mirror of https://github.com/acidanthera/audk.git
IntelSiliconPkg: Add VTd driver.
It provides AllocateBuffer/FreeBuffer/Map/Unmap function. It also provides VTd capability yet. Cc: Star Zeng <star.zeng@intel.com> Contributed-under: TianoCore Contribution Agreement 1.0 Signed-off-by: Jiewen Yao <jiewen.yao@intel.com> Reviewed-by: Star Zeng <star.zeng@intel.com>
This commit is contained in:
parent
b7ff5027fe
commit
c049fc9909
|
@ -0,0 +1,441 @@
|
|||
/** @file
|
||||
BmDma related function
|
||||
|
||||
Copyright (c) 2017, Intel Corporation. All rights reserved.<BR>
|
||||
This program and the accompanying materials
|
||||
are licensed and made available under the terms and conditions of the BSD License
|
||||
which accompanies this distribution. The full text of the license may be found at
|
||||
http://opensource.org/licenses/bsd-license.php
|
||||
|
||||
THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED.
|
||||
|
||||
**/
|
||||
|
||||
#include <PiDxe.h>
|
||||
|
||||
#include <Protocol/IoMmu.h>
|
||||
|
||||
#include <Library/BaseLib.h>
|
||||
#include <Library/DebugLib.h>
|
||||
#include <Library/BaseMemoryLib.h>
|
||||
#include <Library/MemoryAllocationLib.h>
|
||||
#include <Library/UefiBootServicesTableLib.h>
|
||||
|
||||
// TBD: May make it a policy
|
||||
#define DMA_MEMORY_TOP MAX_UINTN
|
||||
//#define DMA_MEMORY_TOP 0x0000000001FFFFFFULL
|
||||
|
||||
#define MAP_INFO_SIGNATURE SIGNATURE_32 ('D', 'M', 'A', 'P')
|
||||
typedef struct {
|
||||
UINT32 Signature;
|
||||
LIST_ENTRY Link;
|
||||
EDKII_IOMMU_OPERATION Operation;
|
||||
UINTN NumberOfBytes;
|
||||
UINTN NumberOfPages;
|
||||
EFI_PHYSICAL_ADDRESS HostAddress;
|
||||
EFI_PHYSICAL_ADDRESS DeviceAddress;
|
||||
} MAP_INFO;
|
||||
#define MAP_INFO_FROM_LINK(a) CR (a, MAP_INFO, Link, MAP_INFO_SIGNATURE)
|
||||
|
||||
LIST_ENTRY gMaps = INITIALIZE_LIST_HEAD_VARIABLE(gMaps);
|
||||
|
||||
/**
|
||||
Provides the controller-specific addresses required to access system memory from a
|
||||
DMA bus master.
|
||||
|
||||
@param This The protocol instance pointer.
|
||||
@param Operation Indicates if the bus master is going to read or write to system memory.
|
||||
@param HostAddress The system memory address to map to the PCI controller.
|
||||
@param NumberOfBytes On input the number of bytes to map. On output the number of bytes
|
||||
that were mapped.
|
||||
@param DeviceAddress The resulting map address for the bus master PCI controller to use to
|
||||
access the hosts HostAddress.
|
||||
@param Mapping A resulting value to pass to Unmap().
|
||||
|
||||
@retval EFI_SUCCESS The range was mapped for the returned NumberOfBytes.
|
||||
@retval EFI_UNSUPPORTED The HostAddress cannot be mapped as a common buffer.
|
||||
@retval EFI_INVALID_PARAMETER One or more parameters are invalid.
|
||||
@retval EFI_OUT_OF_RESOURCES The request could not be completed due to a lack of resources.
|
||||
@retval EFI_DEVICE_ERROR The system hardware could not map the requested address.
|
||||
|
||||
**/
|
||||
EFI_STATUS
|
||||
EFIAPI
|
||||
IoMmuMap (
|
||||
IN EDKII_IOMMU_PROTOCOL *This,
|
||||
IN EDKII_IOMMU_OPERATION Operation,
|
||||
IN VOID *HostAddress,
|
||||
IN OUT UINTN *NumberOfBytes,
|
||||
OUT EFI_PHYSICAL_ADDRESS *DeviceAddress,
|
||||
OUT VOID **Mapping
|
||||
)
|
||||
{
|
||||
EFI_STATUS Status;
|
||||
EFI_PHYSICAL_ADDRESS PhysicalAddress;
|
||||
MAP_INFO *MapInfo;
|
||||
EFI_PHYSICAL_ADDRESS DmaMemoryTop;
|
||||
BOOLEAN NeedRemap;
|
||||
|
||||
DEBUG ((DEBUG_VERBOSE, "IoMmuMap: ==> 0x%08x - 0x%08x (%x)\n", HostAddress, NumberOfBytes, Operation));
|
||||
|
||||
if (HostAddress == NULL || NumberOfBytes == NULL || DeviceAddress == NULL ||
|
||||
Mapping == NULL) {
|
||||
DEBUG ((DEBUG_ERROR, "IoMmuMap: %r\n", EFI_INVALID_PARAMETER));
|
||||
return EFI_INVALID_PARAMETER;
|
||||
}
|
||||
|
||||
//
|
||||
// Make sure that Operation is valid
|
||||
//
|
||||
if ((UINT32) Operation >= EdkiiIoMmuOperationMaximum) {
|
||||
DEBUG ((DEBUG_ERROR, "IoMmuMap: %r\n", EFI_INVALID_PARAMETER));
|
||||
return EFI_INVALID_PARAMETER;
|
||||
}
|
||||
NeedRemap = FALSE;
|
||||
PhysicalAddress = (EFI_PHYSICAL_ADDRESS) (UINTN) HostAddress;
|
||||
|
||||
DmaMemoryTop = DMA_MEMORY_TOP;
|
||||
|
||||
//
|
||||
// Alignment check
|
||||
//
|
||||
if ((*NumberOfBytes != ALIGN_VALUE(*NumberOfBytes, SIZE_4KB)) ||
|
||||
(PhysicalAddress != ALIGN_VALUE(PhysicalAddress, SIZE_4KB))) {
|
||||
if ((Operation == EdkiiIoMmuOperationBusMasterCommonBuffer) ||
|
||||
(Operation == EdkiiIoMmuOperationBusMasterCommonBuffer64)) {
|
||||
//
|
||||
// The input buffer might be a subset from IoMmuAllocateBuffer.
|
||||
// Skip the check.
|
||||
//
|
||||
} else {
|
||||
NeedRemap = TRUE;
|
||||
}
|
||||
}
|
||||
|
||||
if ((PhysicalAddress + *NumberOfBytes) >= DMA_MEMORY_TOP) {
|
||||
NeedRemap = TRUE;
|
||||
}
|
||||
|
||||
if (((Operation != EdkiiIoMmuOperationBusMasterRead64 &&
|
||||
Operation != EdkiiIoMmuOperationBusMasterWrite64 &&
|
||||
Operation != EdkiiIoMmuOperationBusMasterCommonBuffer64)) &&
|
||||
((PhysicalAddress + *NumberOfBytes) > SIZE_4GB)) {
|
||||
//
|
||||
// If the root bridge or the device cannot handle performing DMA above
|
||||
// 4GB but any part of the DMA transfer being mapped is above 4GB, then
|
||||
// map the DMA transfer to a buffer below 4GB.
|
||||
//
|
||||
NeedRemap = TRUE;
|
||||
DmaMemoryTop = MIN (DmaMemoryTop, SIZE_4GB - 1);
|
||||
}
|
||||
|
||||
if (Operation == EdkiiIoMmuOperationBusMasterCommonBuffer ||
|
||||
Operation == EdkiiIoMmuOperationBusMasterCommonBuffer64) {
|
||||
if (NeedRemap) {
|
||||
//
|
||||
// Common Buffer operations can not be remapped. If the common buffer
|
||||
// if above 4GB, then it is not possible to generate a mapping, so return
|
||||
// an error.
|
||||
//
|
||||
DEBUG ((DEBUG_ERROR, "IoMmuMap: %r\n", EFI_UNSUPPORTED));
|
||||
return EFI_UNSUPPORTED;
|
||||
}
|
||||
}
|
||||
|
||||
//
|
||||
// Allocate a MAP_INFO structure to remember the mapping when Unmap() is
|
||||
// called later.
|
||||
//
|
||||
MapInfo = AllocatePool (sizeof (MAP_INFO));
|
||||
if (MapInfo == NULL) {
|
||||
*NumberOfBytes = 0;
|
||||
DEBUG ((DEBUG_ERROR, "IoMmuMap: %r\n", EFI_OUT_OF_RESOURCES));
|
||||
return EFI_OUT_OF_RESOURCES;
|
||||
}
|
||||
|
||||
//
|
||||
// Initialize the MAP_INFO structure
|
||||
//
|
||||
MapInfo->Signature = MAP_INFO_SIGNATURE;
|
||||
MapInfo->Operation = Operation;
|
||||
MapInfo->NumberOfBytes = *NumberOfBytes;
|
||||
MapInfo->NumberOfPages = EFI_SIZE_TO_PAGES (MapInfo->NumberOfBytes);
|
||||
MapInfo->HostAddress = PhysicalAddress;
|
||||
MapInfo->DeviceAddress = DmaMemoryTop;
|
||||
|
||||
//
|
||||
// Allocate a buffer below 4GB to map the transfer to.
|
||||
//
|
||||
if (NeedRemap) {
|
||||
Status = gBS->AllocatePages (
|
||||
AllocateMaxAddress,
|
||||
EfiBootServicesData,
|
||||
MapInfo->NumberOfPages,
|
||||
&MapInfo->DeviceAddress
|
||||
);
|
||||
if (EFI_ERROR (Status)) {
|
||||
FreePool (MapInfo);
|
||||
*NumberOfBytes = 0;
|
||||
DEBUG ((DEBUG_ERROR, "IoMmuMap: %r\n", Status));
|
||||
return Status;
|
||||
}
|
||||
|
||||
//
|
||||
// If this is a read operation from the Bus Master's point of view,
|
||||
// then copy the contents of the real buffer into the mapped buffer
|
||||
// so the Bus Master can read the contents of the real buffer.
|
||||
//
|
||||
if (Operation == EdkiiIoMmuOperationBusMasterRead ||
|
||||
Operation == EdkiiIoMmuOperationBusMasterRead64) {
|
||||
CopyMem (
|
||||
(VOID *) (UINTN) MapInfo->DeviceAddress,
|
||||
(VOID *) (UINTN) MapInfo->HostAddress,
|
||||
MapInfo->NumberOfBytes
|
||||
);
|
||||
}
|
||||
} else {
|
||||
MapInfo->DeviceAddress = MapInfo->HostAddress;
|
||||
}
|
||||
|
||||
InsertTailList (&gMaps, &MapInfo->Link);
|
||||
|
||||
//
|
||||
// The DeviceAddress is the address of the maped buffer below 4GB
|
||||
//
|
||||
*DeviceAddress = MapInfo->DeviceAddress;
|
||||
//
|
||||
// Return a pointer to the MAP_INFO structure in Mapping
|
||||
//
|
||||
*Mapping = MapInfo;
|
||||
|
||||
DEBUG ((DEBUG_VERBOSE, "IoMmuMap: 0x%08x - 0x%08x <==\n", *DeviceAddress, *Mapping));
|
||||
|
||||
return EFI_SUCCESS;
|
||||
}
|
||||
|
||||
/**
|
||||
Completes the Map() operation and releases any corresponding resources.
|
||||
|
||||
@param This The protocol instance pointer.
|
||||
@param Mapping The mapping value returned from Map().
|
||||
|
||||
@retval EFI_SUCCESS The range was unmapped.
|
||||
@retval EFI_INVALID_PARAMETER Mapping is not a value that was returned by Map().
|
||||
@retval EFI_DEVICE_ERROR The data was not committed to the target system memory.
|
||||
**/
|
||||
EFI_STATUS
|
||||
EFIAPI
|
||||
IoMmuUnmap (
|
||||
IN EDKII_IOMMU_PROTOCOL *This,
|
||||
IN VOID *Mapping
|
||||
)
|
||||
{
|
||||
MAP_INFO *MapInfo;
|
||||
LIST_ENTRY *Link;
|
||||
|
||||
DEBUG ((DEBUG_VERBOSE, "IoMmuUnmap: 0x%08x\n", Mapping));
|
||||
|
||||
if (Mapping == NULL) {
|
||||
DEBUG ((DEBUG_ERROR, "IoMmuUnmap: %r\n", EFI_INVALID_PARAMETER));
|
||||
return EFI_INVALID_PARAMETER;
|
||||
}
|
||||
|
||||
MapInfo = NULL;
|
||||
for (Link = GetFirstNode (&gMaps)
|
||||
; !IsNull (&gMaps, Link)
|
||||
; Link = GetNextNode (&gMaps, Link)
|
||||
) {
|
||||
MapInfo = MAP_INFO_FROM_LINK (Link);
|
||||
if (MapInfo == Mapping) {
|
||||
break;
|
||||
}
|
||||
}
|
||||
//
|
||||
// Mapping is not a valid value returned by Map()
|
||||
//
|
||||
if (MapInfo != Mapping) {
|
||||
DEBUG ((DEBUG_ERROR, "IoMmuUnmap: %r\n", EFI_INVALID_PARAMETER));
|
||||
return EFI_INVALID_PARAMETER;
|
||||
}
|
||||
RemoveEntryList (&MapInfo->Link);
|
||||
|
||||
if (MapInfo->DeviceAddress != MapInfo->HostAddress) {
|
||||
//
|
||||
// If this is a write operation from the Bus Master's point of view,
|
||||
// then copy the contents of the mapped buffer into the real buffer
|
||||
// so the processor can read the contents of the real buffer.
|
||||
//
|
||||
if (MapInfo->Operation == EdkiiIoMmuOperationBusMasterWrite ||
|
||||
MapInfo->Operation == EdkiiIoMmuOperationBusMasterWrite64) {
|
||||
CopyMem (
|
||||
(VOID *) (UINTN) MapInfo->HostAddress,
|
||||
(VOID *) (UINTN) MapInfo->DeviceAddress,
|
||||
MapInfo->NumberOfBytes
|
||||
);
|
||||
}
|
||||
|
||||
//
|
||||
// Free the mapped buffer and the MAP_INFO structure.
|
||||
//
|
||||
gBS->FreePages (MapInfo->DeviceAddress, MapInfo->NumberOfPages);
|
||||
}
|
||||
|
||||
FreePool (Mapping);
|
||||
return EFI_SUCCESS;
|
||||
}
|
||||
|
||||
/**
|
||||
Allocates pages that are suitable for an OperationBusMasterCommonBuffer or
|
||||
OperationBusMasterCommonBuffer64 mapping.
|
||||
|
||||
@param This The protocol instance pointer.
|
||||
@param Type This parameter is not used and must be ignored.
|
||||
@param MemoryType The type of memory to allocate, EfiBootServicesData or
|
||||
EfiRuntimeServicesData.
|
||||
@param Pages The number of pages to allocate.
|
||||
@param HostAddress A pointer to store the base system memory address of the
|
||||
allocated range.
|
||||
@param Attributes The requested bit mask of attributes for the allocated range.
|
||||
|
||||
@retval EFI_SUCCESS The requested memory pages were allocated.
|
||||
@retval EFI_UNSUPPORTED Attributes is unsupported. The only legal attribute bits are
|
||||
MEMORY_WRITE_COMBINE and MEMORY_CACHED.
|
||||
@retval EFI_INVALID_PARAMETER One or more parameters are invalid.
|
||||
@retval EFI_OUT_OF_RESOURCES The memory pages could not be allocated.
|
||||
|
||||
**/
|
||||
EFI_STATUS
|
||||
EFIAPI
|
||||
IoMmuAllocateBuffer (
|
||||
IN EDKII_IOMMU_PROTOCOL *This,
|
||||
IN EFI_ALLOCATE_TYPE Type,
|
||||
IN EFI_MEMORY_TYPE MemoryType,
|
||||
IN UINTN Pages,
|
||||
IN OUT VOID **HostAddress,
|
||||
IN UINT64 Attributes
|
||||
)
|
||||
{
|
||||
EFI_STATUS Status;
|
||||
EFI_PHYSICAL_ADDRESS PhysicalAddress;
|
||||
|
||||
DEBUG ((DEBUG_VERBOSE, "IoMmuAllocateBuffer: ==> 0x%08x\n", Pages));
|
||||
|
||||
//
|
||||
// Validate Attributes
|
||||
//
|
||||
if ((Attributes & EDKII_IOMMU_ATTRIBUTE_INVALID_FOR_ALLOCATE_BUFFER) != 0) {
|
||||
DEBUG ((DEBUG_ERROR, "IoMmuAllocateBuffer: %r\n", EFI_UNSUPPORTED));
|
||||
return EFI_UNSUPPORTED;
|
||||
}
|
||||
|
||||
//
|
||||
// Check for invalid inputs
|
||||
//
|
||||
if (HostAddress == NULL) {
|
||||
DEBUG ((DEBUG_ERROR, "IoMmuAllocateBuffer: %r\n", EFI_INVALID_PARAMETER));
|
||||
return EFI_INVALID_PARAMETER;
|
||||
}
|
||||
|
||||
//
|
||||
// The only valid memory types are EfiBootServicesData and
|
||||
// EfiRuntimeServicesData
|
||||
//
|
||||
if (MemoryType != EfiBootServicesData &&
|
||||
MemoryType != EfiRuntimeServicesData) {
|
||||
DEBUG ((DEBUG_ERROR, "IoMmuAllocateBuffer: %r\n", EFI_INVALID_PARAMETER));
|
||||
return EFI_INVALID_PARAMETER;
|
||||
}
|
||||
|
||||
PhysicalAddress = DMA_MEMORY_TOP;
|
||||
if ((Attributes & EDKII_IOMMU_ATTRIBUTE_DUAL_ADDRESS_CYCLE) == 0) {
|
||||
//
|
||||
// Limit allocations to memory below 4GB
|
||||
//
|
||||
PhysicalAddress = MIN (PhysicalAddress, SIZE_4GB - 1);
|
||||
}
|
||||
Status = gBS->AllocatePages (
|
||||
AllocateMaxAddress,
|
||||
MemoryType,
|
||||
Pages,
|
||||
&PhysicalAddress
|
||||
);
|
||||
if (!EFI_ERROR (Status)) {
|
||||
*HostAddress = (VOID *) (UINTN) PhysicalAddress;
|
||||
}
|
||||
|
||||
DEBUG ((DEBUG_VERBOSE, "IoMmuAllocateBuffer: 0x%08x <==\n", *HostAddress));
|
||||
|
||||
return Status;
|
||||
}
|
||||
|
||||
/**
|
||||
Frees memory that was allocated with AllocateBuffer().
|
||||
|
||||
@param This The protocol instance pointer.
|
||||
@param Pages The number of pages to free.
|
||||
@param HostAddress The base system memory address of the allocated range.
|
||||
|
||||
@retval EFI_SUCCESS The requested memory pages were freed.
|
||||
@retval EFI_INVALID_PARAMETER The memory range specified by HostAddress and Pages
|
||||
was not allocated with AllocateBuffer().
|
||||
|
||||
**/
|
||||
EFI_STATUS
|
||||
EFIAPI
|
||||
IoMmuFreeBuffer (
|
||||
IN EDKII_IOMMU_PROTOCOL *This,
|
||||
IN UINTN Pages,
|
||||
IN VOID *HostAddress
|
||||
)
|
||||
{
|
||||
DEBUG ((DEBUG_VERBOSE, "IoMmuFreeBuffer: 0x%\n", Pages));
|
||||
return gBS->FreePages ((EFI_PHYSICAL_ADDRESS) (UINTN) HostAddress, Pages);
|
||||
}
|
||||
|
||||
/**
|
||||
Get device information from mapping.
|
||||
|
||||
@param[in] Mapping The mapping.
|
||||
@param[out] DeviceAddress The device address of the mapping.
|
||||
@param[out] NumberOfPages The number of pages of the mapping.
|
||||
|
||||
@retval EFI_SUCCESS The device information is returned.
|
||||
@retval EFI_INVALID_PARAMETER The mapping is invalid.
|
||||
**/
|
||||
EFI_STATUS
|
||||
GetDeviceInfoFromMapping (
|
||||
IN VOID *Mapping,
|
||||
OUT EFI_PHYSICAL_ADDRESS *DeviceAddress,
|
||||
OUT UINTN *NumberOfPages
|
||||
)
|
||||
{
|
||||
MAP_INFO *MapInfo;
|
||||
LIST_ENTRY *Link;
|
||||
|
||||
if (Mapping == NULL) {
|
||||
return EFI_INVALID_PARAMETER;
|
||||
}
|
||||
|
||||
MapInfo = NULL;
|
||||
for (Link = GetFirstNode (&gMaps)
|
||||
; !IsNull (&gMaps, Link)
|
||||
; Link = GetNextNode (&gMaps, Link)
|
||||
) {
|
||||
MapInfo = MAP_INFO_FROM_LINK (Link);
|
||||
if (MapInfo == Mapping) {
|
||||
break;
|
||||
}
|
||||
}
|
||||
//
|
||||
// Mapping is not a valid value returned by Map()
|
||||
//
|
||||
if (MapInfo != Mapping) {
|
||||
return EFI_INVALID_PARAMETER;
|
||||
}
|
||||
|
||||
*DeviceAddress = MapInfo->DeviceAddress;
|
||||
*NumberOfPages = MapInfo->NumberOfPages;
|
||||
return EFI_SUCCESS;
|
||||
}
|
||||
|
|
@ -0,0 +1,367 @@
|
|||
/** @file
|
||||
|
||||
Copyright (c) 2017, Intel Corporation. All rights reserved.<BR>
|
||||
This program and the accompanying materials
|
||||
are licensed and made available under the terms and conditions of the BSD License
|
||||
which accompanies this distribution. The full text of the license may be found at
|
||||
http://opensource.org/licenses/bsd-license.php.
|
||||
|
||||
THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED.
|
||||
|
||||
**/
|
||||
|
||||
#include "DmaProtection.h"
|
||||
|
||||
EFI_ACPI_SDT_PROTOCOL *mAcpiSdt;
|
||||
UINT64 mBelow4GMemoryLimit;
|
||||
UINT64 mAbove4GMemoryLimit;
|
||||
|
||||
EDKII_PLATFORM_VTD_POLICY_PROTOCOL *mPlatformVTdPolicy;
|
||||
|
||||
/**
|
||||
return the UEFI memory information.
|
||||
|
||||
@param[out] Below4GMemoryLimit The below 4GiB memory limit
|
||||
@param[out] Above4GMemoryLimit The above 4GiB memory limit
|
||||
**/
|
||||
VOID
|
||||
ReturnUefiMemoryMap (
|
||||
OUT UINT64 *Below4GMemoryLimit,
|
||||
OUT UINT64 *Above4GMemoryLimit
|
||||
)
|
||||
{
|
||||
EFI_STATUS Status;
|
||||
EFI_MEMORY_DESCRIPTOR *EfiMemoryMap;
|
||||
EFI_MEMORY_DESCRIPTOR *EfiMemoryMapEnd;
|
||||
EFI_MEMORY_DESCRIPTOR *EfiEntry;
|
||||
EFI_MEMORY_DESCRIPTOR *NextEfiEntry;
|
||||
EFI_MEMORY_DESCRIPTOR TempEfiEntry;
|
||||
UINTN EfiMemoryMapSize;
|
||||
UINTN EfiMapKey;
|
||||
UINTN EfiDescriptorSize;
|
||||
UINT32 EfiDescriptorVersion;
|
||||
UINT64 MemoryBlockLength;
|
||||
|
||||
*Below4GMemoryLimit = 0;
|
||||
*Above4GMemoryLimit = 0;
|
||||
|
||||
//
|
||||
// Get the EFI memory map.
|
||||
//
|
||||
EfiMemoryMapSize = 0;
|
||||
EfiMemoryMap = NULL;
|
||||
Status = gBS->GetMemoryMap (
|
||||
&EfiMemoryMapSize,
|
||||
EfiMemoryMap,
|
||||
&EfiMapKey,
|
||||
&EfiDescriptorSize,
|
||||
&EfiDescriptorVersion
|
||||
);
|
||||
ASSERT (Status == EFI_BUFFER_TOO_SMALL);
|
||||
|
||||
do {
|
||||
//
|
||||
// Use size returned back plus 1 descriptor for the AllocatePool.
|
||||
// We don't just multiply by 2 since the "for" loop below terminates on
|
||||
// EfiMemoryMapEnd which is dependent upon EfiMemoryMapSize. Otherwize
|
||||
// we process bogus entries and create bogus E820 entries.
|
||||
//
|
||||
EfiMemoryMap = (EFI_MEMORY_DESCRIPTOR *) AllocatePool (EfiMemoryMapSize);
|
||||
ASSERT (EfiMemoryMap != NULL);
|
||||
Status = gBS->GetMemoryMap (
|
||||
&EfiMemoryMapSize,
|
||||
EfiMemoryMap,
|
||||
&EfiMapKey,
|
||||
&EfiDescriptorSize,
|
||||
&EfiDescriptorVersion
|
||||
);
|
||||
if (EFI_ERROR (Status)) {
|
||||
FreePool (EfiMemoryMap);
|
||||
}
|
||||
} while (Status == EFI_BUFFER_TOO_SMALL);
|
||||
|
||||
ASSERT_EFI_ERROR (Status);
|
||||
|
||||
//
|
||||
// Sort memory map from low to high
|
||||
//
|
||||
EfiEntry = EfiMemoryMap;
|
||||
NextEfiEntry = NEXT_MEMORY_DESCRIPTOR (EfiEntry, EfiDescriptorSize);
|
||||
EfiMemoryMapEnd = (EFI_MEMORY_DESCRIPTOR *) ((UINT8 *) EfiMemoryMap + EfiMemoryMapSize);
|
||||
while (EfiEntry < EfiMemoryMapEnd) {
|
||||
while (NextEfiEntry < EfiMemoryMapEnd) {
|
||||
if (EfiEntry->PhysicalStart > NextEfiEntry->PhysicalStart) {
|
||||
CopyMem (&TempEfiEntry, EfiEntry, sizeof (EFI_MEMORY_DESCRIPTOR));
|
||||
CopyMem (EfiEntry, NextEfiEntry, sizeof (EFI_MEMORY_DESCRIPTOR));
|
||||
CopyMem (NextEfiEntry, &TempEfiEntry, sizeof (EFI_MEMORY_DESCRIPTOR));
|
||||
}
|
||||
|
||||
NextEfiEntry = NEXT_MEMORY_DESCRIPTOR (NextEfiEntry, EfiDescriptorSize);
|
||||
}
|
||||
|
||||
EfiEntry = NEXT_MEMORY_DESCRIPTOR (EfiEntry, EfiDescriptorSize);
|
||||
NextEfiEntry = NEXT_MEMORY_DESCRIPTOR (EfiEntry, EfiDescriptorSize);
|
||||
}
|
||||
|
||||
//
|
||||
//
|
||||
//
|
||||
DEBUG ((DEBUG_INFO, "MemoryMap:\n"));
|
||||
EfiEntry = EfiMemoryMap;
|
||||
EfiMemoryMapEnd = (EFI_MEMORY_DESCRIPTOR *) ((UINT8 *) EfiMemoryMap + EfiMemoryMapSize);
|
||||
while (EfiEntry < EfiMemoryMapEnd) {
|
||||
MemoryBlockLength = (UINT64) (LShiftU64 (EfiEntry->NumberOfPages, 12));
|
||||
DEBUG ((DEBUG_INFO, "Entry(0x%02x) 0x%016lx - 0x%016lx\n", EfiEntry->Type, EfiEntry->PhysicalStart, EfiEntry->PhysicalStart + MemoryBlockLength));
|
||||
switch (EfiEntry->Type) {
|
||||
case EfiLoaderCode:
|
||||
case EfiLoaderData:
|
||||
case EfiBootServicesCode:
|
||||
case EfiBootServicesData:
|
||||
case EfiConventionalMemory:
|
||||
case EfiRuntimeServicesCode:
|
||||
case EfiRuntimeServicesData:
|
||||
case EfiACPIReclaimMemory:
|
||||
case EfiACPIMemoryNVS:
|
||||
case EfiReservedMemoryType:
|
||||
if ((EfiEntry->PhysicalStart + MemoryBlockLength) <= BASE_1MB) {
|
||||
//
|
||||
// Skip the memory block is under 1MB
|
||||
//
|
||||
} else if (EfiEntry->PhysicalStart >= BASE_4GB) {
|
||||
if (*Above4GMemoryLimit < EfiEntry->PhysicalStart + MemoryBlockLength) {
|
||||
*Above4GMemoryLimit = EfiEntry->PhysicalStart + MemoryBlockLength;
|
||||
}
|
||||
} else {
|
||||
if (*Below4GMemoryLimit < EfiEntry->PhysicalStart + MemoryBlockLength) {
|
||||
*Below4GMemoryLimit = EfiEntry->PhysicalStart + MemoryBlockLength;
|
||||
}
|
||||
}
|
||||
break;
|
||||
}
|
||||
EfiEntry = NEXT_MEMORY_DESCRIPTOR (EfiEntry, EfiDescriptorSize);
|
||||
}
|
||||
|
||||
FreePool (EfiMemoryMap);
|
||||
|
||||
DEBUG ((DEBUG_INFO, "Result:\n"));
|
||||
DEBUG ((DEBUG_INFO, "Below4GMemoryLimit: 0x%016lx\n", *Below4GMemoryLimit));
|
||||
DEBUG ((DEBUG_INFO, "Above4GMemoryLimit: 0x%016lx\n", *Above4GMemoryLimit));
|
||||
|
||||
return ;
|
||||
}
|
||||
|
||||
/**
|
||||
Initialize platform VTd policy.
|
||||
**/
|
||||
VOID
|
||||
InitializePlatformVTdPolicy (
|
||||
VOID
|
||||
)
|
||||
{
|
||||
EFI_STATUS Status;
|
||||
UINTN DeviceInfoCount;
|
||||
EDKII_PLATFORM_VTD_DEVICE_INFO *DeviceInfo;
|
||||
UINTN Index;
|
||||
|
||||
//
|
||||
// It is optional.
|
||||
//
|
||||
Status = gBS->LocateProtocol (
|
||||
&gEdkiiPlatformVTdPolicyProtocolGuid,
|
||||
NULL,
|
||||
(VOID **)&mPlatformVTdPolicy
|
||||
);
|
||||
if (!EFI_ERROR(Status)) {
|
||||
Status = mPlatformVTdPolicy->GetExceptionDeviceList (mPlatformVTdPolicy, &DeviceInfoCount, &DeviceInfo);
|
||||
if (!EFI_ERROR(Status)) {
|
||||
for (Index = 0; Index < DeviceInfoCount; Index++) {
|
||||
AlwaysEnablePageAttribute (DeviceInfo[Index].Segment, DeviceInfo[Index].SourceId);
|
||||
}
|
||||
FreePool (DeviceInfo);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
Setup VTd engine.
|
||||
**/
|
||||
VOID
|
||||
SetupVtd (
|
||||
VOID
|
||||
)
|
||||
{
|
||||
EFI_STATUS Status;
|
||||
VOID *PciEnumerationComplete;
|
||||
UINTN Index;
|
||||
UINT64 Below4GMemoryLimit;
|
||||
UINT64 Above4GMemoryLimit;
|
||||
|
||||
//
|
||||
// PCI Enumeration must be done
|
||||
//
|
||||
Status = gBS->LocateProtocol (
|
||||
&gEfiPciEnumerationCompleteProtocolGuid,
|
||||
NULL,
|
||||
&PciEnumerationComplete
|
||||
);
|
||||
ASSERT_EFI_ERROR (Status);
|
||||
|
||||
ReturnUefiMemoryMap (&Below4GMemoryLimit, &Above4GMemoryLimit);
|
||||
Below4GMemoryLimit = ALIGN_VALUE_UP(Below4GMemoryLimit, SIZE_256MB);
|
||||
DEBUG ((DEBUG_INFO, " Adjusted Below4GMemoryLimit: 0x%016lx\n", Below4GMemoryLimit));
|
||||
|
||||
mBelow4GMemoryLimit = Below4GMemoryLimit;
|
||||
mAbove4GMemoryLimit = Above4GMemoryLimit;
|
||||
|
||||
//
|
||||
// 1. setup
|
||||
//
|
||||
DEBUG ((DEBUG_INFO, "GetDmarAcpiTable\n"));
|
||||
Status = GetDmarAcpiTable ();
|
||||
if (EFI_ERROR (Status)) {
|
||||
return;
|
||||
}
|
||||
DEBUG ((DEBUG_INFO, "ParseDmarAcpiTable\n"));
|
||||
Status = ParseDmarAcpiTableDrhd ();
|
||||
if (EFI_ERROR (Status)) {
|
||||
return;
|
||||
}
|
||||
DEBUG ((DEBUG_INFO, "PrepareVtdConfig\n"));
|
||||
PrepareVtdConfig ();
|
||||
|
||||
//
|
||||
// 2. initialization
|
||||
//
|
||||
DEBUG ((DEBUG_INFO, "SetupTranslationTable\n"));
|
||||
Status = SetupTranslationTable ();
|
||||
if (EFI_ERROR (Status)) {
|
||||
return;
|
||||
}
|
||||
|
||||
InitializePlatformVTdPolicy ();
|
||||
|
||||
ParseDmarAcpiTableRmrr ();
|
||||
|
||||
for (Index = 0; Index < mVtdUnitNumber; Index++) {
|
||||
DEBUG ((DEBUG_INFO,"VTD Unit %d (Segment: %04x)\n", Index, mVtdUnitInformation[Index].Segment));
|
||||
if (mVtdUnitInformation[Index].ExtRootEntryTable != NULL) {
|
||||
DumpDmarExtContextEntryTable (mVtdUnitInformation[Index].ExtRootEntryTable);
|
||||
}
|
||||
if (mVtdUnitInformation[Index].RootEntryTable != NULL) {
|
||||
DumpDmarContextEntryTable (mVtdUnitInformation[Index].RootEntryTable);
|
||||
}
|
||||
}
|
||||
|
||||
//
|
||||
// 3. enable
|
||||
//
|
||||
DEBUG ((DEBUG_INFO, "EnableDmar\n"));
|
||||
Status = EnableDmar ();
|
||||
if (EFI_ERROR (Status)) {
|
||||
return;
|
||||
}
|
||||
DEBUG ((DEBUG_INFO, "DumpVtdRegs\n"));
|
||||
DumpVtdRegsAll ();
|
||||
}
|
||||
|
||||
/**
|
||||
ACPI notification function.
|
||||
|
||||
@param[in] Table A pointer to the ACPI table header.
|
||||
@param[in] Version The ACPI table's version.
|
||||
@param[in] TableKey The table key for this ACPI table.
|
||||
|
||||
@retval EFI_SUCCESS The notification function is executed.
|
||||
**/
|
||||
EFI_STATUS
|
||||
EFIAPI
|
||||
AcpiNotificationFunc (
|
||||
IN EFI_ACPI_SDT_HEADER *Table,
|
||||
IN EFI_ACPI_TABLE_VERSION Version,
|
||||
IN UINTN TableKey
|
||||
)
|
||||
{
|
||||
if (Table->Signature == EFI_ACPI_4_0_DMA_REMAPPING_TABLE_SIGNATURE) {
|
||||
DEBUG((DEBUG_INFO, "Vtd AcpiNotificationFunc\n"));
|
||||
SetupVtd ();
|
||||
}
|
||||
return EFI_SUCCESS;
|
||||
}
|
||||
|
||||
/**
|
||||
Exit boot service callback function.
|
||||
|
||||
@param[in] Event The event handle.
|
||||
@param[in] Context The event content.
|
||||
**/
|
||||
VOID
|
||||
EFIAPI
|
||||
OnExitBootServices (
|
||||
IN EFI_EVENT Event,
|
||||
IN VOID *Context
|
||||
)
|
||||
{
|
||||
DEBUG ((DEBUG_INFO, "Vtd OnExitBootServices\n"));
|
||||
DumpVtdRegsAll ();
|
||||
DisableDmar ();
|
||||
DumpVtdRegsAll ();
|
||||
}
|
||||
|
||||
/**
|
||||
Legacy boot callback function.
|
||||
|
||||
@param[in] Event The event handle.
|
||||
@param[in] Context The event content.
|
||||
**/
|
||||
VOID
|
||||
EFIAPI
|
||||
OnLegacyBoot (
|
||||
EFI_EVENT Event,
|
||||
VOID *Context
|
||||
)
|
||||
{
|
||||
DEBUG ((DEBUG_INFO, "Vtd OnLegacyBoot\n"));
|
||||
DumpVtdRegsAll ();
|
||||
DisableDmar ();
|
||||
DumpVtdRegsAll ();
|
||||
}
|
||||
|
||||
/**
|
||||
Initialize DMA protection.
|
||||
**/
|
||||
VOID
|
||||
InitializeDmaProtection (
|
||||
VOID
|
||||
)
|
||||
{
|
||||
EFI_STATUS Status;
|
||||
EFI_EVENT ExitBootServicesEvent;
|
||||
EFI_EVENT LegacyBootEvent;
|
||||
|
||||
Status = gBS->LocateProtocol (&gEfiAcpiSdtProtocolGuid, NULL, (VOID **) &mAcpiSdt);
|
||||
ASSERT_EFI_ERROR (Status);
|
||||
|
||||
Status = mAcpiSdt->RegisterNotify (TRUE, AcpiNotificationFunc);
|
||||
ASSERT_EFI_ERROR (Status);
|
||||
|
||||
Status = gBS->CreateEventEx (
|
||||
EVT_NOTIFY_SIGNAL,
|
||||
TPL_NOTIFY,
|
||||
OnExitBootServices,
|
||||
NULL,
|
||||
&gEfiEventExitBootServicesGuid,
|
||||
&ExitBootServicesEvent
|
||||
);
|
||||
ASSERT_EFI_ERROR (Status);
|
||||
|
||||
Status = EfiCreateEventLegacyBootEx (
|
||||
TPL_NOTIFY,
|
||||
OnLegacyBoot,
|
||||
NULL,
|
||||
&LegacyBootEvent
|
||||
);
|
||||
ASSERT_EFI_ERROR (Status);
|
||||
|
||||
return ;
|
||||
}
|
|
@ -0,0 +1,501 @@
|
|||
/** @file
|
||||
|
||||
Copyright (c) 2017, Intel Corporation. All rights reserved.<BR>
|
||||
This program and the accompanying materials
|
||||
are licensed and made available under the terms and conditions of the BSD License
|
||||
which accompanies this distribution. The full text of the license may be found at
|
||||
http://opensource.org/licenses/bsd-license.php.
|
||||
|
||||
THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED.
|
||||
|
||||
**/
|
||||
|
||||
#ifndef _DMAR_PROTECTION_H_
|
||||
#define _DMAR_PROTECTION_H_
|
||||
|
||||
#include <Uefi.h>
|
||||
#include <PiDxe.h>
|
||||
|
||||
#include <Library/BaseLib.h>
|
||||
#include <Library/BaseMemoryLib.h>
|
||||
#include <Library/MemoryAllocationLib.h>
|
||||
#include <Library/UefiBootServicesTableLib.h>
|
||||
#include <Library/IoLib.h>
|
||||
#include <Library/PciSegmentLib.h>
|
||||
#include <Library/DebugLib.h>
|
||||
#include <Library/UefiLib.h>
|
||||
|
||||
#include <Guid/EventGroup.h>
|
||||
#include <Guid/Acpi.h>
|
||||
|
||||
#include <Protocol/DxeSmmReadyToLock.h>
|
||||
#include <Protocol/PciRootBridgeIo.h>
|
||||
#include <Protocol/PciIo.h>
|
||||
#include <Protocol/PciEnumerationComplete.h>
|
||||
#include <Protocol/AcpiSystemDescriptionTable.h>
|
||||
#include <Protocol/PlatformVtdPolicy.h>
|
||||
#include <Protocol/IoMmu.h>
|
||||
|
||||
#include <IndustryStandard/Pci.h>
|
||||
#include <IndustryStandard/DmaRemappingReportingTable.h>
|
||||
#include <IndustryStandard/Vtd.h>
|
||||
|
||||
#define ALIGN_VALUE_UP(Value, Alignment) (((Value) + (Alignment) - 1) & (~((Alignment) - 1)))
|
||||
#define ALIGN_VALUE_LOW(Value, Alignment) ((Value) & (~((Alignment) - 1)))
|
||||
|
||||
//
|
||||
// This is the initial max PCI descriptor.
|
||||
// The number may be enlarged later.
|
||||
//
|
||||
#define MAX_PCI_DESCRIPTORS 0x100
|
||||
|
||||
typedef struct {
|
||||
BOOLEAN IncludeAllFlag;
|
||||
UINTN PciDescriptorNumber;
|
||||
UINTN PciDescriptorMaxNumber;
|
||||
BOOLEAN *IsRealPciDevice;
|
||||
VTD_SOURCE_ID *PciDescriptors;
|
||||
} PCI_DEVICE_INFORMATION;
|
||||
|
||||
typedef struct {
|
||||
UINTN VtdUnitBaseAddress;
|
||||
UINT16 Segment;
|
||||
VTD_CAP_REG CapReg;
|
||||
VTD_ECAP_REG ECapReg;
|
||||
VTD_ROOT_ENTRY *RootEntryTable;
|
||||
VTD_EXT_ROOT_ENTRY *ExtRootEntryTable;
|
||||
VTD_SECOND_LEVEL_PAGING_ENTRY *FixedSecondLevelPagingEntry;
|
||||
BOOLEAN HasDirtyPages;
|
||||
PCI_DEVICE_INFORMATION PciDeviceInfo;
|
||||
} VTD_UNIT_INFORMATION;
|
||||
|
||||
extern EFI_ACPI_DMAR_HEADER *mAcpiDmarTable;
|
||||
|
||||
extern UINT64 mVtdHostAddressWidthMask;
|
||||
extern UINTN mVtdUnitNumber;
|
||||
extern VTD_UNIT_INFORMATION *mVtdUnitInformation;
|
||||
|
||||
extern UINT64 mBelow4GMemoryLimit;
|
||||
extern UINT64 mAbove4GMemoryLimit;
|
||||
|
||||
extern EDKII_PLATFORM_VTD_POLICY_PROTOCOL *mPlatformVTdPolicy;
|
||||
|
||||
/**
|
||||
Prepare VTD configuration.
|
||||
**/
|
||||
VOID
|
||||
PrepareVtdConfig (
|
||||
VOID
|
||||
);
|
||||
|
||||
/**
|
||||
Setup VTd translation table.
|
||||
|
||||
@retval EFI_SUCCESS Setup translation table successfully.
|
||||
@retval EFI_OUT_OF_RESOURCE Setup translation table fail.
|
||||
**/
|
||||
EFI_STATUS
|
||||
SetupTranslationTable (
|
||||
VOID
|
||||
);
|
||||
|
||||
/**
|
||||
Enable DMAR translation.
|
||||
|
||||
@retval EFI_SUCCESS DMAR translation is enabled.
|
||||
@retval EFI_DEVICE_ERROR DMAR translation is not enabled.
|
||||
**/
|
||||
EFI_STATUS
|
||||
EnableDmar (
|
||||
VOID
|
||||
);
|
||||
|
||||
/**
|
||||
Disable DMAR translation.
|
||||
|
||||
@retval EFI_SUCCESS DMAR translation is disabled.
|
||||
@retval EFI_DEVICE_ERROR DMAR translation is not disabled.
|
||||
**/
|
||||
EFI_STATUS
|
||||
DisableDmar (
|
||||
VOID
|
||||
);
|
||||
|
||||
/**
|
||||
Invalid VTd IOTLB page.
|
||||
|
||||
@param[in] VtdIndex The index of VTd engine.
|
||||
@param[in] Address The address of IOTLB page.
|
||||
@param[in] AddressMode The address mode of IOTLB page.
|
||||
@param[in] DomainIdentifier The domain ID of the source.
|
||||
|
||||
@retval EFI_SUCCESS VTd IOTLB page is invalidated.
|
||||
@retval EFI_DEVICE_ERROR VTd IOTLB page is not invalidated.
|
||||
**/
|
||||
EFI_STATUS
|
||||
InvalidateVtdIOTLBPage (
|
||||
IN UINTN VtdIndex,
|
||||
IN UINT64 Address,
|
||||
IN UINT8 AddressMode,
|
||||
IN UINT16 DomainIdentifier
|
||||
);
|
||||
|
||||
/**
|
||||
Invalid VTd IOTLB domain.
|
||||
|
||||
@param[in] VtdIndex The index of VTd engine.
|
||||
@param[in] DomainIdentifier The domain ID of the source.
|
||||
|
||||
@retval EFI_SUCCESS VTd IOTLB domain is invalidated.
|
||||
@retval EFI_DEVICE_ERROR VTd IOTLB domain is not invalidated.
|
||||
**/
|
||||
EFI_STATUS
|
||||
InvalidateVtdIOTLBDomain (
|
||||
IN UINTN VtdIndex,
|
||||
IN UINT16 DomainIdentifier
|
||||
);
|
||||
|
||||
/**
|
||||
Invalid VTd global IOTLB.
|
||||
|
||||
@param[in] VtdIndex The index of VTd engine.
|
||||
|
||||
@retval EFI_SUCCESS VTd global IOTLB is invalidated.
|
||||
@retval EFI_DEVICE_ERROR VTd global IOTLB is not invalidated.
|
||||
**/
|
||||
EFI_STATUS
|
||||
InvalidateVtdIOTLBGlobal (
|
||||
IN UINTN VtdIndex
|
||||
);
|
||||
|
||||
/**
|
||||
Dump VTd registers.
|
||||
|
||||
@param[in] VtdIndex The index of VTd engine.
|
||||
**/
|
||||
VOID
|
||||
DumpVtdRegs (
|
||||
IN UINTN VtdIndex
|
||||
);
|
||||
|
||||
/**
|
||||
Dump VTd registers for all VTd engine.
|
||||
**/
|
||||
VOID
|
||||
DumpVtdRegsAll (
|
||||
VOID
|
||||
);
|
||||
|
||||
/**
|
||||
Dump VTd capability registers.
|
||||
|
||||
@param[in] CapReg The capability register.
|
||||
**/
|
||||
VOID
|
||||
DumpVtdCapRegs (
|
||||
IN VTD_CAP_REG *CapReg
|
||||
);
|
||||
|
||||
/**
|
||||
Dump VTd extended capability registers.
|
||||
|
||||
@param[in] ECapReg The extended capability register.
|
||||
**/
|
||||
VOID
|
||||
DumpVtdECapRegs (
|
||||
IN VTD_ECAP_REG *ECapReg
|
||||
);
|
||||
|
||||
/**
|
||||
Register PCI device to VTd engine as PCI descriptor.
|
||||
|
||||
@param[in] VtdIndex The index of VTd engine.
|
||||
@param[in] Segment The segment of the source.
|
||||
@param[in] SourceId The SourceId of the source.
|
||||
@param[in] IsRealPciDevice TRUE: It is a real PCI device.
|
||||
FALSE: It is not a real PCI device.
|
||||
@param[in] CheckExist TRUE: ERROR will be returned if the PCI device is already registered.
|
||||
FALSE: SUCCESS will be returned if the PCI device is registered.
|
||||
|
||||
@retval EFI_SUCCESS The PCI device is registered.
|
||||
@retval EFI_OUT_OF_RESOURCES No enough resource to register a new PCI device.
|
||||
@retval EFI_ALREADY_STARTED The device is already registered.
|
||||
**/
|
||||
EFI_STATUS
|
||||
RegisterPciDevice (
|
||||
IN UINTN VtdIndex,
|
||||
IN UINT16 Segment,
|
||||
IN VTD_SOURCE_ID SourceId,
|
||||
IN BOOLEAN IsRealPciDevice,
|
||||
IN BOOLEAN CheckExist
|
||||
);
|
||||
|
||||
/**
|
||||
Scan PCI bus and register PCI devices under the bus.
|
||||
|
||||
@param[in] VtdIndex The index of VTd engine.
|
||||
@param[in] Segment The segment of the source.
|
||||
@param[in] Bus The bus of the source.
|
||||
|
||||
@retval EFI_SUCCESS The PCI devices under the bus are registered.
|
||||
@retval EFI_OUT_OF_RESOURCES No enough resource to register a new PCI device.
|
||||
**/
|
||||
EFI_STATUS
|
||||
ScanPciBus (
|
||||
IN UINTN VtdIndex,
|
||||
IN UINT16 Segment,
|
||||
IN UINT8 Bus
|
||||
);
|
||||
|
||||
/**
|
||||
Dump the PCI device information managed by this VTd engine.
|
||||
|
||||
@param[in] VtdIndex The index of VTd engine.
|
||||
**/
|
||||
VOID
|
||||
DumpPciDeviceInfo (
|
||||
IN UINTN VtdIndex
|
||||
);
|
||||
|
||||
/**
|
||||
Find the VTd index by the Segment and SourceId.
|
||||
|
||||
@param[in] Segment The segment of the source.
|
||||
@param[in] SourceId The SourceId of the source.
|
||||
@param[out] ExtContextEntry The ExtContextEntry of the source.
|
||||
@param[out] ContextEntry The ContextEntry of the source.
|
||||
|
||||
@return The index of the PCI descriptor.
|
||||
@retval (UINTN)-1 The PCI descriptor is not found.
|
||||
**/
|
||||
UINTN
|
||||
FindVtdIndexByPciDevice (
|
||||
IN UINT16 Segment,
|
||||
IN VTD_SOURCE_ID SourceId,
|
||||
OUT VTD_EXT_CONTEXT_ENTRY **ExtContextEntry,
|
||||
OUT VTD_CONTEXT_ENTRY **ContextEntry
|
||||
);
|
||||
|
||||
/**
|
||||
Get the DMAR ACPI table.
|
||||
|
||||
@retval EFI_SUCCESS The DMAR ACPI table is got.
|
||||
@retval EFI_NOT_FOUND The DMAR ACPI table is not found.
|
||||
**/
|
||||
EFI_STATUS
|
||||
GetDmarAcpiTable (
|
||||
VOID
|
||||
);
|
||||
|
||||
/**
|
||||
Parse DMAR DRHD table.
|
||||
|
||||
@return EFI_SUCCESS The DMAR DRHD table is parsed.
|
||||
**/
|
||||
EFI_STATUS
|
||||
ParseDmarAcpiTableDrhd (
|
||||
VOID
|
||||
);
|
||||
|
||||
/**
|
||||
Parse DMAR RMRR table.
|
||||
|
||||
@return EFI_SUCCESS The DMAR RMRR table is parsed.
|
||||
**/
|
||||
EFI_STATUS
|
||||
ParseDmarAcpiTableRmrr (
|
||||
VOID
|
||||
);
|
||||
|
||||
/**
|
||||
Dump DMAR context entry table.
|
||||
|
||||
@param[in] RootEntry DMAR root entry.
|
||||
**/
|
||||
VOID
|
||||
DumpDmarContextEntryTable (
|
||||
IN VTD_ROOT_ENTRY *RootEntry
|
||||
);
|
||||
|
||||
/**
|
||||
Dump DMAR extended context entry table.
|
||||
|
||||
@param[in] ExtRootEntry DMAR extended root entry.
|
||||
**/
|
||||
VOID
|
||||
DumpDmarExtContextEntryTable (
|
||||
IN VTD_EXT_ROOT_ENTRY *ExtRootEntry
|
||||
);
|
||||
|
||||
/**
|
||||
Dump DMAR second level paging entry.
|
||||
|
||||
@param[in] SecondLevelPagingEntry The second level paging entry.
|
||||
**/
|
||||
VOID
|
||||
DumpSecondLevelPagingEntry (
|
||||
IN VOID *SecondLevelPagingEntry
|
||||
);
|
||||
|
||||
/**
|
||||
Set VTd attribute for a system memory.
|
||||
|
||||
@param[in] VtdIndex The index used to identify a VTd engine.
|
||||
@param[in] SecondLevelPagingEntry The second level paging entry in VTd table for the device.
|
||||
@param[in] BaseAddress The base of device memory address to be used as the DMA memory.
|
||||
@param[in] Length The length of device memory address to be used as the DMA memory.
|
||||
@param[in] IoMmuAccess The IOMMU access.
|
||||
|
||||
@retval EFI_SUCCESS The IoMmuAccess is set for the memory range specified by BaseAddress and Length.
|
||||
@retval EFI_INVALID_PARAMETER BaseAddress is not IoMmu Page size aligned.
|
||||
@retval EFI_INVALID_PARAMETER Length is not IoMmu Page size aligned.
|
||||
@retval EFI_INVALID_PARAMETER Length is 0.
|
||||
@retval EFI_INVALID_PARAMETER IoMmuAccess specified an illegal combination of access.
|
||||
@retval EFI_UNSUPPORTED The bit mask of IoMmuAccess is not supported by the IOMMU.
|
||||
@retval EFI_UNSUPPORTED The IOMMU does not support the memory range specified by BaseAddress and Length.
|
||||
@retval EFI_OUT_OF_RESOURCES There are not enough resources available to modify the IOMMU access.
|
||||
@retval EFI_DEVICE_ERROR The IOMMU device reported an error while attempting the operation.
|
||||
**/
|
||||
EFI_STATUS
|
||||
SetPageAttribute (
|
||||
IN UINTN VtdIndex,
|
||||
IN VTD_SECOND_LEVEL_PAGING_ENTRY *SecondLevelPagingEntry,
|
||||
IN UINT64 BaseAddress,
|
||||
IN UINT64 Length,
|
||||
IN UINT64 IoMmuAccess
|
||||
);
|
||||
|
||||
/**
|
||||
Set VTd attribute for a system memory.
|
||||
|
||||
@param[in] Segment The Segment used to identify a VTd engine.
|
||||
@param[in] SourceId The SourceId used to identify a VTd engine and table entry.
|
||||
@param[in] BaseAddress The base of device memory address to be used as the DMA memory.
|
||||
@param[in] Length The length of device memory address to be used as the DMA memory.
|
||||
@param[in] IoMmuAccess The IOMMU access.
|
||||
|
||||
@retval EFI_SUCCESS The IoMmuAccess is set for the memory range specified by BaseAddress and Length.
|
||||
@retval EFI_INVALID_PARAMETER BaseAddress is not IoMmu Page size aligned.
|
||||
@retval EFI_INVALID_PARAMETER Length is not IoMmu Page size aligned.
|
||||
@retval EFI_INVALID_PARAMETER Length is 0.
|
||||
@retval EFI_INVALID_PARAMETER IoMmuAccess specified an illegal combination of access.
|
||||
@retval EFI_UNSUPPORTED The bit mask of IoMmuAccess is not supported by the IOMMU.
|
||||
@retval EFI_UNSUPPORTED The IOMMU does not support the memory range specified by BaseAddress and Length.
|
||||
@retval EFI_OUT_OF_RESOURCES There are not enough resources available to modify the IOMMU access.
|
||||
@retval EFI_DEVICE_ERROR The IOMMU device reported an error while attempting the operation.
|
||||
**/
|
||||
EFI_STATUS
|
||||
SetAccessAttribute (
|
||||
IN UINT16 Segment,
|
||||
IN VTD_SOURCE_ID SourceId,
|
||||
IN UINT64 BaseAddress,
|
||||
IN UINT64 Length,
|
||||
IN UINT64 IoMmuAccess
|
||||
);
|
||||
|
||||
/**
|
||||
Return the index of PCI descriptor.
|
||||
|
||||
@param[in] VtdIndex The index used to identify a VTd engine.
|
||||
@param[in] Segment The Segment used to identify a VTd engine.
|
||||
@param[in] SourceId The SourceId used to identify a VTd engine and table entry.
|
||||
|
||||
@return The index of the PCI descriptor.
|
||||
@retval (UINTN)-1 The PCI descriptor is not found.
|
||||
**/
|
||||
UINTN
|
||||
GetPciDescriptor (
|
||||
IN UINTN VtdIndex,
|
||||
IN UINT16 Segment,
|
||||
IN VTD_SOURCE_ID SourceId
|
||||
);
|
||||
|
||||
/**
|
||||
Dump VTd registers if there is error.
|
||||
**/
|
||||
VOID
|
||||
DumpVtdIfError (
|
||||
VOID
|
||||
);
|
||||
|
||||
/**
|
||||
Initialize platform VTd policy.
|
||||
**/
|
||||
VOID
|
||||
InitializePlatformVTdPolicy (
|
||||
VOID
|
||||
);
|
||||
|
||||
/**
|
||||
Always enable the VTd page attribute for the device.
|
||||
|
||||
@param[in] Segment The Segment used to identify a VTd engine.
|
||||
@param[in] SourceId The SourceId used to identify a VTd engine and table entry.
|
||||
|
||||
@retval EFI_SUCCESS The VTd entry is updated to always enable all DMA access for the specific device.
|
||||
**/
|
||||
EFI_STATUS
|
||||
AlwaysEnablePageAttribute (
|
||||
IN UINT16 Segment,
|
||||
IN VTD_SOURCE_ID SourceId
|
||||
);
|
||||
|
||||
/**
|
||||
Convert the DeviceHandle to SourceId and Segment.
|
||||
|
||||
@param[in] DeviceHandle The device who initiates the DMA access request.
|
||||
@param[out] Segment The Segment used to identify a VTd engine.
|
||||
@param[out] SourceId The SourceId used to identify a VTd engine and table entry.
|
||||
|
||||
@retval EFI_SUCCESS The Segment and SourceId are returned.
|
||||
@retval EFI_INVALID_PARAMETER DeviceHandle is an invalid handle.
|
||||
@retval EFI_UNSUPPORTED DeviceHandle is unknown by the IOMMU.
|
||||
**/
|
||||
EFI_STATUS
|
||||
DeviceHandleToSourceId (
|
||||
IN EFI_HANDLE DeviceHandle,
|
||||
OUT UINT16 *Segment,
|
||||
OUT VTD_SOURCE_ID *SourceId
|
||||
);
|
||||
|
||||
/**
|
||||
Get device information from mapping.
|
||||
|
||||
@param[in] Mapping The mapping.
|
||||
@param[out] DeviceAddress The device address of the mapping.
|
||||
@param[out] NumberOfPages The number of pages of the mapping.
|
||||
|
||||
@retval EFI_SUCCESS The device information is returned.
|
||||
@retval EFI_INVALID_PARAMETER The mapping is invalid.
|
||||
**/
|
||||
EFI_STATUS
|
||||
GetDeviceInfoFromMapping (
|
||||
IN VOID *Mapping,
|
||||
OUT EFI_PHYSICAL_ADDRESS *DeviceAddress,
|
||||
OUT UINTN *NumberOfPages
|
||||
);
|
||||
|
||||
/**
|
||||
Initialize DMA protection.
|
||||
**/
|
||||
VOID
|
||||
InitializeDmaProtection (
|
||||
VOID
|
||||
);
|
||||
|
||||
/**
|
||||
Allocate zero pages.
|
||||
|
||||
@param[in] Pages the number of pages.
|
||||
|
||||
@return the page address.
|
||||
@retval NULL No resource to allocate pages.
|
||||
**/
|
||||
VOID *
|
||||
EFIAPI
|
||||
AllocateZeroPages (
|
||||
IN UINTN Pages
|
||||
);
|
||||
|
||||
#endif
|
|
@ -0,0 +1,998 @@
|
|||
/** @file
|
||||
|
||||
Copyright (c) 2017, Intel Corporation. All rights reserved.<BR>
|
||||
This program and the accompanying materials
|
||||
are licensed and made available under the terms and conditions of the BSD License
|
||||
which accompanies this distribution. The full text of the license may be found at
|
||||
http://opensource.org/licenses/bsd-license.php.
|
||||
|
||||
THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED.
|
||||
|
||||
**/
|
||||
|
||||
#include "DmaProtection.h"
|
||||
|
||||
#pragma pack(1)
|
||||
|
||||
typedef struct {
|
||||
EFI_ACPI_DESCRIPTION_HEADER Header;
|
||||
UINT32 Entry;
|
||||
} RSDT_TABLE;
|
||||
|
||||
typedef struct {
|
||||
EFI_ACPI_DESCRIPTION_HEADER Header;
|
||||
UINT64 Entry;
|
||||
} XSDT_TABLE;
|
||||
|
||||
#pragma pack()
|
||||
|
||||
EFI_ACPI_DMAR_HEADER *mAcpiDmarTable;
|
||||
|
||||
/**
|
||||
Dump DMAR DeviceScopeEntry.
|
||||
|
||||
@param[in] DmarDeviceScopeEntry DMAR DeviceScopeEntry
|
||||
**/
|
||||
VOID
|
||||
DumpDmarDeviceScopeEntry (
|
||||
IN EFI_ACPI_DMAR_DEVICE_SCOPE_STRUCTURE_HEADER *DmarDeviceScopeEntry
|
||||
)
|
||||
{
|
||||
UINTN PciPathNumber;
|
||||
UINTN PciPathIndex;
|
||||
EFI_ACPI_DMAR_PCI_PATH *PciPath;
|
||||
|
||||
if (DmarDeviceScopeEntry == NULL) {
|
||||
return;
|
||||
}
|
||||
|
||||
DEBUG ((DEBUG_INFO,
|
||||
" *************************************************************************\n"
|
||||
" * DMA-Remapping Device Scope Entry Structure *\n"
|
||||
" *************************************************************************\n"
|
||||
));
|
||||
DEBUG ((DEBUG_INFO,
|
||||
(sizeof(UINTN) == sizeof(UINT64)) ?
|
||||
" DMAR Device Scope Entry address ...................... 0x%016lx\n" :
|
||||
" DMAR Device Scope Entry address ...................... 0x%08x\n",
|
||||
DmarDeviceScopeEntry
|
||||
));
|
||||
DEBUG ((DEBUG_INFO,
|
||||
" Device Scope Entry Type ............................ 0x%02x\n",
|
||||
DmarDeviceScopeEntry->Type
|
||||
));
|
||||
switch (DmarDeviceScopeEntry->Type) {
|
||||
case EFI_ACPI_DEVICE_SCOPE_ENTRY_TYPE_PCI_ENDPOINT:
|
||||
DEBUG ((DEBUG_INFO,
|
||||
" PCI Endpoint Device\n"
|
||||
));
|
||||
break;
|
||||
case EFI_ACPI_DEVICE_SCOPE_ENTRY_TYPE_PCI_BRIDGE:
|
||||
DEBUG ((DEBUG_INFO,
|
||||
" PCI Sub-hierachy\n"
|
||||
));
|
||||
break;
|
||||
case EFI_ACPI_DEVICE_SCOPE_ENTRY_TYPE_IOAPIC:
|
||||
DEBUG ((DEBUG_INFO,
|
||||
" IOAPIC\n"
|
||||
));
|
||||
break;
|
||||
case EFI_ACPI_DEVICE_SCOPE_ENTRY_TYPE_MSI_CAPABLE_HPET:
|
||||
DEBUG ((DEBUG_INFO,
|
||||
" MSI Capable HPET\n"
|
||||
));
|
||||
break;
|
||||
case EFI_ACPI_DEVICE_SCOPE_ENTRY_TYPE_ACPI_NAMESPACE_DEVICE:
|
||||
DEBUG ((DEBUG_INFO,
|
||||
" ACPI Namespace Device\n"
|
||||
));
|
||||
break;
|
||||
default:
|
||||
break;
|
||||
}
|
||||
DEBUG ((DEBUG_INFO,
|
||||
" Length ............................................. 0x%02x\n",
|
||||
DmarDeviceScopeEntry->Length
|
||||
));
|
||||
DEBUG ((DEBUG_INFO,
|
||||
" Enumeration ID ..................................... 0x%02x\n",
|
||||
DmarDeviceScopeEntry->EnumerationId
|
||||
));
|
||||
DEBUG ((DEBUG_INFO,
|
||||
" Starting Bus Number ................................ 0x%02x\n",
|
||||
DmarDeviceScopeEntry->StartBusNumber
|
||||
));
|
||||
|
||||
PciPathNumber = (DmarDeviceScopeEntry->Length - sizeof(EFI_ACPI_DMAR_DEVICE_SCOPE_STRUCTURE_HEADER)) / sizeof(EFI_ACPI_DMAR_PCI_PATH);
|
||||
PciPath = (EFI_ACPI_DMAR_PCI_PATH *)(DmarDeviceScopeEntry + 1);
|
||||
for (PciPathIndex = 0; PciPathIndex < PciPathNumber; PciPathIndex++) {
|
||||
DEBUG ((DEBUG_INFO,
|
||||
" Device ............................................. 0x%02x\n",
|
||||
PciPath[PciPathIndex].Device
|
||||
));
|
||||
DEBUG ((DEBUG_INFO,
|
||||
" Function ........................................... 0x%02x\n",
|
||||
PciPath[PciPathIndex].Function
|
||||
));
|
||||
}
|
||||
|
||||
DEBUG ((DEBUG_INFO,
|
||||
" *************************************************************************\n\n"
|
||||
));
|
||||
|
||||
return;
|
||||
}
|
||||
|
||||
/**
|
||||
Dump DMAR ANDD table.
|
||||
|
||||
@param[in] Andd DMAR ANDD table
|
||||
**/
|
||||
VOID
|
||||
DumpDmarAndd (
|
||||
IN EFI_ACPI_DMAR_ANDD_HEADER *Andd
|
||||
)
|
||||
{
|
||||
if (Andd == NULL) {
|
||||
return;
|
||||
}
|
||||
|
||||
DEBUG ((DEBUG_INFO,
|
||||
" ***************************************************************************\n"
|
||||
" * ACPI Name-space Device Declaration Structure *\n"
|
||||
" ***************************************************************************\n"
|
||||
));
|
||||
DEBUG ((DEBUG_INFO,
|
||||
(sizeof(UINTN) == sizeof(UINT64)) ?
|
||||
" ANDD address ........................................... 0x%016lx\n" :
|
||||
" ANDD address ........................................... 0x%08x\n",
|
||||
Andd
|
||||
));
|
||||
DEBUG ((DEBUG_INFO,
|
||||
" Type ................................................. 0x%04x\n",
|
||||
Andd->Header.Type
|
||||
));
|
||||
DEBUG ((DEBUG_INFO,
|
||||
" Length ............................................... 0x%04x\n",
|
||||
Andd->Header.Length
|
||||
));
|
||||
DEBUG ((DEBUG_INFO,
|
||||
" ACPI Device Number ................................... 0x%02x\n",
|
||||
Andd->AcpiDeviceNumber
|
||||
));
|
||||
DEBUG ((DEBUG_INFO,
|
||||
" ACPI Object Name ..................................... '%a'\n",
|
||||
(Andd + 1)
|
||||
));
|
||||
|
||||
DEBUG ((DEBUG_INFO,
|
||||
" ***************************************************************************\n\n"
|
||||
));
|
||||
|
||||
return;
|
||||
}
|
||||
|
||||
/**
|
||||
Dump DMAR RHSA table.
|
||||
|
||||
@param[in] Rhsa DMAR RHSA table
|
||||
**/
|
||||
VOID
|
||||
DumpDmarRhsa (
|
||||
IN EFI_ACPI_DMAR_RHSA_HEADER *Rhsa
|
||||
)
|
||||
{
|
||||
if (Rhsa == NULL) {
|
||||
return;
|
||||
}
|
||||
|
||||
DEBUG ((DEBUG_INFO,
|
||||
" ***************************************************************************\n"
|
||||
" * Remapping Hardware Status Affinity Structure *\n"
|
||||
" ***************************************************************************\n"
|
||||
));
|
||||
DEBUG ((DEBUG_INFO,
|
||||
(sizeof(UINTN) == sizeof(UINT64)) ?
|
||||
" RHSA address ........................................... 0x%016lx\n" :
|
||||
" RHSA address ........................................... 0x%08x\n",
|
||||
Rhsa
|
||||
));
|
||||
DEBUG ((DEBUG_INFO,
|
||||
" Type ................................................. 0x%04x\n",
|
||||
Rhsa->Header.Type
|
||||
));
|
||||
DEBUG ((DEBUG_INFO,
|
||||
" Length ............................................... 0x%04x\n",
|
||||
Rhsa->Header.Length
|
||||
));
|
||||
DEBUG ((DEBUG_INFO,
|
||||
" Register Base Address ................................ 0x%016lx\n",
|
||||
Rhsa->RegisterBaseAddress
|
||||
));
|
||||
DEBUG ((DEBUG_INFO,
|
||||
" Proximity Domain ..................................... 0x%08x\n",
|
||||
Rhsa->ProximityDomain
|
||||
));
|
||||
|
||||
DEBUG ((DEBUG_INFO,
|
||||
" ***************************************************************************\n\n"
|
||||
));
|
||||
|
||||
return;
|
||||
}
|
||||
|
||||
/**
|
||||
Dump DMAR ATSR table.
|
||||
|
||||
@param[in] Atsr DMAR ATSR table
|
||||
**/
|
||||
VOID
|
||||
DumpDmarAtsr (
|
||||
IN EFI_ACPI_DMAR_ATSR_HEADER *Atsr
|
||||
)
|
||||
{
|
||||
EFI_ACPI_DMAR_DEVICE_SCOPE_STRUCTURE_HEADER *DmarDeviceScopeEntry;
|
||||
INTN AtsrLen;
|
||||
|
||||
if (Atsr == NULL) {
|
||||
return;
|
||||
}
|
||||
|
||||
DEBUG ((DEBUG_INFO,
|
||||
" ***************************************************************************\n"
|
||||
" * Root Port ATS Capability Reporting Structure *\n"
|
||||
" ***************************************************************************\n"
|
||||
));
|
||||
DEBUG ((DEBUG_INFO,
|
||||
(sizeof(UINTN) == sizeof(UINT64)) ?
|
||||
" ATSR address ........................................... 0x%016lx\n" :
|
||||
" ATSR address ........................................... 0x%08x\n",
|
||||
Atsr
|
||||
));
|
||||
DEBUG ((DEBUG_INFO,
|
||||
" Type ................................................. 0x%04x\n",
|
||||
Atsr->Header.Type
|
||||
));
|
||||
DEBUG ((DEBUG_INFO,
|
||||
" Length ............................................... 0x%04x\n",
|
||||
Atsr->Header.Length
|
||||
));
|
||||
DEBUG ((DEBUG_INFO,
|
||||
" Flags ................................................ 0x%02x\n",
|
||||
Atsr->Flags
|
||||
));
|
||||
DEBUG ((DEBUG_INFO,
|
||||
" ALL_PORTS .......................................... 0x%02x\n",
|
||||
Atsr->Flags & EFI_ACPI_DMAR_ATSR_FLAGS_ALL_PORTS
|
||||
));
|
||||
DEBUG ((DEBUG_INFO,
|
||||
" Segment Number ....................................... 0x%04x\n",
|
||||
Atsr->SegmentNumber
|
||||
));
|
||||
|
||||
AtsrLen = Atsr->Header.Length - sizeof(EFI_ACPI_DMAR_ATSR_HEADER);
|
||||
DmarDeviceScopeEntry = (EFI_ACPI_DMAR_DEVICE_SCOPE_STRUCTURE_HEADER *)(Atsr + 1);
|
||||
while (AtsrLen > 0) {
|
||||
DumpDmarDeviceScopeEntry (DmarDeviceScopeEntry);
|
||||
AtsrLen -= DmarDeviceScopeEntry->Length;
|
||||
DmarDeviceScopeEntry = (EFI_ACPI_DMAR_DEVICE_SCOPE_STRUCTURE_HEADER *)((UINTN)DmarDeviceScopeEntry + DmarDeviceScopeEntry->Length);
|
||||
}
|
||||
|
||||
DEBUG ((DEBUG_INFO,
|
||||
" ***************************************************************************\n\n"
|
||||
));
|
||||
|
||||
return;
|
||||
}
|
||||
|
||||
/**
|
||||
Dump DMAR RMRR table.
|
||||
|
||||
@param[in] Rmrr DMAR RMRR table
|
||||
**/
|
||||
VOID
|
||||
DumpDmarRmrr (
|
||||
IN EFI_ACPI_DMAR_RMRR_HEADER *Rmrr
|
||||
)
|
||||
{
|
||||
EFI_ACPI_DMAR_DEVICE_SCOPE_STRUCTURE_HEADER *DmarDeviceScopeEntry;
|
||||
INTN RmrrLen;
|
||||
|
||||
if (Rmrr == NULL) {
|
||||
return;
|
||||
}
|
||||
|
||||
DEBUG ((DEBUG_INFO,
|
||||
" ***************************************************************************\n"
|
||||
" * Reserved Memory Region Reporting Structure *\n"
|
||||
" ***************************************************************************\n"
|
||||
));
|
||||
DEBUG ((DEBUG_INFO,
|
||||
(sizeof(UINTN) == sizeof(UINT64)) ?
|
||||
" RMRR address ........................................... 0x%016lx\n" :
|
||||
" RMRR address ........................................... 0x%08x\n",
|
||||
Rmrr
|
||||
));
|
||||
DEBUG ((DEBUG_INFO,
|
||||
" Type ................................................. 0x%04x\n",
|
||||
Rmrr->Header.Type
|
||||
));
|
||||
DEBUG ((DEBUG_INFO,
|
||||
" Length ............................................... 0x%04x\n",
|
||||
Rmrr->Header.Length
|
||||
));
|
||||
DEBUG ((DEBUG_INFO,
|
||||
" Segment Number ....................................... 0x%04x\n",
|
||||
Rmrr->SegmentNumber
|
||||
));
|
||||
DEBUG ((DEBUG_INFO,
|
||||
" Reserved Memory Region Base Address .................. 0x%016lx\n",
|
||||
Rmrr->ReservedMemoryRegionBaseAddress
|
||||
));
|
||||
DEBUG ((DEBUG_INFO,
|
||||
" Reserved Memory Region Limit Address ................. 0x%016lx\n",
|
||||
Rmrr->ReservedMemoryRegionLimitAddress
|
||||
));
|
||||
|
||||
RmrrLen = Rmrr->Header.Length - sizeof(EFI_ACPI_DMAR_RMRR_HEADER);
|
||||
DmarDeviceScopeEntry = (EFI_ACPI_DMAR_DEVICE_SCOPE_STRUCTURE_HEADER *)(Rmrr + 1);
|
||||
while (RmrrLen > 0) {
|
||||
DumpDmarDeviceScopeEntry (DmarDeviceScopeEntry);
|
||||
RmrrLen -= DmarDeviceScopeEntry->Length;
|
||||
DmarDeviceScopeEntry = (EFI_ACPI_DMAR_DEVICE_SCOPE_STRUCTURE_HEADER *)((UINTN)DmarDeviceScopeEntry + DmarDeviceScopeEntry->Length);
|
||||
}
|
||||
|
||||
DEBUG ((DEBUG_INFO,
|
||||
" ***************************************************************************\n\n"
|
||||
));
|
||||
|
||||
return;
|
||||
}
|
||||
|
||||
/**
|
||||
Dump DMAR DRHD table.
|
||||
|
||||
@param[in] Drhd DMAR DRHD table
|
||||
**/
|
||||
VOID
|
||||
DumpDmarDrhd (
|
||||
IN EFI_ACPI_DMAR_DRHD_HEADER *Drhd
|
||||
)
|
||||
{
|
||||
EFI_ACPI_DMAR_DEVICE_SCOPE_STRUCTURE_HEADER *DmarDeviceScopeEntry;
|
||||
INTN DrhdLen;
|
||||
|
||||
if (Drhd == NULL) {
|
||||
return;
|
||||
}
|
||||
|
||||
DEBUG ((DEBUG_INFO,
|
||||
" ***************************************************************************\n"
|
||||
" * DMA-Remapping Hardware Definition Structure *\n"
|
||||
" ***************************************************************************\n"
|
||||
));
|
||||
DEBUG ((DEBUG_INFO,
|
||||
(sizeof(UINTN) == sizeof(UINT64)) ?
|
||||
" DRHD address ........................................... 0x%016lx\n" :
|
||||
" DRHD address ........................................... 0x%08x\n",
|
||||
Drhd
|
||||
));
|
||||
DEBUG ((DEBUG_INFO,
|
||||
" Type ................................................. 0x%04x\n",
|
||||
Drhd->Header.Type
|
||||
));
|
||||
DEBUG ((DEBUG_INFO,
|
||||
" Length ............................................... 0x%04x\n",
|
||||
Drhd->Header.Length
|
||||
));
|
||||
DEBUG ((DEBUG_INFO,
|
||||
" Flags ................................................ 0x%02x\n",
|
||||
Drhd->Flags
|
||||
));
|
||||
DEBUG ((DEBUG_INFO,
|
||||
" INCLUDE_PCI_ALL .................................... 0x%02x\n",
|
||||
Drhd->Flags & EFI_ACPI_DMAR_DRHD_FLAGS_INCLUDE_PCI_ALL
|
||||
));
|
||||
DEBUG ((DEBUG_INFO,
|
||||
" Segment Number ....................................... 0x%04x\n",
|
||||
Drhd->SegmentNumber
|
||||
));
|
||||
DEBUG ((DEBUG_INFO,
|
||||
" Register Base Address ................................ 0x%016lx\n",
|
||||
Drhd->RegisterBaseAddress
|
||||
));
|
||||
|
||||
DrhdLen = Drhd->Header.Length - sizeof(EFI_ACPI_DMAR_DRHD_HEADER);
|
||||
DmarDeviceScopeEntry = (EFI_ACPI_DMAR_DEVICE_SCOPE_STRUCTURE_HEADER *)(Drhd + 1);
|
||||
while (DrhdLen > 0) {
|
||||
DumpDmarDeviceScopeEntry (DmarDeviceScopeEntry);
|
||||
DrhdLen -= DmarDeviceScopeEntry->Length;
|
||||
DmarDeviceScopeEntry = (EFI_ACPI_DMAR_DEVICE_SCOPE_STRUCTURE_HEADER *)((UINTN)DmarDeviceScopeEntry + DmarDeviceScopeEntry->Length);
|
||||
}
|
||||
|
||||
DEBUG ((DEBUG_INFO,
|
||||
" ***************************************************************************\n\n"
|
||||
));
|
||||
|
||||
return;
|
||||
}
|
||||
|
||||
/**
|
||||
Dump DMAR ACPI table.
|
||||
|
||||
@param[in] Dmar DMAR ACPI table
|
||||
**/
|
||||
VOID
|
||||
DumpAcpiDMAR (
|
||||
IN EFI_ACPI_DMAR_HEADER *Dmar
|
||||
)
|
||||
{
|
||||
EFI_ACPI_DMAR_STRUCTURE_HEADER *DmarHeader;
|
||||
INTN DmarLen;
|
||||
|
||||
if (Dmar == NULL) {
|
||||
return;
|
||||
}
|
||||
|
||||
//
|
||||
// Dump Dmar table
|
||||
//
|
||||
DEBUG ((DEBUG_INFO,
|
||||
"*****************************************************************************\n"
|
||||
"* DMAR Table *\n"
|
||||
"*****************************************************************************\n"
|
||||
));
|
||||
|
||||
DEBUG ((DEBUG_INFO,
|
||||
(sizeof(UINTN) == sizeof(UINT64)) ?
|
||||
"DMAR address ............................................. 0x%016lx\n" :
|
||||
"DMAR address ............................................. 0x%08x\n",
|
||||
Dmar
|
||||
));
|
||||
|
||||
DEBUG ((DEBUG_INFO,
|
||||
" Table Contents:\n"
|
||||
));
|
||||
DEBUG ((DEBUG_INFO,
|
||||
" Host Address Width ................................... 0x%02x\n",
|
||||
Dmar->HostAddressWidth
|
||||
));
|
||||
DEBUG ((DEBUG_INFO,
|
||||
" Flags ................................................ 0x%02x\n",
|
||||
Dmar->Flags
|
||||
));
|
||||
DEBUG ((DEBUG_INFO,
|
||||
" INTR_REMAP ......................................... 0x%02x\n",
|
||||
Dmar->Flags & EFI_ACPI_DMAR_FLAGS_INTR_REMAP
|
||||
));
|
||||
DEBUG ((DEBUG_INFO,
|
||||
" X2APIC_OPT_OUT_SET ................................. 0x%02x\n",
|
||||
Dmar->Flags & EFI_ACPI_DMAR_FLAGS_X2APIC_OPT_OUT
|
||||
));
|
||||
|
||||
DmarLen = Dmar->Header.Length - sizeof(EFI_ACPI_DMAR_HEADER);
|
||||
DmarHeader = (EFI_ACPI_DMAR_STRUCTURE_HEADER *)(Dmar + 1);
|
||||
while (DmarLen > 0) {
|
||||
switch (DmarHeader->Type) {
|
||||
case EFI_ACPI_DMAR_TYPE_DRHD:
|
||||
DumpDmarDrhd ((EFI_ACPI_DMAR_DRHD_HEADER *)DmarHeader);
|
||||
break;
|
||||
case EFI_ACPI_DMAR_TYPE_RMRR:
|
||||
DumpDmarRmrr ((EFI_ACPI_DMAR_RMRR_HEADER *)DmarHeader);
|
||||
break;
|
||||
case EFI_ACPI_DMAR_TYPE_ATSR:
|
||||
DumpDmarAtsr ((EFI_ACPI_DMAR_ATSR_HEADER *)DmarHeader);
|
||||
break;
|
||||
case EFI_ACPI_DMAR_TYPE_RHSA:
|
||||
DumpDmarRhsa ((EFI_ACPI_DMAR_RHSA_HEADER *)DmarHeader);
|
||||
break;
|
||||
case EFI_ACPI_DMAR_TYPE_ANDD:
|
||||
DumpDmarAndd ((EFI_ACPI_DMAR_ANDD_HEADER *)DmarHeader);
|
||||
break;
|
||||
default:
|
||||
break;
|
||||
}
|
||||
DmarLen -= DmarHeader->Length;
|
||||
DmarHeader = (EFI_ACPI_DMAR_STRUCTURE_HEADER *)((UINTN)DmarHeader + DmarHeader->Length);
|
||||
}
|
||||
|
||||
DEBUG ((DEBUG_INFO,
|
||||
"*****************************************************************************\n\n"
|
||||
));
|
||||
|
||||
return;
|
||||
}
|
||||
|
||||
/**
|
||||
Dump DMAR ACPI table.
|
||||
**/
|
||||
VOID
|
||||
VtdDumpDmarTable (
|
||||
VOID
|
||||
)
|
||||
{
|
||||
DumpAcpiDMAR ((EFI_ACPI_DMAR_HEADER *)(UINTN)mAcpiDmarTable);
|
||||
}
|
||||
|
||||
/**
|
||||
Get PCI device information from DMAR DevScopeEntry.
|
||||
|
||||
@param[in] Segment The segment number.
|
||||
@param[in] DmarDevScopeEntry DMAR DevScopeEntry
|
||||
@param[out] Bus The bus number.
|
||||
@param[out] Device The device number.
|
||||
@param[out] Function The function number.
|
||||
|
||||
@retval EFI_SUCCESS The PCI device information is returned.
|
||||
**/
|
||||
EFI_STATUS
|
||||
GetPciBusDeviceFunction (
|
||||
IN UINT16 Segment,
|
||||
IN EFI_ACPI_DMAR_DEVICE_SCOPE_STRUCTURE_HEADER *DmarDevScopeEntry,
|
||||
OUT UINT8 *Bus,
|
||||
OUT UINT8 *Device,
|
||||
OUT UINT8 *Function
|
||||
)
|
||||
{
|
||||
EFI_ACPI_DMAR_PCI_PATH *DmarPciPath;
|
||||
UINT8 MyBus;
|
||||
UINT8 MyDevice;
|
||||
UINT8 MyFunction;
|
||||
|
||||
DmarPciPath = (EFI_ACPI_DMAR_PCI_PATH *)((UINTN)(DmarDevScopeEntry + 1));
|
||||
MyBus = DmarDevScopeEntry->StartBusNumber;
|
||||
MyDevice = DmarPciPath->Device;
|
||||
MyFunction = DmarPciPath->Function;
|
||||
|
||||
switch (DmarDevScopeEntry->Type) {
|
||||
case EFI_ACPI_DEVICE_SCOPE_ENTRY_TYPE_PCI_ENDPOINT:
|
||||
case EFI_ACPI_DEVICE_SCOPE_ENTRY_TYPE_PCI_BRIDGE:
|
||||
while ((UINTN)DmarPciPath < (UINTN)DmarDevScopeEntry + DmarDevScopeEntry->Length) {
|
||||
MyBus = PciSegmentRead8 (PCI_SEGMENT_LIB_ADDRESS(Segment, MyBus, MyDevice, MyFunction, PCI_BRIDGE_SECONDARY_BUS_REGISTER_OFFSET));
|
||||
MyDevice = DmarPciPath->Device;
|
||||
MyFunction = DmarPciPath->Function;
|
||||
DmarPciPath ++;
|
||||
}
|
||||
break;
|
||||
case EFI_ACPI_DEVICE_SCOPE_ENTRY_TYPE_IOAPIC:
|
||||
case EFI_ACPI_DEVICE_SCOPE_ENTRY_TYPE_MSI_CAPABLE_HPET:
|
||||
case EFI_ACPI_DEVICE_SCOPE_ENTRY_TYPE_ACPI_NAMESPACE_DEVICE:
|
||||
break;
|
||||
}
|
||||
|
||||
*Bus = MyBus;
|
||||
*Device = MyDevice;
|
||||
*Function = MyFunction;
|
||||
|
||||
return EFI_SUCCESS;
|
||||
}
|
||||
|
||||
/**
|
||||
Process DMAR DHRD table.
|
||||
|
||||
@param[in] VtdIndex The index of VTd engine.
|
||||
@param[in] DmarDrhd The DRHD table.
|
||||
|
||||
@retval EFI_SUCCESS The DRHD table is processed.
|
||||
**/
|
||||
EFI_STATUS
|
||||
ProcessDhrd (
|
||||
IN UINTN VtdIndex,
|
||||
IN EFI_ACPI_DMAR_DRHD_HEADER *DmarDrhd
|
||||
)
|
||||
{
|
||||
EFI_ACPI_DMAR_DEVICE_SCOPE_STRUCTURE_HEADER *DmarDevScopeEntry;
|
||||
UINT8 Bus;
|
||||
UINT8 Device;
|
||||
UINT8 Function;
|
||||
UINT8 SecondaryBusNumber;
|
||||
EFI_STATUS Status;
|
||||
VTD_SOURCE_ID SourceId;
|
||||
BOOLEAN IsRealPciDevice;
|
||||
|
||||
mVtdUnitInformation[VtdIndex].VtdUnitBaseAddress = (UINTN)DmarDrhd->RegisterBaseAddress;
|
||||
DEBUG ((DEBUG_INFO," VTD (%d) BaseAddress - 0x%016lx\n", VtdIndex, DmarDrhd->RegisterBaseAddress));
|
||||
|
||||
mVtdUnitInformation[VtdIndex].Segment = DmarDrhd->SegmentNumber;
|
||||
|
||||
if ((DmarDrhd->Flags & EFI_ACPI_DMAR_DRHD_FLAGS_INCLUDE_PCI_ALL) != 0) {
|
||||
mVtdUnitInformation[VtdIndex].PciDeviceInfo.IncludeAllFlag = TRUE;
|
||||
DEBUG ((DEBUG_INFO," ProcessDhrd: with INCLUDE ALL\n"));
|
||||
|
||||
Status = ScanPciBus(VtdIndex, DmarDrhd->SegmentNumber, 0);
|
||||
if (EFI_ERROR (Status)) {
|
||||
return Status;
|
||||
}
|
||||
} else {
|
||||
mVtdUnitInformation[VtdIndex].PciDeviceInfo.IncludeAllFlag = FALSE;
|
||||
DEBUG ((DEBUG_INFO," ProcessDhrd: without INCLUDE ALL\n"));
|
||||
}
|
||||
|
||||
DmarDevScopeEntry = (EFI_ACPI_DMAR_DEVICE_SCOPE_STRUCTURE_HEADER *)((UINTN)(DmarDrhd + 1));
|
||||
while ((UINTN)DmarDevScopeEntry < (UINTN)DmarDrhd + DmarDrhd->Header.Length) {
|
||||
|
||||
Status = GetPciBusDeviceFunction (DmarDrhd->SegmentNumber, DmarDevScopeEntry, &Bus, &Device, &Function);
|
||||
if (EFI_ERROR (Status)) {
|
||||
return Status;
|
||||
}
|
||||
switch (DmarDevScopeEntry->Type) {
|
||||
case EFI_ACPI_DEVICE_SCOPE_ENTRY_TYPE_PCI_ENDPOINT:
|
||||
case EFI_ACPI_DEVICE_SCOPE_ENTRY_TYPE_PCI_BRIDGE:
|
||||
IsRealPciDevice = TRUE;
|
||||
break;
|
||||
default:
|
||||
IsRealPciDevice = FALSE;
|
||||
break;
|
||||
}
|
||||
|
||||
DEBUG ((DEBUG_INFO," ProcessDhrd: "));
|
||||
switch (DmarDevScopeEntry->Type) {
|
||||
case EFI_ACPI_DEVICE_SCOPE_ENTRY_TYPE_PCI_ENDPOINT:
|
||||
DEBUG ((DEBUG_INFO,"PCI Endpoint"));
|
||||
break;
|
||||
case EFI_ACPI_DEVICE_SCOPE_ENTRY_TYPE_PCI_BRIDGE:
|
||||
DEBUG ((DEBUG_INFO,"PCI-PCI bridge"));
|
||||
break;
|
||||
case EFI_ACPI_DEVICE_SCOPE_ENTRY_TYPE_IOAPIC:
|
||||
DEBUG ((DEBUG_INFO,"IOAPIC"));
|
||||
break;
|
||||
case EFI_ACPI_DEVICE_SCOPE_ENTRY_TYPE_MSI_CAPABLE_HPET:
|
||||
DEBUG ((DEBUG_INFO,"MSI Capable HPET"));
|
||||
break;
|
||||
case EFI_ACPI_DEVICE_SCOPE_ENTRY_TYPE_ACPI_NAMESPACE_DEVICE:
|
||||
DEBUG ((DEBUG_INFO,"ACPI Namespace Device"));
|
||||
break;
|
||||
}
|
||||
DEBUG ((DEBUG_INFO," S%04x B%02x D%02x F%02x\n", DmarDrhd->SegmentNumber, Bus, Device, Function));
|
||||
|
||||
SourceId.Bits.Bus = Bus;
|
||||
SourceId.Bits.Device = Device;
|
||||
SourceId.Bits.Function = Function;
|
||||
|
||||
Status = RegisterPciDevice (VtdIndex, DmarDrhd->SegmentNumber, SourceId, IsRealPciDevice, TRUE);
|
||||
if (EFI_ERROR (Status)) {
|
||||
//
|
||||
// There might be duplication for special device other than standard PCI device.
|
||||
//
|
||||
switch (DmarDevScopeEntry->Type) {
|
||||
case EFI_ACPI_DEVICE_SCOPE_ENTRY_TYPE_PCI_ENDPOINT:
|
||||
case EFI_ACPI_DEVICE_SCOPE_ENTRY_TYPE_PCI_BRIDGE:
|
||||
return Status;
|
||||
}
|
||||
}
|
||||
|
||||
switch (DmarDevScopeEntry->Type) {
|
||||
case EFI_ACPI_DEVICE_SCOPE_ENTRY_TYPE_PCI_BRIDGE:
|
||||
SecondaryBusNumber = PciSegmentRead8 (PCI_SEGMENT_LIB_ADDRESS(DmarDrhd->SegmentNumber, Bus, Device, Function, PCI_BRIDGE_SECONDARY_BUS_REGISTER_OFFSET));
|
||||
Status = ScanPciBus (VtdIndex, DmarDrhd->SegmentNumber, SecondaryBusNumber);
|
||||
if (EFI_ERROR (Status)) {
|
||||
return Status;
|
||||
}
|
||||
break;
|
||||
default:
|
||||
break;
|
||||
}
|
||||
|
||||
DmarDevScopeEntry = (EFI_ACPI_DMAR_DEVICE_SCOPE_STRUCTURE_HEADER *)((UINTN)DmarDevScopeEntry + DmarDevScopeEntry->Length);
|
||||
}
|
||||
|
||||
return EFI_SUCCESS;
|
||||
}
|
||||
|
||||
/**
|
||||
Process DMAR RMRR table.
|
||||
|
||||
@param[in] DmarRmrr The RMRR table.
|
||||
|
||||
@retval EFI_SUCCESS The RMRR table is processed.
|
||||
**/
|
||||
EFI_STATUS
|
||||
ProcessRmrr (
|
||||
IN EFI_ACPI_DMAR_RMRR_HEADER *DmarRmrr
|
||||
)
|
||||
{
|
||||
EFI_ACPI_DMAR_DEVICE_SCOPE_STRUCTURE_HEADER *DmarDevScopeEntry;
|
||||
UINT8 Bus;
|
||||
UINT8 Device;
|
||||
UINT8 Function;
|
||||
EFI_STATUS Status;
|
||||
VTD_SOURCE_ID SourceId;
|
||||
|
||||
DEBUG ((DEBUG_INFO," RMRR (Base 0x%016lx, Limit 0x%016lx)\n", DmarRmrr->ReservedMemoryRegionBaseAddress, DmarRmrr->ReservedMemoryRegionLimitAddress));
|
||||
|
||||
DmarDevScopeEntry = (EFI_ACPI_DMAR_DEVICE_SCOPE_STRUCTURE_HEADER *)((UINTN)(DmarRmrr + 1));
|
||||
while ((UINTN)DmarDevScopeEntry < (UINTN)DmarRmrr + DmarRmrr->Header.Length) {
|
||||
if (DmarDevScopeEntry->Type != EFI_ACPI_DEVICE_SCOPE_ENTRY_TYPE_PCI_ENDPOINT) {
|
||||
DEBUG ((DEBUG_INFO,"RMRR DevScopeEntryType is not endpoint, type[0x%x] \n", DmarDevScopeEntry->Type));
|
||||
return EFI_DEVICE_ERROR;
|
||||
}
|
||||
|
||||
Status = GetPciBusDeviceFunction (DmarRmrr->SegmentNumber, DmarDevScopeEntry, &Bus, &Device, &Function);
|
||||
if (EFI_ERROR (Status)) {
|
||||
return Status;
|
||||
}
|
||||
|
||||
DEBUG ((DEBUG_INFO,"RMRR S%04x B%02x D%02x F%02x\n", DmarRmrr->SegmentNumber, Bus, Device, Function));
|
||||
|
||||
SourceId.Bits.Bus = Bus;
|
||||
SourceId.Bits.Device = Device;
|
||||
SourceId.Bits.Function = Function;
|
||||
Status = SetAccessAttribute (
|
||||
DmarRmrr->SegmentNumber,
|
||||
SourceId,
|
||||
DmarRmrr->ReservedMemoryRegionBaseAddress,
|
||||
DmarRmrr->ReservedMemoryRegionLimitAddress + 1 - DmarRmrr->ReservedMemoryRegionBaseAddress,
|
||||
EDKII_IOMMU_ACCESS_READ | EDKII_IOMMU_ACCESS_WRITE
|
||||
);
|
||||
if (EFI_ERROR (Status)) {
|
||||
return Status;
|
||||
}
|
||||
|
||||
DmarDevScopeEntry = (EFI_ACPI_DMAR_DEVICE_SCOPE_STRUCTURE_HEADER *)((UINTN)DmarDevScopeEntry + DmarDevScopeEntry->Length);
|
||||
}
|
||||
|
||||
return EFI_SUCCESS;
|
||||
}
|
||||
|
||||
/**
|
||||
Get VTd engine number.
|
||||
**/
|
||||
UINTN
|
||||
GetVtdEngineNumber (
|
||||
VOID
|
||||
)
|
||||
{
|
||||
EFI_ACPI_DMAR_STRUCTURE_HEADER *DmarHeader;
|
||||
UINTN VtdIndex;
|
||||
|
||||
VtdIndex = 0;
|
||||
DmarHeader = (EFI_ACPI_DMAR_STRUCTURE_HEADER *)((UINTN)(mAcpiDmarTable + 1));
|
||||
while ((UINTN)DmarHeader < (UINTN)mAcpiDmarTable + mAcpiDmarTable->Header.Length) {
|
||||
switch (DmarHeader->Type) {
|
||||
case EFI_ACPI_DMAR_TYPE_DRHD:
|
||||
VtdIndex++;
|
||||
break;
|
||||
default:
|
||||
break;
|
||||
}
|
||||
DmarHeader = (EFI_ACPI_DMAR_STRUCTURE_HEADER *)((UINTN)DmarHeader + DmarHeader->Length);
|
||||
}
|
||||
return VtdIndex ;
|
||||
}
|
||||
|
||||
/**
|
||||
Parse DMAR DRHD table.
|
||||
|
||||
@return EFI_SUCCESS The DMAR DRHD table is parsed.
|
||||
**/
|
||||
EFI_STATUS
|
||||
ParseDmarAcpiTableDrhd (
|
||||
VOID
|
||||
)
|
||||
{
|
||||
EFI_ACPI_DMAR_STRUCTURE_HEADER *DmarHeader;
|
||||
EFI_STATUS Status;
|
||||
UINTN VtdIndex;
|
||||
|
||||
mVtdUnitNumber = GetVtdEngineNumber ();
|
||||
DEBUG ((DEBUG_INFO," VtdUnitNumber - %d\n", mVtdUnitNumber));
|
||||
ASSERT (mVtdUnitNumber > 0);
|
||||
if (mVtdUnitNumber == 0) {
|
||||
return EFI_DEVICE_ERROR;
|
||||
}
|
||||
|
||||
mVtdUnitInformation = AllocateZeroPool (sizeof(*mVtdUnitInformation) * mVtdUnitNumber);
|
||||
ASSERT (mVtdUnitInformation != NULL);
|
||||
if (mVtdUnitInformation == NULL) {
|
||||
return EFI_OUT_OF_RESOURCES;
|
||||
}
|
||||
|
||||
mVtdHostAddressWidthMask = LShiftU64 (1ull, mAcpiDmarTable->HostAddressWidth) - 1;
|
||||
|
||||
VtdIndex = 0;
|
||||
DmarHeader = (EFI_ACPI_DMAR_STRUCTURE_HEADER *)((UINTN)(mAcpiDmarTable + 1));
|
||||
while ((UINTN)DmarHeader < (UINTN)mAcpiDmarTable + mAcpiDmarTable->Header.Length) {
|
||||
switch (DmarHeader->Type) {
|
||||
case EFI_ACPI_DMAR_TYPE_DRHD:
|
||||
ASSERT (VtdIndex < mVtdUnitNumber);
|
||||
Status = ProcessDhrd (VtdIndex, (EFI_ACPI_DMAR_DRHD_HEADER *)DmarHeader);
|
||||
if (EFI_ERROR (Status)) {
|
||||
return Status;
|
||||
}
|
||||
VtdIndex++;
|
||||
|
||||
break;
|
||||
|
||||
default:
|
||||
break;
|
||||
}
|
||||
DmarHeader = (EFI_ACPI_DMAR_STRUCTURE_HEADER *)((UINTN)DmarHeader + DmarHeader->Length);
|
||||
}
|
||||
ASSERT (VtdIndex == mVtdUnitNumber);
|
||||
|
||||
for (VtdIndex = 0; VtdIndex < mVtdUnitNumber; VtdIndex++) {
|
||||
DumpPciDeviceInfo (VtdIndex);
|
||||
}
|
||||
return EFI_SUCCESS ;
|
||||
}
|
||||
|
||||
/**
|
||||
Parse DMAR DRHD table.
|
||||
|
||||
@return EFI_SUCCESS The DMAR DRHD table is parsed.
|
||||
**/
|
||||
EFI_STATUS
|
||||
ParseDmarAcpiTableRmrr (
|
||||
VOID
|
||||
)
|
||||
{
|
||||
EFI_ACPI_DMAR_STRUCTURE_HEADER *DmarHeader;
|
||||
EFI_STATUS Status;
|
||||
|
||||
DmarHeader = (EFI_ACPI_DMAR_STRUCTURE_HEADER *)((UINTN)(mAcpiDmarTable + 1));
|
||||
while ((UINTN)DmarHeader < (UINTN)mAcpiDmarTable + mAcpiDmarTable->Header.Length) {
|
||||
switch (DmarHeader->Type) {
|
||||
case EFI_ACPI_DMAR_TYPE_RMRR:
|
||||
Status = ProcessRmrr ((EFI_ACPI_DMAR_RMRR_HEADER *)DmarHeader);
|
||||
if (EFI_ERROR (Status)) {
|
||||
return Status;
|
||||
}
|
||||
break;
|
||||
default:
|
||||
break;
|
||||
}
|
||||
DmarHeader = (EFI_ACPI_DMAR_STRUCTURE_HEADER *)((UINTN)DmarHeader + DmarHeader->Length);
|
||||
}
|
||||
return EFI_SUCCESS ;
|
||||
}
|
||||
|
||||
/**
|
||||
This function scan ACPI table in RSDT.
|
||||
|
||||
@param[in] Rsdt ACPI RSDT
|
||||
@param[in] Signature ACPI table signature
|
||||
|
||||
@return ACPI table
|
||||
**/
|
||||
VOID *
|
||||
ScanTableInRSDT (
|
||||
IN RSDT_TABLE *Rsdt,
|
||||
IN UINT32 Signature
|
||||
)
|
||||
{
|
||||
UINTN Index;
|
||||
UINT32 EntryCount;
|
||||
UINT32 *EntryPtr;
|
||||
EFI_ACPI_DESCRIPTION_HEADER *Table;
|
||||
|
||||
EntryCount = (Rsdt->Header.Length - sizeof (EFI_ACPI_DESCRIPTION_HEADER)) / sizeof(UINT32);
|
||||
|
||||
EntryPtr = &Rsdt->Entry;
|
||||
for (Index = 0; Index < EntryCount; Index ++, EntryPtr ++) {
|
||||
Table = (EFI_ACPI_DESCRIPTION_HEADER*)((UINTN)(*EntryPtr));
|
||||
if (Table->Signature == Signature) {
|
||||
return Table;
|
||||
}
|
||||
}
|
||||
|
||||
return NULL;
|
||||
}
|
||||
|
||||
/**
|
||||
This function scan ACPI table in XSDT.
|
||||
|
||||
@param[in] Xsdt ACPI XSDT
|
||||
@param[in] Signature ACPI table signature
|
||||
|
||||
@return ACPI table
|
||||
**/
|
||||
VOID *
|
||||
ScanTableInXSDT (
|
||||
IN XSDT_TABLE *Xsdt,
|
||||
IN UINT32 Signature
|
||||
)
|
||||
{
|
||||
UINTN Index;
|
||||
UINT32 EntryCount;
|
||||
UINT64 EntryPtr;
|
||||
UINTN BasePtr;
|
||||
EFI_ACPI_DESCRIPTION_HEADER *Table;
|
||||
|
||||
EntryCount = (Xsdt->Header.Length - sizeof (EFI_ACPI_DESCRIPTION_HEADER)) / sizeof(UINT64);
|
||||
|
||||
BasePtr = (UINTN)(&(Xsdt->Entry));
|
||||
for (Index = 0; Index < EntryCount; Index ++) {
|
||||
CopyMem (&EntryPtr, (VOID *)(BasePtr + Index * sizeof(UINT64)), sizeof(UINT64));
|
||||
Table = (EFI_ACPI_DESCRIPTION_HEADER*)((UINTN)(EntryPtr));
|
||||
if (Table->Signature == Signature) {
|
||||
return Table;
|
||||
}
|
||||
}
|
||||
|
||||
return NULL;
|
||||
}
|
||||
|
||||
/**
|
||||
This function scan ACPI table in RSDP.
|
||||
|
||||
@param[in] Rsdp ACPI RSDP
|
||||
@param[in] Signature ACPI table signature
|
||||
|
||||
@return ACPI table
|
||||
**/
|
||||
VOID *
|
||||
FindAcpiPtr (
|
||||
IN EFI_ACPI_2_0_ROOT_SYSTEM_DESCRIPTION_POINTER *Rsdp,
|
||||
IN UINT32 Signature
|
||||
)
|
||||
{
|
||||
EFI_ACPI_DESCRIPTION_HEADER *AcpiTable;
|
||||
RSDT_TABLE *Rsdt;
|
||||
XSDT_TABLE *Xsdt;
|
||||
|
||||
AcpiTable = NULL;
|
||||
|
||||
//
|
||||
// Check ACPI2.0 table
|
||||
//
|
||||
Rsdt = (RSDT_TABLE *)(UINTN)Rsdp->RsdtAddress;
|
||||
Xsdt = NULL;
|
||||
if ((Rsdp->Revision >= 2) && (Rsdp->XsdtAddress < (UINT64)(UINTN)-1)) {
|
||||
Xsdt = (XSDT_TABLE *)(UINTN)Rsdp->XsdtAddress;
|
||||
}
|
||||
//
|
||||
// Check Xsdt
|
||||
//
|
||||
if (Xsdt != NULL) {
|
||||
AcpiTable = ScanTableInXSDT (Xsdt, Signature);
|
||||
}
|
||||
//
|
||||
// Check Rsdt
|
||||
//
|
||||
if ((AcpiTable == NULL) && (Rsdt != NULL)) {
|
||||
AcpiTable = ScanTableInRSDT (Rsdt, Signature);
|
||||
}
|
||||
|
||||
return AcpiTable;
|
||||
}
|
||||
|
||||
/**
|
||||
Get the DMAR ACPI table.
|
||||
|
||||
@retval EFI_SUCCESS The DMAR ACPI table is got.
|
||||
@retval EFI_NOT_FOUND The DMAR ACPI table is not found.
|
||||
**/
|
||||
EFI_STATUS
|
||||
GetDmarAcpiTable (
|
||||
VOID
|
||||
)
|
||||
{
|
||||
VOID *AcpiTable;
|
||||
EFI_STATUS Status;
|
||||
|
||||
AcpiTable = NULL;
|
||||
Status = EfiGetSystemConfigurationTable (
|
||||
&gEfiAcpi20TableGuid,
|
||||
&AcpiTable
|
||||
);
|
||||
if (EFI_ERROR (Status)) {
|
||||
Status = EfiGetSystemConfigurationTable (
|
||||
&gEfiAcpiTableGuid,
|
||||
&AcpiTable
|
||||
);
|
||||
}
|
||||
ASSERT (AcpiTable != NULL);
|
||||
|
||||
mAcpiDmarTable = FindAcpiPtr (
|
||||
(EFI_ACPI_2_0_ROOT_SYSTEM_DESCRIPTION_POINTER *)AcpiTable,
|
||||
EFI_ACPI_4_0_DMA_REMAPPING_TABLE_SIGNATURE
|
||||
);
|
||||
DEBUG ((DEBUG_INFO,"DMAR Table - 0x%08x\n", mAcpiDmarTable));
|
||||
if (mAcpiDmarTable == NULL) {
|
||||
return EFI_UNSUPPORTED;
|
||||
}
|
||||
VtdDumpDmarTable();
|
||||
|
||||
return EFI_SUCCESS;
|
||||
}
|
|
@ -0,0 +1,353 @@
|
|||
/** @file
|
||||
Intel VTd driver.
|
||||
|
||||
Copyright (c) 2017, Intel Corporation. All rights reserved.<BR>
|
||||
This program and the accompanying materials
|
||||
are licensed and made available under the terms and conditions of the BSD License
|
||||
which accompanies this distribution. The full text of the license may be found at
|
||||
http://opensource.org/licenses/bsd-license.php
|
||||
|
||||
THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED.
|
||||
|
||||
**/
|
||||
|
||||
#include <PiDxe.h>
|
||||
|
||||
#include <Protocol/IoMmu.h>
|
||||
#include <Protocol/PciIo.h>
|
||||
|
||||
#include <Library/IoLib.h>
|
||||
#include <Library/BaseLib.h>
|
||||
#include <Library/DebugLib.h>
|
||||
#include <Library/UefiBootServicesTableLib.h>
|
||||
|
||||
#include "DmaProtection.h"
|
||||
|
||||
/**
|
||||
Provides the controller-specific addresses required to access system memory from a
|
||||
DMA bus master.
|
||||
|
||||
@param This The protocol instance pointer.
|
||||
@param Operation Indicates if the bus master is going to read or write to system memory.
|
||||
@param HostAddress The system memory address to map to the PCI controller.
|
||||
@param NumberOfBytes On input the number of bytes to map. On output the number of bytes
|
||||
that were mapped.
|
||||
@param DeviceAddress The resulting map address for the bus master PCI controller to use to
|
||||
access the hosts HostAddress.
|
||||
@param Mapping A resulting value to pass to Unmap().
|
||||
|
||||
@retval EFI_SUCCESS The range was mapped for the returned NumberOfBytes.
|
||||
@retval EFI_UNSUPPORTED The HostAddress cannot be mapped as a common buffer.
|
||||
@retval EFI_INVALID_PARAMETER One or more parameters are invalid.
|
||||
@retval EFI_OUT_OF_RESOURCES The request could not be completed due to a lack of resources.
|
||||
@retval EFI_DEVICE_ERROR The system hardware could not map the requested address.
|
||||
|
||||
**/
|
||||
EFI_STATUS
|
||||
EFIAPI
|
||||
IoMmuMap (
|
||||
IN EDKII_IOMMU_PROTOCOL *This,
|
||||
IN EDKII_IOMMU_OPERATION Operation,
|
||||
IN VOID *HostAddress,
|
||||
IN OUT UINTN *NumberOfBytes,
|
||||
OUT EFI_PHYSICAL_ADDRESS *DeviceAddress,
|
||||
OUT VOID **Mapping
|
||||
);
|
||||
|
||||
/**
|
||||
Completes the Map() operation and releases any corresponding resources.
|
||||
|
||||
@param This The protocol instance pointer.
|
||||
@param Mapping The mapping value returned from Map().
|
||||
|
||||
@retval EFI_SUCCESS The range was unmapped.
|
||||
@retval EFI_INVALID_PARAMETER Mapping is not a value that was returned by Map().
|
||||
@retval EFI_DEVICE_ERROR The data was not committed to the target system memory.
|
||||
**/
|
||||
EFI_STATUS
|
||||
EFIAPI
|
||||
IoMmuUnmap (
|
||||
IN EDKII_IOMMU_PROTOCOL *This,
|
||||
IN VOID *Mapping
|
||||
);
|
||||
|
||||
/**
|
||||
Allocates pages that are suitable for an OperationBusMasterCommonBuffer or
|
||||
OperationBusMasterCommonBuffer64 mapping.
|
||||
|
||||
@param This The protocol instance pointer.
|
||||
@param Type This parameter is not used and must be ignored.
|
||||
@param MemoryType The type of memory to allocate, EfiBootServicesData or
|
||||
EfiRuntimeServicesData.
|
||||
@param Pages The number of pages to allocate.
|
||||
@param HostAddress A pointer to store the base system memory address of the
|
||||
allocated range.
|
||||
@param Attributes The requested bit mask of attributes for the allocated range.
|
||||
|
||||
@retval EFI_SUCCESS The requested memory pages were allocated.
|
||||
@retval EFI_UNSUPPORTED Attributes is unsupported. The only legal attribute bits are
|
||||
MEMORY_WRITE_COMBINE and MEMORY_CACHED.
|
||||
@retval EFI_INVALID_PARAMETER One or more parameters are invalid.
|
||||
@retval EFI_OUT_OF_RESOURCES The memory pages could not be allocated.
|
||||
|
||||
**/
|
||||
EFI_STATUS
|
||||
EFIAPI
|
||||
IoMmuAllocateBuffer (
|
||||
IN EDKII_IOMMU_PROTOCOL *This,
|
||||
IN EFI_ALLOCATE_TYPE Type,
|
||||
IN EFI_MEMORY_TYPE MemoryType,
|
||||
IN UINTN Pages,
|
||||
IN OUT VOID **HostAddress,
|
||||
IN UINT64 Attributes
|
||||
);
|
||||
|
||||
/**
|
||||
Frees memory that was allocated with AllocateBuffer().
|
||||
|
||||
@param This The protocol instance pointer.
|
||||
@param Pages The number of pages to free.
|
||||
@param HostAddress The base system memory address of the allocated range.
|
||||
|
||||
@retval EFI_SUCCESS The requested memory pages were freed.
|
||||
@retval EFI_INVALID_PARAMETER The memory range specified by HostAddress and Pages
|
||||
was not allocated with AllocateBuffer().
|
||||
|
||||
**/
|
||||
EFI_STATUS
|
||||
EFIAPI
|
||||
IoMmuFreeBuffer (
|
||||
IN EDKII_IOMMU_PROTOCOL *This,
|
||||
IN UINTN Pages,
|
||||
IN VOID *HostAddress
|
||||
);
|
||||
|
||||
/**
|
||||
Convert the DeviceHandle to SourceId and Segment.
|
||||
|
||||
@param[in] DeviceHandle The device who initiates the DMA access request.
|
||||
@param[out] Segment The Segment used to identify a VTd engine.
|
||||
@param[out] SourceId The SourceId used to identify a VTd engine and table entry.
|
||||
|
||||
@retval EFI_SUCCESS The Segment and SourceId are returned.
|
||||
@retval EFI_INVALID_PARAMETER DeviceHandle is an invalid handle.
|
||||
@retval EFI_UNSUPPORTED DeviceHandle is unknown by the IOMMU.
|
||||
**/
|
||||
EFI_STATUS
|
||||
DeviceHandleToSourceId (
|
||||
IN EFI_HANDLE DeviceHandle,
|
||||
OUT UINT16 *Segment,
|
||||
OUT VTD_SOURCE_ID *SourceId
|
||||
)
|
||||
{
|
||||
EFI_PCI_IO_PROTOCOL *PciIo;
|
||||
UINTN Seg;
|
||||
UINTN Bus;
|
||||
UINTN Dev;
|
||||
UINTN Func;
|
||||
EFI_STATUS Status;
|
||||
EDKII_PLATFORM_VTD_DEVICE_INFO DeviceInfo;
|
||||
|
||||
Status = EFI_NOT_FOUND;
|
||||
if (mPlatformVTdPolicy != NULL) {
|
||||
Status = mPlatformVTdPolicy->GetDeviceId (mPlatformVTdPolicy, DeviceHandle, &DeviceInfo);
|
||||
if (!EFI_ERROR(Status)) {
|
||||
*Segment = DeviceInfo.Segment;
|
||||
*SourceId = DeviceInfo.SourceId;
|
||||
return EFI_SUCCESS;
|
||||
}
|
||||
}
|
||||
|
||||
Status = gBS->HandleProtocol (DeviceHandle, &gEfiPciIoProtocolGuid, (VOID **)&PciIo);
|
||||
if (EFI_ERROR(Status)) {
|
||||
return EFI_UNSUPPORTED;
|
||||
}
|
||||
Status = PciIo->GetLocation (PciIo, &Seg, &Bus, &Dev, &Func);
|
||||
if (EFI_ERROR(Status)) {
|
||||
return EFI_UNSUPPORTED;
|
||||
}
|
||||
*Segment = (UINT16)Seg;
|
||||
SourceId->Bits.Bus = (UINT8)Bus;
|
||||
SourceId->Bits.Device = (UINT8)Dev;
|
||||
SourceId->Bits.Function = (UINT8)Func;
|
||||
|
||||
return EFI_SUCCESS;
|
||||
}
|
||||
|
||||
/**
|
||||
Set IOMMU attribute for a system memory.
|
||||
|
||||
If the IOMMU protocol exists, the system memory cannot be used
|
||||
for DMA by default.
|
||||
|
||||
When a device requests a DMA access for a system memory,
|
||||
the device driver need use SetAttribute() to update the IOMMU
|
||||
attribute to request DMA access (read and/or write).
|
||||
|
||||
The DeviceHandle is used to identify which device submits the request.
|
||||
The IOMMU implementation need translate the device path to an IOMMU device ID,
|
||||
and set IOMMU hardware register accordingly.
|
||||
1) DeviceHandle can be a standard PCI device.
|
||||
The memory for BusMasterRead need set EDKII_IOMMU_ACCESS_READ.
|
||||
The memory for BusMasterWrite need set EDKII_IOMMU_ACCESS_WRITE.
|
||||
The memory for BusMasterCommonBuffer need set EDKII_IOMMU_ACCESS_READ|EDKII_IOMMU_ACCESS_WRITE.
|
||||
After the memory is used, the memory need set 0 to keep it being protected.
|
||||
2) DeviceHandle can be an ACPI device (ISA, I2C, SPI, etc).
|
||||
The memory for DMA access need set EDKII_IOMMU_ACCESS_READ and/or EDKII_IOMMU_ACCESS_WRITE.
|
||||
|
||||
@param[in] This The protocol instance pointer.
|
||||
@param[in] DeviceHandle The device who initiates the DMA access request.
|
||||
@param[in] DeviceAddress The base of device memory address to be used as the DMA memory.
|
||||
@param[in] Length The length of device memory address to be used as the DMA memory.
|
||||
@param[in] IoMmuAccess The IOMMU access.
|
||||
|
||||
@retval EFI_SUCCESS The IoMmuAccess is set for the memory range specified by DeviceAddress and Length.
|
||||
@retval EFI_INVALID_PARAMETER DeviceHandle is an invalid handle.
|
||||
@retval EFI_INVALID_PARAMETER DeviceAddress is not IoMmu Page size aligned.
|
||||
@retval EFI_INVALID_PARAMETER Length is not IoMmu Page size aligned.
|
||||
@retval EFI_INVALID_PARAMETER Length is 0.
|
||||
@retval EFI_INVALID_PARAMETER IoMmuAccess specified an illegal combination of access.
|
||||
@retval EFI_UNSUPPORTED DeviceHandle is unknown by the IOMMU.
|
||||
@retval EFI_UNSUPPORTED The bit mask of IoMmuAccess is not supported by the IOMMU.
|
||||
@retval EFI_UNSUPPORTED The IOMMU does not support the memory range specified by DeviceAddress and Length.
|
||||
@retval EFI_OUT_OF_RESOURCES There are not enough resources available to modify the IOMMU access.
|
||||
@retval EFI_DEVICE_ERROR The IOMMU device reported an error while attempting the operation.
|
||||
|
||||
**/
|
||||
EFI_STATUS
|
||||
VTdSetAttribute (
|
||||
IN EDKII_IOMMU_PROTOCOL *This,
|
||||
IN EFI_HANDLE DeviceHandle,
|
||||
IN EFI_PHYSICAL_ADDRESS DeviceAddress,
|
||||
IN UINT64 Length,
|
||||
IN UINT64 IoMmuAccess
|
||||
)
|
||||
{
|
||||
EFI_STATUS Status;
|
||||
UINT16 Segment;
|
||||
VTD_SOURCE_ID SourceId;
|
||||
|
||||
DumpVtdIfError ();
|
||||
|
||||
Status = DeviceHandleToSourceId (DeviceHandle, &Segment, &SourceId);
|
||||
if (EFI_ERROR(Status)) {
|
||||
return Status;
|
||||
}
|
||||
|
||||
DEBUG ((DEBUG_VERBOSE, "IoMmuSetAttribute: "));
|
||||
DEBUG ((DEBUG_VERBOSE, "PCI(S%x.B%x.D%x.F%x) ", Segment, SourceId.Bits.Bus, SourceId.Bits.Device, SourceId.Bits.Function));
|
||||
DEBUG ((DEBUG_VERBOSE, "(0x%lx~0x%lx) - %lx\n", DeviceAddress, Length, IoMmuAccess));
|
||||
|
||||
Status = SetAccessAttribute (Segment, SourceId, DeviceAddress, Length, IoMmuAccess);
|
||||
|
||||
return Status;
|
||||
}
|
||||
|
||||
/**
|
||||
Set IOMMU attribute for a system memory.
|
||||
|
||||
If the IOMMU protocol exists, the system memory cannot be used
|
||||
for DMA by default.
|
||||
|
||||
When a device requests a DMA access for a system memory,
|
||||
the device driver need use SetAttribute() to update the IOMMU
|
||||
attribute to request DMA access (read and/or write).
|
||||
|
||||
The DeviceHandle is used to identify which device submits the request.
|
||||
The IOMMU implementation need translate the device path to an IOMMU device ID,
|
||||
and set IOMMU hardware register accordingly.
|
||||
1) DeviceHandle can be a standard PCI device.
|
||||
The memory for BusMasterRead need set EDKII_IOMMU_ACCESS_READ.
|
||||
The memory for BusMasterWrite need set EDKII_IOMMU_ACCESS_WRITE.
|
||||
The memory for BusMasterCommonBuffer need set EDKII_IOMMU_ACCESS_READ|EDKII_IOMMU_ACCESS_WRITE.
|
||||
After the memory is used, the memory need set 0 to keep it being protected.
|
||||
2) DeviceHandle can be an ACPI device (ISA, I2C, SPI, etc).
|
||||
The memory for DMA access need set EDKII_IOMMU_ACCESS_READ and/or EDKII_IOMMU_ACCESS_WRITE.
|
||||
|
||||
@param[in] This The protocol instance pointer.
|
||||
@param[in] DeviceHandle The device who initiates the DMA access request.
|
||||
@param[in] Mapping The mapping value returned from Map().
|
||||
@param[in] IoMmuAccess The IOMMU access.
|
||||
|
||||
@retval EFI_SUCCESS The IoMmuAccess is set for the memory range specified by DeviceAddress and Length.
|
||||
@retval EFI_INVALID_PARAMETER DeviceHandle is an invalid handle.
|
||||
@retval EFI_INVALID_PARAMETER Mapping is not a value that was returned by Map().
|
||||
@retval EFI_INVALID_PARAMETER IoMmuAccess specified an illegal combination of access.
|
||||
@retval EFI_UNSUPPORTED DeviceHandle is unknown by the IOMMU.
|
||||
@retval EFI_UNSUPPORTED The bit mask of IoMmuAccess is not supported by the IOMMU.
|
||||
@retval EFI_UNSUPPORTED The IOMMU does not support the memory range specified by Mapping.
|
||||
@retval EFI_OUT_OF_RESOURCES There are not enough resources available to modify the IOMMU access.
|
||||
@retval EFI_DEVICE_ERROR The IOMMU device reported an error while attempting the operation.
|
||||
|
||||
**/
|
||||
EFI_STATUS
|
||||
EFIAPI
|
||||
IoMmuSetAttribute (
|
||||
IN EDKII_IOMMU_PROTOCOL *This,
|
||||
IN EFI_HANDLE DeviceHandle,
|
||||
IN VOID *Mapping,
|
||||
IN UINT64 IoMmuAccess
|
||||
)
|
||||
{
|
||||
EFI_STATUS Status;
|
||||
EFI_PHYSICAL_ADDRESS DeviceAddress;
|
||||
UINTN NumberOfPages;
|
||||
|
||||
Status = GetDeviceInfoFromMapping (Mapping, &DeviceAddress, &NumberOfPages);
|
||||
if (EFI_ERROR(Status)) {
|
||||
return Status;
|
||||
}
|
||||
Status = VTdSetAttribute (
|
||||
This,
|
||||
DeviceHandle,
|
||||
DeviceAddress,
|
||||
EFI_PAGES_TO_SIZE(NumberOfPages),
|
||||
IoMmuAccess
|
||||
);
|
||||
|
||||
return Status;
|
||||
}
|
||||
|
||||
EDKII_IOMMU_PROTOCOL mIntelVTd = {
|
||||
EDKII_IOMMU_PROTOCOL_REVISION,
|
||||
IoMmuSetAttribute,
|
||||
IoMmuMap,
|
||||
IoMmuUnmap,
|
||||
IoMmuAllocateBuffer,
|
||||
IoMmuFreeBuffer,
|
||||
};
|
||||
|
||||
/**
|
||||
Initialize the VTd driver.
|
||||
|
||||
@param[in] ImageHandle ImageHandle of the loaded driver
|
||||
@param[in] SystemTable Pointer to the System Table
|
||||
|
||||
@retval EFI_SUCCESS The Protocol is installed.
|
||||
@retval EFI_OUT_OF_RESOURCES Not enough resources available to initialize driver.
|
||||
@retval EFI_DEVICE_ERROR A device error occurred attempting to initialize the driver.
|
||||
|
||||
**/
|
||||
EFI_STATUS
|
||||
EFIAPI
|
||||
IntelVTdInitialize (
|
||||
IN EFI_HANDLE ImageHandle,
|
||||
IN EFI_SYSTEM_TABLE *SystemTable
|
||||
)
|
||||
{
|
||||
EFI_STATUS Status;
|
||||
EFI_HANDLE Handle;
|
||||
|
||||
InitializeDmaProtection ();
|
||||
|
||||
Handle = NULL;
|
||||
Status = gBS->InstallMultipleProtocolInterfaces (
|
||||
&Handle,
|
||||
&gEdkiiIoMmuProtocolGuid, &mIntelVTd,
|
||||
NULL
|
||||
);
|
||||
ASSERT_EFI_ERROR (Status);
|
||||
|
||||
return Status;
|
||||
}
|
|
@ -0,0 +1,79 @@
|
|||
## @file
|
||||
# Intel VTd DXE Driver.
|
||||
#
|
||||
# This driver initializes VTd engine based upon DMAR ACPI tables
|
||||
# and provide DMA protection to PCI or ACPI device.
|
||||
#
|
||||
# Copyright (c) 2017, Intel Corporation. All rights reserved.<BR>
|
||||
# This program and the accompanying materials
|
||||
# are licensed and made available under the terms and conditions of the BSD License
|
||||
# which accompanies this distribution. The full text of the license may be found at
|
||||
# http://opensource.org/licenses/bsd-license.php
|
||||
#
|
||||
# THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED.
|
||||
#
|
||||
##
|
||||
|
||||
[Defines]
|
||||
INF_VERSION = 0x00010005
|
||||
BASE_NAME = IntelVTdDxe
|
||||
MODULE_UNI_FILE = IntelVTdDxe.uni
|
||||
FILE_GUID = 987555D6-595D-4CFA-B895-59B89368BD4D
|
||||
MODULE_TYPE = DXE_DRIVER
|
||||
VERSION_STRING = 1.0
|
||||
ENTRY_POINT = IntelVTdInitialize
|
||||
|
||||
#
|
||||
# The following information is for reference only and not required by the build tools.
|
||||
#
|
||||
# VALID_ARCHITECTURES = IA32 X64 IPF EBC
|
||||
#
|
||||
#
|
||||
|
||||
[Sources]
|
||||
IntelVTdDxe.c
|
||||
BmDma.c
|
||||
DmaProtection.c
|
||||
DmaProtection.h
|
||||
DmarAcpiTable.c
|
||||
PciInfo.c
|
||||
TranslationTable.c
|
||||
TranslationTableEx.c
|
||||
VtdReg.c
|
||||
|
||||
[Packages]
|
||||
MdePkg/MdePkg.dec
|
||||
MdeModulePkg/MdeModulePkg.dec
|
||||
IntelSiliconPkg/IntelSiliconPkg.dec
|
||||
|
||||
[LibraryClasses]
|
||||
DebugLib
|
||||
UefiDriverEntryPoint
|
||||
UefiBootServicesTableLib
|
||||
BaseLib
|
||||
IoLib
|
||||
PciSegmentLib
|
||||
BaseMemoryLib
|
||||
MemoryAllocationLib
|
||||
UefiLib
|
||||
|
||||
[Guids]
|
||||
gEfiEventExitBootServicesGuid ## CONSUMES ## Event
|
||||
gEfiAcpi20TableGuid ## CONSUMES ## SystemTable
|
||||
gEfiAcpiTableGuid ## CONSUMES ## SystemTable
|
||||
|
||||
[Protocols]
|
||||
gEdkiiIoMmuProtocolGuid ## PRODUCES
|
||||
gEfiAcpiSdtProtocolGuid ## CONSUMES
|
||||
gEfiPciIoProtocolGuid ## CONSUMES
|
||||
gEfiPciEnumerationCompleteProtocolGuid ## CONSUMES
|
||||
gEdkiiPlatformVTdPolicyProtocolGuid ## SOMETIMES_CONSUMES
|
||||
|
||||
[Depex]
|
||||
gEfiPciRootBridgeIoProtocolGuid AND
|
||||
gEfiAcpiSdtProtocolGuid
|
||||
|
||||
[UserExtensions.TianoCore."ExtraFiles"]
|
||||
IntelVTdDxeExtra.uni
|
||||
|
|
@ -0,0 +1,20 @@
|
|||
// /** @file
|
||||
// IntelVTdDxe Module Localized Abstract and Description Content
|
||||
//
|
||||
// Copyright (c) 2017, Intel Corporation. All rights reserved.<BR>
|
||||
//
|
||||
// This program and the accompanying materials are
|
||||
// licensed and made available under the terms and conditions of the BSD License
|
||||
// which accompanies this distribution. The full text of the license may be found at
|
||||
// http://opensource.org/licenses/bsd-license.php
|
||||
//
|
||||
// THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED.
|
||||
//
|
||||
// **/
|
||||
|
||||
|
||||
#string STR_MODULE_ABSTRACT #language en-US "Intel VTd DXE Driver."
|
||||
|
||||
#string STR_MODULE_DESCRIPTION #language en-US "This driver initializes VTd engine based upon DMAR ACPI tables and provide DMA protection to PCI or ACPI device."
|
||||
|
|
@ -0,0 +1,20 @@
|
|||
// /** @file
|
||||
// IntelVTdDxe Localized Strings and Content
|
||||
//
|
||||
// Copyright (c) 2017, Intel Corporation. All rights reserved.<BR>
|
||||
//
|
||||
// This program and the accompanying materials are
|
||||
// licensed and made available under the terms and conditions of the BSD License
|
||||
// which accompanies this distribution. The full text of the license may be found at
|
||||
// http://opensource.org/licenses/bsd-license.php
|
||||
//
|
||||
// THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED.
|
||||
//
|
||||
// **/
|
||||
|
||||
#string STR_PROPERTIES_MODULE_NAME
|
||||
#language en-US
|
||||
"Intel VTd DXE Driver"
|
||||
|
||||
|
|
@ -0,0 +1,315 @@
|
|||
/** @file
|
||||
|
||||
Copyright (c) 2017, Intel Corporation. All rights reserved.<BR>
|
||||
This program and the accompanying materials
|
||||
are licensed and made available under the terms and conditions of the BSD License
|
||||
which accompanies this distribution. The full text of the license may be found at
|
||||
http://opensource.org/licenses/bsd-license.php.
|
||||
|
||||
THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED.
|
||||
|
||||
**/
|
||||
|
||||
#include "DmaProtection.h"
|
||||
|
||||
/**
|
||||
Return the index of PCI descriptor.
|
||||
|
||||
@param[in] VtdIndex The index used to identify a VTd engine.
|
||||
@param[in] Segment The Segment used to identify a VTd engine.
|
||||
@param[in] SourceId The SourceId used to identify a VTd engine and table entry.
|
||||
|
||||
@return The index of the PCI descriptor.
|
||||
@retval (UINTN)-1 The PCI descriptor is not found.
|
||||
**/
|
||||
UINTN
|
||||
GetPciDescriptor (
|
||||
IN UINTN VtdIndex,
|
||||
IN UINT16 Segment,
|
||||
IN VTD_SOURCE_ID SourceId
|
||||
)
|
||||
{
|
||||
UINTN Index;
|
||||
|
||||
if (Segment != mVtdUnitInformation[VtdIndex].Segment) {
|
||||
return (UINTN)-1;
|
||||
}
|
||||
|
||||
for (Index = 0; Index < mVtdUnitInformation[VtdIndex].PciDeviceInfo.PciDescriptorNumber; Index++) {
|
||||
if ((mVtdUnitInformation[VtdIndex].PciDeviceInfo.PciDescriptors[Index].Bits.Bus == SourceId.Bits.Bus) &&
|
||||
(mVtdUnitInformation[VtdIndex].PciDeviceInfo.PciDescriptors[Index].Bits.Device == SourceId.Bits.Device) &&
|
||||
(mVtdUnitInformation[VtdIndex].PciDeviceInfo.PciDescriptors[Index].Bits.Function == SourceId.Bits.Function) ) {
|
||||
return Index;
|
||||
}
|
||||
}
|
||||
|
||||
return (UINTN)-1;
|
||||
}
|
||||
|
||||
/**
|
||||
Register PCI device to VTd engine as PCI descriptor.
|
||||
|
||||
@param[in] VtdIndex The index of VTd engine.
|
||||
@param[in] Segment The segment of the source.
|
||||
@param[in] SourceId The SourceId of the source.
|
||||
@param[in] IsRealPciDevice TRUE: It is a real PCI device.
|
||||
FALSE: It is not a real PCI device.
|
||||
@param[in] CheckExist TRUE: ERROR will be returned if the PCI device is already registered.
|
||||
FALSE: SUCCESS will be returned if the PCI device is registered.
|
||||
|
||||
@retval EFI_SUCCESS The PCI device is registered.
|
||||
@retval EFI_OUT_OF_RESOURCES No enough resource to register a new PCI device.
|
||||
@retval EFI_ALREADY_STARTED The device is already registered.
|
||||
**/
|
||||
EFI_STATUS
|
||||
RegisterPciDevice (
|
||||
IN UINTN VtdIndex,
|
||||
IN UINT16 Segment,
|
||||
IN VTD_SOURCE_ID SourceId,
|
||||
IN BOOLEAN IsRealPciDevice,
|
||||
IN BOOLEAN CheckExist
|
||||
)
|
||||
{
|
||||
PCI_DEVICE_INFORMATION *PciDeviceInfo;
|
||||
VTD_SOURCE_ID *PciDescriptor;
|
||||
UINTN PciDescriptorIndex;
|
||||
UINTN Index;
|
||||
BOOLEAN *NewIsRealPciDevice;
|
||||
VTD_SOURCE_ID *NewPciDescriptors;
|
||||
|
||||
PciDeviceInfo = &mVtdUnitInformation[VtdIndex].PciDeviceInfo;
|
||||
|
||||
if (PciDeviceInfo->IncludeAllFlag) {
|
||||
//
|
||||
// Do not register device in other VTD Unit
|
||||
//
|
||||
for (Index = 0; Index < VtdIndex; Index++) {
|
||||
PciDescriptorIndex = GetPciDescriptor (Index, Segment, SourceId);
|
||||
if (PciDescriptorIndex != (UINTN)-1) {
|
||||
DEBUG ((DEBUG_INFO, " RegisterPciDevice: PCI S%04x B%02x D%02x F%02x already registered by Other Vtd(%d)\n", Segment, SourceId.Bits.Bus, SourceId.Bits.Device, SourceId.Bits.Function, Index));
|
||||
return EFI_SUCCESS;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
PciDescriptorIndex = GetPciDescriptor (VtdIndex, Segment, SourceId);
|
||||
if (PciDescriptorIndex == (UINTN)-1) {
|
||||
//
|
||||
// Register new
|
||||
//
|
||||
|
||||
if (PciDeviceInfo->PciDescriptorNumber >= PciDeviceInfo->PciDescriptorMaxNumber) {
|
||||
//
|
||||
// Reallocate
|
||||
//
|
||||
NewIsRealPciDevice = AllocateZeroPool (sizeof(*NewIsRealPciDevice) * (PciDeviceInfo->PciDescriptorMaxNumber + MAX_PCI_DESCRIPTORS));
|
||||
if (NewIsRealPciDevice == NULL) {
|
||||
return EFI_OUT_OF_RESOURCES;
|
||||
}
|
||||
NewPciDescriptors = AllocateZeroPool (sizeof(*NewPciDescriptors) * (PciDeviceInfo->PciDescriptorMaxNumber + MAX_PCI_DESCRIPTORS));
|
||||
if (NewPciDescriptors == NULL) {
|
||||
FreePool (NewIsRealPciDevice);
|
||||
return EFI_OUT_OF_RESOURCES;
|
||||
}
|
||||
PciDeviceInfo->PciDescriptorMaxNumber += MAX_PCI_DESCRIPTORS;
|
||||
if (PciDeviceInfo->IsRealPciDevice != NULL) {
|
||||
CopyMem (NewIsRealPciDevice, PciDeviceInfo->IsRealPciDevice, sizeof(*NewIsRealPciDevice) * PciDeviceInfo->PciDescriptorNumber);
|
||||
FreePool (PciDeviceInfo->IsRealPciDevice);
|
||||
}
|
||||
PciDeviceInfo->IsRealPciDevice = NewIsRealPciDevice;
|
||||
if (PciDeviceInfo->PciDescriptors != NULL) {
|
||||
CopyMem (NewPciDescriptors, PciDeviceInfo->PciDescriptors, sizeof(*NewPciDescriptors) * PciDeviceInfo->PciDescriptorNumber);
|
||||
FreePool (PciDeviceInfo->PciDescriptors);
|
||||
}
|
||||
PciDeviceInfo->PciDescriptors = NewPciDescriptors;
|
||||
}
|
||||
|
||||
ASSERT (PciDeviceInfo->PciDescriptorNumber < PciDeviceInfo->PciDescriptorMaxNumber);
|
||||
|
||||
PciDescriptor = &PciDeviceInfo->PciDescriptors[PciDeviceInfo->PciDescriptorNumber];
|
||||
PciDescriptor->Bits.Bus = SourceId.Bits.Bus;
|
||||
PciDescriptor->Bits.Device = SourceId.Bits.Device;
|
||||
PciDescriptor->Bits.Function = SourceId.Bits.Function;
|
||||
PciDeviceInfo->IsRealPciDevice[PciDeviceInfo->PciDescriptorNumber] = IsRealPciDevice;
|
||||
|
||||
PciDeviceInfo->PciDescriptorNumber++;
|
||||
|
||||
DEBUG ((DEBUG_INFO, " RegisterPciDevice: PCI S%04x B%02x D%02x F%02x", Segment, SourceId.Bits.Bus, SourceId.Bits.Device, SourceId.Bits.Function));
|
||||
if (!IsRealPciDevice) {
|
||||
DEBUG ((DEBUG_INFO, " (*)"));
|
||||
}
|
||||
DEBUG ((DEBUG_INFO, "\n"));
|
||||
} else {
|
||||
if (CheckExist) {
|
||||
DEBUG ((DEBUG_INFO, " RegisterPciDevice: PCI S%04x B%02x D%02x F%02x already registered\n", Segment, SourceId.Bits.Bus, SourceId.Bits.Device, SourceId.Bits.Function));
|
||||
return EFI_ALREADY_STARTED;
|
||||
}
|
||||
}
|
||||
|
||||
return EFI_SUCCESS;
|
||||
}
|
||||
|
||||
/**
|
||||
Scan PCI bus and register PCI devices under the bus.
|
||||
|
||||
@param[in] VtdIndex The index of VTd engine.
|
||||
@param[in] Segment The segment of the source.
|
||||
@param[in] Bus The bus of the source.
|
||||
|
||||
@retval EFI_SUCCESS The PCI devices under the bus are registered.
|
||||
@retval EFI_OUT_OF_RESOURCES No enough resource to register a new PCI device.
|
||||
**/
|
||||
EFI_STATUS
|
||||
ScanPciBus (
|
||||
IN UINTN VtdIndex,
|
||||
IN UINT16 Segment,
|
||||
IN UINT8 Bus
|
||||
)
|
||||
{
|
||||
UINT8 Device;
|
||||
UINT8 Function;
|
||||
UINT8 SecondaryBusNumber;
|
||||
UINT8 HeaderType;
|
||||
UINT8 BaseClass;
|
||||
UINT8 SubClass;
|
||||
UINT32 MaxFunction;
|
||||
UINT16 VendorID;
|
||||
UINT16 DeviceID;
|
||||
EFI_STATUS Status;
|
||||
VTD_SOURCE_ID SourceId;
|
||||
|
||||
// Scan the PCI bus for devices
|
||||
for (Device = 0; Device < PCI_MAX_DEVICE + 1; Device++) {
|
||||
HeaderType = PciSegmentRead8 (PCI_SEGMENT_LIB_ADDRESS(Segment, Bus, Device, 0, PCI_HEADER_TYPE_OFFSET));
|
||||
MaxFunction = PCI_MAX_FUNC + 1;
|
||||
if ((HeaderType & HEADER_TYPE_MULTI_FUNCTION) == 0x00) {
|
||||
MaxFunction = 1;
|
||||
}
|
||||
for (Function = 0; Function < MaxFunction; Function++) {
|
||||
VendorID = PciSegmentRead16 (PCI_SEGMENT_LIB_ADDRESS(Segment, Bus, Device, Function, PCI_VENDOR_ID_OFFSET));
|
||||
DeviceID = PciSegmentRead16 (PCI_SEGMENT_LIB_ADDRESS(Segment, Bus, Device, Function, PCI_DEVICE_ID_OFFSET));
|
||||
if (VendorID == 0xFFFF && DeviceID == 0xFFFF) {
|
||||
continue;
|
||||
}
|
||||
|
||||
SourceId.Bits.Bus = Bus;
|
||||
SourceId.Bits.Device = Device;
|
||||
SourceId.Bits.Function = Function;
|
||||
Status = RegisterPciDevice (VtdIndex, Segment, SourceId, TRUE, FALSE);
|
||||
if (EFI_ERROR (Status)) {
|
||||
return Status;
|
||||
}
|
||||
|
||||
BaseClass = PciSegmentRead8 (PCI_SEGMENT_LIB_ADDRESS(Segment, Bus, Device, Function, PCI_CLASSCODE_OFFSET + 2));
|
||||
if (BaseClass == PCI_CLASS_BRIDGE) {
|
||||
SubClass = PciSegmentRead8 (PCI_SEGMENT_LIB_ADDRESS(Segment, Bus, Device, Function, PCI_CLASSCODE_OFFSET + 1));
|
||||
if (SubClass == PCI_CLASS_BRIDGE_P2P) {
|
||||
SecondaryBusNumber = PciSegmentRead8 (PCI_SEGMENT_LIB_ADDRESS(Segment, Bus, Device, Function, PCI_BRIDGE_SECONDARY_BUS_REGISTER_OFFSET));
|
||||
DEBUG ((DEBUG_INFO," ScanPciBus: PCI bridge S%04x B%02x D%02x F%02x (SecondBus:%02x)\n", Segment, Bus, Device, Function, SecondaryBusNumber));
|
||||
if (SecondaryBusNumber != 0) {
|
||||
Status = ScanPciBus (VtdIndex, Segment, SecondaryBusNumber);
|
||||
if (EFI_ERROR (Status)) {
|
||||
return Status;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
return EFI_SUCCESS;
|
||||
}
|
||||
|
||||
/**
|
||||
Dump the PCI device information managed by this VTd engine.
|
||||
|
||||
@param[in] VtdIndex The index of VTd engine.
|
||||
**/
|
||||
VOID
|
||||
DumpPciDeviceInfo (
|
||||
IN UINTN VtdIndex
|
||||
)
|
||||
{
|
||||
UINTN Index;
|
||||
|
||||
DEBUG ((DEBUG_INFO,"PCI Device Information (Number 0x%x, IncludeAll - %d):\n",
|
||||
mVtdUnitInformation[VtdIndex].PciDeviceInfo.PciDescriptorNumber,
|
||||
mVtdUnitInformation[VtdIndex].PciDeviceInfo.IncludeAllFlag
|
||||
));
|
||||
for (Index = 0; Index < mVtdUnitInformation[VtdIndex].PciDeviceInfo.PciDescriptorNumber; Index++) {
|
||||
DEBUG ((DEBUG_INFO," S%04x B%02x D%02x F%02x\n",
|
||||
mVtdUnitInformation[VtdIndex].Segment,
|
||||
mVtdUnitInformation[VtdIndex].PciDeviceInfo.PciDescriptors[Index].Bits.Bus,
|
||||
mVtdUnitInformation[VtdIndex].PciDeviceInfo.PciDescriptors[Index].Bits.Device,
|
||||
mVtdUnitInformation[VtdIndex].PciDeviceInfo.PciDescriptors[Index].Bits.Function
|
||||
));
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
Find the VTd index by the Segment and SourceId.
|
||||
|
||||
@param[in] Segment The segment of the source.
|
||||
@param[in] SourceId The SourceId of the source.
|
||||
@param[out] ExtContextEntry The ExtContextEntry of the source.
|
||||
@param[out] ContextEntry The ContextEntry of the source.
|
||||
|
||||
@return The index of the PCI descriptor.
|
||||
@retval (UINTN)-1 The PCI descriptor is not found.
|
||||
**/
|
||||
UINTN
|
||||
FindVtdIndexByPciDevice (
|
||||
IN UINT16 Segment,
|
||||
IN VTD_SOURCE_ID SourceId,
|
||||
OUT VTD_EXT_CONTEXT_ENTRY **ExtContextEntry,
|
||||
OUT VTD_CONTEXT_ENTRY **ContextEntry
|
||||
)
|
||||
{
|
||||
UINTN VtdIndex;
|
||||
VTD_ROOT_ENTRY *RootEntry;
|
||||
VTD_CONTEXT_ENTRY *ContextEntryTable;
|
||||
VTD_CONTEXT_ENTRY *ThisContextEntry;
|
||||
VTD_EXT_ROOT_ENTRY *ExtRootEntry;
|
||||
VTD_EXT_CONTEXT_ENTRY *ExtContextEntryTable;
|
||||
VTD_EXT_CONTEXT_ENTRY *ThisExtContextEntry;
|
||||
UINTN PciDescriptorIndex;
|
||||
|
||||
for (VtdIndex = 0; VtdIndex < mVtdUnitNumber; VtdIndex++) {
|
||||
if (Segment != mVtdUnitInformation[VtdIndex].Segment) {
|
||||
continue;
|
||||
}
|
||||
|
||||
PciDescriptorIndex = GetPciDescriptor (VtdIndex, Segment, SourceId);
|
||||
if (PciDescriptorIndex == (UINTN)-1) {
|
||||
continue;
|
||||
}
|
||||
|
||||
// DEBUG ((DEBUG_INFO,"FindVtdIndex(0x%x) for S%04x B%02x D%02x F%02x\n", VtdIndex, Segment, SourceId.Bits.Bus, SourceId.Bits.Device, SourceId.Bits.Function));
|
||||
|
||||
if (mVtdUnitInformation[VtdIndex].ExtRootEntryTable != 0) {
|
||||
ExtRootEntry = &mVtdUnitInformation[VtdIndex].ExtRootEntryTable[SourceId.Index.RootIndex];
|
||||
ExtContextEntryTable = (VTD_EXT_CONTEXT_ENTRY *)(UINTN)LShiftU64 (ExtRootEntry->Bits.LowerContextTablePointer, 12) ;
|
||||
ThisExtContextEntry = &ExtContextEntryTable[SourceId.Index.ContextIndex];
|
||||
if (ThisExtContextEntry->Bits.AddressWidth == 0) {
|
||||
continue;
|
||||
}
|
||||
*ExtContextEntry = ThisExtContextEntry;
|
||||
*ContextEntry = NULL;
|
||||
} else {
|
||||
RootEntry = &mVtdUnitInformation[VtdIndex].RootEntryTable[SourceId.Index.RootIndex];
|
||||
ContextEntryTable = (VTD_CONTEXT_ENTRY *)(UINTN)LShiftU64 (RootEntry->Bits.ContextTablePointer, 12) ;
|
||||
ThisContextEntry = &ContextEntryTable[SourceId.Index.ContextIndex];
|
||||
if (ThisContextEntry->Bits.AddressWidth == 0) {
|
||||
continue;
|
||||
}
|
||||
*ExtContextEntry = NULL;
|
||||
*ContextEntry = ThisContextEntry;
|
||||
}
|
||||
|
||||
return VtdIndex;
|
||||
}
|
||||
|
||||
return (UINTN)-1;
|
||||
}
|
||||
|
|
@ -0,0 +1,969 @@
|
|||
/** @file
|
||||
|
||||
Copyright (c) 2017, Intel Corporation. All rights reserved.<BR>
|
||||
This program and the accompanying materials
|
||||
are licensed and made available under the terms and conditions of the BSD License
|
||||
which accompanies this distribution. The full text of the license may be found at
|
||||
http://opensource.org/licenses/bsd-license.php.
|
||||
|
||||
THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED.
|
||||
|
||||
**/
|
||||
|
||||
#include "DmaProtection.h"
|
||||
|
||||
/**
|
||||
Create extended context entry.
|
||||
|
||||
@param[in] VtdIndex The index of the VTd engine.
|
||||
|
||||
@retval EFI_SUCCESS The extended context entry is created.
|
||||
@retval EFI_OUT_OF_RESOURCE No enough resource to create extended context entry.
|
||||
**/
|
||||
EFI_STATUS
|
||||
CreateExtContextEntry (
|
||||
IN UINTN VtdIndex
|
||||
);
|
||||
|
||||
/**
|
||||
Allocate zero pages.
|
||||
|
||||
@param[in] Pages the number of pages.
|
||||
|
||||
@return the page address.
|
||||
@retval NULL No resource to allocate pages.
|
||||
**/
|
||||
VOID *
|
||||
EFIAPI
|
||||
AllocateZeroPages (
|
||||
IN UINTN Pages
|
||||
)
|
||||
{
|
||||
VOID *Addr;
|
||||
|
||||
Addr = AllocatePages (Pages);
|
||||
if (Addr == NULL) {
|
||||
return NULL;
|
||||
}
|
||||
ZeroMem (Addr, EFI_PAGES_TO_SIZE(Pages));
|
||||
return Addr;
|
||||
}
|
||||
|
||||
/**
|
||||
Set second level paging entry attribute based upon IoMmuAccess.
|
||||
|
||||
@param[in] PtEntry The paging entry.
|
||||
@param[in] IoMmuAccess The IOMMU access.
|
||||
**/
|
||||
VOID
|
||||
SetSecondLevelPagingEntryAttribute (
|
||||
IN VTD_SECOND_LEVEL_PAGING_ENTRY *PtEntry,
|
||||
IN UINT64 IoMmuAccess
|
||||
)
|
||||
{
|
||||
PtEntry->Bits.Read = ((IoMmuAccess & EDKII_IOMMU_ACCESS_READ) != 0);
|
||||
PtEntry->Bits.Write = ((IoMmuAccess & EDKII_IOMMU_ACCESS_WRITE) != 0);
|
||||
}
|
||||
|
||||
/**
|
||||
Create context entry.
|
||||
|
||||
@param[in] VtdIndex The index of the VTd engine.
|
||||
|
||||
@retval EFI_SUCCESS The context entry is created.
|
||||
@retval EFI_OUT_OF_RESOURCE No enough resource to create context entry.
|
||||
**/
|
||||
EFI_STATUS
|
||||
CreateContextEntry (
|
||||
IN UINTN VtdIndex
|
||||
)
|
||||
{
|
||||
UINTN Index;
|
||||
VOID *Buffer;
|
||||
UINTN RootPages;
|
||||
UINTN ContextPages;
|
||||
VTD_ROOT_ENTRY *RootEntry;
|
||||
VTD_CONTEXT_ENTRY *ContextEntryTable;
|
||||
VTD_CONTEXT_ENTRY *ContextEntry;
|
||||
VTD_SOURCE_ID *PciDescriptor;
|
||||
VTD_SOURCE_ID SourceId;
|
||||
UINTN MaxBusNumber;
|
||||
UINTN EntryTablePages;
|
||||
|
||||
MaxBusNumber = 0;
|
||||
for (Index = 0; Index < mVtdUnitInformation[VtdIndex].PciDeviceInfo.PciDescriptorNumber; Index++) {
|
||||
PciDescriptor = &mVtdUnitInformation[VtdIndex].PciDeviceInfo.PciDescriptors[Index];
|
||||
if (PciDescriptor->Bits.Bus > MaxBusNumber) {
|
||||
MaxBusNumber = PciDescriptor->Bits.Bus;
|
||||
}
|
||||
}
|
||||
DEBUG ((DEBUG_INFO," MaxBusNumber - 0x%x\n", MaxBusNumber));
|
||||
|
||||
RootPages = EFI_SIZE_TO_PAGES (sizeof (VTD_ROOT_ENTRY) * VTD_ROOT_ENTRY_NUMBER);
|
||||
ContextPages = EFI_SIZE_TO_PAGES (sizeof (VTD_CONTEXT_ENTRY) * VTD_CONTEXT_ENTRY_NUMBER);
|
||||
EntryTablePages = RootPages + ContextPages * (MaxBusNumber + 1);
|
||||
Buffer = AllocateZeroPages (EntryTablePages);
|
||||
if (Buffer == NULL) {
|
||||
DEBUG ((DEBUG_INFO,"Could not Alloc Root Entry Table.. \n"));
|
||||
return EFI_OUT_OF_RESOURCES;
|
||||
}
|
||||
mVtdUnitInformation[VtdIndex].RootEntryTable = (VTD_ROOT_ENTRY *)Buffer;
|
||||
Buffer = (UINT8 *)Buffer + EFI_PAGES_TO_SIZE (RootPages);
|
||||
|
||||
for (Index = 0; Index < mVtdUnitInformation[VtdIndex].PciDeviceInfo.PciDescriptorNumber; Index++) {
|
||||
PciDescriptor = &mVtdUnitInformation[VtdIndex].PciDeviceInfo.PciDescriptors[Index];
|
||||
|
||||
SourceId.Bits.Bus = PciDescriptor->Bits.Bus;
|
||||
SourceId.Bits.Device = PciDescriptor->Bits.Device;
|
||||
SourceId.Bits.Function = PciDescriptor->Bits.Function;
|
||||
|
||||
RootEntry = &mVtdUnitInformation[VtdIndex].RootEntryTable[SourceId.Index.RootIndex];
|
||||
if (RootEntry->Bits.Present == 0) {
|
||||
RootEntry->Bits.ContextTablePointer = RShiftU64 ((UINT64)(UINTN)Buffer, 12);
|
||||
RootEntry->Bits.Present = 1;
|
||||
Buffer = (UINT8 *)Buffer + EFI_PAGES_TO_SIZE (ContextPages);
|
||||
}
|
||||
|
||||
ContextEntryTable = (VTD_CONTEXT_ENTRY *)(UINTN)LShiftU64(RootEntry->Bits.ContextTablePointer, 12) ;
|
||||
ContextEntry = &ContextEntryTable[SourceId.Index.ContextIndex];
|
||||
ContextEntry->Bits.TranslationType = 0;
|
||||
ContextEntry->Bits.FaultProcessingDisable = 0;
|
||||
ContextEntry->Bits.Present = 0;
|
||||
|
||||
DEBUG ((DEBUG_INFO,"Source: S%04x B%02x D%02x F%02x\n", mVtdUnitInformation[VtdIndex].Segment, SourceId.Bits.Bus, SourceId.Bits.Device, SourceId.Bits.Function));
|
||||
|
||||
switch (mVtdUnitInformation[VtdIndex].CapReg.Bits.SAGAW) {
|
||||
case BIT1:
|
||||
ContextEntry->Bits.AddressWidth = 0x1;
|
||||
break;
|
||||
case BIT2:
|
||||
ContextEntry->Bits.AddressWidth = 0x2;
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
return EFI_SUCCESS;
|
||||
}
|
||||
|
||||
/**
|
||||
Create second level paging entry table.
|
||||
|
||||
@param[in] VtdIndex The index of the VTd engine.
|
||||
@param[in] SecondLevelPagingEntry The second level paging entry.
|
||||
@param[in] MemoryBase The base of the memory.
|
||||
@param[in] MemoryLimit The limit of the memory.
|
||||
@param[in] IoMmuAccess The IOMMU access.
|
||||
|
||||
@return The second level paging entry.
|
||||
**/
|
||||
VTD_SECOND_LEVEL_PAGING_ENTRY *
|
||||
CreateSecondLevelPagingEntryTable (
|
||||
IN UINTN VtdIndex,
|
||||
IN VTD_SECOND_LEVEL_PAGING_ENTRY *SecondLevelPagingEntry,
|
||||
IN UINT64 MemoryBase,
|
||||
IN UINT64 MemoryLimit,
|
||||
IN UINT64 IoMmuAccess
|
||||
)
|
||||
{
|
||||
UINTN Index4;
|
||||
UINTN Index3;
|
||||
UINTN Index2;
|
||||
UINTN Lvl4Start;
|
||||
UINTN Lvl4End;
|
||||
UINTN Lvl3Start;
|
||||
UINTN Lvl3End;
|
||||
VTD_SECOND_LEVEL_PAGING_ENTRY *Lvl4PtEntry;
|
||||
VTD_SECOND_LEVEL_PAGING_ENTRY *Lvl3PtEntry;
|
||||
VTD_SECOND_LEVEL_PAGING_ENTRY *Lvl2PtEntry;
|
||||
UINT64 BaseAddress;
|
||||
UINT64 EndAddress;
|
||||
|
||||
if (MemoryLimit == 0) {
|
||||
return EFI_SUCCESS;
|
||||
}
|
||||
|
||||
BaseAddress = ALIGN_VALUE_LOW(MemoryBase, SIZE_2MB);
|
||||
EndAddress = ALIGN_VALUE_UP(MemoryLimit, SIZE_2MB);
|
||||
DEBUG ((DEBUG_INFO,"CreateSecondLevelPagingEntryTable: BaseAddress - 0x%016lx, EndAddress - 0x%016lx\n", BaseAddress, EndAddress));
|
||||
|
||||
if (SecondLevelPagingEntry == NULL) {
|
||||
SecondLevelPagingEntry = AllocateZeroPages (1);
|
||||
if (SecondLevelPagingEntry == NULL) {
|
||||
DEBUG ((DEBUG_ERROR,"Could not Alloc LVL4 PT. \n"));
|
||||
return NULL;
|
||||
}
|
||||
}
|
||||
|
||||
//
|
||||
// If no access is needed, just create not present entry.
|
||||
//
|
||||
if (IoMmuAccess == 0) {
|
||||
return SecondLevelPagingEntry;
|
||||
}
|
||||
|
||||
Lvl4Start = RShiftU64 (BaseAddress, 39) & 0x1FF;
|
||||
Lvl4End = RShiftU64 (EndAddress - 1, 39) & 0x1FF;
|
||||
|
||||
DEBUG ((DEBUG_INFO," Lvl4Start - 0x%x, Lvl4End - 0x%x\n", Lvl4Start, Lvl4End));
|
||||
|
||||
Lvl4PtEntry = (VTD_SECOND_LEVEL_PAGING_ENTRY *)SecondLevelPagingEntry;
|
||||
for (Index4 = Lvl4Start; Index4 <= Lvl4End; Index4++) {
|
||||
if (Lvl4PtEntry[Index4].Uint64 == 0) {
|
||||
Lvl4PtEntry[Index4].Uint64 = (UINT64)(UINTN)AllocateZeroPages (1);
|
||||
if (Lvl4PtEntry[Index4].Uint64 == 0) {
|
||||
DEBUG ((DEBUG_ERROR,"!!!!!! ALLOCATE LVL4 PAGE FAIL (0x%x)!!!!!!\n", Index4));
|
||||
ASSERT(FALSE);
|
||||
return NULL;
|
||||
}
|
||||
SetSecondLevelPagingEntryAttribute (&Lvl4PtEntry[Index4], EDKII_IOMMU_ACCESS_READ | EDKII_IOMMU_ACCESS_WRITE);
|
||||
}
|
||||
|
||||
Lvl3Start = RShiftU64 (BaseAddress, 30) & 0x1FF;
|
||||
if (ALIGN_VALUE_LOW(BaseAddress + SIZE_1GB, SIZE_1GB) <= EndAddress) {
|
||||
Lvl3End = SIZE_4KB/sizeof(VTD_SECOND_LEVEL_PAGING_ENTRY);
|
||||
} else {
|
||||
Lvl3End = RShiftU64 (EndAddress - 1, 30) & 0x1FF;
|
||||
}
|
||||
DEBUG ((DEBUG_INFO," Lvl4(0x%x): Lvl3Start - 0x%x, Lvl3End - 0x%x\n", Index4, Lvl3Start, Lvl3End));
|
||||
|
||||
Lvl3PtEntry = (VTD_SECOND_LEVEL_PAGING_ENTRY *)(UINTN)LShiftU64 (Lvl4PtEntry[Index4].Bits.Address, 12);
|
||||
for (Index3 = Lvl3Start; Index3 <= Lvl3End; Index3++) {
|
||||
if (Lvl3PtEntry[Index3].Uint64 == 0) {
|
||||
Lvl3PtEntry[Index3].Uint64 = (UINT64)(UINTN)AllocateZeroPages (1);
|
||||
if (Lvl3PtEntry[Index3].Uint64 == 0) {
|
||||
DEBUG ((DEBUG_ERROR,"!!!!!! ALLOCATE LVL3 PAGE FAIL (0x%x, 0x%x)!!!!!!\n", Index4, Index3));
|
||||
ASSERT(FALSE);
|
||||
return NULL;
|
||||
}
|
||||
SetSecondLevelPagingEntryAttribute (&Lvl3PtEntry[Index3], EDKII_IOMMU_ACCESS_READ | EDKII_IOMMU_ACCESS_WRITE);
|
||||
}
|
||||
|
||||
Lvl2PtEntry = (VTD_SECOND_LEVEL_PAGING_ENTRY *)(UINTN)LShiftU64 (Lvl3PtEntry[Index3].Bits.Address, 12);
|
||||
for (Index2 = 0; Index2 < SIZE_4KB/sizeof(VTD_SECOND_LEVEL_PAGING_ENTRY); Index2++) {
|
||||
Lvl2PtEntry[Index2].Uint64 = BaseAddress;
|
||||
SetSecondLevelPagingEntryAttribute (&Lvl2PtEntry[Index2], IoMmuAccess);
|
||||
Lvl2PtEntry[Index2].Bits.PageSize = 1;
|
||||
BaseAddress += SIZE_2MB;
|
||||
if (BaseAddress >= MemoryLimit) {
|
||||
goto Done;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
Done:
|
||||
return SecondLevelPagingEntry;
|
||||
}
|
||||
|
||||
/**
|
||||
Create second level paging entry.
|
||||
|
||||
@param[in] VtdIndex The index of the VTd engine.
|
||||
@param[in] IoMmuAccess The IOMMU access.
|
||||
|
||||
@return The second level paging entry.
|
||||
**/
|
||||
VTD_SECOND_LEVEL_PAGING_ENTRY *
|
||||
CreateSecondLevelPagingEntry (
|
||||
IN UINTN VtdIndex,
|
||||
IN UINT64 IoMmuAccess
|
||||
)
|
||||
{
|
||||
VTD_SECOND_LEVEL_PAGING_ENTRY *SecondLevelPagingEntry;
|
||||
|
||||
SecondLevelPagingEntry = NULL;
|
||||
SecondLevelPagingEntry = CreateSecondLevelPagingEntryTable (VtdIndex, SecondLevelPagingEntry, 0, mBelow4GMemoryLimit, IoMmuAccess);
|
||||
if (SecondLevelPagingEntry == NULL) {
|
||||
return NULL;
|
||||
}
|
||||
SecondLevelPagingEntry = CreateSecondLevelPagingEntryTable (VtdIndex, SecondLevelPagingEntry, SIZE_4GB, mAbove4GMemoryLimit, IoMmuAccess);
|
||||
if (SecondLevelPagingEntry == NULL) {
|
||||
return NULL;
|
||||
}
|
||||
|
||||
return SecondLevelPagingEntry;
|
||||
}
|
||||
|
||||
/**
|
||||
Setup VTd translation table.
|
||||
|
||||
@retval EFI_SUCCESS Setup translation table successfully.
|
||||
@retval EFI_OUT_OF_RESOURCE Setup translation table fail.
|
||||
**/
|
||||
EFI_STATUS
|
||||
SetupTranslationTable (
|
||||
VOID
|
||||
)
|
||||
{
|
||||
EFI_STATUS Status;
|
||||
UINTN Index;
|
||||
|
||||
for (Index = 0; Index < mVtdUnitNumber; Index++) {
|
||||
DEBUG((DEBUG_INFO, "CreateContextEntry - %d\n", Index));
|
||||
if (mVtdUnitInformation[Index].ECapReg.Bits.ECS) {
|
||||
Status = CreateExtContextEntry (Index);
|
||||
} else {
|
||||
Status = CreateContextEntry (Index);
|
||||
}
|
||||
if (EFI_ERROR (Status)) {
|
||||
return Status;
|
||||
}
|
||||
}
|
||||
|
||||
return EFI_SUCCESS;
|
||||
}
|
||||
|
||||
/**
|
||||
Dump DMAR context entry table.
|
||||
|
||||
@param[in] RootEntry DMAR root entry.
|
||||
**/
|
||||
VOID
|
||||
DumpDmarContextEntryTable (
|
||||
IN VTD_ROOT_ENTRY *RootEntry
|
||||
)
|
||||
{
|
||||
UINTN Index;
|
||||
UINTN Index2;
|
||||
VTD_CONTEXT_ENTRY *ContextEntry;
|
||||
|
||||
DEBUG ((DEBUG_INFO,"=========================\n"));
|
||||
DEBUG ((DEBUG_INFO,"DMAR Context Entry Table:\n"));
|
||||
|
||||
DEBUG ((DEBUG_INFO,"RootEntry Address - 0x%x\n", RootEntry));
|
||||
|
||||
for (Index = 0; Index < VTD_ROOT_ENTRY_NUMBER; Index++) {
|
||||
if ((RootEntry[Index].Uint128.Uint64Lo != 0) || (RootEntry[Index].Uint128.Uint64Hi != 0)) {
|
||||
DEBUG ((DEBUG_INFO," RootEntry(0x%02x) B%02x - 0x%016lx %016lx\n",
|
||||
Index, Index, RootEntry[Index].Uint128.Uint64Hi, RootEntry[Index].Uint128.Uint64Lo));
|
||||
}
|
||||
if (RootEntry[Index].Bits.Present == 0) {
|
||||
continue;
|
||||
}
|
||||
ContextEntry = (VTD_CONTEXT_ENTRY *)(UINTN)LShiftU64 (RootEntry[Index].Bits.ContextTablePointer, 12);
|
||||
for (Index2 = 0; Index2 < VTD_CONTEXT_ENTRY_NUMBER; Index2++) {
|
||||
if ((ContextEntry[Index2].Uint128.Uint64Lo != 0) || (ContextEntry[Index2].Uint128.Uint64Hi != 0)) {
|
||||
DEBUG ((DEBUG_INFO," ContextEntry(0x%02x) D%02xF%02x - 0x%016lx %016lx\n",
|
||||
Index2, Index2 >> 3, Index2 & 0x7, ContextEntry[Index2].Uint128.Uint64Hi, ContextEntry[Index2].Uint128.Uint64Lo));
|
||||
}
|
||||
if (ContextEntry[Index2].Bits.Present == 0) {
|
||||
continue;
|
||||
}
|
||||
DumpSecondLevelPagingEntry ((VOID *)(UINTN)LShiftU64 (ContextEntry[Index2].Bits.SecondLevelPageTranslationPointer, 12));
|
||||
}
|
||||
}
|
||||
DEBUG ((DEBUG_INFO,"=========================\n"));
|
||||
}
|
||||
|
||||
/**
|
||||
Dump DMAR second level paging entry.
|
||||
|
||||
@param[in] SecondLevelPagingEntry The second level paging entry.
|
||||
**/
|
||||
VOID
|
||||
DumpSecondLevelPagingEntry (
|
||||
IN VOID *SecondLevelPagingEntry
|
||||
)
|
||||
{
|
||||
UINTN Index4;
|
||||
UINTN Index3;
|
||||
UINTN Index2;
|
||||
UINTN Index1;
|
||||
VTD_SECOND_LEVEL_PAGING_ENTRY *Lvl4PtEntry;
|
||||
VTD_SECOND_LEVEL_PAGING_ENTRY *Lvl3PtEntry;
|
||||
VTD_SECOND_LEVEL_PAGING_ENTRY *Lvl2PtEntry;
|
||||
VTD_SECOND_LEVEL_PAGING_ENTRY *Lvl1PtEntry;
|
||||
|
||||
DEBUG ((DEBUG_VERBOSE,"================\n"));
|
||||
DEBUG ((DEBUG_VERBOSE,"DMAR Second Level Page Table:\n"));
|
||||
|
||||
DEBUG ((DEBUG_VERBOSE,"SecondLevelPagingEntry Base - 0x%x\n", SecondLevelPagingEntry));
|
||||
Lvl4PtEntry = (VTD_SECOND_LEVEL_PAGING_ENTRY *)SecondLevelPagingEntry;
|
||||
for (Index4 = 0; Index4 < SIZE_4KB/sizeof(VTD_SECOND_LEVEL_PAGING_ENTRY); Index4++) {
|
||||
if (Lvl4PtEntry[Index4].Uint64 != 0) {
|
||||
DEBUG ((DEBUG_VERBOSE," Lvl4Pt Entry(0x%03x) - 0x%016lx\n", Index4, Lvl4PtEntry[Index4].Uint64));
|
||||
}
|
||||
if (Lvl4PtEntry[Index4].Uint64 == 0) {
|
||||
continue;
|
||||
}
|
||||
Lvl3PtEntry = (VTD_SECOND_LEVEL_PAGING_ENTRY *)(UINTN)LShiftU64 (Lvl4PtEntry[Index4].Bits.Address, 12);
|
||||
for (Index3 = 0; Index3 < SIZE_4KB/sizeof(VTD_SECOND_LEVEL_PAGING_ENTRY); Index3++) {
|
||||
if (Lvl3PtEntry[Index3].Uint64 != 0) {
|
||||
DEBUG ((DEBUG_VERBOSE," Lvl3Pt Entry(0x%03x) - 0x%016lx\n", Index3, Lvl3PtEntry[Index3].Uint64));
|
||||
}
|
||||
if (Lvl3PtEntry[Index3].Uint64 == 0) {
|
||||
continue;
|
||||
}
|
||||
|
||||
Lvl2PtEntry = (VTD_SECOND_LEVEL_PAGING_ENTRY *)(UINTN)LShiftU64 (Lvl3PtEntry[Index3].Bits.Address, 12);
|
||||
for (Index2 = 0; Index2 < SIZE_4KB/sizeof(VTD_SECOND_LEVEL_PAGING_ENTRY); Index2++) {
|
||||
if (Lvl2PtEntry[Index2].Uint64 != 0) {
|
||||
DEBUG ((DEBUG_VERBOSE," Lvl2Pt Entry(0x%03x) - 0x%016lx\n", Index2, Lvl2PtEntry[Index2].Uint64));
|
||||
}
|
||||
if (Lvl2PtEntry[Index2].Uint64 == 0) {
|
||||
continue;
|
||||
}
|
||||
if (Lvl2PtEntry[Index2].Bits.PageSize == 0) {
|
||||
Lvl1PtEntry = (VTD_SECOND_LEVEL_PAGING_ENTRY *)(UINTN)LShiftU64 (Lvl2PtEntry[Index2].Bits.Address, 12);
|
||||
for (Index1 = 0; Index1 < SIZE_4KB/sizeof(VTD_SECOND_LEVEL_PAGING_ENTRY); Index1++) {
|
||||
if (Lvl1PtEntry[Index1].Uint64 != 0) {
|
||||
DEBUG ((DEBUG_VERBOSE," Lvl1Pt Entry(0x%03x) - 0x%016lx\n", Index1, Lvl1PtEntry[Index1].Uint64));
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
DEBUG ((DEBUG_VERBOSE,"================\n"));
|
||||
}
|
||||
|
||||
/**
|
||||
Invalid page entry.
|
||||
|
||||
@param VtdIndex The VTd engine index.
|
||||
**/
|
||||
VOID
|
||||
InvalidatePageEntry (
|
||||
IN UINTN VtdIndex
|
||||
)
|
||||
{
|
||||
if (mVtdUnitInformation[VtdIndex].HasDirtyPages) {
|
||||
InvalidateVtdIOTLBGlobal (VtdIndex);
|
||||
}
|
||||
mVtdUnitInformation[VtdIndex].HasDirtyPages = FALSE;
|
||||
}
|
||||
|
||||
#define VTD_PG_R BIT0
|
||||
#define VTD_PG_W BIT1
|
||||
#define VTD_PG_X BIT2
|
||||
#define VTD_PG_EMT (BIT3 | BIT4 | BIT5)
|
||||
#define VTD_PG_TM (BIT62)
|
||||
|
||||
#define VTD_PG_PS BIT7
|
||||
|
||||
#define PAGE_PROGATE_BITS (VTD_PG_TM | VTD_PG_EMT | VTD_PG_W | VTD_PG_R)
|
||||
|
||||
#define PAGING_4K_MASK 0xFFF
|
||||
#define PAGING_2M_MASK 0x1FFFFF
|
||||
#define PAGING_1G_MASK 0x3FFFFFFF
|
||||
|
||||
#define PAGING_VTD_INDEX_MASK 0x1FF
|
||||
|
||||
#define PAGING_4K_ADDRESS_MASK_64 0x000FFFFFFFFFF000ull
|
||||
#define PAGING_2M_ADDRESS_MASK_64 0x000FFFFFFFE00000ull
|
||||
#define PAGING_1G_ADDRESS_MASK_64 0x000FFFFFC0000000ull
|
||||
|
||||
typedef enum {
|
||||
PageNone,
|
||||
Page4K,
|
||||
Page2M,
|
||||
Page1G,
|
||||
} PAGE_ATTRIBUTE;
|
||||
|
||||
typedef struct {
|
||||
PAGE_ATTRIBUTE Attribute;
|
||||
UINT64 Length;
|
||||
UINT64 AddressMask;
|
||||
} PAGE_ATTRIBUTE_TABLE;
|
||||
|
||||
PAGE_ATTRIBUTE_TABLE mPageAttributeTable[] = {
|
||||
{Page4K, SIZE_4KB, PAGING_4K_ADDRESS_MASK_64},
|
||||
{Page2M, SIZE_2MB, PAGING_2M_ADDRESS_MASK_64},
|
||||
{Page1G, SIZE_1GB, PAGING_1G_ADDRESS_MASK_64},
|
||||
};
|
||||
|
||||
/**
|
||||
Return length according to page attributes.
|
||||
|
||||
@param[in] PageAttributes The page attribute of the page entry.
|
||||
|
||||
@return The length of page entry.
|
||||
**/
|
||||
UINTN
|
||||
PageAttributeToLength (
|
||||
IN PAGE_ATTRIBUTE PageAttribute
|
||||
)
|
||||
{
|
||||
UINTN Index;
|
||||
for (Index = 0; Index < sizeof(mPageAttributeTable)/sizeof(mPageAttributeTable[0]); Index++) {
|
||||
if (PageAttribute == mPageAttributeTable[Index].Attribute) {
|
||||
return (UINTN)mPageAttributeTable[Index].Length;
|
||||
}
|
||||
}
|
||||
return 0;
|
||||
}
|
||||
|
||||
/**
|
||||
Return page table entry to match the address.
|
||||
|
||||
@param[in] SecondLevelPagingEntry The second level paging entry in VTd table for the device.
|
||||
@param[in] Address The address to be checked.
|
||||
@param[out] PageAttributes The page attribute of the page entry.
|
||||
|
||||
@return The page entry.
|
||||
**/
|
||||
VOID *
|
||||
GetSecondLevelPageTableEntry (
|
||||
IN VTD_SECOND_LEVEL_PAGING_ENTRY *SecondLevelPagingEntry,
|
||||
IN PHYSICAL_ADDRESS Address,
|
||||
OUT PAGE_ATTRIBUTE *PageAttribute
|
||||
)
|
||||
{
|
||||
UINTN Index1;
|
||||
UINTN Index2;
|
||||
UINTN Index3;
|
||||
UINTN Index4;
|
||||
UINT64 *L1PageTable;
|
||||
UINT64 *L2PageTable;
|
||||
UINT64 *L3PageTable;
|
||||
UINT64 *L4PageTable;
|
||||
|
||||
Index4 = ((UINTN)RShiftU64 (Address, 39)) & PAGING_VTD_INDEX_MASK;
|
||||
Index3 = ((UINTN)Address >> 30) & PAGING_VTD_INDEX_MASK;
|
||||
Index2 = ((UINTN)Address >> 21) & PAGING_VTD_INDEX_MASK;
|
||||
Index1 = ((UINTN)Address >> 12) & PAGING_VTD_INDEX_MASK;
|
||||
|
||||
L4PageTable = (UINT64 *)SecondLevelPagingEntry;
|
||||
if (L4PageTable[Index4] == 0) {
|
||||
L4PageTable[Index4] = (UINT64)(UINTN)AllocateZeroPages (1);
|
||||
if (L4PageTable[Index4] == 0) {
|
||||
DEBUG ((DEBUG_ERROR,"!!!!!! ALLOCATE LVL4 PAGE FAIL (0x%x)!!!!!!\n", Index4));
|
||||
ASSERT(FALSE);
|
||||
*PageAttribute = PageNone;
|
||||
return NULL;
|
||||
}
|
||||
SetSecondLevelPagingEntryAttribute ((VTD_SECOND_LEVEL_PAGING_ENTRY *)&L4PageTable[Index4], EDKII_IOMMU_ACCESS_READ | EDKII_IOMMU_ACCESS_WRITE);
|
||||
}
|
||||
|
||||
L3PageTable = (UINT64 *)(UINTN)(L4PageTable[Index4] & PAGING_4K_ADDRESS_MASK_64);
|
||||
if (L3PageTable[Index3] == 0) {
|
||||
L3PageTable[Index3] = (UINT64)(UINTN)AllocateZeroPages (1);
|
||||
if (L3PageTable[Index3] == 0) {
|
||||
DEBUG ((DEBUG_ERROR,"!!!!!! ALLOCATE LVL3 PAGE FAIL (0x%x, 0x%x)!!!!!!\n", Index4, Index3));
|
||||
ASSERT(FALSE);
|
||||
*PageAttribute = PageNone;
|
||||
return NULL;
|
||||
}
|
||||
SetSecondLevelPagingEntryAttribute ((VTD_SECOND_LEVEL_PAGING_ENTRY *)&L3PageTable[Index3], EDKII_IOMMU_ACCESS_READ | EDKII_IOMMU_ACCESS_WRITE);
|
||||
}
|
||||
if ((L3PageTable[Index3] & VTD_PG_PS) != 0) {
|
||||
// 1G
|
||||
*PageAttribute = Page1G;
|
||||
return &L3PageTable[Index3];
|
||||
}
|
||||
|
||||
L2PageTable = (UINT64 *)(UINTN)(L3PageTable[Index3] & PAGING_4K_ADDRESS_MASK_64);
|
||||
if (L2PageTable[Index2] == 0) {
|
||||
L2PageTable[Index2] = Address & PAGING_2M_ADDRESS_MASK_64;
|
||||
SetSecondLevelPagingEntryAttribute ((VTD_SECOND_LEVEL_PAGING_ENTRY *)&L2PageTable[Index2], 0);
|
||||
L2PageTable[Index2] |= VTD_PG_PS;
|
||||
}
|
||||
if ((L2PageTable[Index2] & VTD_PG_PS) != 0) {
|
||||
// 2M
|
||||
*PageAttribute = Page2M;
|
||||
return &L2PageTable[Index2];
|
||||
}
|
||||
|
||||
// 4k
|
||||
L1PageTable = (UINT64 *)(UINTN)(L2PageTable[Index2] & PAGING_4K_ADDRESS_MASK_64);
|
||||
if ((L1PageTable[Index1] == 0) && (Address != 0)) {
|
||||
*PageAttribute = PageNone;
|
||||
return NULL;
|
||||
}
|
||||
*PageAttribute = Page4K;
|
||||
return &L1PageTable[Index1];
|
||||
}
|
||||
|
||||
/**
|
||||
Modify memory attributes of page entry.
|
||||
|
||||
@param[in] PageEntry The page entry.
|
||||
@param[in] IoMmuAccess The IOMMU access.
|
||||
@param[out] IsModified TRUE means page table modified. FALSE means page table not modified.
|
||||
**/
|
||||
VOID
|
||||
ConvertSecondLevelPageEntryAttribute (
|
||||
IN VTD_SECOND_LEVEL_PAGING_ENTRY *PageEntry,
|
||||
IN UINT64 IoMmuAccess,
|
||||
OUT BOOLEAN *IsModified
|
||||
)
|
||||
{
|
||||
UINT64 CurrentPageEntry;
|
||||
UINT64 NewPageEntry;
|
||||
|
||||
CurrentPageEntry = PageEntry->Uint64;
|
||||
SetSecondLevelPagingEntryAttribute (PageEntry, IoMmuAccess);
|
||||
NewPageEntry = PageEntry->Uint64;
|
||||
if (CurrentPageEntry != NewPageEntry) {
|
||||
*IsModified = TRUE;
|
||||
DEBUG ((DEBUG_VERBOSE, "ConvertSecondLevelPageEntryAttribute 0x%lx", CurrentPageEntry));
|
||||
DEBUG ((DEBUG_VERBOSE, "->0x%lx\n", NewPageEntry));
|
||||
} else {
|
||||
*IsModified = FALSE;
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
This function returns if there is need to split page entry.
|
||||
|
||||
@param[in] BaseAddress The base address to be checked.
|
||||
@param[in] Length The length to be checked.
|
||||
@param[in] PageAttribute The page attribute of the page entry.
|
||||
|
||||
@retval SplitAttributes on if there is need to split page entry.
|
||||
**/
|
||||
PAGE_ATTRIBUTE
|
||||
NeedSplitPage (
|
||||
IN PHYSICAL_ADDRESS BaseAddress,
|
||||
IN UINT64 Length,
|
||||
IN PAGE_ATTRIBUTE PageAttribute
|
||||
)
|
||||
{
|
||||
UINT64 PageEntryLength;
|
||||
|
||||
PageEntryLength = PageAttributeToLength (PageAttribute);
|
||||
|
||||
if (((BaseAddress & (PageEntryLength - 1)) == 0) && (Length >= PageEntryLength)) {
|
||||
return PageNone;
|
||||
}
|
||||
|
||||
if (((BaseAddress & PAGING_2M_MASK) != 0) || (Length < SIZE_2MB)) {
|
||||
return Page4K;
|
||||
}
|
||||
|
||||
return Page2M;
|
||||
}
|
||||
|
||||
/**
|
||||
This function splits one page entry to small page entries.
|
||||
|
||||
@param[in] PageEntry The page entry to be splitted.
|
||||
@param[in] PageAttribute The page attribute of the page entry.
|
||||
@param[in] SplitAttribute How to split the page entry.
|
||||
|
||||
@retval RETURN_SUCCESS The page entry is splitted.
|
||||
@retval RETURN_UNSUPPORTED The page entry does not support to be splitted.
|
||||
@retval RETURN_OUT_OF_RESOURCES No resource to split page entry.
|
||||
**/
|
||||
RETURN_STATUS
|
||||
SplitSecondLevelPage (
|
||||
IN VTD_SECOND_LEVEL_PAGING_ENTRY *PageEntry,
|
||||
IN PAGE_ATTRIBUTE PageAttribute,
|
||||
IN PAGE_ATTRIBUTE SplitAttribute
|
||||
)
|
||||
{
|
||||
UINT64 BaseAddress;
|
||||
UINT64 *NewPageEntry;
|
||||
UINTN Index;
|
||||
|
||||
ASSERT (PageAttribute == Page2M || PageAttribute == Page1G);
|
||||
|
||||
if (PageAttribute == Page2M) {
|
||||
//
|
||||
// Split 2M to 4K
|
||||
//
|
||||
ASSERT (SplitAttribute == Page4K);
|
||||
if (SplitAttribute == Page4K) {
|
||||
NewPageEntry = AllocateZeroPages (1);
|
||||
DEBUG ((DEBUG_VERBOSE, "Split - 0x%x\n", NewPageEntry));
|
||||
if (NewPageEntry == NULL) {
|
||||
return RETURN_OUT_OF_RESOURCES;
|
||||
}
|
||||
BaseAddress = PageEntry->Uint64 & PAGING_2M_ADDRESS_MASK_64;
|
||||
for (Index = 0; Index < SIZE_4KB / sizeof(UINT64); Index++) {
|
||||
NewPageEntry[Index] = (BaseAddress + SIZE_4KB * Index) | (PageEntry->Uint64 & PAGE_PROGATE_BITS);
|
||||
}
|
||||
PageEntry->Uint64 = (UINT64)(UINTN)NewPageEntry;
|
||||
SetSecondLevelPagingEntryAttribute (PageEntry, EDKII_IOMMU_ACCESS_READ | EDKII_IOMMU_ACCESS_WRITE);
|
||||
return RETURN_SUCCESS;
|
||||
} else {
|
||||
return RETURN_UNSUPPORTED;
|
||||
}
|
||||
} else if (PageAttribute == Page1G) {
|
||||
//
|
||||
// Split 1G to 2M
|
||||
// No need support 1G->4K directly, we should use 1G->2M, then 2M->4K to get more compact page table.
|
||||
//
|
||||
ASSERT (SplitAttribute == Page2M || SplitAttribute == Page4K);
|
||||
if ((SplitAttribute == Page2M || SplitAttribute == Page4K)) {
|
||||
NewPageEntry = AllocateZeroPages (1);
|
||||
DEBUG ((DEBUG_VERBOSE, "Split - 0x%x\n", NewPageEntry));
|
||||
if (NewPageEntry == NULL) {
|
||||
return RETURN_OUT_OF_RESOURCES;
|
||||
}
|
||||
BaseAddress = PageEntry->Uint64 & PAGING_1G_ADDRESS_MASK_64;
|
||||
for (Index = 0; Index < SIZE_4KB / sizeof(UINT64); Index++) {
|
||||
NewPageEntry[Index] = (BaseAddress + SIZE_2MB * Index) | VTD_PG_PS | (PageEntry->Uint64 & PAGE_PROGATE_BITS);
|
||||
}
|
||||
PageEntry->Uint64 = (UINT64)(UINTN)NewPageEntry;
|
||||
SetSecondLevelPagingEntryAttribute (PageEntry, EDKII_IOMMU_ACCESS_READ | EDKII_IOMMU_ACCESS_WRITE);
|
||||
return RETURN_SUCCESS;
|
||||
} else {
|
||||
return RETURN_UNSUPPORTED;
|
||||
}
|
||||
} else {
|
||||
return RETURN_UNSUPPORTED;
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
Set VTd attribute for a system memory on second level page entry
|
||||
|
||||
@param[in] VtdIndex The index used to identify a VTd engine.
|
||||
@param[in] SecondLevelPagingEntry The second level paging entry in VTd table for the device.
|
||||
@param[in] BaseAddress The base of device memory address to be used as the DMA memory.
|
||||
@param[in] Length The length of device memory address to be used as the DMA memory.
|
||||
@param[in] IoMmuAccess The IOMMU access.
|
||||
|
||||
@retval EFI_SUCCESS The IoMmuAccess is set for the memory range specified by BaseAddress and Length.
|
||||
@retval EFI_INVALID_PARAMETER BaseAddress is not IoMmu Page size aligned.
|
||||
@retval EFI_INVALID_PARAMETER Length is not IoMmu Page size aligned.
|
||||
@retval EFI_INVALID_PARAMETER Length is 0.
|
||||
@retval EFI_INVALID_PARAMETER IoMmuAccess specified an illegal combination of access.
|
||||
@retval EFI_UNSUPPORTED The bit mask of IoMmuAccess is not supported by the IOMMU.
|
||||
@retval EFI_UNSUPPORTED The IOMMU does not support the memory range specified by BaseAddress and Length.
|
||||
@retval EFI_OUT_OF_RESOURCES There are not enough resources available to modify the IOMMU access.
|
||||
@retval EFI_DEVICE_ERROR The IOMMU device reported an error while attempting the operation.
|
||||
**/
|
||||
EFI_STATUS
|
||||
SetSecondLevelPagingAttribute (
|
||||
IN UINTN VtdIndex,
|
||||
IN VTD_SECOND_LEVEL_PAGING_ENTRY *SecondLevelPagingEntry,
|
||||
IN UINT64 BaseAddress,
|
||||
IN UINT64 Length,
|
||||
IN UINT64 IoMmuAccess
|
||||
)
|
||||
{
|
||||
VTD_SECOND_LEVEL_PAGING_ENTRY *PageEntry;
|
||||
PAGE_ATTRIBUTE PageAttribute;
|
||||
UINTN PageEntryLength;
|
||||
PAGE_ATTRIBUTE SplitAttribute;
|
||||
EFI_STATUS Status;
|
||||
BOOLEAN IsEntryModified;
|
||||
|
||||
DEBUG ((DEBUG_VERBOSE,"SetSecondLevelPagingAttribute (%d) (0x%016lx - 0x%016lx : %x) \n", VtdIndex, BaseAddress, Length, IoMmuAccess));
|
||||
DEBUG ((DEBUG_VERBOSE," SecondLevelPagingEntry Base - 0x%x\n", SecondLevelPagingEntry));
|
||||
|
||||
if (BaseAddress != ALIGN_VALUE(BaseAddress, SIZE_4KB)) {
|
||||
DEBUG ((DEBUG_ERROR, "SetSecondLevelPagingAttribute - Invalid Alignment\n"));
|
||||
return EFI_UNSUPPORTED;
|
||||
}
|
||||
if (Length != ALIGN_VALUE(Length, SIZE_4KB)) {
|
||||
DEBUG ((DEBUG_ERROR, "SetSecondLevelPagingAttribute - Invalid Alignment\n"));
|
||||
return EFI_UNSUPPORTED;
|
||||
}
|
||||
|
||||
while (Length != 0) {
|
||||
PageEntry = GetSecondLevelPageTableEntry (SecondLevelPagingEntry, BaseAddress, &PageAttribute);
|
||||
if (PageEntry == NULL) {
|
||||
DEBUG ((DEBUG_ERROR, "PageEntry - NULL\n"));
|
||||
return RETURN_UNSUPPORTED;
|
||||
}
|
||||
PageEntryLength = PageAttributeToLength (PageAttribute);
|
||||
SplitAttribute = NeedSplitPage (BaseAddress, Length, PageAttribute);
|
||||
if (SplitAttribute == PageNone) {
|
||||
ConvertSecondLevelPageEntryAttribute (PageEntry, IoMmuAccess, &IsEntryModified);
|
||||
if (IsEntryModified) {
|
||||
mVtdUnitInformation[VtdIndex].HasDirtyPages = TRUE;
|
||||
}
|
||||
//
|
||||
// Convert success, move to next
|
||||
//
|
||||
BaseAddress += PageEntryLength;
|
||||
Length -= PageEntryLength;
|
||||
} else {
|
||||
Status = SplitSecondLevelPage (PageEntry, PageAttribute, SplitAttribute);
|
||||
if (RETURN_ERROR (Status)) {
|
||||
DEBUG ((DEBUG_ERROR, "SplitSecondLevelPage - %r\n", Status));
|
||||
return RETURN_UNSUPPORTED;
|
||||
}
|
||||
mVtdUnitInformation[VtdIndex].HasDirtyPages = TRUE;
|
||||
//
|
||||
// Just split current page
|
||||
// Convert success in next around
|
||||
//
|
||||
}
|
||||
}
|
||||
|
||||
InvalidatePageEntry (VtdIndex);
|
||||
|
||||
return EFI_SUCCESS;
|
||||
}
|
||||
|
||||
/**
|
||||
Set VTd attribute for a system memory.
|
||||
|
||||
@param[in] VtdIndex The index used to identify a VTd engine.
|
||||
@param[in] SecondLevelPagingEntry The second level paging entry in VTd table for the device.
|
||||
@param[in] BaseAddress The base of device memory address to be used as the DMA memory.
|
||||
@param[in] Length The length of device memory address to be used as the DMA memory.
|
||||
@param[in] IoMmuAccess The IOMMU access.
|
||||
|
||||
@retval EFI_SUCCESS The IoMmuAccess is set for the memory range specified by BaseAddress and Length.
|
||||
@retval EFI_INVALID_PARAMETER BaseAddress is not IoMmu Page size aligned.
|
||||
@retval EFI_INVALID_PARAMETER Length is not IoMmu Page size aligned.
|
||||
@retval EFI_INVALID_PARAMETER Length is 0.
|
||||
@retval EFI_INVALID_PARAMETER IoMmuAccess specified an illegal combination of access.
|
||||
@retval EFI_UNSUPPORTED The bit mask of IoMmuAccess is not supported by the IOMMU.
|
||||
@retval EFI_UNSUPPORTED The IOMMU does not support the memory range specified by BaseAddress and Length.
|
||||
@retval EFI_OUT_OF_RESOURCES There are not enough resources available to modify the IOMMU access.
|
||||
@retval EFI_DEVICE_ERROR The IOMMU device reported an error while attempting the operation.
|
||||
**/
|
||||
EFI_STATUS
|
||||
SetPageAttribute (
|
||||
IN UINTN VtdIndex,
|
||||
IN VTD_SECOND_LEVEL_PAGING_ENTRY *SecondLevelPagingEntry,
|
||||
IN UINT64 BaseAddress,
|
||||
IN UINT64 Length,
|
||||
IN UINT64 IoMmuAccess
|
||||
)
|
||||
{
|
||||
EFI_STATUS Status;
|
||||
Status = EFI_NOT_FOUND;
|
||||
if (SecondLevelPagingEntry != NULL) {
|
||||
Status = SetSecondLevelPagingAttribute (VtdIndex, SecondLevelPagingEntry, BaseAddress, Length, IoMmuAccess);
|
||||
}
|
||||
return Status;
|
||||
}
|
||||
|
||||
/**
|
||||
Set VTd attribute for a system memory.
|
||||
|
||||
@param[in] Segment The Segment used to identify a VTd engine.
|
||||
@param[in] SourceId The SourceId used to identify a VTd engine and table entry.
|
||||
@param[in] BaseAddress The base of device memory address to be used as the DMA memory.
|
||||
@param[in] Length The length of device memory address to be used as the DMA memory.
|
||||
@param[in] IoMmuAccess The IOMMU access.
|
||||
|
||||
@retval EFI_SUCCESS The IoMmuAccess is set for the memory range specified by BaseAddress and Length.
|
||||
@retval EFI_INVALID_PARAMETER BaseAddress is not IoMmu Page size aligned.
|
||||
@retval EFI_INVALID_PARAMETER Length is not IoMmu Page size aligned.
|
||||
@retval EFI_INVALID_PARAMETER Length is 0.
|
||||
@retval EFI_INVALID_PARAMETER IoMmuAccess specified an illegal combination of access.
|
||||
@retval EFI_UNSUPPORTED The bit mask of IoMmuAccess is not supported by the IOMMU.
|
||||
@retval EFI_UNSUPPORTED The IOMMU does not support the memory range specified by BaseAddress and Length.
|
||||
@retval EFI_OUT_OF_RESOURCES There are not enough resources available to modify the IOMMU access.
|
||||
@retval EFI_DEVICE_ERROR The IOMMU device reported an error while attempting the operation.
|
||||
**/
|
||||
EFI_STATUS
|
||||
SetAccessAttribute (
|
||||
IN UINT16 Segment,
|
||||
IN VTD_SOURCE_ID SourceId,
|
||||
IN UINT64 BaseAddress,
|
||||
IN UINT64 Length,
|
||||
IN UINT64 IoMmuAccess
|
||||
)
|
||||
{
|
||||
UINTN VtdIndex;
|
||||
EFI_STATUS Status;
|
||||
VTD_EXT_CONTEXT_ENTRY *ExtContextEntry;
|
||||
VTD_CONTEXT_ENTRY *ContextEntry;
|
||||
VTD_SECOND_LEVEL_PAGING_ENTRY *SecondLevelPagingEntry;
|
||||
UINT64 Pt;
|
||||
|
||||
DEBUG ((DEBUG_INFO,"SetAccessAttribute (S%04x B%02x D%02x F%02x) (0x%016lx - 0x%08x, %x)\n", Segment, SourceId.Bits.Bus, SourceId.Bits.Device, SourceId.Bits.Function, BaseAddress, (UINTN)Length, IoMmuAccess));
|
||||
|
||||
VtdIndex = FindVtdIndexByPciDevice (Segment, SourceId, &ExtContextEntry, &ContextEntry);
|
||||
if (VtdIndex == (UINTN)-1) {
|
||||
DEBUG ((DEBUG_ERROR,"SetAccessAttribute - Pci device (S%04x B%02x D%02x F%02x) not found!\n", Segment, SourceId.Bits.Bus, SourceId.Bits.Device, SourceId.Bits.Function));
|
||||
return EFI_DEVICE_ERROR;
|
||||
}
|
||||
|
||||
if (ExtContextEntry != NULL) {
|
||||
if (ExtContextEntry->Bits.Present == 0) {
|
||||
SecondLevelPagingEntry = CreateSecondLevelPagingEntry (VtdIndex, 0);
|
||||
DEBUG ((DEBUG_VERBOSE,"SecondLevelPagingEntry - 0x%x (S%04x B%02x D%02x F%02x) New\n", SecondLevelPagingEntry, Segment, SourceId.Bits.Bus, SourceId.Bits.Device, SourceId.Bits.Function));
|
||||
Pt = (UINT64)RShiftU64 ((UINT64)(UINTN)SecondLevelPagingEntry, 12);
|
||||
|
||||
ExtContextEntry->Bits.SecondLevelPageTranslationPointer = Pt;
|
||||
ExtContextEntry->Bits.DomainIdentifier = GetPciDescriptor (VtdIndex, Segment, SourceId);
|
||||
ExtContextEntry->Bits.Present = 1;
|
||||
DumpDmarExtContextEntryTable (mVtdUnitInformation[VtdIndex].ExtRootEntryTable);
|
||||
} else {
|
||||
SecondLevelPagingEntry = (VOID *)(UINTN)LShiftU64 (ExtContextEntry->Bits.SecondLevelPageTranslationPointer, 12);
|
||||
DEBUG ((DEBUG_VERBOSE,"SecondLevelPagingEntry - 0x%x (S%04x B%02x D%02x F%02x)\n", SecondLevelPagingEntry, Segment, SourceId.Bits.Bus, SourceId.Bits.Device, SourceId.Bits.Function));
|
||||
}
|
||||
} else {
|
||||
if (ContextEntry->Bits.Present == 0) {
|
||||
SecondLevelPagingEntry = CreateSecondLevelPagingEntry (VtdIndex, 0);
|
||||
DEBUG ((DEBUG_VERBOSE,"SecondLevelPagingEntry - 0x%x (S%04x B%02x D%02x F%02x) New\n", SecondLevelPagingEntry, Segment, SourceId.Bits.Bus, SourceId.Bits.Device, SourceId.Bits.Function));
|
||||
Pt = (UINT64)RShiftU64 ((UINT64)(UINTN)SecondLevelPagingEntry, 12);
|
||||
|
||||
ContextEntry->Bits.SecondLevelPageTranslationPointer = Pt;
|
||||
ContextEntry->Bits.DomainIdentifier = GetPciDescriptor (VtdIndex, Segment, SourceId);
|
||||
ContextEntry->Bits.Present = 1;
|
||||
DumpDmarContextEntryTable (mVtdUnitInformation[VtdIndex].RootEntryTable);
|
||||
} else {
|
||||
SecondLevelPagingEntry = (VOID *)(UINTN)LShiftU64 (ContextEntry->Bits.SecondLevelPageTranslationPointer, 12);
|
||||
DEBUG ((DEBUG_VERBOSE,"SecondLevelPagingEntry - 0x%x (S%04x B%02x D%02x F%02x)\n", SecondLevelPagingEntry, Segment, SourceId.Bits.Bus, SourceId.Bits.Device, SourceId.Bits.Function));
|
||||
}
|
||||
}
|
||||
|
||||
//
|
||||
// Do not update FixedSecondLevelPagingEntry
|
||||
//
|
||||
if (SecondLevelPagingEntry != mVtdUnitInformation[VtdIndex].FixedSecondLevelPagingEntry) {
|
||||
Status = SetPageAttribute (
|
||||
VtdIndex,
|
||||
SecondLevelPagingEntry,
|
||||
BaseAddress,
|
||||
Length,
|
||||
IoMmuAccess
|
||||
);
|
||||
if (EFI_ERROR (Status)) {
|
||||
DEBUG ((DEBUG_ERROR,"SetPageAttribute - %r\n", Status));
|
||||
return Status;
|
||||
}
|
||||
}
|
||||
|
||||
return EFI_SUCCESS;
|
||||
}
|
||||
|
||||
/**
|
||||
Always enable the VTd page attribute for the device.
|
||||
|
||||
@param[in] Segment The Segment used to identify a VTd engine.
|
||||
@param[in] SourceId The SourceId used to identify a VTd engine and table entry.
|
||||
|
||||
@retval EFI_SUCCESS The VTd entry is updated to always enable all DMA access for the specific device.
|
||||
**/
|
||||
EFI_STATUS
|
||||
AlwaysEnablePageAttribute (
|
||||
IN UINT16 Segment,
|
||||
IN VTD_SOURCE_ID SourceId
|
||||
)
|
||||
{
|
||||
UINTN VtdIndex;
|
||||
VTD_EXT_CONTEXT_ENTRY *ExtContextEntry;
|
||||
VTD_CONTEXT_ENTRY *ContextEntry;
|
||||
VTD_SECOND_LEVEL_PAGING_ENTRY *SecondLevelPagingEntry;
|
||||
UINT64 Pt;
|
||||
|
||||
DEBUG ((DEBUG_INFO,"AlwaysEnablePageAttribute (S%04x B%02x D%02x F%02x)\n", Segment, SourceId.Bits.Bus, SourceId.Bits.Device, SourceId.Bits.Function));
|
||||
|
||||
VtdIndex = FindVtdIndexByPciDevice (Segment, SourceId, &ExtContextEntry, &ContextEntry);
|
||||
if (VtdIndex == (UINTN)-1) {
|
||||
DEBUG ((DEBUG_ERROR,"AlwaysEnablePageAttribute - Pci device (S%04x B%02x D%02x F%02x) not found!\n", Segment, SourceId.Bits.Bus, SourceId.Bits.Device, SourceId.Bits.Function));
|
||||
return EFI_DEVICE_ERROR;
|
||||
}
|
||||
|
||||
if (mVtdUnitInformation[VtdIndex].FixedSecondLevelPagingEntry == 0) {
|
||||
DEBUG((DEBUG_INFO, "CreateSecondLevelPagingEntry - %d\n", VtdIndex));
|
||||
mVtdUnitInformation[VtdIndex].FixedSecondLevelPagingEntry = CreateSecondLevelPagingEntry (VtdIndex, EDKII_IOMMU_ACCESS_READ | EDKII_IOMMU_ACCESS_WRITE);
|
||||
}
|
||||
|
||||
SecondLevelPagingEntry = mVtdUnitInformation[VtdIndex].FixedSecondLevelPagingEntry;
|
||||
Pt = (UINT64)RShiftU64 ((UINT64)(UINTN)SecondLevelPagingEntry, 12);
|
||||
if (ExtContextEntry != NULL) {
|
||||
ExtContextEntry->Bits.SecondLevelPageTranslationPointer = Pt;
|
||||
ExtContextEntry->Bits.DomainIdentifier = ((1 << (UINT8)((UINTN)mVtdUnitInformation[VtdIndex].CapReg.Bits.ND * 2 + 4)) - 1);
|
||||
ExtContextEntry->Bits.Present = 1;
|
||||
} else {
|
||||
ContextEntry->Bits.SecondLevelPageTranslationPointer = Pt;
|
||||
ContextEntry->Bits.DomainIdentifier = ((1 << (UINT8)((UINTN)mVtdUnitInformation[VtdIndex].CapReg.Bits.ND * 2 + 4)) - 1);
|
||||
ContextEntry->Bits.Present = 1;
|
||||
}
|
||||
|
||||
return EFI_SUCCESS;
|
||||
}
|
|
@ -0,0 +1,153 @@
|
|||
/** @file
|
||||
|
||||
Copyright (c) 2017, Intel Corporation. All rights reserved.<BR>
|
||||
This program and the accompanying materials
|
||||
are licensed and made available under the terms and conditions of the BSD License
|
||||
which accompanies this distribution. The full text of the license may be found at
|
||||
http://opensource.org/licenses/bsd-license.php.
|
||||
|
||||
THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED.
|
||||
|
||||
**/
|
||||
|
||||
#include "DmaProtection.h"
|
||||
|
||||
/**
|
||||
Create extended context entry.
|
||||
|
||||
@param[in] VtdIndex The index of the VTd engine.
|
||||
|
||||
@retval EFI_SUCCESS The extended context entry is created.
|
||||
@retval EFI_OUT_OF_RESOURCE No enough resource to create extended context entry.
|
||||
**/
|
||||
EFI_STATUS
|
||||
CreateExtContextEntry (
|
||||
IN UINTN VtdIndex
|
||||
)
|
||||
{
|
||||
UINTN Index;
|
||||
VOID *Buffer;
|
||||
UINTN RootPages;
|
||||
UINTN ContextPages;
|
||||
VTD_EXT_ROOT_ENTRY *ExtRootEntry;
|
||||
VTD_EXT_CONTEXT_ENTRY *ExtContextEntryTable;
|
||||
VTD_EXT_CONTEXT_ENTRY *ExtContextEntry;
|
||||
VTD_SOURCE_ID *PciDescriptor;
|
||||
VTD_SOURCE_ID SourceId;
|
||||
UINTN MaxBusNumber;
|
||||
UINTN EntryTablePages;
|
||||
|
||||
MaxBusNumber = 0;
|
||||
for (Index = 0; Index < mVtdUnitInformation[VtdIndex].PciDeviceInfo.PciDescriptorNumber; Index++) {
|
||||
PciDescriptor = &mVtdUnitInformation[VtdIndex].PciDeviceInfo.PciDescriptors[Index];
|
||||
if (PciDescriptor->Bits.Bus > MaxBusNumber) {
|
||||
MaxBusNumber = PciDescriptor->Bits.Bus;
|
||||
}
|
||||
}
|
||||
DEBUG ((DEBUG_INFO," MaxBusNumber - 0x%x\n", MaxBusNumber));
|
||||
|
||||
RootPages = EFI_SIZE_TO_PAGES (sizeof (VTD_EXT_ROOT_ENTRY) * VTD_ROOT_ENTRY_NUMBER);
|
||||
ContextPages = EFI_SIZE_TO_PAGES (sizeof (VTD_EXT_CONTEXT_ENTRY) * VTD_CONTEXT_ENTRY_NUMBER);
|
||||
EntryTablePages = RootPages + ContextPages * (MaxBusNumber + 1);
|
||||
Buffer = AllocateZeroPages (EntryTablePages);
|
||||
if (Buffer == NULL) {
|
||||
DEBUG ((DEBUG_INFO,"Could not Alloc Root Entry Table.. \n"));
|
||||
return EFI_OUT_OF_RESOURCES;
|
||||
}
|
||||
mVtdUnitInformation[VtdIndex].ExtRootEntryTable = (VTD_EXT_ROOT_ENTRY *)Buffer;
|
||||
Buffer = (UINT8 *)Buffer + EFI_PAGES_TO_SIZE (RootPages);
|
||||
|
||||
for (Index = 0; Index < mVtdUnitInformation[VtdIndex].PciDeviceInfo.PciDescriptorNumber; Index++) {
|
||||
PciDescriptor = &mVtdUnitInformation[VtdIndex].PciDeviceInfo.PciDescriptors[Index];
|
||||
|
||||
SourceId.Bits.Bus = PciDescriptor->Bits.Bus;
|
||||
SourceId.Bits.Device = PciDescriptor->Bits.Device;
|
||||
SourceId.Bits.Function = PciDescriptor->Bits.Function;
|
||||
|
||||
ExtRootEntry = &mVtdUnitInformation[VtdIndex].ExtRootEntryTable[SourceId.Index.RootIndex];
|
||||
if (ExtRootEntry->Bits.LowerPresent == 0) {
|
||||
ExtRootEntry->Bits.LowerContextTablePointer = RShiftU64 ((UINT64)(UINTN)Buffer, 12);
|
||||
ExtRootEntry->Bits.LowerPresent = 1;
|
||||
ExtRootEntry->Bits.UpperContextTablePointer = RShiftU64 ((UINT64)(UINTN)Buffer, 12) + 1;
|
||||
ExtRootEntry->Bits.UpperPresent = 1;
|
||||
Buffer = (UINT8 *)Buffer + EFI_PAGES_TO_SIZE (ContextPages);
|
||||
}
|
||||
|
||||
ExtContextEntryTable = (VTD_EXT_CONTEXT_ENTRY *)(UINTN)LShiftU64(ExtRootEntry->Bits.LowerContextTablePointer, 12) ;
|
||||
ExtContextEntry = &ExtContextEntryTable[SourceId.Index.ContextIndex];
|
||||
ExtContextEntry->Bits.TranslationType = 0;
|
||||
ExtContextEntry->Bits.FaultProcessingDisable = 0;
|
||||
ExtContextEntry->Bits.Present = 0;
|
||||
|
||||
DEBUG ((DEBUG_INFO,"DOMAIN: S%04x, B%02x D%02x F%02x\n", mVtdUnitInformation[VtdIndex].Segment, SourceId.Bits.Bus, SourceId.Bits.Device, SourceId.Bits.Function));
|
||||
|
||||
switch (mVtdUnitInformation[VtdIndex].CapReg.Bits.SAGAW) {
|
||||
case BIT1:
|
||||
ExtContextEntry->Bits.AddressWidth = 0x1;
|
||||
break;
|
||||
case BIT2:
|
||||
ExtContextEntry->Bits.AddressWidth = 0x2;
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
return EFI_SUCCESS;
|
||||
}
|
||||
|
||||
/**
|
||||
Dump DMAR extended context entry table.
|
||||
|
||||
@param[in] ExtRootEntry DMAR extended root entry.
|
||||
**/
|
||||
VOID
|
||||
DumpDmarExtContextEntryTable (
|
||||
IN VTD_EXT_ROOT_ENTRY *ExtRootEntry
|
||||
)
|
||||
{
|
||||
UINTN Index;
|
||||
UINTN Index2;
|
||||
VTD_EXT_CONTEXT_ENTRY *ExtContextEntry;
|
||||
|
||||
DEBUG ((DEBUG_INFO,"=========================\n"));
|
||||
DEBUG ((DEBUG_INFO,"DMAR ExtContext Entry Table:\n"));
|
||||
|
||||
DEBUG ((DEBUG_INFO,"ExtRootEntry Address - 0x%x\n", ExtRootEntry));
|
||||
|
||||
for (Index = 0; Index < VTD_ROOT_ENTRY_NUMBER; Index++) {
|
||||
if ((ExtRootEntry[Index].Uint128.Uint64Lo != 0) || (ExtRootEntry[Index].Uint128.Uint64Hi != 0)) {
|
||||
DEBUG ((DEBUG_INFO," ExtRootEntry(0x%02x) B%02x - 0x%016lx %016lx\n",
|
||||
Index, Index, ExtRootEntry[Index].Uint128.Uint64Hi, ExtRootEntry[Index].Uint128.Uint64Lo));
|
||||
}
|
||||
if (ExtRootEntry[Index].Bits.LowerPresent == 0) {
|
||||
continue;
|
||||
}
|
||||
ExtContextEntry = (VTD_EXT_CONTEXT_ENTRY *)(UINTN)LShiftU64 (ExtRootEntry[Index].Bits.LowerContextTablePointer, 12);
|
||||
for (Index2 = 0; Index2 < VTD_CONTEXT_ENTRY_NUMBER/2; Index2++) {
|
||||
if ((ExtContextEntry[Index2].Uint256.Uint64_1 != 0) || (ExtContextEntry[Index2].Uint256.Uint64_2 != 0) ||
|
||||
(ExtContextEntry[Index2].Uint256.Uint64_3 != 0) || (ExtContextEntry[Index2].Uint256.Uint64_4 != 0)) {
|
||||
DEBUG ((DEBUG_INFO," ExtContextEntryLower(0x%02x) D%02xF%02x - 0x%016lx %016lx %016lx %016lx\n",
|
||||
Index2, Index2 >> 3, Index2 & 0x7, ExtContextEntry[Index2].Uint256.Uint64_4, ExtContextEntry[Index2].Uint256.Uint64_3, ExtContextEntry[Index2].Uint256.Uint64_2, ExtContextEntry[Index2].Uint256.Uint64_1));
|
||||
}
|
||||
if (ExtContextEntry[Index2].Bits.Present == 0) {
|
||||
continue;
|
||||
}
|
||||
}
|
||||
|
||||
if (ExtRootEntry[Index].Bits.UpperPresent == 0) {
|
||||
continue;
|
||||
}
|
||||
ExtContextEntry = (VTD_EXT_CONTEXT_ENTRY *)(UINTN)LShiftU64 (ExtRootEntry[Index].Bits.UpperContextTablePointer, 12);
|
||||
for (Index2 = 0; Index2 < VTD_CONTEXT_ENTRY_NUMBER/2; Index2++) {
|
||||
if ((ExtContextEntry[Index2].Uint256.Uint64_1 != 0) || (ExtContextEntry[Index2].Uint256.Uint64_2 != 0) ||
|
||||
(ExtContextEntry[Index2].Uint256.Uint64_3 != 0) || (ExtContextEntry[Index2].Uint256.Uint64_4 != 0)) {
|
||||
DEBUG ((DEBUG_INFO," ExtContextEntryUpper(0x%02x) D%02xF%02x - 0x%016lx %016lx %016lx %016lx\n",
|
||||
Index2, (Index2 + 128) >> 3, (Index2 + 128) & 0x7, ExtContextEntry[Index2].Uint256.Uint64_4, ExtContextEntry[Index2].Uint256.Uint64_3, ExtContextEntry[Index2].Uint256.Uint64_2, ExtContextEntry[Index2].Uint256.Uint64_1));
|
||||
}
|
||||
if (ExtContextEntry[Index2].Bits.Present == 0) {
|
||||
continue;
|
||||
}
|
||||
}
|
||||
}
|
||||
DEBUG ((DEBUG_INFO,"=========================\n"));
|
||||
}
|
|
@ -0,0 +1,602 @@
|
|||
/** @file
|
||||
|
||||
Copyright (c) 2017, Intel Corporation. All rights reserved.<BR>
|
||||
This program and the accompanying materials
|
||||
are licensed and made available under the terms and conditions of the BSD License
|
||||
which accompanies this distribution. The full text of the license may be found at
|
||||
http://opensource.org/licenses/bsd-license.php.
|
||||
|
||||
THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED.
|
||||
|
||||
**/
|
||||
|
||||
#include "DmaProtection.h"
|
||||
|
||||
UINT64 mVtdHostAddressWidthMask;
|
||||
UINTN mVtdUnitNumber;
|
||||
VTD_UNIT_INFORMATION *mVtdUnitInformation;
|
||||
|
||||
BOOLEAN mVtdEnabled;
|
||||
|
||||
/**
|
||||
Invalid VTd global IOTLB.
|
||||
|
||||
@param[in] VtdIndex The index of VTd engine.
|
||||
|
||||
@retval EFI_SUCCESS VTd global IOTLB is invalidated.
|
||||
@retval EFI_DEVICE_ERROR VTd global IOTLB is not invalidated.
|
||||
**/
|
||||
EFI_STATUS
|
||||
InvalidateVtdIOTLBGlobal (
|
||||
IN UINTN VtdIndex
|
||||
)
|
||||
{
|
||||
UINT64 Reg64;
|
||||
UINT32 Reg32;
|
||||
|
||||
if (!mVtdEnabled) {
|
||||
return EFI_SUCCESS;
|
||||
}
|
||||
|
||||
DEBUG((DEBUG_VERBOSE, "InvalidateVtdIOTLBGlobal(%d)\n", VtdIndex));
|
||||
|
||||
AsmWbinvd();
|
||||
|
||||
//
|
||||
// Write Buffer Flush before invalidation
|
||||
//
|
||||
Reg32 = MmioRead32 (mVtdUnitInformation[VtdIndex].VtdUnitBaseAddress + R_CAP_REG);
|
||||
if ((Reg32 & B_CAP_REG_RWBF) != 0) {
|
||||
MmioWrite32 (mVtdUnitInformation[VtdIndex].VtdUnitBaseAddress + R_GCMD_REG, B_GMCD_REG_WBF);
|
||||
}
|
||||
|
||||
//
|
||||
// Invalidate the context cache
|
||||
//
|
||||
Reg64 = MmioRead64 (mVtdUnitInformation[VtdIndex].VtdUnitBaseAddress + R_CCMD_REG);
|
||||
if ((Reg64 & B_CCMD_REG_ICC) != 0) {
|
||||
DEBUG ((DEBUG_ERROR,"ERROR: InvalidateVtdIOTLBGlobal: B_CCMD_REG_ICC is set for VTD(%d)\n",VtdIndex));
|
||||
return EFI_DEVICE_ERROR;
|
||||
}
|
||||
|
||||
Reg64 &= ((~B_CCMD_REG_ICC) & (~B_CCMD_REG_CIRG_MASK));
|
||||
Reg64 |= (B_CCMD_REG_ICC | V_CCMD_REG_CIRG_GLOBAL);
|
||||
MmioWrite64 (mVtdUnitInformation[VtdIndex].VtdUnitBaseAddress + R_CCMD_REG, Reg64);
|
||||
|
||||
do {
|
||||
Reg64 = MmioRead64 (mVtdUnitInformation[VtdIndex].VtdUnitBaseAddress + R_CCMD_REG);
|
||||
} while ((Reg64 & B_CCMD_REG_ICC) != 0);
|
||||
|
||||
//
|
||||
// Invalidate the IOTLB cache
|
||||
//
|
||||
|
||||
Reg64 = MmioRead64 (mVtdUnitInformation[VtdIndex].VtdUnitBaseAddress + (mVtdUnitInformation[VtdIndex].ECapReg.Bits.IRO * 16) + R_IOTLB_REG);
|
||||
if ((Reg64 & B_IOTLB_REG_IVT) != 0) {
|
||||
DEBUG ((DEBUG_ERROR,"ERROR: InvalidateVtdIOTLBGlobal: B_IOTLB_REG_IVT is set for VTD(%d)\n", VtdIndex));
|
||||
return EFI_DEVICE_ERROR;
|
||||
}
|
||||
|
||||
Reg64 &= ((~B_IOTLB_REG_IVT) & (~B_IOTLB_REG_IIRG_MASK));
|
||||
Reg64 |= (B_IOTLB_REG_IVT | V_IOTLB_REG_IIRG_GLOBAL);
|
||||
MmioWrite64 (mVtdUnitInformation[VtdIndex].VtdUnitBaseAddress + (mVtdUnitInformation[VtdIndex].ECapReg.Bits.IRO * 16) + R_IOTLB_REG, Reg64);
|
||||
|
||||
do {
|
||||
Reg64 = MmioRead64 (mVtdUnitInformation[VtdIndex].VtdUnitBaseAddress + (mVtdUnitInformation[VtdIndex].ECapReg.Bits.IRO * 16) + R_IOTLB_REG);
|
||||
} while ((Reg64 & B_IOTLB_REG_IVT) != 0);
|
||||
|
||||
//
|
||||
// Disable VTd
|
||||
//
|
||||
MmioWrite32 (mVtdUnitInformation[VtdIndex].VtdUnitBaseAddress + R_GCMD_REG, B_GMCD_REG_SRTP);
|
||||
do {
|
||||
Reg32 = MmioRead32 (mVtdUnitInformation[VtdIndex].VtdUnitBaseAddress + R_GSTS_REG);
|
||||
} while((Reg32 & B_GSTS_REG_RTPS) == 0);
|
||||
|
||||
//
|
||||
// Enable VTd
|
||||
//
|
||||
MmioWrite32 (mVtdUnitInformation[VtdIndex].VtdUnitBaseAddress + R_GCMD_REG, B_GMCD_REG_TE);
|
||||
do {
|
||||
Reg32 = MmioRead32 (mVtdUnitInformation[VtdIndex].VtdUnitBaseAddress + R_GSTS_REG);
|
||||
} while ((Reg32 & B_GSTS_REG_TE) == 0);
|
||||
|
||||
return EFI_SUCCESS;
|
||||
}
|
||||
|
||||
/**
|
||||
Invalid VTd IOTLB domain.
|
||||
|
||||
@param[in] VtdIndex The index of VTd engine.
|
||||
@param[in] DomainIdentifier The domain ID of the source.
|
||||
|
||||
@retval EFI_SUCCESS VTd IOTLB domain is invalidated.
|
||||
@retval EFI_DEVICE_ERROR VTd IOTLB domain is not invalidated.
|
||||
**/
|
||||
EFI_STATUS
|
||||
InvalidateVtdIOTLBDomain (
|
||||
IN UINTN VtdIndex,
|
||||
IN UINT16 DomainIdentifier
|
||||
)
|
||||
{
|
||||
UINT64 Reg64;
|
||||
|
||||
if (!mVtdEnabled) {
|
||||
return EFI_SUCCESS;
|
||||
}
|
||||
|
||||
DEBUG((DEBUG_VERBOSE, "InvalidateVtdIOTLBDomain(%d): 0x%016lx (0x%04x)\n", VtdIndex, DomainIdentifier));
|
||||
|
||||
//
|
||||
// Invalidate the context cache
|
||||
//
|
||||
Reg64 = MmioRead64 (mVtdUnitInformation[VtdIndex].VtdUnitBaseAddress + R_CCMD_REG);
|
||||
if ((Reg64 & B_CCMD_REG_ICC) != 0) {
|
||||
DEBUG ((DEBUG_ERROR,"ERROR: InvalidateVtdIOTLBDomain: B_CCMD_REG_ICC is set for VTD(%d)\n",VtdIndex));
|
||||
return EFI_DEVICE_ERROR;
|
||||
}
|
||||
|
||||
Reg64 &= ((~B_CCMD_REG_ICC) & (~B_CCMD_REG_CIRG_MASK));
|
||||
Reg64 |= (B_CCMD_REG_ICC | V_CCMD_REG_CIRG_DOMAIN);
|
||||
Reg64 |= (B_CCMD_REG_ICC | V_CCMD_REG_CIRG_DOMAIN);
|
||||
MmioWrite64 (mVtdUnitInformation[VtdIndex].VtdUnitBaseAddress + R_CCMD_REG, Reg64);
|
||||
|
||||
do {
|
||||
Reg64 = MmioRead64 (mVtdUnitInformation[VtdIndex].VtdUnitBaseAddress + R_CCMD_REG);
|
||||
} while ((Reg64 & B_CCMD_REG_ICC) != 0);
|
||||
|
||||
//
|
||||
// Invalidate the IOTLB cache
|
||||
//
|
||||
|
||||
Reg64 = MmioRead64 (mVtdUnitInformation[VtdIndex].VtdUnitBaseAddress + (mVtdUnitInformation[VtdIndex].ECapReg.Bits.IRO * 16) + R_IOTLB_REG);
|
||||
if ((Reg64 & B_IOTLB_REG_IVT) != 0) {
|
||||
DEBUG ((DEBUG_ERROR,"ERROR: InvalidateVtdIOTLBDomain: B_IOTLB_REG_IVT is set for VTD(%d)\n", VtdIndex));
|
||||
return EFI_DEVICE_ERROR;
|
||||
}
|
||||
|
||||
Reg64 &= ((~B_IOTLB_REG_IVT) & (~B_IOTLB_REG_IIRG_MASK));
|
||||
Reg64 |= (B_IOTLB_REG_IVT | V_IOTLB_REG_IIRG_DOMAIN);
|
||||
Reg64 |= DomainIdentifier;
|
||||
MmioWrite64 (mVtdUnitInformation[VtdIndex].VtdUnitBaseAddress + (mVtdUnitInformation[VtdIndex].ECapReg.Bits.IRO * 16) + R_IOTLB_REG, Reg64);
|
||||
|
||||
do {
|
||||
Reg64 = MmioRead64 (mVtdUnitInformation[VtdIndex].VtdUnitBaseAddress + (mVtdUnitInformation[VtdIndex].ECapReg.Bits.IRO * 16) + R_IOTLB_REG);
|
||||
} while ((Reg64 & B_IOTLB_REG_IVT) != 0);
|
||||
|
||||
return EFI_SUCCESS;
|
||||
}
|
||||
|
||||
/**
|
||||
Invalid VTd IOTLB page.
|
||||
|
||||
@param[in] VtdIndex The index of VTd engine.
|
||||
@param[in] Address The address of IOTLB page.
|
||||
@param[in] AddressMode The address mode of IOTLB page.
|
||||
@param[in] DomainIdentifier The domain ID of the source.
|
||||
|
||||
@retval EFI_SUCCESS VTd IOTLB page is invalidated.
|
||||
@retval EFI_DEVICE_ERROR VTd IOTLB page is not invalidated.
|
||||
**/
|
||||
EFI_STATUS
|
||||
InvalidateVtdIOTLBPage (
|
||||
IN UINTN VtdIndex,
|
||||
IN UINT64 Address,
|
||||
IN UINT8 AddressMode,
|
||||
IN UINT16 DomainIdentifier
|
||||
)
|
||||
{
|
||||
UINT64 Reg64;
|
||||
UINT64 Data64;
|
||||
|
||||
if (!mVtdEnabled) {
|
||||
return EFI_SUCCESS;
|
||||
}
|
||||
|
||||
DEBUG((DEBUG_VERBOSE, "InvalidateVtdIOTLBPage(%d): 0x%016lx (0x%02x)\n", VtdIndex, Address, AddressMode));
|
||||
|
||||
if (mVtdUnitInformation[VtdIndex].CapReg.Bits.PSI != 0) {
|
||||
Reg64 = MmioRead64 (mVtdUnitInformation[VtdIndex].VtdUnitBaseAddress + (mVtdUnitInformation[VtdIndex].ECapReg.Bits.IRO * 16) + R_IOTLB_REG);
|
||||
if ((Reg64 & B_IOTLB_REG_IVT) != 0) {
|
||||
DEBUG ((DEBUG_ERROR,"ERROR: InvalidateVtdIOTLBPage: B_IOTLB_REG_IVT is set for VTD(%d)\n", VtdIndex));
|
||||
return EFI_DEVICE_ERROR;
|
||||
}
|
||||
|
||||
Data64 = Address | AddressMode;
|
||||
MmioWrite64 (mVtdUnitInformation[VtdIndex].VtdUnitBaseAddress + (mVtdUnitInformation[VtdIndex].ECapReg.Bits.IRO * 16) + R_IVA_REG, Data64);
|
||||
|
||||
Reg64 &= ((~B_IOTLB_REG_IVT) & (~B_IOTLB_REG_IIRG_MASK));
|
||||
Reg64 |= (B_IOTLB_REG_IVT | V_IOTLB_REG_IIRG_PAGE);
|
||||
Reg64 |= LShiftU64 (DomainIdentifier, 32);
|
||||
MmioWrite64 (mVtdUnitInformation[VtdIndex].VtdUnitBaseAddress + (mVtdUnitInformation[VtdIndex].ECapReg.Bits.IRO * 16) + R_IOTLB_REG, Reg64);
|
||||
|
||||
do {
|
||||
Reg64 = MmioRead64 (mVtdUnitInformation[VtdIndex].VtdUnitBaseAddress + (mVtdUnitInformation[VtdIndex].ECapReg.Bits.IRO * 16) + R_IOTLB_REG);
|
||||
} while ((Reg64 & B_IOTLB_REG_IVT) != 0);
|
||||
} else {
|
||||
InvalidateVtdIOTLBGlobal (VtdIndex);
|
||||
}
|
||||
|
||||
return EFI_SUCCESS;
|
||||
}
|
||||
|
||||
/**
|
||||
Prepare VTD configuration.
|
||||
**/
|
||||
VOID
|
||||
PrepareVtdConfig (
|
||||
VOID
|
||||
)
|
||||
{
|
||||
UINTN Index;
|
||||
UINTN DomainNumber;
|
||||
|
||||
for (Index = 0; Index < mVtdUnitNumber; Index++) {
|
||||
DEBUG ((DEBUG_INFO, "Dump VTd Capability (%d)\n", Index));
|
||||
mVtdUnitInformation[Index].CapReg.Uint64 = MmioRead64 (mVtdUnitInformation[Index].VtdUnitBaseAddress + R_CAP_REG);
|
||||
DumpVtdCapRegs (&mVtdUnitInformation[Index].CapReg);
|
||||
mVtdUnitInformation[Index].ECapReg.Uint64 = MmioRead64 (mVtdUnitInformation[Index].VtdUnitBaseAddress + R_ECAP_REG);
|
||||
DumpVtdECapRegs (&mVtdUnitInformation[Index].ECapReg);
|
||||
|
||||
if ((mVtdUnitInformation[Index].CapReg.Bits.SLLPS & BIT0) == 0) {
|
||||
DEBUG((DEBUG_WARN, "!!!! 2MB super page is not supported on VTD %d !!!!\n", Index));
|
||||
}
|
||||
if ((mVtdUnitInformation[Index].CapReg.Bits.SAGAW & BIT2) == 0) {
|
||||
DEBUG((DEBUG_ERROR, "!!!! 4-level page-table is not supported on VTD %d !!!!\n", Index));
|
||||
return ;
|
||||
}
|
||||
|
||||
DomainNumber = (UINTN)1 << (UINT8)((UINTN)mVtdUnitInformation[Index].CapReg.Bits.ND * 2 + 4);
|
||||
if (mVtdUnitInformation[Index].PciDeviceInfo.PciDescriptorNumber >= DomainNumber) {
|
||||
DEBUG((DEBUG_ERROR, "!!!! Pci device Number(0x%x) >= DomainNumber(0x%x) !!!!\n", mVtdUnitInformation[Index].PciDeviceInfo.PciDescriptorNumber, DomainNumber));
|
||||
return ;
|
||||
}
|
||||
}
|
||||
return ;
|
||||
}
|
||||
|
||||
/**
|
||||
Enable DMAR translation.
|
||||
|
||||
@retval EFI_SUCCESS DMAR translation is enabled.
|
||||
@retval EFI_DEVICE_ERROR DMAR translation is not enabled.
|
||||
**/
|
||||
EFI_STATUS
|
||||
EnableDmar (
|
||||
VOID
|
||||
)
|
||||
{
|
||||
UINTN Index;
|
||||
UINT64 Reg64;
|
||||
UINT32 Reg32;
|
||||
|
||||
AsmWbinvd();
|
||||
|
||||
for (Index = 0; Index < mVtdUnitNumber; Index++) {
|
||||
DEBUG((DEBUG_INFO, ">>>>>>EnableDmar() for engine [%d] \n", Index));
|
||||
|
||||
if (mVtdUnitInformation[Index].ExtRootEntryTable != NULL) {
|
||||
DEBUG((DEBUG_INFO, "ExtRootEntryTable 0x%x \n", mVtdUnitInformation[Index].ExtRootEntryTable));
|
||||
MmioWrite64 (mVtdUnitInformation[Index].VtdUnitBaseAddress + R_RTADDR_REG, (UINT64)(UINTN)mVtdUnitInformation[Index].ExtRootEntryTable | BIT11);
|
||||
} else {
|
||||
DEBUG((DEBUG_INFO, "RootEntryTable 0x%x \n", mVtdUnitInformation[Index].RootEntryTable));
|
||||
MmioWrite64 (mVtdUnitInformation[Index].VtdUnitBaseAddress + R_RTADDR_REG, (UINT64)(UINTN)mVtdUnitInformation[Index].RootEntryTable);
|
||||
}
|
||||
|
||||
MmioWrite32 (mVtdUnitInformation[Index].VtdUnitBaseAddress + R_GCMD_REG, B_GMCD_REG_SRTP);
|
||||
|
||||
DEBUG((DEBUG_INFO, "EnableDmar: waiting for RTPS bit to be set... \n"));
|
||||
do {
|
||||
Reg32 = MmioRead32 (mVtdUnitInformation[Index].VtdUnitBaseAddress + R_GSTS_REG);
|
||||
} while((Reg32 & B_GSTS_REG_RTPS) == 0);
|
||||
|
||||
//
|
||||
// Init DMAr Fault Event and Data registers
|
||||
//
|
||||
Reg32 = MmioRead32 (mVtdUnitInformation[Index].VtdUnitBaseAddress + R_FEDATA_REG);
|
||||
|
||||
//
|
||||
// Write Buffer Flush before invalidation
|
||||
//
|
||||
Reg32 = MmioRead32 (mVtdUnitInformation[Index].VtdUnitBaseAddress + R_CAP_REG);
|
||||
if ((Reg32 & B_CAP_REG_RWBF) != 0) {
|
||||
MmioWrite32 (mVtdUnitInformation[Index].VtdUnitBaseAddress + R_GCMD_REG, B_GMCD_REG_WBF);
|
||||
}
|
||||
|
||||
//
|
||||
// Invalidate the context cache
|
||||
//
|
||||
Reg64 = MmioRead64 (mVtdUnitInformation[Index].VtdUnitBaseAddress + R_CCMD_REG);
|
||||
if ((Reg64 & B_CCMD_REG_ICC) != 0) {
|
||||
DEBUG ((DEBUG_INFO,"ERROR: EnableDmar: B_CCMD_REG_ICC is set for VTD(%d)\n",Index));
|
||||
return EFI_DEVICE_ERROR;
|
||||
}
|
||||
|
||||
Reg64 &= ((~B_CCMD_REG_ICC) & (~B_CCMD_REG_CIRG_MASK));
|
||||
Reg64 |= (B_CCMD_REG_ICC | V_CCMD_REG_CIRG_GLOBAL);
|
||||
MmioWrite64 (mVtdUnitInformation[Index].VtdUnitBaseAddress + R_CCMD_REG, Reg64);
|
||||
|
||||
DEBUG((DEBUG_INFO, "EnableDmar: Waiting B_CCMD_REG_ICC ...\n"));
|
||||
do {
|
||||
Reg64 = MmioRead64 (mVtdUnitInformation[Index].VtdUnitBaseAddress + R_CCMD_REG);
|
||||
} while ((Reg64 & B_CCMD_REG_ICC) != 0);
|
||||
|
||||
//
|
||||
// Invalidate the IOTLB cache
|
||||
//
|
||||
DEBUG((DEBUG_INFO, "EnableDmar: IRO 0x%x\n", mVtdUnitInformation[Index].ECapReg.Bits.IRO));
|
||||
|
||||
Reg64 = MmioRead64 (mVtdUnitInformation[Index].VtdUnitBaseAddress + (mVtdUnitInformation[Index].ECapReg.Bits.IRO * 16) + R_IOTLB_REG);
|
||||
if ((Reg64 & B_IOTLB_REG_IVT) != 0) {
|
||||
DEBUG ((DEBUG_INFO,"ERROR: EnableDmar: B_IOTLB_REG_IVT is set for VTD(%d)\n", Index));
|
||||
return EFI_DEVICE_ERROR;
|
||||
}
|
||||
|
||||
Reg64 &= ((~B_IOTLB_REG_IVT) & (~B_IOTLB_REG_IIRG_MASK));
|
||||
Reg64 |= (B_IOTLB_REG_IVT | V_IOTLB_REG_IIRG_GLOBAL);
|
||||
MmioWrite64 (mVtdUnitInformation[Index].VtdUnitBaseAddress + (mVtdUnitInformation[Index].ECapReg.Bits.IRO * 16) + R_IOTLB_REG, Reg64);
|
||||
|
||||
DEBUG((DEBUG_INFO, "EnableDmar: Waiting B_IOTLB_REG_IVT ...\n"));
|
||||
do {
|
||||
Reg64 = MmioRead64 (mVtdUnitInformation[Index].VtdUnitBaseAddress + (mVtdUnitInformation[Index].ECapReg.Bits.IRO * 16) + R_IOTLB_REG);
|
||||
} while ((Reg64 & B_IOTLB_REG_IVT) != 0);
|
||||
|
||||
//
|
||||
// Enable VTd
|
||||
//
|
||||
MmioWrite32 (mVtdUnitInformation[Index].VtdUnitBaseAddress + R_GCMD_REG, B_GMCD_REG_TE);
|
||||
DEBUG((DEBUG_INFO, "EnableDmar: Waiting B_GSTS_REG_TE ...\n"));
|
||||
do {
|
||||
Reg32 = MmioRead32 (mVtdUnitInformation[Index].VtdUnitBaseAddress + R_GSTS_REG);
|
||||
} while ((Reg32 & B_GSTS_REG_TE) == 0);
|
||||
|
||||
DEBUG ((DEBUG_INFO,"VTD (%d) enabled!<<<<<<\n",Index));
|
||||
}
|
||||
|
||||
mVtdEnabled = TRUE;
|
||||
|
||||
return EFI_SUCCESS;
|
||||
}
|
||||
|
||||
/**
|
||||
Disable DMAR translation.
|
||||
|
||||
@retval EFI_SUCCESS DMAR translation is disabled.
|
||||
@retval EFI_DEVICE_ERROR DMAR translation is not disabled.
|
||||
**/
|
||||
EFI_STATUS
|
||||
DisableDmar (
|
||||
VOID
|
||||
)
|
||||
{
|
||||
UINTN Index;
|
||||
UINT32 Reg32;
|
||||
|
||||
AsmWbinvd();
|
||||
|
||||
for (Index = 0; Index < mVtdUnitNumber; Index++) {
|
||||
DEBUG((DEBUG_INFO, ">>>>>>DisableDmar() for engine [%d] \n", Index));
|
||||
|
||||
//
|
||||
// Write Buffer Flush before invalidation
|
||||
//
|
||||
Reg32 = MmioRead32 (mVtdUnitInformation[Index].VtdUnitBaseAddress + R_CAP_REG);
|
||||
if ((Reg32 & B_CAP_REG_RWBF) != 0) {
|
||||
MmioWrite32 (mVtdUnitInformation[Index].VtdUnitBaseAddress + R_GCMD_REG, B_GMCD_REG_WBF);
|
||||
}
|
||||
|
||||
//
|
||||
// Disable VTd
|
||||
//
|
||||
MmioWrite32 (mVtdUnitInformation[Index].VtdUnitBaseAddress + R_GCMD_REG, B_GMCD_REG_SRTP);
|
||||
do {
|
||||
Reg32 = MmioRead32 (mVtdUnitInformation[Index].VtdUnitBaseAddress + R_GSTS_REG);
|
||||
} while((Reg32 & B_GSTS_REG_RTPS) == 0);
|
||||
|
||||
Reg32 = MmioRead32 (mVtdUnitInformation[Index].VtdUnitBaseAddress + R_GSTS_REG);
|
||||
DEBUG((DEBUG_INFO, "DisableDmar: GSTS_REG - 0x%08x\n", Reg32));
|
||||
|
||||
DEBUG ((DEBUG_INFO,"VTD (%d) Disabled!<<<<<<\n",Index));
|
||||
}
|
||||
|
||||
mVtdEnabled = FALSE;
|
||||
|
||||
return EFI_SUCCESS;
|
||||
}
|
||||
|
||||
/**
|
||||
Dump VTd capability registers.
|
||||
|
||||
@param[in] CapReg The capability register.
|
||||
**/
|
||||
VOID
|
||||
DumpVtdCapRegs (
|
||||
IN VTD_CAP_REG *CapReg
|
||||
)
|
||||
{
|
||||
DEBUG((DEBUG_INFO, " CapReg:\n", CapReg->Uint64));
|
||||
DEBUG((DEBUG_INFO, " ND - 0x%x\n", CapReg->Bits.ND));
|
||||
DEBUG((DEBUG_INFO, " AFL - 0x%x\n", CapReg->Bits.AFL));
|
||||
DEBUG((DEBUG_INFO, " RWBF - 0x%x\n", CapReg->Bits.RWBF));
|
||||
DEBUG((DEBUG_INFO, " PLMR - 0x%x\n", CapReg->Bits.PLMR));
|
||||
DEBUG((DEBUG_INFO, " PHMR - 0x%x\n", CapReg->Bits.PHMR));
|
||||
DEBUG((DEBUG_INFO, " CM - 0x%x\n", CapReg->Bits.CM));
|
||||
DEBUG((DEBUG_INFO, " SAGAW - 0x%x\n", CapReg->Bits.SAGAW));
|
||||
DEBUG((DEBUG_INFO, " MGAW - 0x%x\n", CapReg->Bits.MGAW));
|
||||
DEBUG((DEBUG_INFO, " ZLR - 0x%x\n", CapReg->Bits.ZLR));
|
||||
DEBUG((DEBUG_INFO, " FRO - 0x%x\n", CapReg->Bits.FRO));
|
||||
DEBUG((DEBUG_INFO, " SLLPS - 0x%x\n", CapReg->Bits.SLLPS));
|
||||
DEBUG((DEBUG_INFO, " PSI - 0x%x\n", CapReg->Bits.PSI));
|
||||
DEBUG((DEBUG_INFO, " NFR - 0x%x\n", CapReg->Bits.NFR));
|
||||
DEBUG((DEBUG_INFO, " MAMV - 0x%x\n", CapReg->Bits.MAMV));
|
||||
DEBUG((DEBUG_INFO, " DWD - 0x%x\n", CapReg->Bits.DWD));
|
||||
DEBUG((DEBUG_INFO, " DRD - 0x%x\n", CapReg->Bits.DRD));
|
||||
DEBUG((DEBUG_INFO, " FL1GP - 0x%x\n", CapReg->Bits.FL1GP));
|
||||
DEBUG((DEBUG_INFO, " PI - 0x%x\n", CapReg->Bits.PI));
|
||||
}
|
||||
|
||||
/**
|
||||
Dump VTd extended capability registers.
|
||||
|
||||
@param[in] ECapReg The extended capability register.
|
||||
**/
|
||||
VOID
|
||||
DumpVtdECapRegs (
|
||||
IN VTD_ECAP_REG *ECapReg
|
||||
)
|
||||
{
|
||||
DEBUG((DEBUG_INFO, " ECapReg:\n", ECapReg->Uint64));
|
||||
DEBUG((DEBUG_INFO, " C - 0x%x\n", ECapReg->Bits.C));
|
||||
DEBUG((DEBUG_INFO, " QI - 0x%x\n", ECapReg->Bits.QI));
|
||||
DEBUG((DEBUG_INFO, " DT - 0x%x\n", ECapReg->Bits.DT));
|
||||
DEBUG((DEBUG_INFO, " IR - 0x%x\n", ECapReg->Bits.IR));
|
||||
DEBUG((DEBUG_INFO, " EIM - 0x%x\n", ECapReg->Bits.EIM));
|
||||
DEBUG((DEBUG_INFO, " PT - 0x%x\n", ECapReg->Bits.PT));
|
||||
DEBUG((DEBUG_INFO, " SC - 0x%x\n", ECapReg->Bits.SC));
|
||||
DEBUG((DEBUG_INFO, " IRO - 0x%x\n", ECapReg->Bits.IRO));
|
||||
DEBUG((DEBUG_INFO, " MHMV - 0x%x\n", ECapReg->Bits.MHMV));
|
||||
DEBUG((DEBUG_INFO, " ECS - 0x%x\n", ECapReg->Bits.ECS));
|
||||
DEBUG((DEBUG_INFO, " MTS - 0x%x\n", ECapReg->Bits.MTS));
|
||||
DEBUG((DEBUG_INFO, " NEST - 0x%x\n", ECapReg->Bits.NEST));
|
||||
DEBUG((DEBUG_INFO, " DIS - 0x%x\n", ECapReg->Bits.DIS));
|
||||
DEBUG((DEBUG_INFO, " PASID - 0x%x\n", ECapReg->Bits.PASID));
|
||||
DEBUG((DEBUG_INFO, " PRS - 0x%x\n", ECapReg->Bits.PRS));
|
||||
DEBUG((DEBUG_INFO, " ERS - 0x%x\n", ECapReg->Bits.ERS));
|
||||
DEBUG((DEBUG_INFO, " SRS - 0x%x\n", ECapReg->Bits.SRS));
|
||||
DEBUG((DEBUG_INFO, " NWFS - 0x%x\n", ECapReg->Bits.NWFS));
|
||||
DEBUG((DEBUG_INFO, " EAFS - 0x%x\n", ECapReg->Bits.EAFS));
|
||||
DEBUG((DEBUG_INFO, " PSS - 0x%x\n", ECapReg->Bits.PSS));
|
||||
}
|
||||
|
||||
/**
|
||||
Dump VTd registers.
|
||||
|
||||
@param[in] VtdIndex The index of VTd engine.
|
||||
**/
|
||||
VOID
|
||||
DumpVtdRegs (
|
||||
IN UINTN VtdIndex
|
||||
)
|
||||
{
|
||||
UINTN Index;
|
||||
UINT64 Reg64;
|
||||
VTD_FRCD_REG FrcdReg;
|
||||
VTD_CAP_REG CapReg;
|
||||
UINT32 Reg32;
|
||||
VTD_SOURCE_ID SourceId;
|
||||
|
||||
DEBUG((DEBUG_INFO, "#### DumpVtdRegs(%d) Begin ####\n", VtdIndex));
|
||||
|
||||
Reg32 = MmioRead32 (mVtdUnitInformation[VtdIndex].VtdUnitBaseAddress + R_VER_REG);
|
||||
DEBUG((DEBUG_INFO, " VER_REG - 0x%08x\n", Reg32));
|
||||
|
||||
CapReg.Uint64 = MmioRead64 (mVtdUnitInformation[VtdIndex].VtdUnitBaseAddress + R_CAP_REG);
|
||||
DEBUG((DEBUG_INFO, " CAP_REG - 0x%016lx\n", CapReg.Uint64));
|
||||
|
||||
Reg64 = MmioRead64 (mVtdUnitInformation[VtdIndex].VtdUnitBaseAddress + R_ECAP_REG);
|
||||
DEBUG((DEBUG_INFO, " ECAP_REG - 0x%016lx\n", Reg64));
|
||||
|
||||
Reg32 = MmioRead32 (mVtdUnitInformation[VtdIndex].VtdUnitBaseAddress + R_GSTS_REG);
|
||||
DEBUG((DEBUG_INFO, " GSTS_REG - 0x%08x \n", Reg32));
|
||||
|
||||
Reg64 = MmioRead64 (mVtdUnitInformation[VtdIndex].VtdUnitBaseAddress + R_RTADDR_REG);
|
||||
DEBUG((DEBUG_INFO, " RTADDR_REG - 0x%016lx\n", Reg64));
|
||||
|
||||
Reg64 = MmioRead64 (mVtdUnitInformation[VtdIndex].VtdUnitBaseAddress + R_CCMD_REG);
|
||||
DEBUG((DEBUG_INFO, " CCMD_REG - 0x%016lx\n", Reg64));
|
||||
|
||||
Reg32 = MmioRead32 (mVtdUnitInformation[VtdIndex].VtdUnitBaseAddress + R_FSTS_REG);
|
||||
DEBUG((DEBUG_INFO, " FSTS_REG - 0x%08x\n", Reg32));
|
||||
|
||||
Reg32 = MmioRead32 (mVtdUnitInformation[VtdIndex].VtdUnitBaseAddress + R_FECTL_REG);
|
||||
DEBUG((DEBUG_INFO, " FECTL_REG - 0x%08x\n", Reg32));
|
||||
|
||||
Reg32 = MmioRead32 (mVtdUnitInformation[VtdIndex].VtdUnitBaseAddress + R_FEDATA_REG);
|
||||
DEBUG((DEBUG_INFO, " FEDATA_REG - 0x%08x\n", Reg32));
|
||||
|
||||
Reg32 = MmioRead32 (mVtdUnitInformation[VtdIndex].VtdUnitBaseAddress + R_FEADDR_REG);
|
||||
DEBUG((DEBUG_INFO, " FEADDR_REG - 0x%08x\n",Reg32));
|
||||
|
||||
Reg32 = MmioRead32 (mVtdUnitInformation[VtdIndex].VtdUnitBaseAddress + R_FEUADDR_REG);
|
||||
DEBUG((DEBUG_INFO, " FEUADDR_REG - 0x%08x\n",Reg32));
|
||||
|
||||
for (Index = 0; Index < (UINTN)CapReg.Bits.NFR + 1; Index++) {
|
||||
FrcdReg.Uint64[0] = MmioRead64 (mVtdUnitInformation[VtdIndex].VtdUnitBaseAddress + ((CapReg.Bits.FRO * 16) + (Index * 16) + R_FRCD_REG));
|
||||
FrcdReg.Uint64[1] = MmioRead64 (mVtdUnitInformation[VtdIndex].VtdUnitBaseAddress + ((CapReg.Bits.FRO * 16) + (Index * 16) + R_FRCD_REG + sizeof(UINT64)));
|
||||
DEBUG((DEBUG_INFO, " FRCD_REG[%d] - 0x%016lx %016lx\n", Index, FrcdReg.Uint64[1], FrcdReg.Uint64[0]));
|
||||
if (FrcdReg.Uint64[1] != 0 || FrcdReg.Uint64[0] != 0) {
|
||||
DEBUG((DEBUG_INFO, " Fault Info - 0x%016lx\n", LShiftU64(FrcdReg.Bits.FI, 12)));
|
||||
SourceId.Uint16 = (UINT16)FrcdReg.Bits.SID;
|
||||
DEBUG((DEBUG_INFO, " Source - B%02x D%02x F%02x\n", SourceId.Bits.Bus, SourceId.Bits.Device, SourceId.Bits.Function));
|
||||
DEBUG((DEBUG_INFO, " Type - %x (%a)\n", FrcdReg.Bits.T, FrcdReg.Bits.T ? "read" : "write"));
|
||||
DEBUG((DEBUG_INFO, " Reason - %x\n", FrcdReg.Bits.FR));
|
||||
}
|
||||
}
|
||||
|
||||
Reg64 = MmioRead64 (mVtdUnitInformation[VtdIndex].VtdUnitBaseAddress + (mVtdUnitInformation[VtdIndex].ECapReg.Bits.IRO * 16) + R_IVA_REG);
|
||||
DEBUG((DEBUG_INFO, " IVA_REG - 0x%016lx\n",Reg64));
|
||||
|
||||
Reg64 = MmioRead64 (mVtdUnitInformation[VtdIndex].VtdUnitBaseAddress + (mVtdUnitInformation[VtdIndex].ECapReg.Bits.IRO * 16) + R_IOTLB_REG);
|
||||
DEBUG((DEBUG_INFO, " IOTLB_REG - 0x%016lx\n",Reg64));
|
||||
|
||||
DEBUG((DEBUG_INFO, "#### DumpVtdRegs(%d) End ####\n", VtdIndex));
|
||||
}
|
||||
|
||||
/**
|
||||
Dump VTd registers for all VTd engine.
|
||||
**/
|
||||
VOID
|
||||
DumpVtdRegsAll (
|
||||
VOID
|
||||
)
|
||||
{
|
||||
UINTN Num;
|
||||
|
||||
for (Num = 0; Num < mVtdUnitNumber; Num++) {
|
||||
DumpVtdRegs (Num);
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
Dump VTd registers if there is error.
|
||||
**/
|
||||
VOID
|
||||
DumpVtdIfError (
|
||||
VOID
|
||||
)
|
||||
{
|
||||
UINTN Num;
|
||||
UINTN Index;
|
||||
VTD_FRCD_REG FrcdReg;
|
||||
VTD_CAP_REG CapReg;
|
||||
UINT32 Reg32;
|
||||
BOOLEAN HasError;
|
||||
|
||||
for (Num = 0; Num < mVtdUnitNumber; Num++) {
|
||||
HasError = FALSE;
|
||||
Reg32 = MmioRead32 (mVtdUnitInformation[Num].VtdUnitBaseAddress + R_FSTS_REG);
|
||||
if (Reg32 != 0) {
|
||||
HasError = TRUE;
|
||||
}
|
||||
Reg32 = MmioRead32 (mVtdUnitInformation[Num].VtdUnitBaseAddress + R_FECTL_REG);
|
||||
if ((Reg32 & BIT30) != 0) {
|
||||
HasError = TRUE;
|
||||
}
|
||||
|
||||
CapReg.Uint64 = MmioRead64 (mVtdUnitInformation[Num].VtdUnitBaseAddress + R_CAP_REG);
|
||||
for (Index = 0; Index < (UINTN)CapReg.Bits.NFR + 1; Index++) {
|
||||
FrcdReg.Uint64[0] = MmioRead64 (mVtdUnitInformation[Num].VtdUnitBaseAddress + ((CapReg.Bits.FRO * 16) + (Index * 16) + R_FRCD_REG));
|
||||
FrcdReg.Uint64[1] = MmioRead64 (mVtdUnitInformation[Num].VtdUnitBaseAddress + ((CapReg.Bits.FRO * 16) + (Index * 16) + R_FRCD_REG + sizeof(UINT64)));
|
||||
if ((FrcdReg.Uint64[0] != 0) || (FrcdReg.Uint64[1] != 0)) {
|
||||
HasError = TRUE;
|
||||
}
|
||||
}
|
||||
|
||||
if (HasError) {
|
||||
DEBUG((DEBUG_INFO, "#### ERROR ####\n"));
|
||||
DumpVtdRegs (Num);
|
||||
DEBUG((DEBUG_INFO, "#### ERROR ####\n"));
|
||||
}
|
||||
}
|
||||
}
|
Loading…
Reference in New Issue