RspData.H2AData);
}
if (Dns6 != NULL) {
Dns6->Configure (Dns6, NULL);
gBS->CloseProtocol (
Dns6Handle,
&gEfiDns6ProtocolGuid,
Service->ImageHandle,
Service->ControllerHandle
);
}
if (Dns6Handle != NULL) {
NetLibDestroyServiceChild (
Service->ControllerHandle,
Service->ImageHandle,
&gEfiDns6ServiceBindingProtocolGuid,
Dns6Handle
);
}
if (DnsServerList != NULL) {
FreePool (DnsServerList);
}
return Status;
}

@ -35,4 +35,24 @@ HttpDns4 (
OUT EFI_IPv4_ADDRESS *IpAddress
);
/**
Retrieve the host address using the EFI_DNS6_PROTOCOL.
@param[in] HttpInstance Pointer to HTTP_PROTOCOL instance.
@param[in] HostName Pointer to buffer containing hostname.
@param[out] IpAddress On output, pointer to buffer containing IPv6 address.
@retval EFI_SUCCESS Operation succeeded.
@retval EFI_OUT_OF_RESOURCES Failed to allocate needed resources.
@retval EFI_DEVICE_ERROR An unexpected network error occurred.
@retval Others Other errors as indicated.
**/
EFI_STATUS
HttpDns6 (
IN HTTP_PROTOCOL *HttpInstance,
IN CHAR16 *HostName,
OUT EFI_IPv6_ADDRESS *IpAddress
);
#endif

@ -20,15 +20,25 @@ EFI_HTTP_UTILITIES_PROTOCOL *mHttpUtilities = NULL;
///
/// Driver Binding Protocol instance
///
EFI_DRIVER_BINDING_PROTOCOL gHttpDxeDriverBinding = {
HttpDxeDriverBindingSupported,
HttpDxeDriverBindingStart,
HttpDxeDriverBindingStop,
EFI_DRIVER_BINDING_PROTOCOL gHttpDxeIp4DriverBinding = {
HttpDxeIp4DriverBindingSupported,
HttpDxeIp4DriverBindingStart,
HttpDxeIp4DriverBindingStop,
HTTP_DRIVER_VERSION,
NULL,
NULL
};
EFI_DRIVER_BINDING_PROTOCOL gHttpDxeIp6DriverBinding = {
HttpDxeIp6DriverBindingSupported,
HttpDxeIp6DriverBindingStart,
HttpDxeIp6DriverBindingStop,
HTTP_DRIVER_VERSION,
NULL,
NULL
};
/**
Create a HTTP driver service binding private instance.
@ -73,33 +83,59 @@ HttpCreateService (
/**
Release all the resource used the HTTP service binding instance.
@param HttpService The HTTP private instance.
@param[in] HttpService The HTTP private instance.
@param[in] UsingIpv6 Indicate use TCP4 protocol or TCP6 protocol.
if TRUE, use Tcp6 protocol.
if FALSE, use Tcp4 protocl.
**/
VOID
HttpCleanService (
IN HTTP_SERVICE *HttpService
IN HTTP_SERVICE *HttpService,
IN BOOLEAN UsingIpv6
)
{
{
if (HttpService == NULL) {
return ;
}
if (HttpService->TcpChildHandle != NULL) {
gBS->CloseProtocol (
HttpService->TcpChildHandle,
&gEfiTcp4ProtocolGuid,
HttpService->ImageHandle,
HttpService->ControllerHandle
);
NetLibDestroyServiceChild (
HttpService->ControllerHandle,
HttpService->ImageHandle,
&gEfiTcp4ServiceBindingProtocolGuid,
HttpService->TcpChildHandle
);
if (!UsingIpv6) {
if (HttpService->Tcp4ChildHandle != NULL) {
gBS->CloseProtocol (
HttpService->Tcp4ChildHandle,
&gEfiTcp4ProtocolGuid,
HttpService->ImageHandle,
HttpService->ControllerHandle
);
NetLibDestroyServiceChild (
HttpService->ControllerHandle,
HttpService->ImageHandle,
&gEfiTcp4ServiceBindingProtocolGuid,
HttpService->Tcp4ChildHandle
);
HttpService->Tcp4ChildHandle = NULL;
}
} else {
if (HttpService->Tcp6ChildHandle != NULL) {
gBS->CloseProtocol (
HttpService->Tcp6ChildHandle,
&gEfiTcp6ProtocolGuid,
HttpService->ImageHandle,
HttpService->ControllerHandle
);
NetLibDestroyServiceChild (
HttpService->ControllerHandle,
HttpService->ImageHandle,
&gEfiTcp6ServiceBindingProtocolGuid,
HttpService->Tcp6ChildHandle
);
HttpService->Tcp6ChildHandle = NULL;
}
}
}
/**
@ -107,7 +143,7 @@ HttpCleanService (
in the system.
@param[in] Event Not used.
@param[in] Context The pointer to the IP4 config2 instance data.
@param[in] Context The pointer to the IP4 config2 instance data or IP6 Config instance data.
**/
VOID
@ -122,7 +158,7 @@ HttpUtilitiesInstalledCallback (
NULL,
(VOID **) &mHttpUtilities
);
//
// Close the event if Http utilities protocol is loacted.
//
@ -150,6 +186,7 @@ HttpDxeDriverEntryPoint (
IN EFI_SYSTEM_TABLE *SystemTable
)
{
EFI_STATUS Status;
VOID *Registration;
gBS->LocateProtocol (
@ -174,14 +211,39 @@ HttpDxeDriverEntryPoint (
//
// Install UEFI Driver Model protocol(s).
//
return EfiLibInstallDriverBindingComponentName2 (
ImageHandle,
SystemTable,
&gHttpDxeDriverBinding,
Status = EfiLibInstallDriverBindingComponentName2 (
ImageHandle,
SystemTable,
&gHttpDxeIp4DriverBinding,
ImageHandle,
&gHttpDxeComponentName,
&gHttpDxeComponentName2
);
if (EFI_ERROR (Status)) {
return Status;
}
Status = EfiLibInstallDriverBindingComponentName2 (
ImageHandle,
SystemTable,
&gHttpDxeIp6DriverBinding,
NULL,
&gHttpDxeComponentName,
&gHttpDxeComponentName2
);
if (EFI_ERROR (Status)) {
gBS->UninstallMultipleProtocolInterfaces (
ImageHandle,
&gEfiDriverBindingProtocolGuid,
&gHttpDxeIp4DriverBinding,
&gEfiComponentName2ProtocolGuid,
&gHttpDxeComponentName2,
&gEfiComponentNameProtocolGuid,
&gHttpDxeComponentName,
&gHttpDxeComponentName2
NULL
);
}
return Status;
}
/**
@ -223,6 +285,309 @@ HttpDestroyChildEntryInHandleBuffer (
return ServiceBinding->DestroyChild (ServiceBinding, HttpInstance->Handle);
}
/**
Test to see if this driver supports ControllerHandle. This is the worker function for
HttpDxeIp4(6)DriverBindingSupported.
@param[in] This The pointer to the driver binding protocol.
@param[in] ControllerHandle The handle of device to be tested.
@param[in] RemainingDevicePath Optional parameter used to pick a specific child
device to be started.
@param[in] IpVersion IP_VERSION_4 or IP_VERSION_6.
@retval EFI_SUCCESS This driver supports this device.
@retval EFI_UNSUPPORTED This driver does not support this device.
**/
EFI_STATUS
EFIAPI
HttpDxeSupported (
IN EFI_DRIVER_BINDING_PROTOCOL *This,
IN EFI_HANDLE ControllerHandle,
IN EFI_DEVICE_PATH_PROTOCOL *RemainingDevicePath OPTIONAL,
IN UINT8 IpVersion
)
{
EFI_STATUS Status;
EFI_GUID *TcpServiceBindingProtocolGuid;
if (IpVersion == IP_VERSION_4) {
TcpServiceBindingProtocolGuid = &gEfiTcp4ServiceBindingProtocolGuid;
} else {
TcpServiceBindingProtocolGuid = &gEfiTcp6ServiceBindingProtocolGuid;
}
Status = gBS->OpenProtocol (
ControllerHandle,
TcpServiceBindingProtocolGuid,
NULL,
This->DriverBindingHandle,
ControllerHandle,
EFI_OPEN_PROTOCOL_TEST_PROTOCOL
);
if (EFI_ERROR (Status)) {
return EFI_UNSUPPORTED;
}
return EFI_SUCCESS;
}
/**
Start this driver on ControllerHandle. This is the worker function for
HttpDxeIp4(6)DriverBindingStart.
@param[in] This The pointer to the driver binding protocol.
@param[in] ControllerHandle The handle of device to be started.
@param[in] RemainingDevicePath Optional parameter used to pick a specific child
device to be started.
@param[in] IpVersion IP_VERSION_4 or IP_VERSION_6.
@retval EFI_SUCCESS This driver is installed to ControllerHandle.
@retval EFI_ALREADY_STARTED This driver is already running on ControllerHandle.
@retval other This driver does not support this device.
**/
EFI_STATUS
EFIAPI
HttpDxeStart (
IN EFI_DRIVER_BINDING_PROTOCOL *This,
IN EFI_HANDLE ControllerHandle,
IN EFI_DEVICE_PATH_PROTOCOL *RemainingDevicePath OPTIONAL,
IN UINT8 IpVersion
)
{
EFI_STATUS Status;
EFI_SERVICE_BINDING_PROTOCOL *ServiceBinding;
HTTP_SERVICE *HttpService;
VOID *Interface;
BOOLEAN UsingIpv6;
UsingIpv6 = FALSE;
//
// Test for the Http service binding protocol
//
Status = gBS->OpenProtocol (
ControllerHandle,
&gEfiHttpServiceBindingProtocolGuid,
(VOID **) &ServiceBinding,
This->DriverBindingHandle,
ControllerHandle,
EFI_OPEN_PROTOCOL_GET_PROTOCOL
);
if (!EFI_ERROR (Status)) {
HttpService = HTTP_SERVICE_FROM_PROTOCOL (ServiceBinding);
} else {
Status = HttpCreateService (ControllerHandle, This->DriverBindingHandle, &HttpService);
if (EFI_ERROR (Status)) {
return Status;
}
ASSERT (HttpService != NULL);
//
// Install the HttpServiceBinding Protocol onto Controller
//
Status = gBS->InstallMultipleProtocolInterfaces (
&ControllerHandle,
&gEfiHttpServiceBindingProtocolGuid,
&HttpService->ServiceBinding,
NULL
);
if (EFI_ERROR (Status)) {
goto ON_ERROR;
}
}
if (IpVersion == IP_VERSION_4) {
if (HttpService->Tcp4ChildHandle == NULL) {
//
// Create a TCP4 child instance, but do not configure it. This will establish the parent-child relationship.
//
Status = NetLibCreateServiceChild (
ControllerHandle,
This->DriverBindingHandle,
&gEfiTcp4ServiceBindingProtocolGuid,
&HttpService->Tcp4ChildHandle
);
if (EFI_ERROR (Status)) {
goto ON_ERROR;
}
Status = gBS->OpenProtocol (
HttpService->Tcp4ChildHandle,
&gEfiTcp4ProtocolGuid,
&Interface,
This->DriverBindingHandle,
ControllerHandle,
EFI_OPEN_PROTOCOL_BY_DRIVER
);
if (EFI_ERROR (Status)) {
goto ON_ERROR;
}
} else {
return EFI_ALREADY_STARTED;
}
} else {
UsingIpv6 = TRUE;
if (HttpService->Tcp6ChildHandle == NULL) {
//
// Create a TCP6 child instance, but do not configure it. This will establish the parent-child relationship.
//
Status = NetLibCreateServiceChild (
ControllerHandle,
This->DriverBindingHandle,
&gEfiTcp6ServiceBindingProtocolGuid,
&HttpService->Tcp6ChildHandle
);
if (EFI_ERROR (Status)) {
goto ON_ERROR;
}
Status = gBS->OpenProtocol (
HttpService->Tcp6ChildHandle,
&gEfiTcp6ProtocolGuid,
&Interface,
This->DriverBindingHandle,
ControllerHandle,
EFI_OPEN_PROTOCOL_BY_DRIVER
);
if (EFI_ERROR (Status)) {
goto ON_ERROR;
}
} else {
return EFI_ALREADY_STARTED;
}
}
return EFI_SUCCESS;
ON_ERROR:
if (HttpService != NULL) {
HttpCleanService (HttpService, UsingIpv6);
if (HttpService->Tcp4ChildHandle == NULL && HttpService->Tcp6ChildHandle == NULL) {
FreePool (HttpService);
}
}
return Status;
}
/**
Stop this driver on ControllerHandle. This is the worker function for
HttpDxeIp4(6)DriverBindingStop.
@param[in] This Protocol instance pointer.
@param[in] ControllerHandle Handle of device to stop driver on.
@param[in] NumberOfChildren Number of Handles in ChildHandleBuffer. If number of
children is zero stop the entire bus driver.
@param[in] ChildHandleBuffer List of Child Handles to Stop.
@param[in] IpVersion IP_VERSION_4 or IP_VERSION_6.
@retval EFI_SUCCESS This driver was removed ControllerHandle.
@retval EFI_DEVICE_ERROR An unexpected system or network error occurred.
@retval Others This driver was not removed from this device
**/
EFI_STATUS
EFIAPI
HttpDxeStop (
IN EFI_DRIVER_BINDING_PROTOCOL *This,
IN EFI_HANDLE ControllerHandle,
IN UINTN NumberOfChildren,
IN EFI_HANDLE *ChildHandleBuffer,
IN UINT8 IpVersion
)
{
EFI_HANDLE NicHandle;
EFI_STATUS Status;
EFI_SERVICE_BINDING_PROTOCOL *ServiceBinding;
HTTP_SERVICE *HttpService;
LIST_ENTRY *List;
HTTP_DESTROY_CHILD_IN_HANDLE_BUF_CONTEXT Context;
BOOLEAN UsingIpv6;
//
// HTTP driver opens TCP4(6) child, So, Controller is a TCP4(6)
// child handle. Locate the Nic handle first. Then get the
// HTTP private data back.
//
if (IpVersion == IP_VERSION_4) {
UsingIpv6 = FALSE;
NicHandle = NetLibGetNicHandle (ControllerHandle, &gEfiTcp4ProtocolGuid);
} else {
UsingIpv6 = TRUE;
NicHandle = NetLibGetNicHandle (ControllerHandle, &gEfiTcp6ProtocolGuid);
}
if (NicHandle == NULL) {
return EFI_SUCCESS;
}
Status = gBS->OpenProtocol (
NicHandle,
&gEfiHttpServiceBindingProtocolGuid,
(VOID **) &ServiceBinding,
This->DriverBindingHandle,
NicHandle,
EFI_OPEN_PROTOCOL_GET_PROTOCOL
);
if (!EFI_ERROR (Status)) {
HttpService = HTTP_SERVICE_FROM_PROTOCOL (ServiceBinding);
if (NumberOfChildren != 0) {
//
// Destroy the HTTP child instance in ChildHandleBuffer.
//
List = &HttpService->ChildrenList;
Context.ServiceBinding = ServiceBinding;
Context.NumberOfChildren = NumberOfChildren;
Context.ChildHandleBuffer = ChildHandleBuffer;
Status = NetDestroyLinkList (
List,
HttpDestroyChildEntryInHandleBuffer,
&Context,
NULL
);
} else {
HttpCleanService (HttpService, UsingIpv6);
if (HttpService->Tcp4ChildHandle == NULL && HttpService->Tcp6ChildHandle == NULL) {
gBS->UninstallProtocolInterface (
NicHandle,
&gEfiHttpServiceBindingProtocolGuid,
ServiceBinding
);
FreePool (HttpService);
}
Status = EFI_SUCCESS;
}
}
return Status;
}
/**
Tests to see if this driver supports a given controller. If a child device is provided,
it further tests to see if this driver supports creating a handle for the specified child device.
@ -267,41 +632,18 @@ HttpDestroyChildEntryInHandleBuffer (
**/
EFI_STATUS
EFIAPI
HttpDxeDriverBindingSupported (
HttpDxeIp4DriverBindingSupported (
IN EFI_DRIVER_BINDING_PROTOCOL *This,
IN EFI_HANDLE ControllerHandle,
IN EFI_DEVICE_PATH_PROTOCOL *RemainingDevicePath OPTIONAL
)
{
EFI_STATUS Status;
//
// Test for the HttpServiceBinding protocol.
//
Status = gBS->OpenProtocol (
ControllerHandle,
&gEfiHttpServiceBindingProtocolGuid,
NULL,
This->DriverBindingHandle,
ControllerHandle,
EFI_OPEN_PROTOCOL_TEST_PROTOCOL
);
if (!EFI_ERROR (Status)) {
return EFI_ALREADY_STARTED;
}
//
// Test for the Tcp4 Protocol
//
return gBS->OpenProtocol (
ControllerHandle,
&gEfiTcp4ServiceBindingProtocolGuid,
NULL,
This->DriverBindingHandle,
ControllerHandle,
EFI_OPEN_PROTOCOL_TEST_PROTOCOL
);
return HttpDxeSupported (
This,
ControllerHandle,
RemainingDevicePath,
IP_VERSION_4
);
}
/**
@ -342,90 +684,18 @@ HttpDxeDriverBindingSupported (
**/
EFI_STATUS
EFIAPI
HttpDxeDriverBindingStart (
HttpDxeIp4DriverBindingStart (
IN EFI_DRIVER_BINDING_PROTOCOL *This,
IN EFI_HANDLE ControllerHandle,
IN EFI_DEVICE_PATH_PROTOCOL *RemainingDevicePath OPTIONAL
)
{
EFI_STATUS Status;
HTTP_SERVICE *HttpService;
VOID *Interface;
//
// Test for the Http service binding protocol
//
Status = gBS->OpenProtocol (
ControllerHandle,
&gEfiHttpServiceBindingProtocolGuid,
NULL,
This->DriverBindingHandle,
ControllerHandle,
EFI_OPEN_PROTOCOL_TEST_PROTOCOL
);
if (Status == EFI_SUCCESS) {
return EFI_ALREADY_STARTED;
}
Status = HttpCreateService (ControllerHandle, This->DriverBindingHandle, &HttpService);
if (EFI_ERROR (Status)) {
return Status;
}
ASSERT (HttpService != NULL);
//
// Create a TCP child instance, but do not configure it. This will establish the parent-child relationship.
//
Status = NetLibCreateServiceChild (
ControllerHandle,
This->DriverBindingHandle,
&gEfiTcp4ServiceBindingProtocolGuid,
&HttpService->TcpChildHandle
);
if (EFI_ERROR (Status)) {
goto ON_ERROR;
}
Status = gBS->OpenProtocol (
HttpService->TcpChildHandle,
&gEfiTcp4ProtocolGuid,
&Interface,
This->DriverBindingHandle,
ControllerHandle,
EFI_OPEN_PROTOCOL_BY_DRIVER
);
if (EFI_ERROR (Status)) {
goto ON_ERROR;
}
//
// Install the HttpServiceBinding Protocol onto Controller
//
Status = gBS->InstallMultipleProtocolInterfaces (
&ControllerHandle,
&gEfiHttpServiceBindingProtocolGuid,
&HttpService->ServiceBinding,
NULL
);
if (EFI_ERROR (Status)) {
goto ON_ERROR;
}
return EFI_SUCCESS;
ON_ERROR:
if (HttpService != NULL) {
HttpCleanService (HttpService);
FreePool (HttpService);
}
return Status;
return HttpDxeStart (
This,
ControllerHandle,
RemainingDevicePath,
IP_VERSION_4
);
}
/**
@ -456,78 +726,176 @@ ON_ERROR:
**/
EFI_STATUS
EFIAPI
HttpDxeDriverBindingStop (
HttpDxeIp4DriverBindingStop (
IN EFI_DRIVER_BINDING_PROTOCOL *This,
IN EFI_HANDLE ControllerHandle,
IN UINTN NumberOfChildren,
IN EFI_HANDLE *ChildHandleBuffer OPTIONAL
)
{
EFI_HANDLE NicHandle;
EFI_STATUS Status;
EFI_SERVICE_BINDING_PROTOCOL *ServiceBinding;
HTTP_SERVICE *HttpService;
LIST_ENTRY *List;
HTTP_DESTROY_CHILD_IN_HANDLE_BUF_CONTEXT Context;
//
// HTTP driver opens TCP child, So, Controller is a TCP
// child handle. Locate the Nic handle first. Then get the
// HTTP private data back.
//
NicHandle = NetLibGetNicHandle (ControllerHandle, &gEfiTcp4ProtocolGuid);
if (NicHandle == NULL) {
return EFI_SUCCESS;
}
Status = gBS->OpenProtocol (
NicHandle,
&gEfiHttpServiceBindingProtocolGuid,
(VOID **) &ServiceBinding,
This->DriverBindingHandle,
NicHandle,
EFI_OPEN_PROTOCOL_GET_PROTOCOL
);
if (EFI_ERROR (Status)) {
return EFI_DEVICE_ERROR;
}
HttpService = HTTP_SERVICE_FROM_PROTOCOL (ServiceBinding);
if (!IsListEmpty (&HttpService->ChildrenList)) {
//
// Destroy the HTTP child instance in ChildHandleBuffer.
//
List = &HttpService->ChildrenList;
Context.ServiceBinding = ServiceBinding;
Context.NumberOfChildren = NumberOfChildren;
Context.ChildHandleBuffer = ChildHandleBuffer;
Status = NetDestroyLinkList (
List,
HttpDestroyChildEntryInHandleBuffer,
&Context,
NULL
);
}
if (NumberOfChildren == 0 && IsListEmpty (&HttpService->ChildrenList)) {
gBS->UninstallProtocolInterface (
NicHandle,
&gEfiHttpServiceBindingProtocolGuid,
ServiceBinding
return HttpDxeStop (
This,
ControllerHandle,
NumberOfChildren,
ChildHandleBuffer,
IP_VERSION_4
);
HttpCleanService (HttpService);
FreePool (HttpService);
Status = EFI_SUCCESS;
}
return Status;
}
/**
Tests to see if this driver supports a given controller. If a child device is provided,
it further tests to see if this driver supports creating a handle for the specified child device.
This function checks to see if the driver specified by This supports the device specified by
ControllerHandle. Drivers will typically use the device path attached to
ControllerHandle and/or the services from the bus I/O abstraction attached to
ControllerHandle to determine if the driver supports ControllerHandle. This function
may be called many times during platform initialization. In order to reduce boot times, the tests
performed by this function must be very small, and take as little time as possible to execute. This
function must not change the state of any hardware devices, and this function must be aware that the
device specified by ControllerHandle may already be managed by the same driver or a
different driver. This function must match its calls to AllocatePages() with FreePages(),
AllocatePool() with FreePool(), and OpenProtocol() with CloseProtocol().
Because ControllerHandle may have been previously started by the same driver, if a protocol is
already in the opened state, then it must not be closed with CloseProtocol(). This is required
to guarantee the state of ControllerHandle is not modified by this function.
@param[in] This A pointer to the EFI_DRIVER_BINDING_PROTOCOL instance.
@param[in] ControllerHandle The handle of the controller to test. This handle
must support a protocol interface that supplies
an I/O abstraction to the driver.
@param[in] RemainingDevicePath A pointer to the remaining portion of a device path. This
parameter is ignored by device drivers, and is optional for bus
drivers. For bus drivers, if this parameter is not NULL, then
the bus driver must determine if the bus controller specified
by ControllerHandle and the child controller specified
by RemainingDevicePath are both supported by this
bus driver.
@retval EFI_SUCCESS The device specified by ControllerHandle and
RemainingDevicePath is supported by the driver specified by This.
@retval EFI_ALREADY_STARTED The device specified by ControllerHandle and
RemainingDevicePath is already being managed by the driver
specified by This.
@retval EFI_ACCESS_DENIED The device specified by ControllerHandle and
RemainingDevicePath is already being managed by a different
driver or an application that requires exclusive access.
Currently not implemented.
@retval EFI_UNSUPPORTED The device specified by ControllerHandle and
RemainingDevicePath is not supported by the driver specified by This.
**/
EFI_STATUS
EFIAPI
HttpDxeIp6DriverBindingSupported (
IN EFI_DRIVER_BINDING_PROTOCOL *This,
IN EFI_HANDLE ControllerHandle,
IN EFI_DEVICE_PATH_PROTOCOL *RemainingDevicePath OPTIONAL
)
{
return HttpDxeSupported (
This,
ControllerHandle,
RemainingDevicePath,
IP_VERSION_6
);
}
/**
Starts a device controller or a bus controller.
The Start() function is designed to be invoked from the EFI boot service ConnectController().
As a result, much of the error checking on the parameters to Start() has been moved into this
common boot service. It is legal to call Start() from other locations,
but the following calling restrictions must be followed, or the system behavior will not be deterministic.
1. ControllerHandle must be a valid EFI_HANDLE.
2. If RemainingDevicePath is not NULL, then it must be a pointer to a naturally aligned
EFI_DEVICE_PATH_PROTOCOL.
3. Prior to calling Start(), the Supported() function for the driver specified by This must
have been called with the same calling parameters, and Supported() must have returned EFI_SUCCESS.
@param[in] This A pointer to the EFI_DRIVER_BINDING_PROTOCOL instance.
@param[in] ControllerHandle The handle of the controller to start. This handle
must support a protocol interface that supplies
an I/O abstraction to the driver.
@param[in] RemainingDevicePath A pointer to the remaining portion of a device path. This
parameter is ignored by device drivers, and is optional for bus
drivers. For a bus driver, if this parameter is NULL, then handles
for all the children of Controller are created by this driver.
If this parameter is not NULL and the first Device Path Node is
not the End of Device Path Node, then only the handle for the
child device specified by the first Device Path Node of
RemainingDevicePath is created by this driver.
If the first Device Path Node of RemainingDevicePath is
the End of Device Path Node, no child handle is created by this
driver.
@retval EFI_SUCCESS The device was started.
@retval EFI_ALREADY_STARTED This device is already running on ControllerHandle.
@retval EFI_DEVICE_ERROR The device could not be started due to a device error.Currently not implemented.
@retval EFI_OUT_OF_RESOURCES The request could not be completed due to a lack of resources.
@retval Others The driver failded to start the device.
**/
EFI_STATUS
EFIAPI
HttpDxeIp6DriverBindingStart (
IN EFI_DRIVER_BINDING_PROTOCOL *This,
IN EFI_HANDLE ControllerHandle,
IN EFI_DEVICE_PATH_PROTOCOL *RemainingDevicePath OPTIONAL
)
{
return HttpDxeStart (
This,
ControllerHandle,
RemainingDevicePath,
IP_VERSION_6
);
}
/**
Stops a device controller or a bus controller.
The Stop() function is designed to be invoked from the EFI boot service DisconnectController().
As a result, much of the error checking on the parameters to Stop() has been moved
into this common boot service. It is legal to call Stop() from other locations,
but the following calling restrictions must be followed, or the system behavior will not be deterministic.
1. ControllerHandle must be a valid EFI_HANDLE that was used on a previous call to this
same driver's Start() function.
2. The first NumberOfChildren handles of ChildHandleBuffer must all be a valid
EFI_HANDLE. In addition, all of these handles must have been created in this driver's
Start() function, and the Start() function must have called OpenProtocol() on
ControllerHandle with an Attribute of EFI_OPEN_PROTOCOL_BY_CHILD_CONTROLLER.
@param[in] This A pointer to the EFI_DRIVER_BINDING_PROTOCOL instance.
@param[in] ControllerHandle A handle to the device being stopped. The handle must
support a bus specific I/O protocol for the driver
to use to stop the device.
@param[in] NumberOfChildren The number of child device handles in ChildHandleBuffer.
@param[in] ChildHandleBuffer An array of child handles to be freed. May be NULL
if NumberOfChildren is 0.
@retval EFI_SUCCESS The device was stopped.
@retval EFI_DEVICE_ERROR The device could not be stopped due to a device error.
**/
EFI_STATUS
EFIAPI
HttpDxeIp6DriverBindingStop (
IN EFI_DRIVER_BINDING_PROTOCOL *This,
IN EFI_HANDLE ControllerHandle,
IN UINTN NumberOfChildren,
IN EFI_HANDLE *ChildHandleBuffer OPTIONAL
)
{
return HttpDxeStop (
This,
ControllerHandle,
NumberOfChildren,
ChildHandleBuffer,
IP_VERSION_6
);
}
/**
Creates a child handle and installs a protocol.
@ -557,7 +925,6 @@ HttpServiceBindingCreateChild (
HTTP_SERVICE *HttpService;
HTTP_PROTOCOL *HttpInstance;
EFI_STATUS Status;
VOID *Interface;
EFI_TPL OldTpl;
if ((This == NULL) || (ChildHandle == NULL)) {
@ -569,6 +936,12 @@ HttpServiceBindingCreateChild (
if (HttpInstance == NULL) {
return EFI_OUT_OF_RESOURCES;
}
HttpInstance->Signature = HTTP_PROTOCOL_SIGNATURE;
HttpInstance->Service = HttpService;
CopyMem (&HttpInstance->Http, &mEfiHttpTemplate, sizeof (HttpInstance->Http));
NetMapInit (&HttpInstance->TxTokens);
NetMapInit (&HttpInstance->RxTokens);
//
// Install HTTP protocol onto ChildHandle
@ -584,27 +957,7 @@ HttpServiceBindingCreateChild (
goto ON_ERROR;
}
HttpInstance->Handle = *ChildHandle;
Status = HttpInitProtocol (HttpService, HttpInstance);
if (EFI_ERROR (Status)) {
goto ON_ERROR;
}
//
// Open the default Tcp4 protocol by child.
//
Status = gBS->OpenProtocol (
HttpService->TcpChildHandle,
&gEfiTcp4ProtocolGuid,
(VOID **) &Interface,
gHttpDxeDriverBinding.DriverBindingHandle,
HttpInstance->Handle,
EFI_OPEN_PROTOCOL_BY_CHILD_CONTROLLER
);
if (EFI_ERROR (Status)) {
goto ON_ERROR;
}
HttpInstance->Handle = *ChildHandle;
//
// Add it to the HTTP service's child list.
@ -619,8 +972,9 @@ HttpServiceBindingCreateChild (
return EFI_SUCCESS;
ON_ERROR:
HttpCleanProtocol (HttpInstance);
NetMapClean (&HttpInstance->TxTokens);
NetMapClean (&HttpInstance->RxTokens);
FreePool (HttpInstance);
return Status;
@ -664,8 +1018,8 @@ HttpServiceBindingDestroyChild (
ChildHandle,
&gEfiHttpProtocolGuid,
(VOID **) &Http,
gHttpDxeDriverBinding.DriverBindingHandle,
ChildHandle,
NULL,
NULL,
EFI_OPEN_PROTOCOL_GET_PROTOCOL
);
if (EFI_ERROR (Status)) {
@ -681,16 +1035,6 @@ HttpServiceBindingDestroyChild (
return EFI_SUCCESS;
}
//
// Close the Tcp4 protocol.
//
gBS->CloseProtocol (
HttpService->TcpChildHandle,
&gEfiTcp4ProtocolGuid,
gHttpDxeDriverBinding.DriverBindingHandle,
ChildHandle
);
HttpInstance->InDestroy = TRUE;
//
@ -706,11 +1050,11 @@ HttpServiceBindingDestroyChild (
HttpInstance->InDestroy = FALSE;
return Status;
}
OldTpl = gBS->RaiseTPL (TPL_CALLBACK);
HttpCleanProtocol (HttpInstance);
OldTpl = gBS->RaiseTPL (TPL_CALLBACK);
RemoveEntryList (&HttpInstance->Link);
HttpService->ChildrenNumber--;

@ -43,8 +43,12 @@
//
#include <Protocol/HttpUtilities.h>
#include <Protocol/Tcp4.h>
#include <Protocol/Tcp6.h>
#include <Protocol/Dns4.h>
#include <Protocol/Dns6.h>
#include <Protocol/Ip4Config2.h>
#include <Protocol/Ip6Config.h>
//
// Produced Protocols
@ -59,7 +63,9 @@
//
// Protocol instances
//
extern EFI_DRIVER_BINDING_PROTOCOL gHttpDxeDriverBinding;
extern EFI_DRIVER_BINDING_PROTOCOL gHttpDxeIp4DriverBinding;
extern EFI_DRIVER_BINDING_PROTOCOL gHttpDxeIp6DriverBinding;
extern EFI_COMPONENT_NAME2_PROTOCOL gHttpDxeComponentName2;
extern EFI_COMPONENT_NAME_PROTOCOL gHttpDxeComponentName;
@ -123,7 +129,7 @@ typedef struct {
**/
EFI_STATUS
EFIAPI
HttpDxeDriverBindingSupported (
HttpDxeIp4DriverBindingSupported (
IN EFI_DRIVER_BINDING_PROTOCOL *This,
IN EFI_HANDLE ControllerHandle,
IN EFI_DEVICE_PATH_PROTOCOL *RemainingDevicePath OPTIONAL
@ -166,7 +172,7 @@ HttpDxeDriverBindingSupported (
**/
EFI_STATUS
EFIAPI
HttpDxeDriverBindingStart (
HttpDxeIp4DriverBindingStart (
IN EFI_DRIVER_BINDING_PROTOCOL *This,
IN EFI_HANDLE ControllerHandle,
IN EFI_DEVICE_PATH_PROTOCOL *RemainingDevicePath OPTIONAL
@ -200,13 +206,142 @@ HttpDxeDriverBindingStart (
**/
EFI_STATUS
EFIAPI
HttpDxeDriverBindingStop (
HttpDxeIp4DriverBindingStop (
IN EFI_DRIVER_BINDING_PROTOCOL *This,
IN EFI_HANDLE ControllerHandle,
IN UINTN NumberOfChildren,
IN EFI_HANDLE *ChildHandleBuffer OPTIONAL
);
/**
Tests to see if this driver supports a given controller. If a child device is provided,
it further tests to see if this driver supports creating a handle for the specified child device.
This function checks to see if the driver specified by This supports the device specified by
ControllerHandle. Drivers will typically use the device path attached to
ControllerHandle and/or the services from the bus I/O abstraction attached to
ControllerHandle to determine if the driver supports ControllerHandle. This function
may be called many times during platform initialization. In order to reduce boot times, the tests
performed by this function must be very small, and take as little time as possible to execute. This
function must not change the state of any hardware devices, and this function must be aware that the
device specified by ControllerHandle may already be managed by the same driver or a
different driver. This function must match its calls to AllocatePages() with FreePages(),
AllocatePool() with FreePool(), and OpenProtocol() with CloseProtocol().
Because ControllerHandle may have been previously started by the same driver, if a protocol is
already in the opened state, then it must not be closed with CloseProtocol(). This is required
to guarantee the state of ControllerHandle is not modified by this function.
@param[in] This A pointer to the EFI_DRIVER_BINDING_PROTOCOL instance.
@param[in] ControllerHandle The handle of the controller to test. This handle
must support a protocol interface that supplies
an I/O abstraction to the driver.
@param[in] RemainingDevicePath A pointer to the remaining portion of a device path. This
parameter is ignored by device drivers, and is optional for bus
drivers. For bus drivers, if this parameter is not NULL, then
the bus driver must determine if the bus controller specified
by ControllerHandle and the child controller specified
by RemainingDevicePath are both supported by this
bus driver.
@retval EFI_SUCCESS The device specified by ControllerHandle and
RemainingDevicePath is supported by the driver specified by This.
@retval EFI_ALREADY_STARTED The device specified by ControllerHandle and
RemainingDevicePath is already being managed by the driver
specified by This.
@retval EFI_ACCESS_DENIED The device specified by ControllerHandle and
RemainingDevicePath is already being managed by a different
driver or an application that requires exclusive access.
Currently not implemented.
@retval EFI_UNSUPPORTED The device specified by ControllerHandle and
RemainingDevicePath is not supported by the driver specified by This.
**/
EFI_STATUS
EFIAPI
HttpDxeIp6DriverBindingSupported (
IN EFI_DRIVER_BINDING_PROTOCOL *This,
IN EFI_HANDLE ControllerHandle,
IN EFI_DEVICE_PATH_PROTOCOL *RemainingDevicePath OPTIONAL
);
/**
Starts a device controller or a bus controller.
The Start() function is designed to be invoked from the EFI boot service ConnectController().
As a result, much of the error checking on the parameters to Start() has been moved into this
common boot service. It is legal to call Start() from other locations,
but the following calling restrictions must be followed, or the system behavior will not be deterministic.
1. ControllerHandle must be a valid EFI_HANDLE.
2. If RemainingDevicePath is not NULL, then it must be a pointer to a naturally aligned
EFI_DEVICE_PATH_PROTOCOL.
3. Prior to calling Start(), the Supported() function for the driver specified by This must
have been called with the same calling parameters, and Supported() must have returned EFI_SUCCESS.
@param[in] This A pointer to the EFI_DRIVER_BINDING_PROTOCOL instance.
@param[in] ControllerHandle The handle of the controller to start. This handle
must support a protocol interface that supplies
an I/O abstraction to the driver.
@param[in] RemainingDevicePath A pointer to the remaining portion of a device path. This
parameter is ignored by device drivers, and is optional for bus
drivers. For a bus driver, if this parameter is NULL, then handles
for all the children of Controller are created by this driver.
If this parameter is not NULL and the first Device Path Node is
not the End of Device Path Node, then only the handle for the
child device specified by the first Device Path Node of
RemainingDevicePath is created by this driver.
If the first Device Path Node of RemainingDevicePath is
the End of Device Path Node, no child handle is created by this
driver.
@retval EFI_SUCCESS The device was started.
@retval EFI_ALREADY_STARTED This device is already running on ControllerHandle.
@retval EFI_DEVICE_ERROR The device could not be started due to a device error.Currently not implemented.
@retval EFI_OUT_OF_RESOURCES The request could not be completed due to a lack of resources.
@retval Others The driver failded to start the device.
**/
EFI_STATUS
EFIAPI
HttpDxeIp6DriverBindingStart (
IN EFI_DRIVER_BINDING_PROTOCOL *This,
IN EFI_HANDLE ControllerHandle,
IN EFI_DEVICE_PATH_PROTOCOL *RemainingDevicePath OPTIONAL
);
/**
Stops a device controller or a bus controller.
The Stop() function is designed to be invoked from the EFI boot service DisconnectController().
As a result, much of the error checking on the parameters to Stop() has been moved
into this common boot service. It is legal to call Stop() from other locations,
but the following calling restrictions must be followed, or the system behavior will not be deterministic.
1. ControllerHandle must be a valid EFI_HANDLE that was used on a previous call to this
same driver's Start() function.
2. The first NumberOfChildren handles of ChildHandleBuffer must all be a valid
EFI_HANDLE. In addition, all of these handles must have been created in this driver's
Start() function, and the Start() function must have called OpenProtocol() on
ControllerHandle with an Attribute of EFI_OPEN_PROTOCOL_BY_CHILD_CONTROLLER.
@param[in] This A pointer to the EFI_DRIVER_BINDING_PROTOCOL instance.
@param[in] ControllerHandle A handle to the device being stopped. The handle must
support a bus specific I/O protocol for the driver
to use to stop the device.
@param[in] NumberOfChildren The number of child device handles in ChildHandleBuffer.
@param[in] ChildHandleBuffer An array of child handles to be freed. May be NULL
if NumberOfChildren is 0.
@retval EFI_SUCCESS The device was stopped.
@retval EFI_DEVICE_ERROR The device could not be stopped due to a device error.
**/
EFI_STATUS
EFIAPI
HttpDxeIp6DriverBindingStop (
IN EFI_DRIVER_BINDING_PROTOCOL *This,
IN EFI_HANDLE ControllerHandle,
IN UINTN NumberOfChildren,
IN EFI_HANDLE *ChildHandleBuffer OPTIONAL
);
/**
Creates a child handle and installs a protocol.

@ -56,9 +56,14 @@
gEfiHttpUtilitiesProtocolGuid ## CONSUMES
gEfiTcp4ServiceBindingProtocolGuid ## TO_START
gEfiTcp4ProtocolGuid ## TO_START
gEfiTcp6ServiceBindingProtocolGuid ## TO_START
gEfiTcp6ProtocolGuid ## TO_START
gEfiDns4ServiceBindingProtocolGuid ## SOMETIMES_CONSUMES
gEfiDns4ProtocolGuid ## SOMETIMES_CONSUMES
gEfiDns6ServiceBindingProtocolGuid ## SOMETIMES_CONSUMES
gEfiDns6ProtocolGuid ## SOMETIMES_CONSUMES
gEfiIp4Config2ProtocolGuid ## SOMETIMES_CONSUMES
gEfiIp6ConfigProtocolGuid ## SOMETIMES_CONSUMES
[UserExtensions.TianoCore."ExtraFiles"]
HttpDxeExtra.uni

Binary file not shown.

@ -51,6 +51,8 @@ EfiHttpGetModeData (
)
{
HTTP_PROTOCOL *HttpInstance;
EFI_HTTPv4_ACCESS_POINT *Http4AccessPoint;
EFI_HTTPv6_ACCESS_POINT *Http6AccessPoint;
if ((This == NULL) || (HttpConfigData == NULL)) {
return EFI_INVALID_PARAMETER;
@ -58,24 +60,32 @@ EfiHttpGetModeData (
HttpInstance = HTTP_INSTANCE_FROM_PROTOCOL (This);
ASSERT (HttpInstance != NULL);
if (HttpInstance->State < HTTP_STATE_HTTP_CONFIGED) {
return EFI_NOT_STARTED;
}
if (HttpConfigData->AccessPoint.IPv4Node == NULL) {
return EFI_INVALID_PARAMETER;
}
HttpConfigData->HttpVersion = HttpInstance->HttpVersion;
HttpConfigData->TimeOutMillisec = HttpInstance->TimeOutMillisec;
HttpConfigData->LocalAddressIsIPv6 = HttpInstance->LocalAddressIsIPv6;
CopyMem (
HttpConfigData->AccessPoint.IPv4Node,
&HttpInstance->IPv4Node,
sizeof (HttpInstance->IPv4Node)
if (HttpInstance->LocalAddressIsIPv6) {
Http6AccessPoint = AllocateZeroPool (sizeof (EFI_HTTPv6_ACCESS_POINT));
CopyMem (
Http6AccessPoint,
&HttpInstance->Ipv6Node,
sizeof (HttpInstance->Ipv6Node)
);
HttpConfigData->AccessPoint.IPv6Node = Http6AccessPoint;
} else {
Http4AccessPoint = AllocateZeroPool (sizeof (EFI_HTTPv4_ACCESS_POINT));
CopyMem (
Http4AccessPoint,
&HttpInstance->IPv4Node,
sizeof (HttpInstance->IPv4Node)
);
HttpConfigData->AccessPoint.IPv4Node = Http4AccessPoint;
}
return EFI_SUCCESS;
}
@ -120,8 +130,13 @@ EfiHttpConfigure (
{
HTTP_PROTOCOL *HttpInstance;
EFI_STATUS Status;
if (This == NULL) {
//
// Check input parameters.
//
if (This == NULL ||
(HttpConfigData != NULL && ((HttpConfigData->LocalAddressIsIPv6 && HttpConfigData->AccessPoint.IPv6Node == NULL) ||
(!HttpConfigData->LocalAddressIsIPv6 && HttpConfigData->AccessPoint.IPv4Node == NULL)))) {
return EFI_INVALID_PARAMETER;
}
@ -129,18 +144,7 @@ EfiHttpConfigure (
ASSERT (HttpInstance != NULL && HttpInstance->Service != NULL);
if (HttpConfigData != NULL) {
//
// Check input parameters.
//
if (HttpConfigData->LocalAddressIsIPv6) {
if (HttpConfigData->AccessPoint.IPv6Node == NULL) {
return EFI_INVALID_PARAMETER;
}
} else {
if (HttpConfigData->AccessPoint.IPv4Node == NULL) {
return EFI_INVALID_PARAMETER;
}
}
//
// Now configure this HTTP instance.
//
@ -151,33 +155,38 @@ EfiHttpConfigure (
HttpInstance->HttpVersion = HttpConfigData->HttpVersion;
HttpInstance->TimeOutMillisec = HttpConfigData->TimeOutMillisec;
HttpInstance->LocalAddressIsIPv6 = HttpConfigData->LocalAddressIsIPv6;
if (HttpConfigData->LocalAddressIsIPv6) {
return EFI_UNSUPPORTED;
if (HttpConfigData->LocalAddressIsIPv6) {
CopyMem (
&HttpInstance->Ipv6Node,
HttpConfigData->AccessPoint.IPv6Node,
sizeof (HttpInstance->Ipv6Node)
);
} else {
CopyMem (
&HttpInstance->IPv4Node,
HttpConfigData->AccessPoint.IPv4Node,
sizeof (HttpInstance->IPv4Node)
);
HttpInstance->State = HTTP_STATE_HTTP_CONFIGED;
return EFI_SUCCESS;
}
//
// Creat Tcp child
//
Status = HttpInitProtocol (HttpInstance, HttpInstance->LocalAddressIsIPv6);
if (EFI_ERROR (Status)) {
return Status;
}
HttpInstance->State = HTTP_STATE_HTTP_CONFIGED;
return EFI_SUCCESS;
} else {
if (HttpInstance->LocalAddressIsIPv6) {
return EFI_UNSUPPORTED;
} else {
HttpCleanProtocol (HttpInstance);
Status = HttpInitProtocol (HttpInstance->Service, HttpInstance);
if (EFI_ERROR (Status)) {
return Status;
}
HttpInstance->State = HTTP_STATE_UNCONFIGED;
return EFI_SUCCESS;
}
//
// Reset all the resources related to HttpInsance.
//
HttpCleanProtocol (HttpInstance);
HttpInstance->State = HTTP_STATE_UNCONFIGED;
return EFI_SUCCESS;
}
}
@ -264,10 +273,6 @@ EfiHttpRequest (
return EFI_NOT_STARTED;
}
if (HttpInstance->LocalAddressIsIPv6) {
return EFI_UNSUPPORTED;
}
//
// Check whether the token already existed.
//
@ -291,7 +296,8 @@ EfiHttpRequest (
}
FreePool (HttpInstance->Url);
HttpInstance->Url = Url;
}
}
UnicodeStrToAsciiStr (Request->Url, Url);
UrlParser = NULL;
@ -340,7 +346,7 @@ EfiHttpRequest (
Wrap->HttpToken = Token;
Wrap->HttpInstance = HttpInstance;
Status = HttpCreateTcp4TxEvent (Wrap);
Status = HttpCreateTcpTxEvent (Wrap);
if (EFI_ERROR (Status)) {
goto Error1;
}
@ -379,24 +385,35 @@ EfiHttpRequest (
if (Configure) {
//
// Parse Url for IPv4 address, if failed, perform DNS resolution.
// Parse Url for IPv4 or IPv6 address, if failed, perform DNS resolution.
//
Status = NetLibAsciiStrToIp4 (HostName, &HttpInstance->RemoteAddr);
if (!HttpInstance->LocalAddressIsIPv6) {
Status = NetLibAsciiStrToIp4 (HostName, &HttpInstance->RemoteAddr);
} else {
Status = NetLibAsciiStrToIp6 (HostName, &HttpInstance->RemoteIpv6Addr);
}
if (EFI_ERROR (Status)) {
HostNameStr = AllocateZeroPool ((AsciiStrLen (HostName) + 1) * sizeof (UINT16));
HostNameStr = AllocateZeroPool ((AsciiStrLen (HostName) + 1) * sizeof (CHAR16));
if (HostNameStr == NULL) {
Status = EFI_OUT_OF_RESOURCES;
goto Error1;
}
AsciiStrToUnicodeStr (HostName, HostNameStr);
Status = HttpDns4 (HttpInstance, HostNameStr, &HttpInstance->RemoteAddr);
if (!HttpInstance->LocalAddressIsIPv6) {
Status = HttpDns4 (HttpInstance, HostNameStr, &HttpInstance->RemoteAddr);
} else {
Status = HttpDns6 (HttpInstance, HostNameStr, &HttpInstance->RemoteIpv6Addr);
}
FreePool (HostNameStr);
if (EFI_ERROR (Status)) {
goto Error1;
}
}
//
// Save the RemotePort and RemoteHost.
//
@ -410,7 +427,7 @@ EfiHttpRequest (
//
// The request URL is different from previous calls to Request(), close existing TCP instance.
//
ASSERT (HttpInstance->Tcp4 != NULL);
ASSERT (HttpInstance->Tcp4 != NULL &&HttpInstance->Tcp6 != NULL);
HttpCloseConnection (HttpInstance);
EfiHttpCancel (This, NULL);
}
@ -429,25 +446,16 @@ EfiHttpRequest (
Wrap->TcpWrap.Method = Request->Method;
if (Configure) {
//
// Configure TCP instance.
//
Status = HttpConfigureTcp4 (HttpInstance, Wrap);
if (EFI_ERROR (Status)) {
goto Error1;
}
//
// Connect TCP.
//
Status = HttpConnectTcp4 (HttpInstance);
Status = HttpInitTcp (HttpInstance, Wrap);
if (EFI_ERROR (Status)) {
goto Error2;
}
} else {
//
// For the new HTTP token, create TX TCP token events.
//
Status = HttpCreateTcp4TxEvent (Wrap);
Status = HttpCreateTcpTxEvent (Wrap);
if (EFI_ERROR (Status)) {
goto Error1;
}
@ -488,7 +496,7 @@ EfiHttpRequest (
//
// Transmit the request message.
//
Status = HttpTransmitTcp4 (
Status = HttpTransmitTcp (
HttpInstance,
Wrap,
(UINT8*) RequestStr,
@ -499,11 +507,11 @@ EfiHttpRequest (
}
DispatchDpc ();
if (HostName != NULL) {
FreePool (HostName);
}
return EFI_SUCCESS;
Error5:
@ -517,15 +525,19 @@ Error4:
Error3:
HttpCloseConnection (HttpInstance);
Error2:
HttpCloseTcp4ConnCloseEvent (HttpInstance);
if (NULL != Wrap->TcpWrap.TxToken.CompletionToken.Event) {
gBS->CloseEvent (Wrap->TcpWrap.TxToken.CompletionToken.Event);
Wrap->TcpWrap.TxToken.CompletionToken.Event = NULL;
HttpCloseTcpConnCloseEvent (HttpInstance);
if (NULL != Wrap->TcpWrap.Tx4Token.CompletionToken.Event) {
gBS->CloseEvent (Wrap->TcpWrap.Tx4Token.CompletionToken.Event);
Wrap->TcpWrap.Tx4Token.CompletionToken.Event = NULL;
}
if (NULL != Wrap->TcpWrap.Tx6Token.CompletionToken.Event) {
gBS->CloseEvent (Wrap->TcpWrap.Tx6Token.CompletionToken.Event);
Wrap->TcpWrap.Tx6Token.CompletionToken.Event = NULL;
}
Error1:
if (HostName != NULL) {
FreePool (HostName);
}
@ -541,7 +553,7 @@ Error1:
}
/**
Cancel a TxToken or RxToken.
Cancel a user's Token.
@param[in] Map The HTTP instance's token queue.
@param[in] Item Object container for one HTTP token and token's wrap.
@ -562,6 +574,7 @@ HttpCancelTokens (
EFI_HTTP_TOKEN *Token;
HTTP_TOKEN_WRAP *Wrap;
HTTP_PROTOCOL *HttpInstance;
Token = (EFI_HTTP_TOKEN *) Context;
@ -575,23 +588,40 @@ HttpCancelTokens (
Wrap = (HTTP_TOKEN_WRAP *) Item->Value;
ASSERT (Wrap != NULL);
HttpInstance = Wrap->HttpInstance;
//
// Free resources.
//
NetMapRemoveItem (Map, Item, NULL);
if (Wrap->TcpWrap.TxToken.CompletionToken.Event != NULL) {
gBS->CloseEvent (Wrap->TcpWrap.TxToken.CompletionToken.Event);
if (!HttpInstance->LocalAddressIsIPv6) {
if (Wrap->TcpWrap.Tx4Token.CompletionToken.Event != NULL) {
gBS->CloseEvent (Wrap->TcpWrap.Tx4Token.CompletionToken.Event);
}
if (Wrap->TcpWrap.Rx4Token.CompletionToken.Event != NULL) {
gBS->CloseEvent (Wrap->TcpWrap.Rx4Token.CompletionToken.Event);
}
if (Wrap->TcpWrap.Rx4Token.Packet.RxData->FragmentTable[0].FragmentBuffer != NULL) {
FreePool (Wrap->TcpWrap.Rx4Token.Packet.RxData->FragmentTable[0].FragmentBuffer);
}
} else {
if (Wrap->TcpWrap.Tx6Token.CompletionToken.Event != NULL) {
gBS->CloseEvent (Wrap->TcpWrap.Tx6Token.CompletionToken.Event);
}
if (Wrap->TcpWrap.Rx6Token.CompletionToken.Event != NULL) {
gBS->CloseEvent (Wrap->TcpWrap.Rx6Token.CompletionToken.Event);
}
if (Wrap->TcpWrap.Rx6Token.Packet.RxData->FragmentTable[0].FragmentBuffer != NULL) {
FreePool (Wrap->TcpWrap.Rx6Token.Packet.RxData->FragmentTable[0].FragmentBuffer);
}
}
if (Wrap->TcpWrap.RxToken.CompletionToken.Event != NULL) {
gBS->CloseEvent (Wrap->TcpWrap.RxToken.CompletionToken.Event);
}
if (Wrap->TcpWrap.RxToken.Packet.RxData->FragmentTable[0].FragmentBuffer != NULL) {
FreePool (Wrap->TcpWrap.RxToken.Packet.RxData->FragmentTable[0].FragmentBuffer);
}
FreePool (Wrap);
@ -747,7 +777,7 @@ HttpBodyParserCallback (
Wrap->HttpInstance->NextMsg = Data;
//
// Free TxToken since already received corrsponding HTTP response.
// Free Tx4Token or Tx6Token since already received corrsponding HTTP response.
//
FreePool (Wrap);
@ -761,7 +791,7 @@ HttpBodyParserCallback (
@retval EFI_SUCCESS Allocation succeeded.
@retval EFI_OUT_OF_RESOURCES Failed to complete the opration due to lack of resources.
@retval EFI_NOT_READY Can't find a corresponding TxToken or
@retval EFI_NOT_READY Can't find a corresponding Tx4Token/Tx6Token or
the EFI_HTTP_UTILITIES_PROTOCOL is not available.
**/
@ -772,12 +802,9 @@ HttpResponseWorker (
{
EFI_STATUS Status;
EFI_HTTP_MESSAGE *HttpMsg;
EFI_TCP4_IO_TOKEN *RxToken;
EFI_TCP4_PROTOCOL *Tcp4;
CHAR8 *EndofHeader;
CHAR8 *HttpHeaders;
UINTN SizeofHeaders;
CHAR8 *Buffer;
UINTN BufferSize;
UINTN StatusCode;
CHAR8 *Tmp;
@ -796,23 +823,21 @@ HttpResponseWorker (
HttpInstance = Wrap->HttpInstance;
Token = Wrap->HttpToken;
HttpMsg = Token->Message;
Tcp4 = HttpInstance->Tcp4;
ASSERT (Tcp4 != NULL);
HttpMsg->Headers = NULL;
HttpHeaders = NULL;
SizeofHeaders = 0;
Buffer = NULL;
BufferSize = 0;
EndofHeader = NULL;
HttpInstance->EndofHeader = NULL;
HttpInstance->HttpHeaders = NULL;
HttpMsg->Headers = NULL;
HttpHeaders = NULL;
SizeofHeaders = 0;
BufferSize = 0;
EndofHeader = NULL;
if (HttpMsg->Data.Response != NULL) {
//
// Need receive the HTTP headers, prepare buffer.
//
Status = HttpCreateTcp4RxEventForHeader (HttpInstance);
Status = HttpCreateTcpRxEventForHeader (HttpInstance);
if (EFI_ERROR (Status)) {
goto Error;
}
@ -843,71 +868,16 @@ HttpResponseWorker (
// Check whether we cached the whole HTTP headers.
//
EndofHeader = AsciiStrStr (HttpHeaders, HTTP_END_OF_HDR_STR);
}
RxToken = &HttpInstance->RxToken;
RxToken->Packet.RxData->FragmentTable[0].FragmentBuffer = AllocateZeroPool (DEF_BUF_LEN);
if (RxToken->Packet.RxData->FragmentTable[0].FragmentBuffer == NULL) {
Status = EFI_OUT_OF_RESOURCES;
}
HttpInstance->EndofHeader = &EndofHeader;
HttpInstance->HttpHeaders = &HttpHeaders;
Status = HttpTcpReceiveHeader (HttpInstance, &SizeofHeaders, &BufferSize);
if (EFI_ERROR (Status)) {
goto Error;
}
//
// Receive the HTTP headers only when EFI_HTTP_RESPONSE_DATA is not NULL.
//
while (EndofHeader == NULL) {
HttpInstance->IsRxDone = FALSE;
RxToken->Packet.RxData->DataLength = DEF_BUF_LEN;
RxToken->Packet.RxData->FragmentTable[0].FragmentLength = DEF_BUF_LEN;
Status = Tcp4->Receive (Tcp4, RxToken);
if (EFI_ERROR (Status)) {
DEBUG ((EFI_D_ERROR, "Tcp4 receive failed: %r\n", Status));
goto Error;
}
while (!HttpInstance->IsRxDone) {
Tcp4->Poll (Tcp4);
}
Status = RxToken->CompletionToken.Status;
if (EFI_ERROR (Status)) {
goto Error;
}
//
// Append the response string.
//
BufferSize = SizeofHeaders + RxToken->Packet.RxData->FragmentTable[0].FragmentLength;
Buffer = AllocateZeroPool (BufferSize);
if (Buffer == NULL) {
Status = EFI_OUT_OF_RESOURCES;
goto Error;
}
if (HttpHeaders != NULL) {
CopyMem (Buffer, HttpHeaders, SizeofHeaders);
FreePool (HttpHeaders);
}
CopyMem (
Buffer + SizeofHeaders,
RxToken->Packet.RxData->FragmentTable[0].FragmentBuffer,
RxToken->Packet.RxData->FragmentTable[0].FragmentLength
);
HttpHeaders = Buffer;
SizeofHeaders = BufferSize;
//
// Check whether we received end of HTTP headers.
//
EndofHeader = AsciiStrStr (HttpHeaders, HTTP_END_OF_HDR_STR);
};
//
// Skip the CRLF after the HTTP headers.
//
EndofHeader = EndofHeader + AsciiStrLen (HTTP_END_OF_HDR_STR);
//
// Cache the part of body.
//
@ -927,9 +897,6 @@ HttpResponseWorker (
HttpInstance->CacheLen = BodyLen;
}
FreePool (RxToken->Packet.RxData->FragmentTable[0].FragmentBuffer);
RxToken->Packet.RxData->FragmentTable[0].FragmentBuffer = NULL;
//
// Search for Status Code.
//
@ -997,7 +964,7 @@ HttpResponseWorker (
}
//
// The first TxToken not transmitted yet, insert back and return error.
// The first Tx Token not transmitted yet, insert back and return error.
//
if (!ValueInItem->TcpWrap.IsTxDone) {
goto Error2;
@ -1108,16 +1075,8 @@ HttpResponseWorker (
//
// We still need receive more data when there is no cache data and MsgParser is not NULL;
//
RxToken = &Wrap->TcpWrap.RxToken;
RxToken->Packet.RxData->DataLength = (UINT32) HttpMsg->BodyLength;
RxToken->Packet.RxData->FragmentTable[0].FragmentLength = (UINT32) HttpMsg->BodyLength;
RxToken->Packet.RxData->FragmentTable[0].FragmentBuffer = (VOID *) HttpMsg->Body;
RxToken->CompletionToken.Status = EFI_NOT_READY;
Status = Tcp4->Receive (Tcp4, RxToken);
Status = HttpTcpReceiveBody (Wrap, HttpMsg);
if (EFI_ERROR (Status)) {
DEBUG ((EFI_D_ERROR, "Tcp4 receive failed: %r\n", Status));
goto Error;
}
@ -1130,18 +1089,7 @@ Exit:
}
Token->Status = Status;
gBS->SignalEvent (Token->Event);
if (Wrap != NULL) {
if (Wrap->TcpWrap.RxToken.CompletionToken.Event != NULL) {
gBS->CloseEvent (Wrap->TcpWrap.RxToken.CompletionToken.Event);
}
}
if (HttpInstance->RxToken.CompletionToken.Event != NULL) {
gBS->CloseEvent (HttpInstance->RxToken.CompletionToken.Event);
HttpInstance->RxToken.CompletionToken.Event = NULL;
}
HttpCloseTcpRxEvent (Wrap);
FreePool (Wrap);
return Status;
@ -1149,28 +1097,7 @@ Error2:
NetMapInsertHead (&HttpInstance->TxTokens, ValueInItem->HttpToken, ValueInItem);
Error:
if (Wrap != NULL) {
if (Wrap->TcpWrap.RxToken.CompletionToken.Event != NULL) {
gBS->CloseEvent (Wrap->TcpWrap.RxToken.CompletionToken.Event);
}
RxToken = &Wrap->TcpWrap.RxToken;
if (RxToken->Packet.RxData->FragmentTable[0].FragmentBuffer != NULL) {
FreePool (RxToken->Packet.RxData->FragmentTable[0].FragmentBuffer);
RxToken->Packet.RxData->FragmentTable[0].FragmentBuffer = NULL;
}
FreePool (Wrap);
}
if (HttpInstance->RxToken.CompletionToken.Event != NULL) {
gBS->CloseEvent (HttpInstance->RxToken.CompletionToken.Event);
HttpInstance->RxToken.CompletionToken.Event = NULL;
}
RxToken = &HttpInstance->RxToken;
if (RxToken->Packet.RxData->FragmentTable[0].FragmentBuffer != NULL) {
FreePool (RxToken->Packet.RxData->FragmentTable[0].FragmentBuffer);
RxToken->Packet.RxData->FragmentTable[0].FragmentBuffer = NULL;
}
HttpTcpTokenCleanup (Wrap);
if (HttpHeaders != NULL) {
FreePool (HttpHeaders);
@ -1268,10 +1195,6 @@ EfiHttpResponse (
return EFI_NOT_STARTED;
}
if (HttpInstance->LocalAddressIsIPv6) {
return EFI_UNSUPPORTED;
}
//
// Check whether the token already existed.
//
@ -1287,7 +1210,7 @@ EfiHttpResponse (
Wrap->HttpInstance = HttpInstance;
Wrap->HttpToken = Token;
Status = HttpCreateTcp4RxEvent (Wrap);
Status = HttpCreateTcpRxEvent (Wrap);
if (EFI_ERROR (Status)) {
goto Error;
}
@ -1308,8 +1231,12 @@ EfiHttpResponse (
Error:
if (Wrap != NULL) {
if (Wrap->TcpWrap.RxToken.CompletionToken.Event != NULL) {
gBS->CloseEvent (Wrap->TcpWrap.RxToken.CompletionToken.Event);
if (Wrap->TcpWrap.Rx4Token.CompletionToken.Event != NULL) {
gBS->CloseEvent (Wrap->TcpWrap.Rx4Token.CompletionToken.Event);
}
if (Wrap->TcpWrap.Rx6Token.CompletionToken.Event != NULL) {
gBS->CloseEvent (Wrap->TcpWrap.Rx6Token.CompletionToken.Event);
}
FreePool (Wrap);
}
@ -1343,8 +1270,8 @@ EfiHttpPoll (
IN EFI_HTTP_PROTOCOL *This
)
{
HTTP_PROTOCOL *HttpInstance;
EFI_STATUS Status;
HTTP_PROTOCOL *HttpInstance;
if (This == NULL) {
return EFI_INVALID_PARAMETER;
@ -1353,17 +1280,18 @@ EfiHttpPoll (
HttpInstance = HTTP_INSTANCE_FROM_PROTOCOL (This);
ASSERT (HttpInstance != NULL);
if (HttpInstance->LocalAddressIsIPv6) {
return EFI_UNSUPPORTED;
}
if (HttpInstance->Tcp4 == NULL || HttpInstance->State != HTTP_STATE_TCP_CONNECTED) {
if (HttpInstance->State != HTTP_STATE_TCP_CONNECTED || (HttpInstance->Tcp4 == NULL &&
HttpInstance->Tcp6 == NULL)) {
return EFI_NOT_STARTED;
}
Status = HttpInstance->Tcp4->Poll (HttpInstance->Tcp4);
if (HttpInstance->LocalAddressIsIPv6) {
Status = HttpInstance->Tcp6->Poll (HttpInstance->Tcp6);
} else {
Status = HttpInstance->Tcp4->Poll (HttpInstance->Tcp4);
}
DispatchDpc ();
return Status;
}

File diff suppressed because it is too large Load Diff

@ -27,6 +27,7 @@ WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED.
HTTP_SERVICE_SIGNATURE \
)
//
// The state of HTTP protocol. It starts from UNCONFIGED.
//
@ -58,18 +59,23 @@ typedef struct _HTTP_SERVICE {
EFI_SERVICE_BINDING_PROTOCOL ServiceBinding;
EFI_HANDLE ImageHandle;
EFI_HANDLE ControllerHandle;
EFI_HANDLE Tcp4ChildHandle;
EFI_HANDLE Tcp6ChildHandle;
LIST_ENTRY ChildrenList;
UINTN ChildrenNumber;
EFI_HANDLE TcpChildHandle;
INTN State;
} HTTP_SERVICE;
typedef struct {
EFI_TCP4_IO_TOKEN TxToken;
EFI_TCP4_TRANSMIT_DATA TxData;
EFI_TCP4_IO_TOKEN Tx4Token;
EFI_TCP4_TRANSMIT_DATA Tx4Data;
EFI_TCP6_IO_TOKEN Tx6Token;
EFI_TCP6_TRANSMIT_DATA Tx6Data;
EFI_TCP4_IO_TOKEN Rx4Token;
EFI_TCP4_RECEIVE_DATA Rx4Data;
EFI_TCP6_IO_TOKEN Rx6Token;
EFI_TCP6_RECEIVE_DATA Rx6Data;
BOOLEAN IsTxDone;
EFI_TCP4_IO_TOKEN RxToken;
EFI_TCP4_RECEIVE_DATA RxData;
BOOLEAN IsRxDone;
UINTN BodyLen;
EFI_HTTP_METHOD Method;
@ -84,26 +90,43 @@ typedef struct _HTTP_PROTOCOL {
BOOLEAN InDestroy;
INTN State;
EFI_HANDLE TcpChildHandle;
EFI_HANDLE Tcp4ChildHandle;
EFI_TCP4_PROTOCOL *Tcp4;
EFI_TCP4_CONFIG_DATA Tcp4CfgData;
EFI_TCP4_OPTION Tcp4Option;
EFI_TCP4_CONNECTION_TOKEN ConnToken;
BOOLEAN IsConnDone;
EFI_TCP4_CLOSE_TOKEN CloseToken;
BOOLEAN IsCloseDone;
EFI_TCP4_CONNECTION_TOKEN Tcp4ConnToken;
BOOLEAN IsTcp4ConnDone;
EFI_TCP4_CLOSE_TOKEN Tcp4CloseToken;
BOOLEAN IsTcp4CloseDone;
CHAR8 *RemoteHost;
UINT16 RemotePort;
EFI_IPv4_ADDRESS RemoteAddr;
EFI_HANDLE Tcp6ChildHandle;
EFI_TCP6_PROTOCOL *Tcp6;
EFI_TCP6_CONFIG_DATA Tcp6CfgData;
EFI_TCP6_OPTION Tcp6Option;
EFI_TCP6_CONNECTION_TOKEN Tcp6ConnToken;
BOOLEAN IsTcp6ConnDone;
EFI_TCP6_CLOSE_TOKEN Tcp6CloseToken;
BOOLEAN IsTcp6CloseDone;
EFI_IPv6_ADDRESS RemoteIpv6Addr;
//
// RxToken used for receiving HTTP header.
// Rx4Token or Rx6Token used for receiving HTTP header.
//
EFI_TCP4_IO_TOKEN RxToken;
EFI_TCP4_RECEIVE_DATA RxData;
EFI_TCP4_IO_TOKEN Rx4Token;
EFI_TCP4_RECEIVE_DATA Rx4Data;
EFI_TCP6_IO_TOKEN Rx6Token;
EFI_TCP6_RECEIVE_DATA Rx6Data;
BOOLEAN IsRxDone;
CHAR8 **EndofHeader;
CHAR8 **HttpHeaders;
CHAR8 *CacheBody;
CHAR8 *NextMsg;
UINTN CacheLen;
@ -119,6 +142,7 @@ typedef struct _HTTP_PROTOCOL {
BOOLEAN LocalAddressIsIPv6;
EFI_HTTPv4_ACCESS_POINT IPv4Node;
EFI_HTTPv6_ACCESS_POINT Ipv6Node;
NET_MAP TxTokens;
NET_MAP RxTokens;
@ -158,7 +182,7 @@ HttpCommonNotify (
);
/**
Create events for the TCP4 connection token and TCP4 close token.
Create events for the TCP connection token and TCP close token.
@param[in] HttpInstance Pointer to HTTP_PROTOCOL structure.
@ -167,23 +191,23 @@ HttpCommonNotify (
**/
EFI_STATUS
HttpCreateTcp4ConnCloseEvent (
HttpCreateTcpConnCloseEvent (
IN HTTP_PROTOCOL *HttpInstance
);
/**
Close events in the TCP4 connection token and TCP4 close token.
Close events in the TCP connection token and TCP close token.
@param[in] HttpInstance Pointer to HTTP_PROTOCOL structure.
**/
VOID
HttpCloseTcp4ConnCloseEvent (
HttpCloseTcpConnCloseEvent (
IN HTTP_PROTOCOL *HttpInstance
);
/**
Create event for the TCP4 transmit token.
Create event for the TCP transmit token.
@param[in] Wrap Point to HTTP token's wrap data.
@ -192,12 +216,12 @@ HttpCloseTcp4ConnCloseEvent (
**/
EFI_STATUS
HttpCreateTcp4TxEvent (
HttpCreateTcpTxEvent (
IN HTTP_TOKEN_WRAP *Wrap
);
/**
Create event for the TCP4 receive token which is used to receive HTTP header.
Create event for the TCP receive token which is used to receive HTTP header.
@param[in] HttpInstance Pointer to HTTP_PROTOCOL structure.
@ -206,12 +230,12 @@ HttpCreateTcp4TxEvent (
**/
EFI_STATUS
HttpCreateTcp4RxEventForHeader (
HttpCreateTcpRxEventForHeader (
IN HTTP_PROTOCOL *HttpInstance
);
/**
Create event for the TCP4 receive token which is used to receive HTTP body.
Create event for the TCP receive token which is used to receive HTTP body.
@param[in] Wrap Point to HTTP token's wrap data.
@ -220,15 +244,26 @@ HttpCreateTcp4RxEventForHeader (
**/
EFI_STATUS
HttpCreateTcp4RxEvent (
HttpCreateTcpRxEvent (
IN HTTP_TOKEN_WRAP *Wrap
);
/**
Close Events for Tcp Receive Tokens for HTTP body and HTTP header.
@param[in] Wrap Pointer to HTTP token's wrap data.
**/
VOID
HttpCloseTcpRxEvent (
IN HTTP_TOKEN_WRAP *Wrap
);
/**
Intiialize the HTTP_PROTOCOL structure to the unconfigured state.
@param[in] HttpSb The HTTP service private instance.
@param[in, out] HttpInstance Pointer to HTTP_PROTOCOL structure.
@param[in] IpVersion Indicate us TCP4 protocol or TCP6 protocol.
@retval EFI_SUCCESS HTTP_PROTOCOL structure is initialized successfully.
@retval Others Other error as indicated.
@ -236,8 +271,8 @@ HttpCreateTcp4RxEvent (
**/
EFI_STATUS
HttpInitProtocol (
IN HTTP_SERVICE *HttpSb,
IN OUT HTTP_PROTOCOL *HttpInstance
IN OUT HTTP_PROTOCOL *HttpInstance,
IN BOOLEAN IpVersion
);
/**
@ -295,6 +330,22 @@ HttpConfigureTcp4 (
IN HTTP_TOKEN_WRAP *Wrap
);
/**
Configure TCP6 protocol child.
@param[in] HttpInstance The HTTP instance private data.
@param[in] Wrap The HTTP token's wrap data.
@retval EFI_SUCCESS The TCP6 protocol child is configured.
@retval Others Other error as indicated.
**/
EFI_STATUS
HttpConfigureTcp6 (
IN HTTP_PROTOCOL *HttpInstance,
IN HTTP_TOKEN_WRAP *Wrap
);
/**
Check existing TCP connection, if in error state, receover TCP4 connection.
@ -311,7 +362,22 @@ HttpConnectTcp4 (
);
/**
Send the HTTP message through TCP4.
Check existing TCP connection, if in error state, recover TCP6 connection.
@param[in] HttpInstance The HTTP instance private data.
@retval EFI_SUCCESS The TCP connection is established.
@retval EFI_NOT_READY TCP6 protocol child is not created or configured.
@retval Others Other error as indicated.
**/
EFI_STATUS
HttpConnectTcp6 (
IN HTTP_PROTOCOL *HttpInstance
);
/**
Send the HTTP message through TCP4 or TCP6.
@param[in] HttpInstance The HTTP instance private data.
@param[in] Wrap The HTTP token's wrap data.
@ -323,7 +389,7 @@ HttpConnectTcp4 (
**/
EFI_STATUS
HttpTransmitTcp4 (
HttpTransmitTcp (
IN HTTP_PROTOCOL *HttpInstance,
IN HTTP_TOKEN_WRAP *Wrap,
IN UINT8 *TxString,
@ -346,7 +412,7 @@ HttpMappingToStatusCode (
/**
Check whether the user's token or event has already
been enqueue on HTTP TxToken or RxToken list.
been enqueue on HTTP Tx or Rx Token list.
@param[in] Map The container of either user's transmit or receive
token.
@ -367,7 +433,7 @@ HttpTokenExist (
);
/**
Check whether the HTTP message associated with TxToken is already sent out.
Check whether the HTTP message associated with TxToken or Tx6Token is already sent out.
@param[in] Map The container of TxToken.
@param[in] Item Current item to check against.
@ -385,10 +451,26 @@ HttpTcpNotReady (
IN VOID *Context
);
/**
Initialize TCP related data.
@param[in] HttpInstance The HTTP instance private data.
@param[in] Wrap The HTTP token's wrap data.
@retval EFI_SUCCESS The initialization of TCP instance is done.
@retval Others Other error as indicated.
**/
EFI_STATUS
HttpInitTcp (
IN HTTP_PROTOCOL *HttpInstance,
IN HTTP_TOKEN_WRAP *Wrap
);
/**
Transmit the HTTP mssage by processing the associated HTTP token.
@param[in] Map The container of TxToken.
@param[in] Map The container of TxToken or Tx6Token.
@param[in] Item Current item to check against.
@param[in] Context The Token to check againist.
@ -408,7 +490,7 @@ HttpTcpTransmit (
/**
Receive the HTTP response by processing the associated HTTP token.
@param[in] Map The container of RxToken.
@param[in] Map The container of Rx4Token or Rx6Token.
@param[in] Item Current item to check against.
@param[in] Context The Token to check againist.
@ -425,6 +507,51 @@ HttpTcpReceive (
IN VOID *Context
);
/**
Receive the HTTP header by processing the associated HTTP token.
@param[in] HttpInstance The HTTP instance private data.
@param[in, out] SizeofHeaders The HTTP header length.
@param[in, out] BufferSize The size of buffer to cacahe the header message.
@retval EFI_SUCCESS The HTTP header is received.
@retval Others Other errors as indicated.
**/
EFI_STATUS
HttpTcpReceiveHeader (
IN HTTP_PROTOCOL *HttpInstance,
IN OUT UINTN *SizeofHeaders,
IN OUT UINTN *BufferSize
);
/**
Receive the HTTP body by processing the associated HTTP token.
@param[in] Wrap The HTTP token's wrap data.
@param[in] HttpMsg The HTTP message data.
@retval EFI_SUCCESS The HTTP body is received.
@retval Others Other error as indicated.
**/
EFI_STATUS
HttpTcpReceiveBody (
IN HTTP_TOKEN_WRAP *Wrap,
IN EFI_HTTP_MESSAGE *HttpMsg
);
/**
Clean up Tcp Tokens while the Tcp transmission error occurs.
@param[in] Wrap Pointer to HTTP token's wrap data.
**/
VOID
HttpTcpTokenCleanup (
IN HTTP_TOKEN_WRAP *Wrap
);
/**
Generate HTTP request string.