ArmPlatformPkg: Retire NorFlashDxe driver

The NorFlashDxe driver in ArmPlatformPkg was shared between development
platforms built by ARM Ltd, and virtual platforms that were once modeled
after Versatile Express, but have very little in common with actual bare
metal implementations.

Both sides have migrated to a domain specific version of the driver, so
we can retire the old one.

Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Reviewed-by: Leif Lindholm <quic_llindhol@quicinc.com>
Reviewed-by: Sunil V L <sunilvl@ventanamicro.com>
This commit is contained in:
Ard Biesheuvel 2022-10-24 18:53:35 +02:00 committed by mergify[bot]
parent eff44c008d
commit cc650a0378
13 changed files with 0 additions and 3433 deletions

View File

@ -38,10 +38,6 @@
#
LcdPlatformLib|Include/Library/LcdPlatformLib.h
## @libraryclass Provides a Nor flash interface.
#
NorFlashPlatformLib|Include/Library/NorFlashPlatformLib.h
## @libraryclass Provides an interface to the clock of a PL011 device.
#
PL011UartClockLib|Include/Library/PL011UartClockLib.h
@ -56,8 +52,6 @@
[PcdsFeatureFlag.common]
gArmPlatformTokenSpaceGuid.PcdSendSgiToBringUpSecondaryCores|FALSE|BOOLEAN|0x00000004
gArmPlatformTokenSpaceGuid.PcdNorFlashCheckBlockLocked|FALSE|BOOLEAN|0x0000003C
# Disable the GOP controller on ExitBootServices(). By default the value is FALSE,
# we assume the OS will handle the FrameBuffer from the UEFI GOP information.
gArmPlatformTokenSpaceGuid.PcdGopDisableOnExitBootServices|FALSE|BOOLEAN|0x0000003D

View File

@ -55,7 +55,6 @@
LzmaDecompressLib|MdeModulePkg/Library/LzmaCustomDecompressLib/LzmaCustomDecompressLib.inf
MemoryAllocationLib|MdePkg/Library/UefiMemoryAllocationLib/UefiMemoryAllocationLib.inf
MemoryInitPeiLib|ArmPlatformPkg/MemoryInitPei/MemoryInitPeiLib.inf
NorFlashPlatformLib|ArmPlatformPkg/Library/NorFlashPlatformNullLib/NorFlashPlatformNullLib.inf
PcdLib|MdePkg/Library/BasePcdLibNull/BasePcdLibNull.inf
PeCoffExtraActionLib|MdePkg/Library/BasePeCoffExtraActionLibNull/BasePeCoffExtraActionLibNull.inf
PeCoffLib|MdePkg/Library/BasePeCoffLib/BasePeCoffLib.inf
@ -100,7 +99,6 @@
[Components.common]
ArmPlatformPkg/Drivers/LcdGraphicsOutputDxe/LcdGraphicsOutputDxe.inf
ArmPlatformPkg/Drivers/NorFlashDxe/NorFlashDxe.inf
ArmPlatformPkg/Drivers/PL061GpioDxe/PL061GpioDxe.inf
ArmPlatformPkg/Drivers/SP805WatchdogDxe/SP805WatchdogDxe.inf
@ -109,7 +107,6 @@
ArmPlatformPkg/Library/HdLcd/HdLcd.inf
ArmPlatformPkg/Library/LcdHwNullLib/LcdHwNullLib.inf
ArmPlatformPkg/Library/LcdPlatformNullLib/LcdPlatformNullLib.inf
ArmPlatformPkg/Library/NorFlashPlatformNullLib/NorFlashPlatformNullLib.inf
ArmPlatformPkg/Library/PL011SerialPortLib/PL011SerialPortLib.inf
ArmPlatformPkg/Library/PL011UartClockLib/PL011UartClockLib.inf
ArmPlatformPkg/Library/PL011UartLib/PL011UartLib.inf
@ -130,6 +127,3 @@
ArmPlatformPkg/PrePi/PeiUniCore.inf
ArmPlatformPkg/Library/ArmMaliDp/ArmMaliDp.inf
[Components.AARCH64]
ArmPlatformPkg/Drivers/NorFlashDxe/NorFlashStandaloneMm.inf

View File

@ -1,991 +0,0 @@
/** @file NorFlash.c
Copyright (c) 2011 - 2020, Arm Limited. All rights reserved.<BR>
Copyright (c) 2020, Linaro, Ltd. All rights reserved.<BR>
SPDX-License-Identifier: BSD-2-Clause-Patent
**/
#include <Library/BaseMemoryLib.h>
#include "NorFlash.h"
//
// Global variable declarations
//
extern NOR_FLASH_INSTANCE **mNorFlashInstances;
extern UINT32 mNorFlashDeviceCount;
UINT32
NorFlashReadStatusRegister (
IN NOR_FLASH_INSTANCE *Instance,
IN UINTN SR_Address
)
{
// Prepare to read the status register
SEND_NOR_COMMAND (Instance->DeviceBaseAddress, 0, P30_CMD_READ_STATUS_REGISTER);
return MmioRead32 (Instance->DeviceBaseAddress);
}
STATIC
BOOLEAN
NorFlashBlockIsLocked (
IN NOR_FLASH_INSTANCE *Instance,
IN UINTN BlockAddress
)
{
UINT32 LockStatus;
// Send command for reading device id
SEND_NOR_COMMAND (BlockAddress, 2, P30_CMD_READ_DEVICE_ID);
// Read block lock status
LockStatus = MmioRead32 (CREATE_NOR_ADDRESS (BlockAddress, 2));
// Decode block lock status
LockStatus = FOLD_32BIT_INTO_16BIT (LockStatus);
if ((LockStatus & 0x2) != 0) {
DEBUG ((DEBUG_ERROR, "NorFlashBlockIsLocked: WARNING: Block LOCKED DOWN\n"));
}
return ((LockStatus & 0x1) != 0);
}
STATIC
EFI_STATUS
NorFlashUnlockSingleBlock (
IN NOR_FLASH_INSTANCE *Instance,
IN UINTN BlockAddress
)
{
UINT32 LockStatus;
// Raise the Task Priority Level to TPL_NOTIFY to serialise all its operations
// and to protect shared data structures.
if (FeaturePcdGet (PcdNorFlashCheckBlockLocked) == TRUE) {
do {
// Request a lock setup
SEND_NOR_COMMAND (BlockAddress, 0, P30_CMD_LOCK_BLOCK_SETUP);
// Request an unlock
SEND_NOR_COMMAND (BlockAddress, 0, P30_CMD_UNLOCK_BLOCK);
// Send command for reading device id
SEND_NOR_COMMAND (BlockAddress, 2, P30_CMD_READ_DEVICE_ID);
// Read block lock status
LockStatus = MmioRead32 (CREATE_NOR_ADDRESS (BlockAddress, 2));
// Decode block lock status
LockStatus = FOLD_32BIT_INTO_16BIT (LockStatus);
} while ((LockStatus & 0x1) == 1);
} else {
// Request a lock setup
SEND_NOR_COMMAND (BlockAddress, 0, P30_CMD_LOCK_BLOCK_SETUP);
// Request an unlock
SEND_NOR_COMMAND (BlockAddress, 0, P30_CMD_UNLOCK_BLOCK);
// Wait until the status register gives us the all clear
do {
LockStatus = NorFlashReadStatusRegister (Instance, BlockAddress);
} while ((LockStatus & P30_SR_BIT_WRITE) != P30_SR_BIT_WRITE);
}
// Put device back into Read Array mode
SEND_NOR_COMMAND (BlockAddress, 0, P30_CMD_READ_ARRAY);
DEBUG ((DEBUG_BLKIO, "UnlockSingleBlock: BlockAddress=0x%08x\n", BlockAddress));
return EFI_SUCCESS;
}
EFI_STATUS
NorFlashUnlockSingleBlockIfNecessary (
IN NOR_FLASH_INSTANCE *Instance,
IN UINTN BlockAddress
)
{
EFI_STATUS Status;
Status = EFI_SUCCESS;
if (NorFlashBlockIsLocked (Instance, BlockAddress)) {
Status = NorFlashUnlockSingleBlock (Instance, BlockAddress);
}
return Status;
}
/**
* The following function presumes that the block has already been unlocked.
**/
EFI_STATUS
NorFlashEraseSingleBlock (
IN NOR_FLASH_INSTANCE *Instance,
IN UINTN BlockAddress
)
{
EFI_STATUS Status;
UINT32 StatusRegister;
Status = EFI_SUCCESS;
// Request a block erase and then confirm it
SEND_NOR_COMMAND (BlockAddress, 0, P30_CMD_BLOCK_ERASE_SETUP);
SEND_NOR_COMMAND (BlockAddress, 0, P30_CMD_BLOCK_ERASE_CONFIRM);
// Wait until the status register gives us the all clear
do {
StatusRegister = NorFlashReadStatusRegister (Instance, BlockAddress);
} while ((StatusRegister & P30_SR_BIT_WRITE) != P30_SR_BIT_WRITE);
if (StatusRegister & P30_SR_BIT_VPP) {
DEBUG ((DEBUG_ERROR, "EraseSingleBlock(BlockAddress=0x%08x: VPP Range Error\n", BlockAddress));
Status = EFI_DEVICE_ERROR;
}
if ((StatusRegister & (P30_SR_BIT_ERASE | P30_SR_BIT_PROGRAM)) == (P30_SR_BIT_ERASE | P30_SR_BIT_PROGRAM)) {
DEBUG ((DEBUG_ERROR, "EraseSingleBlock(BlockAddress=0x%08x: Command Sequence Error\n", BlockAddress));
Status = EFI_DEVICE_ERROR;
}
if (StatusRegister & P30_SR_BIT_ERASE) {
DEBUG ((DEBUG_ERROR, "EraseSingleBlock(BlockAddress=0x%08x: Block Erase Error StatusRegister:0x%X\n", BlockAddress, StatusRegister));
Status = EFI_DEVICE_ERROR;
}
if (StatusRegister & P30_SR_BIT_BLOCK_LOCKED) {
// The debug level message has been reduced because a device lock might happen. In this case we just retry it ...
DEBUG ((DEBUG_INFO, "EraseSingleBlock(BlockAddress=0x%08x: Block Locked Error\n", BlockAddress));
Status = EFI_WRITE_PROTECTED;
}
if (EFI_ERROR (Status)) {
// Clear the Status Register
SEND_NOR_COMMAND (Instance->DeviceBaseAddress, 0, P30_CMD_CLEAR_STATUS_REGISTER);
}
// Put device back into Read Array mode
SEND_NOR_COMMAND (Instance->DeviceBaseAddress, 0, P30_CMD_READ_ARRAY);
return Status;
}
EFI_STATUS
NorFlashWriteSingleWord (
IN NOR_FLASH_INSTANCE *Instance,
IN UINTN WordAddress,
IN UINT32 WriteData
)
{
EFI_STATUS Status;
UINT32 StatusRegister;
Status = EFI_SUCCESS;
// Request a write single word command
SEND_NOR_COMMAND (WordAddress, 0, P30_CMD_WORD_PROGRAM_SETUP);
// Store the word into NOR Flash;
MmioWrite32 (WordAddress, WriteData);
// Wait for the write to complete and then check for any errors; i.e. check the Status Register
do {
// Prepare to read the status register
StatusRegister = NorFlashReadStatusRegister (Instance, WordAddress);
// The chip is busy while the WRITE bit is not asserted
} while ((StatusRegister & P30_SR_BIT_WRITE) != P30_SR_BIT_WRITE);
// Perform a full status check:
// Mask the relevant bits of Status Register.
// Everything should be zero, if not, we have a problem
if (StatusRegister & P30_SR_BIT_VPP) {
DEBUG ((DEBUG_ERROR, "NorFlashWriteSingleWord(WordAddress:0x%X): VPP Range Error\n", WordAddress));
Status = EFI_DEVICE_ERROR;
}
if (StatusRegister & P30_SR_BIT_PROGRAM) {
DEBUG ((DEBUG_ERROR, "NorFlashWriteSingleWord(WordAddress:0x%X): Program Error\n", WordAddress));
Status = EFI_DEVICE_ERROR;
}
if (StatusRegister & P30_SR_BIT_BLOCK_LOCKED) {
DEBUG ((DEBUG_ERROR, "NorFlashWriteSingleWord(WordAddress:0x%X): Device Protect Error\n", WordAddress));
Status = EFI_DEVICE_ERROR;
}
if (!EFI_ERROR (Status)) {
// Clear the Status Register
SEND_NOR_COMMAND (Instance->DeviceBaseAddress, 0, P30_CMD_CLEAR_STATUS_REGISTER);
}
// Put device back into Read Array mode
SEND_NOR_COMMAND (Instance->DeviceBaseAddress, 0, P30_CMD_READ_ARRAY);
return Status;
}
/*
* Writes data to the NOR Flash using the Buffered Programming method.
*
* The maximum size of the on-chip buffer is 32-words, because of hardware restrictions.
* Therefore this function will only handle buffers up to 32 words or 128 bytes.
* To deal with larger buffers, call this function again.
*
* This function presumes that both the TargetAddress and the TargetAddress+BufferSize
* exist entirely within the NOR Flash. Therefore these conditions will not be checked here.
*
* In buffered programming, if the target address not at the beginning of a 32-bit word boundary,
* then programming time is doubled and power consumption is increased.
* Therefore, it is a requirement to align buffer writes to 32-bit word boundaries.
* i.e. the last 4 bits of the target start address must be zero: 0x......00
*/
EFI_STATUS
NorFlashWriteBuffer (
IN NOR_FLASH_INSTANCE *Instance,
IN UINTN TargetAddress,
IN UINTN BufferSizeInBytes,
IN UINT32 *Buffer
)
{
EFI_STATUS Status;
UINTN BufferSizeInWords;
UINTN Count;
volatile UINT32 *Data;
UINTN WaitForBuffer;
BOOLEAN BufferAvailable;
UINT32 StatusRegister;
WaitForBuffer = MAX_BUFFERED_PROG_ITERATIONS;
BufferAvailable = FALSE;
// Check that the target address does not cross a 32-word boundary.
if ((TargetAddress & BOUNDARY_OF_32_WORDS) != 0) {
return EFI_INVALID_PARAMETER;
}
// Check there are some data to program
if (BufferSizeInBytes == 0) {
return EFI_BUFFER_TOO_SMALL;
}
// Check that the buffer size does not exceed the maximum hardware buffer size on chip.
if (BufferSizeInBytes > P30_MAX_BUFFER_SIZE_IN_BYTES) {
return EFI_BAD_BUFFER_SIZE;
}
// Check that the buffer size is a multiple of 32-bit words
if ((BufferSizeInBytes % 4) != 0) {
return EFI_BAD_BUFFER_SIZE;
}
// Pre-programming conditions checked, now start the algorithm.
// Prepare the data destination address
Data = (UINT32 *)TargetAddress;
// Check the availability of the buffer
do {
// Issue the Buffered Program Setup command
SEND_NOR_COMMAND (TargetAddress, 0, P30_CMD_BUFFERED_PROGRAM_SETUP);
// Read back the status register bit#7 from the same address
if (((*Data) & P30_SR_BIT_WRITE) == P30_SR_BIT_WRITE) {
BufferAvailable = TRUE;
}
// Update the loop counter
WaitForBuffer--;
} while ((WaitForBuffer > 0) && (BufferAvailable == FALSE));
// The buffer was not available for writing
if (WaitForBuffer == 0) {
Status = EFI_DEVICE_ERROR;
goto EXIT;
}
// From now on we work in 32-bit words
BufferSizeInWords = BufferSizeInBytes / (UINTN)4;
// Write the word count, which is (buffer_size_in_words - 1),
// because word count 0 means one word.
SEND_NOR_COMMAND (TargetAddress, 0, (BufferSizeInWords - 1));
// Write the data to the NOR Flash, advancing each address by 4 bytes
for (Count = 0; Count < BufferSizeInWords; Count++, Data++, Buffer++) {
MmioWrite32 ((UINTN)Data, *Buffer);
}
// Issue the Buffered Program Confirm command, to start the programming operation
SEND_NOR_COMMAND (Instance->DeviceBaseAddress, 0, P30_CMD_BUFFERED_PROGRAM_CONFIRM);
// Wait for the write to complete and then check for any errors; i.e. check the Status Register
do {
StatusRegister = NorFlashReadStatusRegister (Instance, TargetAddress);
// The chip is busy while the WRITE bit is not asserted
} while ((StatusRegister & P30_SR_BIT_WRITE) != P30_SR_BIT_WRITE);
// Perform a full status check:
// Mask the relevant bits of Status Register.
// Everything should be zero, if not, we have a problem
Status = EFI_SUCCESS;
if (StatusRegister & P30_SR_BIT_VPP) {
DEBUG ((DEBUG_ERROR, "NorFlashWriteBuffer(TargetAddress:0x%X): VPP Range Error\n", TargetAddress));
Status = EFI_DEVICE_ERROR;
}
if (StatusRegister & P30_SR_BIT_PROGRAM) {
DEBUG ((DEBUG_ERROR, "NorFlashWriteBuffer(TargetAddress:0x%X): Program Error\n", TargetAddress));
Status = EFI_DEVICE_ERROR;
}
if (StatusRegister & P30_SR_BIT_BLOCK_LOCKED) {
DEBUG ((DEBUG_ERROR, "NorFlashWriteBuffer(TargetAddress:0x%X): Device Protect Error\n", TargetAddress));
Status = EFI_DEVICE_ERROR;
}
if (!EFI_ERROR (Status)) {
// Clear the Status Register
SEND_NOR_COMMAND (Instance->DeviceBaseAddress, 0, P30_CMD_CLEAR_STATUS_REGISTER);
}
EXIT:
// Put device back into Read Array mode
SEND_NOR_COMMAND (Instance->DeviceBaseAddress, 0, P30_CMD_READ_ARRAY);
return Status;
}
EFI_STATUS
NorFlashWriteBlocks (
IN NOR_FLASH_INSTANCE *Instance,
IN EFI_LBA Lba,
IN UINTN BufferSizeInBytes,
IN VOID *Buffer
)
{
UINT32 *pWriteBuffer;
EFI_STATUS Status;
EFI_LBA CurrentBlock;
UINT32 BlockSizeInWords;
UINT32 NumBlocks;
UINT32 BlockCount;
Status = EFI_SUCCESS;
// The buffer must be valid
if (Buffer == NULL) {
return EFI_INVALID_PARAMETER;
}
if (Instance->Media.ReadOnly == TRUE) {
return EFI_WRITE_PROTECTED;
}
// We must have some bytes to read
DEBUG ((DEBUG_BLKIO, "NorFlashWriteBlocks: BufferSizeInBytes=0x%x\n", BufferSizeInBytes));
if (BufferSizeInBytes == 0) {
return EFI_BAD_BUFFER_SIZE;
}
// The size of the buffer must be a multiple of the block size
DEBUG ((DEBUG_BLKIO, "NorFlashWriteBlocks: BlockSize in bytes =0x%x\n", Instance->Media.BlockSize));
if ((BufferSizeInBytes % Instance->Media.BlockSize) != 0) {
return EFI_BAD_BUFFER_SIZE;
}
// All blocks must be within the device
NumBlocks = ((UINT32)BufferSizeInBytes) / Instance->Media.BlockSize;
DEBUG ((DEBUG_BLKIO, "NorFlashWriteBlocks: NumBlocks=%d, LastBlock=%ld, Lba=%ld.\n", NumBlocks, Instance->Media.LastBlock, Lba));
if ((Lba + NumBlocks) > (Instance->Media.LastBlock + 1)) {
DEBUG ((DEBUG_ERROR, "NorFlashWriteBlocks: ERROR - Write will exceed last block.\n"));
return EFI_INVALID_PARAMETER;
}
BlockSizeInWords = Instance->Media.BlockSize / 4;
// Because the target *Buffer is a pointer to VOID, we must put all the data into a pointer
// to a proper data type, so use *ReadBuffer
pWriteBuffer = (UINT32 *)Buffer;
CurrentBlock = Lba;
for (BlockCount = 0; BlockCount < NumBlocks; BlockCount++, CurrentBlock++, pWriteBuffer = pWriteBuffer + BlockSizeInWords) {
DEBUG ((DEBUG_BLKIO, "NorFlashWriteBlocks: Writing block #%d\n", (UINTN)CurrentBlock));
Status = NorFlashWriteFullBlock (Instance, CurrentBlock, pWriteBuffer, BlockSizeInWords);
if (EFI_ERROR (Status)) {
break;
}
}
DEBUG ((DEBUG_BLKIO, "NorFlashWriteBlocks: Exit Status = \"%r\".\n", Status));
return Status;
}
#define BOTH_ALIGNED(a, b, align) ((((UINTN)(a) | (UINTN)(b)) & ((align) - 1)) == 0)
/**
Copy Length bytes from Source to Destination, using aligned accesses only.
Note that this implementation uses memcpy() semantics rather then memmove()
semantics, i.e., SourceBuffer and DestinationBuffer should not overlap.
@param DestinationBuffer The target of the copy request.
@param SourceBuffer The place to copy from.
@param Length The number of bytes to copy.
@return Destination
**/
STATIC
VOID *
AlignedCopyMem (
OUT VOID *DestinationBuffer,
IN CONST VOID *SourceBuffer,
IN UINTN Length
)
{
UINT8 *Destination8;
CONST UINT8 *Source8;
UINT32 *Destination32;
CONST UINT32 *Source32;
UINT64 *Destination64;
CONST UINT64 *Source64;
if (BOTH_ALIGNED (DestinationBuffer, SourceBuffer, 8) && (Length >= 8)) {
Destination64 = DestinationBuffer;
Source64 = SourceBuffer;
while (Length >= 8) {
*Destination64++ = *Source64++;
Length -= 8;
}
Destination8 = (UINT8 *)Destination64;
Source8 = (CONST UINT8 *)Source64;
} else if (BOTH_ALIGNED (DestinationBuffer, SourceBuffer, 4) && (Length >= 4)) {
Destination32 = DestinationBuffer;
Source32 = SourceBuffer;
while (Length >= 4) {
*Destination32++ = *Source32++;
Length -= 4;
}
Destination8 = (UINT8 *)Destination32;
Source8 = (CONST UINT8 *)Source32;
} else {
Destination8 = DestinationBuffer;
Source8 = SourceBuffer;
}
while (Length-- != 0) {
*Destination8++ = *Source8++;
}
return DestinationBuffer;
}
EFI_STATUS
NorFlashReadBlocks (
IN NOR_FLASH_INSTANCE *Instance,
IN EFI_LBA Lba,
IN UINTN BufferSizeInBytes,
OUT VOID *Buffer
)
{
UINT32 NumBlocks;
UINTN StartAddress;
DEBUG ((
DEBUG_BLKIO,
"NorFlashReadBlocks: BufferSize=0x%xB BlockSize=0x%xB LastBlock=%ld, Lba=%ld.\n",
BufferSizeInBytes,
Instance->Media.BlockSize,
Instance->Media.LastBlock,
Lba
));
// The buffer must be valid
if (Buffer == NULL) {
return EFI_INVALID_PARAMETER;
}
// Return if we have not any byte to read
if (BufferSizeInBytes == 0) {
return EFI_SUCCESS;
}
// The size of the buffer must be a multiple of the block size
if ((BufferSizeInBytes % Instance->Media.BlockSize) != 0) {
return EFI_BAD_BUFFER_SIZE;
}
// All blocks must be within the device
NumBlocks = ((UINT32)BufferSizeInBytes) / Instance->Media.BlockSize;
if ((Lba + NumBlocks) > (Instance->Media.LastBlock + 1)) {
DEBUG ((DEBUG_ERROR, "NorFlashReadBlocks: ERROR - Read will exceed last block\n"));
return EFI_INVALID_PARAMETER;
}
// Get the address to start reading from
StartAddress = GET_NOR_BLOCK_ADDRESS (
Instance->RegionBaseAddress,
Lba,
Instance->Media.BlockSize
);
// Put the device into Read Array mode
SEND_NOR_COMMAND (Instance->DeviceBaseAddress, 0, P30_CMD_READ_ARRAY);
// Readout the data
AlignedCopyMem (Buffer, (VOID *)StartAddress, BufferSizeInBytes);
return EFI_SUCCESS;
}
EFI_STATUS
NorFlashRead (
IN NOR_FLASH_INSTANCE *Instance,
IN EFI_LBA Lba,
IN UINTN Offset,
IN UINTN BufferSizeInBytes,
OUT VOID *Buffer
)
{
UINTN StartAddress;
// The buffer must be valid
if (Buffer == NULL) {
return EFI_INVALID_PARAMETER;
}
// Return if we have not any byte to read
if (BufferSizeInBytes == 0) {
return EFI_SUCCESS;
}
if (((Lba * Instance->Media.BlockSize) + Offset + BufferSizeInBytes) > Instance->Size) {
DEBUG ((DEBUG_ERROR, "NorFlashRead: ERROR - Read will exceed device size.\n"));
return EFI_INVALID_PARAMETER;
}
// Get the address to start reading from
StartAddress = GET_NOR_BLOCK_ADDRESS (
Instance->RegionBaseAddress,
Lba,
Instance->Media.BlockSize
);
// Put the device into Read Array mode
SEND_NOR_COMMAND (Instance->DeviceBaseAddress, 0, P30_CMD_READ_ARRAY);
// Readout the data
AlignedCopyMem (Buffer, (VOID *)(StartAddress + Offset), BufferSizeInBytes);
return EFI_SUCCESS;
}
/*
Write a full or portion of a block. It must not span block boundaries; that is,
Offset + *NumBytes <= Instance->Media.BlockSize.
*/
EFI_STATUS
NorFlashWriteSingleBlock (
IN NOR_FLASH_INSTANCE *Instance,
IN EFI_LBA Lba,
IN UINTN Offset,
IN OUT UINTN *NumBytes,
IN UINT8 *Buffer
)
{
EFI_STATUS TempStatus;
UINT32 Tmp;
UINT32 TmpBuf;
UINT32 WordToWrite;
UINT32 Mask;
BOOLEAN DoErase;
UINTN BytesToWrite;
UINTN CurOffset;
UINTN WordAddr;
UINTN BlockSize;
UINTN BlockAddress;
UINTN PrevBlockAddress;
PrevBlockAddress = 0;
DEBUG ((DEBUG_BLKIO, "NorFlashWriteSingleBlock(Parameters: Lba=%ld, Offset=0x%x, *NumBytes=0x%x, Buffer @ 0x%08x)\n", Lba, Offset, *NumBytes, Buffer));
// Detect WriteDisabled state
if (Instance->Media.ReadOnly == TRUE) {
DEBUG ((DEBUG_ERROR, "NorFlashWriteSingleBlock: ERROR - Can not write: Device is in WriteDisabled state.\n"));
// It is in WriteDisabled state, return an error right away
return EFI_ACCESS_DENIED;
}
// Cache the block size to avoid de-referencing pointers all the time
BlockSize = Instance->Media.BlockSize;
// The write must not span block boundaries.
// We need to check each variable individually because adding two large values together overflows.
if ((Offset >= BlockSize) ||
(*NumBytes > BlockSize) ||
((Offset + *NumBytes) > BlockSize))
{
DEBUG ((DEBUG_ERROR, "NorFlashWriteSingleBlock: ERROR - EFI_BAD_BUFFER_SIZE: (Offset=0x%x + NumBytes=0x%x) > BlockSize=0x%x\n", Offset, *NumBytes, BlockSize));
return EFI_BAD_BUFFER_SIZE;
}
// We must have some bytes to write
if (*NumBytes == 0) {
DEBUG ((DEBUG_ERROR, "NorFlashWriteSingleBlock: ERROR - EFI_BAD_BUFFER_SIZE: (Offset=0x%x + NumBytes=0x%x) > BlockSize=0x%x\n", Offset, *NumBytes, BlockSize));
return EFI_BAD_BUFFER_SIZE;
}
// Pick 128bytes as a good start for word operations as opposed to erasing the
// block and writing the data regardless if an erase is really needed.
// It looks like most individual NV variable writes are smaller than 128bytes.
if (*NumBytes <= 128) {
// Check to see if we need to erase before programming the data into NOR.
// If the destination bits are only changing from 1s to 0s we can just write.
// After a block is erased all bits in the block is set to 1.
// If any byte requires us to erase we just give up and rewrite all of it.
DoErase = FALSE;
BytesToWrite = *NumBytes;
CurOffset = Offset;
while (BytesToWrite > 0) {
// Read full word from NOR, splice as required. A word is the smallest
// unit we can write.
TempStatus = NorFlashRead (Instance, Lba, CurOffset & ~(0x3), sizeof (Tmp), &Tmp);
if (EFI_ERROR (TempStatus)) {
return EFI_DEVICE_ERROR;
}
// Physical address of word in NOR to write.
WordAddr = (CurOffset & ~(0x3)) + GET_NOR_BLOCK_ADDRESS (
Instance->RegionBaseAddress,
Lba,
BlockSize
);
// The word of data that is to be written.
TmpBuf = *((UINT32 *)(Buffer + (*NumBytes - BytesToWrite)));
// First do word aligned chunks.
if ((CurOffset & 0x3) == 0) {
if (BytesToWrite >= 4) {
// Is the destination still in 'erased' state?
if (~Tmp != 0) {
// Check to see if we are only changing bits to zero.
if ((Tmp ^ TmpBuf) & TmpBuf) {
DoErase = TRUE;
break;
}
}
// Write this word to NOR
WordToWrite = TmpBuf;
CurOffset += sizeof (TmpBuf);
BytesToWrite -= sizeof (TmpBuf);
} else {
// BytesToWrite < 4. Do small writes and left-overs
Mask = ~((~0) << (BytesToWrite * 8));
// Mask out the bytes we want.
TmpBuf &= Mask;
// Is the destination still in 'erased' state?
if ((Tmp & Mask) != Mask) {
// Check to see if we are only changing bits to zero.
if ((Tmp ^ TmpBuf) & TmpBuf) {
DoErase = TRUE;
break;
}
}
// Merge old and new data. Write merged word to NOR
WordToWrite = (Tmp & ~Mask) | TmpBuf;
CurOffset += BytesToWrite;
BytesToWrite = 0;
}
} else {
// Do multiple words, but starting unaligned.
if (BytesToWrite > (4 - (CurOffset & 0x3))) {
Mask = ((~0) << ((CurOffset & 0x3) * 8));
// Mask out the bytes we want.
TmpBuf &= Mask;
// Is the destination still in 'erased' state?
if ((Tmp & Mask) != Mask) {
// Check to see if we are only changing bits to zero.
if ((Tmp ^ TmpBuf) & TmpBuf) {
DoErase = TRUE;
break;
}
}
// Merge old and new data. Write merged word to NOR
WordToWrite = (Tmp & ~Mask) | TmpBuf;
BytesToWrite -= (4 - (CurOffset & 0x3));
CurOffset += (4 - (CurOffset & 0x3));
} else {
// Unaligned and fits in one word.
Mask = (~((~0) << (BytesToWrite * 8))) << ((CurOffset & 0x3) * 8);
// Mask out the bytes we want.
TmpBuf = (TmpBuf << ((CurOffset & 0x3) * 8)) & Mask;
// Is the destination still in 'erased' state?
if ((Tmp & Mask) != Mask) {
// Check to see if we are only changing bits to zero.
if ((Tmp ^ TmpBuf) & TmpBuf) {
DoErase = TRUE;
break;
}
}
// Merge old and new data. Write merged word to NOR
WordToWrite = (Tmp & ~Mask) | TmpBuf;
CurOffset += BytesToWrite;
BytesToWrite = 0;
}
}
//
// Write the word to NOR.
//
BlockAddress = GET_NOR_BLOCK_ADDRESS (Instance->RegionBaseAddress, Lba, BlockSize);
if (BlockAddress != PrevBlockAddress) {
TempStatus = NorFlashUnlockSingleBlockIfNecessary (Instance, BlockAddress);
if (EFI_ERROR (TempStatus)) {
return EFI_DEVICE_ERROR;
}
PrevBlockAddress = BlockAddress;
}
TempStatus = NorFlashWriteSingleWord (Instance, WordAddr, WordToWrite);
if (EFI_ERROR (TempStatus)) {
return EFI_DEVICE_ERROR;
}
}
// Exit if we got here and could write all the data. Otherwise do the
// Erase-Write cycle.
if (!DoErase) {
return EFI_SUCCESS;
}
}
// Check we did get some memory. Buffer is BlockSize.
if (Instance->ShadowBuffer == NULL) {
DEBUG ((DEBUG_ERROR, "FvbWrite: ERROR - Buffer not ready\n"));
return EFI_DEVICE_ERROR;
}
// Read NOR Flash data into shadow buffer
TempStatus = NorFlashReadBlocks (Instance, Lba, BlockSize, Instance->ShadowBuffer);
if (EFI_ERROR (TempStatus)) {
// Return one of the pre-approved error statuses
return EFI_DEVICE_ERROR;
}
// Put the data at the appropriate location inside the buffer area
CopyMem ((VOID *)((UINTN)Instance->ShadowBuffer + Offset), Buffer, *NumBytes);
// Write the modified buffer back to the NorFlash
TempStatus = NorFlashWriteBlocks (Instance, Lba, BlockSize, Instance->ShadowBuffer);
if (EFI_ERROR (TempStatus)) {
// Return one of the pre-approved error statuses
return EFI_DEVICE_ERROR;
}
return EFI_SUCCESS;
}
/*
Although DiskIoDxe will automatically install the DiskIO protocol whenever
we install the BlockIO protocol, its implementation is sub-optimal as it reads
and writes entire blocks using the BlockIO protocol. In fact we can access
NOR flash with a finer granularity than that, so we can improve performance
by directly producing the DiskIO protocol.
*/
/**
Read BufferSize bytes from Offset into Buffer.
@param This Protocol instance pointer.
@param MediaId Id of the media, changes every time the media is replaced.
@param Offset The starting byte offset to read from
@param BufferSize Size of Buffer
@param Buffer Buffer containing read data
@retval EFI_SUCCESS The data was read correctly from the device.
@retval EFI_DEVICE_ERROR The device reported an error while performing the read.
@retval EFI_NO_MEDIA There is no media in the device.
@retval EFI_MEDIA_CHANGED The MediaId does not match the current device.
@retval EFI_INVALID_PARAMETER The read request contains device addresses that are not
valid for the device.
**/
EFI_STATUS
EFIAPI
NorFlashDiskIoReadDisk (
IN EFI_DISK_IO_PROTOCOL *This,
IN UINT32 MediaId,
IN UINT64 DiskOffset,
IN UINTN BufferSize,
OUT VOID *Buffer
)
{
NOR_FLASH_INSTANCE *Instance;
UINT32 BlockSize;
UINT32 BlockOffset;
EFI_LBA Lba;
Instance = INSTANCE_FROM_DISKIO_THIS (This);
if (MediaId != Instance->Media.MediaId) {
return EFI_MEDIA_CHANGED;
}
BlockSize = Instance->Media.BlockSize;
Lba = (EFI_LBA)DivU64x32Remainder (DiskOffset, BlockSize, &BlockOffset);
return NorFlashRead (Instance, Lba, BlockOffset, BufferSize, Buffer);
}
/**
Writes a specified number of bytes to a device.
@param This Indicates a pointer to the calling context.
@param MediaId ID of the medium to be written.
@param Offset The starting byte offset on the logical block I/O device to write.
@param BufferSize The size in bytes of Buffer. The number of bytes to write to the device.
@param Buffer A pointer to the buffer containing the data to be written.
@retval EFI_SUCCESS The data was written correctly to the device.
@retval EFI_WRITE_PROTECTED The device can not be written to.
@retval EFI_DEVICE_ERROR The device reported an error while performing the write.
@retval EFI_NO_MEDIA There is no media in the device.
@retval EFI_MEDIA_CHANGED The MediaId does not match the current device.
@retval EFI_INVALID_PARAMETER The write request contains device addresses that are not
valid for the device.
**/
EFI_STATUS
EFIAPI
NorFlashDiskIoWriteDisk (
IN EFI_DISK_IO_PROTOCOL *This,
IN UINT32 MediaId,
IN UINT64 DiskOffset,
IN UINTN BufferSize,
IN VOID *Buffer
)
{
NOR_FLASH_INSTANCE *Instance;
UINT32 BlockSize;
UINT32 BlockOffset;
EFI_LBA Lba;
UINTN RemainingBytes;
UINTN WriteSize;
EFI_STATUS Status;
Instance = INSTANCE_FROM_DISKIO_THIS (This);
if (MediaId != Instance->Media.MediaId) {
return EFI_MEDIA_CHANGED;
}
BlockSize = Instance->Media.BlockSize;
Lba = (EFI_LBA)DivU64x32Remainder (DiskOffset, BlockSize, &BlockOffset);
RemainingBytes = BufferSize;
// Write either all the remaining bytes, or the number of bytes that bring
// us up to a block boundary, whichever is less.
// (DiskOffset | (BlockSize - 1)) + 1) rounds DiskOffset up to the next
// block boundary (even if it is already on one).
WriteSize = MIN (RemainingBytes, ((DiskOffset | (BlockSize - 1)) + 1) - DiskOffset);
do {
if (WriteSize == BlockSize) {
// Write a full block
Status = NorFlashWriteFullBlock (Instance, Lba, Buffer, BlockSize / sizeof (UINT32));
} else {
// Write a partial block
Status = NorFlashWriteSingleBlock (Instance, Lba, BlockOffset, &WriteSize, Buffer);
}
if (EFI_ERROR (Status)) {
return Status;
}
// Now continue writing either all the remaining bytes or single blocks.
RemainingBytes -= WriteSize;
Buffer = (UINT8 *)Buffer + WriteSize;
Lba++;
BlockOffset = 0;
WriteSize = MIN (RemainingBytes, BlockSize);
} while (RemainingBytes);
return Status;
}
EFI_STATUS
NorFlashReset (
IN NOR_FLASH_INSTANCE *Instance
)
{
// As there is no specific RESET to perform, ensure that the devices is in the default Read Array mode
SEND_NOR_COMMAND (Instance->DeviceBaseAddress, 0, P30_CMD_READ_ARRAY);
return EFI_SUCCESS;
}
/**
Fixup internal data so that EFI can be call in virtual mode.
Call the passed in Child Notify event and convert any pointers in
lib to virtual mode.
@param[in] Event The Event that is being processed
@param[in] Context Event Context
**/
VOID
EFIAPI
NorFlashVirtualNotifyEvent (
IN EFI_EVENT Event,
IN VOID *Context
)
{
UINTN Index;
for (Index = 0; Index < mNorFlashDeviceCount; Index++) {
EfiConvertPointer (0x0, (VOID **)&mNorFlashInstances[Index]->DeviceBaseAddress);
EfiConvertPointer (0x0, (VOID **)&mNorFlashInstances[Index]->RegionBaseAddress);
// Convert BlockIo protocol
EfiConvertPointer (0x0, (VOID **)&mNorFlashInstances[Index]->BlockIoProtocol.FlushBlocks);
EfiConvertPointer (0x0, (VOID **)&mNorFlashInstances[Index]->BlockIoProtocol.ReadBlocks);
EfiConvertPointer (0x0, (VOID **)&mNorFlashInstances[Index]->BlockIoProtocol.Reset);
EfiConvertPointer (0x0, (VOID **)&mNorFlashInstances[Index]->BlockIoProtocol.WriteBlocks);
// Convert Fvb
EfiConvertPointer (0x0, (VOID **)&mNorFlashInstances[Index]->FvbProtocol.EraseBlocks);
EfiConvertPointer (0x0, (VOID **)&mNorFlashInstances[Index]->FvbProtocol.GetAttributes);
EfiConvertPointer (0x0, (VOID **)&mNorFlashInstances[Index]->FvbProtocol.GetBlockSize);
EfiConvertPointer (0x0, (VOID **)&mNorFlashInstances[Index]->FvbProtocol.GetPhysicalAddress);
EfiConvertPointer (0x0, (VOID **)&mNorFlashInstances[Index]->FvbProtocol.Read);
EfiConvertPointer (0x0, (VOID **)&mNorFlashInstances[Index]->FvbProtocol.SetAttributes);
EfiConvertPointer (0x0, (VOID **)&mNorFlashInstances[Index]->FvbProtocol.Write);
if (mNorFlashInstances[Index]->ShadowBuffer != NULL) {
EfiConvertPointer (0x0, (VOID **)&mNorFlashInstances[Index]->ShadowBuffer);
}
}
return;
}

View File

@ -1,422 +0,0 @@
/** @file NorFlash.h
Copyright (c) 2011 - 2014, ARM Ltd. All rights reserved.<BR>
SPDX-License-Identifier: BSD-2-Clause-Patent
**/
#ifndef __NOR_FLASH_H__
#define __NOR_FLASH_H__
#include <Base.h>
#include <PiDxe.h>
#include <Guid/EventGroup.h>
#include <Protocol/BlockIo.h>
#include <Protocol/DiskIo.h>
#include <Protocol/FirmwareVolumeBlock.h>
#include <Library/DebugLib.h>
#include <Library/IoLib.h>
#include <Library/NorFlashPlatformLib.h>
#include <Library/UefiLib.h>
#include <Library/UefiRuntimeLib.h>
#define NOR_FLASH_ERASE_RETRY 10
// Device access macros
// These are necessary because we use 2 x 16bit parts to make up 32bit data
#define HIGH_16_BITS 0xFFFF0000
#define LOW_16_BITS 0x0000FFFF
#define LOW_8_BITS 0x000000FF
#define FOLD_32BIT_INTO_16BIT(value) ( ( value >> 16 ) | ( value & LOW_16_BITS ) )
#define GET_LOW_BYTE(value) ( value & LOW_8_BITS )
#define GET_HIGH_BYTE(value) ( GET_LOW_BYTE( value >> 16 ) )
// Each command must be sent simultaneously to both chips,
// i.e. at the lower 16 bits AND at the higher 16 bits
#define CREATE_NOR_ADDRESS(BaseAddr, OffsetAddr) ((BaseAddr) + ((OffsetAddr) << 2))
#define CREATE_DUAL_CMD(Cmd) ( ( Cmd << 16) | ( Cmd & LOW_16_BITS) )
#define SEND_NOR_COMMAND(BaseAddr, Offset, Cmd) MmioWrite32 (CREATE_NOR_ADDRESS(BaseAddr,Offset), CREATE_DUAL_CMD(Cmd))
#define GET_NOR_BLOCK_ADDRESS(BaseAddr, Lba, LbaSize) ( BaseAddr + (UINTN)((Lba) * LbaSize) )
// Status Register Bits
#define P30_SR_BIT_WRITE (BIT7 << 16 | BIT7)
#define P30_SR_BIT_ERASE_SUSPEND (BIT6 << 16 | BIT6)
#define P30_SR_BIT_ERASE (BIT5 << 16 | BIT5)
#define P30_SR_BIT_PROGRAM (BIT4 << 16 | BIT4)
#define P30_SR_BIT_VPP (BIT3 << 16 | BIT3)
#define P30_SR_BIT_PROGRAM_SUSPEND (BIT2 << 16 | BIT2)
#define P30_SR_BIT_BLOCK_LOCKED (BIT1 << 16 | BIT1)
#define P30_SR_BIT_BEFP (BIT0 << 16 | BIT0)
// Device Commands for Intel StrataFlash(R) Embedded Memory (P30) Family
// On chip buffer size for buffered programming operations
// There are 2 chips, each chip can buffer up to 32 (16-bit)words, and each word is 2 bytes.
// Therefore the total size of the buffer is 2 x 32 x 2 = 128 bytes
#define P30_MAX_BUFFER_SIZE_IN_BYTES ((UINTN)128)
#define P30_MAX_BUFFER_SIZE_IN_WORDS (P30_MAX_BUFFER_SIZE_IN_BYTES/((UINTN)4))
#define MAX_BUFFERED_PROG_ITERATIONS 10000000
#define BOUNDARY_OF_32_WORDS 0x7F
// CFI Addresses
#define P30_CFI_ADDR_QUERY_UNIQUE_QRY 0x10
#define P30_CFI_ADDR_VENDOR_ID 0x13
// CFI Data
#define CFI_QRY 0x00595251
// READ Commands
#define P30_CMD_READ_DEVICE_ID 0x0090
#define P30_CMD_READ_STATUS_REGISTER 0x0070
#define P30_CMD_CLEAR_STATUS_REGISTER 0x0050
#define P30_CMD_READ_ARRAY 0x00FF
#define P30_CMD_READ_CFI_QUERY 0x0098
// WRITE Commands
#define P30_CMD_WORD_PROGRAM_SETUP 0x0040
#define P30_CMD_ALTERNATE_WORD_PROGRAM_SETUP 0x0010
#define P30_CMD_BUFFERED_PROGRAM_SETUP 0x00E8
#define P30_CMD_BUFFERED_PROGRAM_CONFIRM 0x00D0
#define P30_CMD_BEFP_SETUP 0x0080
#define P30_CMD_BEFP_CONFIRM 0x00D0
// ERASE Commands
#define P30_CMD_BLOCK_ERASE_SETUP 0x0020
#define P30_CMD_BLOCK_ERASE_CONFIRM 0x00D0
// SUSPEND Commands
#define P30_CMD_PROGRAM_OR_ERASE_SUSPEND 0x00B0
#define P30_CMD_SUSPEND_RESUME 0x00D0
// BLOCK LOCKING / UNLOCKING Commands
#define P30_CMD_LOCK_BLOCK_SETUP 0x0060
#define P30_CMD_LOCK_BLOCK 0x0001
#define P30_CMD_UNLOCK_BLOCK 0x00D0
#define P30_CMD_LOCK_DOWN_BLOCK 0x002F
// PROTECTION Commands
#define P30_CMD_PROGRAM_PROTECTION_REGISTER_SETUP 0x00C0
// CONFIGURATION Commands
#define P30_CMD_READ_CONFIGURATION_REGISTER_SETUP 0x0060
#define P30_CMD_READ_CONFIGURATION_REGISTER 0x0003
#define NOR_FLASH_SIGNATURE SIGNATURE_32('n', 'o', 'r', '0')
#define INSTANCE_FROM_FVB_THIS(a) CR(a, NOR_FLASH_INSTANCE, FvbProtocol, NOR_FLASH_SIGNATURE)
#define INSTANCE_FROM_BLKIO_THIS(a) CR(a, NOR_FLASH_INSTANCE, BlockIoProtocol, NOR_FLASH_SIGNATURE)
#define INSTANCE_FROM_DISKIO_THIS(a) CR(a, NOR_FLASH_INSTANCE, DiskIoProtocol, NOR_FLASH_SIGNATURE)
typedef struct _NOR_FLASH_INSTANCE NOR_FLASH_INSTANCE;
#pragma pack (1)
typedef struct {
VENDOR_DEVICE_PATH Vendor;
UINT8 Index;
EFI_DEVICE_PATH_PROTOCOL End;
} NOR_FLASH_DEVICE_PATH;
#pragma pack ()
struct _NOR_FLASH_INSTANCE {
UINT32 Signature;
EFI_HANDLE Handle;
UINTN DeviceBaseAddress;
UINTN RegionBaseAddress;
UINTN Size;
EFI_LBA StartLba;
EFI_BLOCK_IO_PROTOCOL BlockIoProtocol;
EFI_BLOCK_IO_MEDIA Media;
EFI_DISK_IO_PROTOCOL DiskIoProtocol;
EFI_FIRMWARE_VOLUME_BLOCK2_PROTOCOL FvbProtocol;
VOID *ShadowBuffer;
NOR_FLASH_DEVICE_PATH DevicePath;
};
EFI_STATUS
NorFlashReadCfiData (
IN UINTN DeviceBaseAddress,
IN UINTN CFI_Offset,
IN UINT32 NumberOfBytes,
OUT UINT32 *Data
);
EFI_STATUS
NorFlashWriteBuffer (
IN NOR_FLASH_INSTANCE *Instance,
IN UINTN TargetAddress,
IN UINTN BufferSizeInBytes,
IN UINT32 *Buffer
);
//
// BlockIO Protocol function EFI_BLOCK_IO_PROTOCOL.Reset
//
EFI_STATUS
EFIAPI
NorFlashBlockIoReset (
IN EFI_BLOCK_IO_PROTOCOL *This,
IN BOOLEAN ExtendedVerification
);
//
// BlockIO Protocol function EFI_BLOCK_IO_PROTOCOL.ReadBlocks
//
EFI_STATUS
EFIAPI
NorFlashBlockIoReadBlocks (
IN EFI_BLOCK_IO_PROTOCOL *This,
IN UINT32 MediaId,
IN EFI_LBA Lba,
IN UINTN BufferSizeInBytes,
OUT VOID *Buffer
);
//
// BlockIO Protocol function EFI_BLOCK_IO_PROTOCOL.WriteBlocks
//
EFI_STATUS
EFIAPI
NorFlashBlockIoWriteBlocks (
IN EFI_BLOCK_IO_PROTOCOL *This,
IN UINT32 MediaId,
IN EFI_LBA Lba,
IN UINTN BufferSizeInBytes,
IN VOID *Buffer
);
//
// BlockIO Protocol function EFI_BLOCK_IO_PROTOCOL.FlushBlocks
//
EFI_STATUS
EFIAPI
NorFlashBlockIoFlushBlocks (
IN EFI_BLOCK_IO_PROTOCOL *This
);
//
// DiskIO Protocol function EFI_DISK_IO_PROTOCOL.ReadDisk
//
EFI_STATUS
EFIAPI
NorFlashDiskIoReadDisk (
IN EFI_DISK_IO_PROTOCOL *This,
IN UINT32 MediaId,
IN UINT64 Offset,
IN UINTN BufferSize,
OUT VOID *Buffer
);
//
// DiskIO Protocol function EFI_DISK_IO_PROTOCOL.WriteDisk
//
EFI_STATUS
EFIAPI
NorFlashDiskIoWriteDisk (
IN EFI_DISK_IO_PROTOCOL *This,
IN UINT32 MediaId,
IN UINT64 Offset,
IN UINTN BufferSize,
IN VOID *Buffer
);
//
// NorFlashFvbDxe.c
//
EFI_STATUS
EFIAPI
FvbGetAttributes (
IN CONST EFI_FIRMWARE_VOLUME_BLOCK2_PROTOCOL *This,
OUT EFI_FVB_ATTRIBUTES_2 *Attributes
);
EFI_STATUS
EFIAPI
FvbSetAttributes (
IN CONST EFI_FIRMWARE_VOLUME_BLOCK2_PROTOCOL *This,
IN OUT EFI_FVB_ATTRIBUTES_2 *Attributes
);
EFI_STATUS
EFIAPI
FvbGetPhysicalAddress (
IN CONST EFI_FIRMWARE_VOLUME_BLOCK2_PROTOCOL *This,
OUT EFI_PHYSICAL_ADDRESS *Address
);
EFI_STATUS
EFIAPI
FvbGetBlockSize (
IN CONST EFI_FIRMWARE_VOLUME_BLOCK2_PROTOCOL *This,
IN EFI_LBA Lba,
OUT UINTN *BlockSize,
OUT UINTN *NumberOfBlocks
);
EFI_STATUS
EFIAPI
FvbRead (
IN CONST EFI_FIRMWARE_VOLUME_BLOCK2_PROTOCOL *This,
IN EFI_LBA Lba,
IN UINTN Offset,
IN OUT UINTN *NumBytes,
IN OUT UINT8 *Buffer
);
EFI_STATUS
EFIAPI
FvbWrite (
IN CONST EFI_FIRMWARE_VOLUME_BLOCK2_PROTOCOL *This,
IN EFI_LBA Lba,
IN UINTN Offset,
IN OUT UINTN *NumBytes,
IN UINT8 *Buffer
);
EFI_STATUS
EFIAPI
FvbEraseBlocks (
IN CONST EFI_FIRMWARE_VOLUME_BLOCK2_PROTOCOL *This,
...
);
EFI_STATUS
ValidateFvHeader (
IN NOR_FLASH_INSTANCE *Instance
);
EFI_STATUS
InitializeFvAndVariableStoreHeaders (
IN NOR_FLASH_INSTANCE *Instance
);
VOID
EFIAPI
FvbVirtualNotifyEvent (
IN EFI_EVENT Event,
IN VOID *Context
);
//
// NorFlashDxe.c
//
EFI_STATUS
NorFlashWriteFullBlock (
IN NOR_FLASH_INSTANCE *Instance,
IN EFI_LBA Lba,
IN UINT32 *DataBuffer,
IN UINT32 BlockSizeInWords
);
EFI_STATUS
NorFlashUnlockAndEraseSingleBlock (
IN NOR_FLASH_INSTANCE *Instance,
IN UINTN BlockAddress
);
EFI_STATUS
NorFlashCreateInstance (
IN UINTN NorFlashDeviceBase,
IN UINTN NorFlashRegionBase,
IN UINTN NorFlashSize,
IN UINT32 Index,
IN UINT32 BlockSize,
IN BOOLEAN SupportFvb,
OUT NOR_FLASH_INSTANCE **NorFlashInstance
);
EFI_STATUS
EFIAPI
NorFlashFvbInitialize (
IN NOR_FLASH_INSTANCE *Instance
);
//
// NorFlash.c
//
EFI_STATUS
NorFlashWriteSingleBlock (
IN NOR_FLASH_INSTANCE *Instance,
IN EFI_LBA Lba,
IN UINTN Offset,
IN OUT UINTN *NumBytes,
IN UINT8 *Buffer
);
EFI_STATUS
NorFlashWriteBlocks (
IN NOR_FLASH_INSTANCE *Instance,
IN EFI_LBA Lba,
IN UINTN BufferSizeInBytes,
IN VOID *Buffer
);
EFI_STATUS
NorFlashReadBlocks (
IN NOR_FLASH_INSTANCE *Instance,
IN EFI_LBA Lba,
IN UINTN BufferSizeInBytes,
OUT VOID *Buffer
);
EFI_STATUS
NorFlashRead (
IN NOR_FLASH_INSTANCE *Instance,
IN EFI_LBA Lba,
IN UINTN Offset,
IN UINTN BufferSizeInBytes,
OUT VOID *Buffer
);
EFI_STATUS
NorFlashWrite (
IN NOR_FLASH_INSTANCE *Instance,
IN EFI_LBA Lba,
IN UINTN Offset,
IN OUT UINTN *NumBytes,
IN UINT8 *Buffer
);
EFI_STATUS
NorFlashReset (
IN NOR_FLASH_INSTANCE *Instance
);
EFI_STATUS
NorFlashEraseSingleBlock (
IN NOR_FLASH_INSTANCE *Instance,
IN UINTN BlockAddress
);
EFI_STATUS
NorFlashUnlockSingleBlockIfNecessary (
IN NOR_FLASH_INSTANCE *Instance,
IN UINTN BlockAddress
);
EFI_STATUS
NorFlashWriteSingleWord (
IN NOR_FLASH_INSTANCE *Instance,
IN UINTN WordAddress,
IN UINT32 WriteData
);
VOID
EFIAPI
NorFlashVirtualNotifyEvent (
IN EFI_EVENT Event,
IN VOID *Context
);
#endif /* __NOR_FLASH_H__ */

View File

@ -1,123 +0,0 @@
/** @file NorFlashBlockIoDxe.c
Copyright (c) 2011-2013, ARM Ltd. All rights reserved.<BR>
SPDX-License-Identifier: BSD-2-Clause-Patent
**/
#include <Library/BaseMemoryLib.h>
#include <Library/UefiBootServicesTableLib.h>
#include "NorFlash.h"
//
// BlockIO Protocol function EFI_BLOCK_IO_PROTOCOL.Reset
//
EFI_STATUS
EFIAPI
NorFlashBlockIoReset (
IN EFI_BLOCK_IO_PROTOCOL *This,
IN BOOLEAN ExtendedVerification
)
{
NOR_FLASH_INSTANCE *Instance;
Instance = INSTANCE_FROM_BLKIO_THIS (This);
DEBUG ((DEBUG_BLKIO, "NorFlashBlockIoReset(MediaId=0x%x)\n", This->Media->MediaId));
return NorFlashReset (Instance);
}
//
// BlockIO Protocol function EFI_BLOCK_IO_PROTOCOL.ReadBlocks
//
EFI_STATUS
EFIAPI
NorFlashBlockIoReadBlocks (
IN EFI_BLOCK_IO_PROTOCOL *This,
IN UINT32 MediaId,
IN EFI_LBA Lba,
IN UINTN BufferSizeInBytes,
OUT VOID *Buffer
)
{
NOR_FLASH_INSTANCE *Instance;
EFI_STATUS Status;
EFI_BLOCK_IO_MEDIA *Media;
if (This == NULL) {
return EFI_INVALID_PARAMETER;
}
Instance = INSTANCE_FROM_BLKIO_THIS (This);
Media = This->Media;
DEBUG ((DEBUG_BLKIO, "NorFlashBlockIoReadBlocks(MediaId=0x%x, Lba=%ld, BufferSize=0x%x bytes (%d kB), BufferPtr @ 0x%08x)\n", MediaId, Lba, BufferSizeInBytes, BufferSizeInBytes, Buffer));
if (!Media) {
Status = EFI_INVALID_PARAMETER;
} else if (!Media->MediaPresent) {
Status = EFI_NO_MEDIA;
} else if (Media->MediaId != MediaId) {
Status = EFI_MEDIA_CHANGED;
} else if ((Media->IoAlign > 2) && (((UINTN)Buffer & (Media->IoAlign - 1)) != 0)) {
Status = EFI_INVALID_PARAMETER;
} else {
Status = NorFlashReadBlocks (Instance, Lba, BufferSizeInBytes, Buffer);
}
return Status;
}
//
// BlockIO Protocol function EFI_BLOCK_IO_PROTOCOL.WriteBlocks
//
EFI_STATUS
EFIAPI
NorFlashBlockIoWriteBlocks (
IN EFI_BLOCK_IO_PROTOCOL *This,
IN UINT32 MediaId,
IN EFI_LBA Lba,
IN UINTN BufferSizeInBytes,
IN VOID *Buffer
)
{
NOR_FLASH_INSTANCE *Instance;
EFI_STATUS Status;
Instance = INSTANCE_FROM_BLKIO_THIS (This);
DEBUG ((DEBUG_BLKIO, "NorFlashBlockIoWriteBlocks(MediaId=0x%x, Lba=%ld, BufferSize=0x%x bytes, BufferPtr @ 0x%08x)\n", MediaId, Lba, BufferSizeInBytes, Buffer));
if ( !This->Media->MediaPresent ) {
Status = EFI_NO_MEDIA;
} else if ( This->Media->MediaId != MediaId ) {
Status = EFI_MEDIA_CHANGED;
} else if ( This->Media->ReadOnly ) {
Status = EFI_WRITE_PROTECTED;
} else {
Status = NorFlashWriteBlocks (Instance, Lba, BufferSizeInBytes, Buffer);
}
return Status;
}
//
// BlockIO Protocol function EFI_BLOCK_IO_PROTOCOL.FlushBlocks
//
EFI_STATUS
EFIAPI
NorFlashBlockIoFlushBlocks (
IN EFI_BLOCK_IO_PROTOCOL *This
)
{
// No Flush required for the NOR Flash driver
// because cache operations are not permitted.
DEBUG ((DEBUG_BLKIO, "NorFlashBlockIoFlushBlocks: Function NOT IMPLEMENTED (not required).\n"));
// Nothing to do so just return without error
return EFI_SUCCESS;
}

View File

@ -1,506 +0,0 @@
/** @file NorFlashDxe.c
Copyright (c) 2011 - 2021, Arm Limited. All rights reserved.<BR>
SPDX-License-Identifier: BSD-2-Clause-Patent
**/
#include <Library/UefiLib.h>
#include <Library/BaseMemoryLib.h>
#include <Library/MemoryAllocationLib.h>
#include <Library/UefiBootServicesTableLib.h>
#include <Library/PcdLib.h>
#include <Library/HobLib.h>
#include <Library/DxeServicesTableLib.h>
#include "NorFlash.h"
STATIC EFI_EVENT mNorFlashVirtualAddrChangeEvent;
//
// Global variable declarations
//
NOR_FLASH_INSTANCE **mNorFlashInstances;
UINT32 mNorFlashDeviceCount;
UINTN mFlashNvStorageVariableBase;
EFI_EVENT mFvbVirtualAddrChangeEvent;
NOR_FLASH_INSTANCE mNorFlashInstanceTemplate = {
NOR_FLASH_SIGNATURE, // Signature
NULL, // Handle ... NEED TO BE FILLED
0, // DeviceBaseAddress ... NEED TO BE FILLED
0, // RegionBaseAddress ... NEED TO BE FILLED
0, // Size ... NEED TO BE FILLED
0, // StartLba
{
EFI_BLOCK_IO_PROTOCOL_REVISION2, // Revision
NULL, // Media ... NEED TO BE FILLED
NorFlashBlockIoReset, // Reset;
NorFlashBlockIoReadBlocks, // ReadBlocks
NorFlashBlockIoWriteBlocks, // WriteBlocks
NorFlashBlockIoFlushBlocks // FlushBlocks
}, // BlockIoProtocol
{
0, // MediaId ... NEED TO BE FILLED
FALSE, // RemovableMedia
TRUE, // MediaPresent
FALSE, // LogicalPartition
FALSE, // ReadOnly
FALSE, // WriteCaching;
0, // BlockSize ... NEED TO BE FILLED
4, // IoAlign
0, // LastBlock ... NEED TO BE FILLED
0, // LowestAlignedLba
1, // LogicalBlocksPerPhysicalBlock
}, // Media;
{
EFI_DISK_IO_PROTOCOL_REVISION, // Revision
NorFlashDiskIoReadDisk, // ReadDisk
NorFlashDiskIoWriteDisk // WriteDisk
},
{
FvbGetAttributes, // GetAttributes
FvbSetAttributes, // SetAttributes
FvbGetPhysicalAddress, // GetPhysicalAddress
FvbGetBlockSize, // GetBlockSize
FvbRead, // Read
FvbWrite, // Write
FvbEraseBlocks, // EraseBlocks
NULL, // ParentHandle
}, // FvbProtoccol;
NULL, // ShadowBuffer
{
{
{
HARDWARE_DEVICE_PATH,
HW_VENDOR_DP,
{
(UINT8)(OFFSET_OF (NOR_FLASH_DEVICE_PATH, End)),
(UINT8)(OFFSET_OF (NOR_FLASH_DEVICE_PATH, End) >> 8)
}
},
{ 0x0, 0x0, 0x0, { 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0 }
}, // GUID ... NEED TO BE FILLED
},
0, // Index
{
END_DEVICE_PATH_TYPE,
END_ENTIRE_DEVICE_PATH_SUBTYPE,
{ sizeof (EFI_DEVICE_PATH_PROTOCOL), 0 }
}
} // DevicePath
};
EFI_STATUS
NorFlashCreateInstance (
IN UINTN NorFlashDeviceBase,
IN UINTN NorFlashRegionBase,
IN UINTN NorFlashSize,
IN UINT32 Index,
IN UINT32 BlockSize,
IN BOOLEAN SupportFvb,
OUT NOR_FLASH_INSTANCE **NorFlashInstance
)
{
EFI_STATUS Status;
NOR_FLASH_INSTANCE *Instance;
ASSERT (NorFlashInstance != NULL);
Instance = AllocateRuntimeCopyPool (sizeof (NOR_FLASH_INSTANCE), &mNorFlashInstanceTemplate);
if (Instance == NULL) {
return EFI_OUT_OF_RESOURCES;
}
Instance->DeviceBaseAddress = NorFlashDeviceBase;
Instance->RegionBaseAddress = NorFlashRegionBase;
Instance->Size = NorFlashSize;
Instance->BlockIoProtocol.Media = &Instance->Media;
Instance->Media.MediaId = Index;
Instance->Media.BlockSize = BlockSize;
Instance->Media.LastBlock = (NorFlashSize / BlockSize)-1;
CopyGuid (&Instance->DevicePath.Vendor.Guid, &gEfiCallerIdGuid);
Instance->DevicePath.Index = (UINT8)Index;
Instance->ShadowBuffer = AllocateRuntimePool (BlockSize);
if (Instance->ShadowBuffer == NULL) {
return EFI_OUT_OF_RESOURCES;
}
if (SupportFvb) {
NorFlashFvbInitialize (Instance);
Status = gBS->InstallMultipleProtocolInterfaces (
&Instance->Handle,
&gEfiDevicePathProtocolGuid,
&Instance->DevicePath,
&gEfiBlockIoProtocolGuid,
&Instance->BlockIoProtocol,
&gEfiFirmwareVolumeBlockProtocolGuid,
&Instance->FvbProtocol,
NULL
);
if (EFI_ERROR (Status)) {
FreePool (Instance);
return Status;
}
} else {
Status = gBS->InstallMultipleProtocolInterfaces (
&Instance->Handle,
&gEfiDevicePathProtocolGuid,
&Instance->DevicePath,
&gEfiBlockIoProtocolGuid,
&Instance->BlockIoProtocol,
&gEfiDiskIoProtocolGuid,
&Instance->DiskIoProtocol,
NULL
);
if (EFI_ERROR (Status)) {
FreePool (Instance);
return Status;
}
}
*NorFlashInstance = Instance;
return Status;
}
/**
* This function unlock and erase an entire NOR Flash block.
**/
EFI_STATUS
NorFlashUnlockAndEraseSingleBlock (
IN NOR_FLASH_INSTANCE *Instance,
IN UINTN BlockAddress
)
{
EFI_STATUS Status;
UINTN Index;
EFI_TPL OriginalTPL;
if (!EfiAtRuntime ()) {
// Raise TPL to TPL_HIGH to stop anyone from interrupting us.
OriginalTPL = gBS->RaiseTPL (TPL_HIGH_LEVEL);
} else {
// This initialization is only to prevent the compiler to complain about the
// use of uninitialized variables
OriginalTPL = TPL_HIGH_LEVEL;
}
Index = 0;
// The block erase might fail a first time (SW bug ?). Retry it ...
do {
// Unlock the block if we have to
Status = NorFlashUnlockSingleBlockIfNecessary (Instance, BlockAddress);
if (EFI_ERROR (Status)) {
break;
}
Status = NorFlashEraseSingleBlock (Instance, BlockAddress);
Index++;
} while ((Index < NOR_FLASH_ERASE_RETRY) && (Status == EFI_WRITE_PROTECTED));
if (Index == NOR_FLASH_ERASE_RETRY) {
DEBUG ((DEBUG_ERROR, "EraseSingleBlock(BlockAddress=0x%08x: Block Locked Error (try to erase %d times)\n", BlockAddress, Index));
}
if (!EfiAtRuntime ()) {
// Interruptions can resume.
gBS->RestoreTPL (OriginalTPL);
}
return Status;
}
EFI_STATUS
NorFlashWriteFullBlock (
IN NOR_FLASH_INSTANCE *Instance,
IN EFI_LBA Lba,
IN UINT32 *DataBuffer,
IN UINT32 BlockSizeInWords
)
{
EFI_STATUS Status;
UINTN WordAddress;
UINT32 WordIndex;
UINTN BufferIndex;
UINTN BlockAddress;
UINTN BuffersInBlock;
UINTN RemainingWords;
EFI_TPL OriginalTPL;
UINTN Cnt;
Status = EFI_SUCCESS;
// Get the physical address of the block
BlockAddress = GET_NOR_BLOCK_ADDRESS (Instance->RegionBaseAddress, Lba, BlockSizeInWords * 4);
// Start writing from the first address at the start of the block
WordAddress = BlockAddress;
if (!EfiAtRuntime ()) {
// Raise TPL to TPL_HIGH to stop anyone from interrupting us.
OriginalTPL = gBS->RaiseTPL (TPL_HIGH_LEVEL);
} else {
// This initialization is only to prevent the compiler to complain about the
// use of uninitialized variables
OriginalTPL = TPL_HIGH_LEVEL;
}
Status = NorFlashUnlockAndEraseSingleBlock (Instance, BlockAddress);
if (EFI_ERROR (Status)) {
DEBUG ((DEBUG_ERROR, "WriteSingleBlock: ERROR - Failed to Unlock and Erase the single block at 0x%X\n", BlockAddress));
goto EXIT;
}
// To speed up the programming operation, NOR Flash is programmed using the Buffered Programming method.
// Check that the address starts at a 32-word boundary, i.e. last 7 bits must be zero
if ((WordAddress & BOUNDARY_OF_32_WORDS) == 0x00) {
// First, break the entire block into buffer-sized chunks.
BuffersInBlock = (UINTN)(BlockSizeInWords * 4) / P30_MAX_BUFFER_SIZE_IN_BYTES;
// Then feed each buffer chunk to the NOR Flash
// If a buffer does not contain any data, don't write it.
for (BufferIndex = 0;
BufferIndex < BuffersInBlock;
BufferIndex++, WordAddress += P30_MAX_BUFFER_SIZE_IN_BYTES, DataBuffer += P30_MAX_BUFFER_SIZE_IN_WORDS
)
{
// Check the buffer to see if it contains any data (not set all 1s).
for (Cnt = 0; Cnt < P30_MAX_BUFFER_SIZE_IN_WORDS; Cnt++) {
if (~DataBuffer[Cnt] != 0 ) {
// Some data found, write the buffer.
Status = NorFlashWriteBuffer (
Instance,
WordAddress,
P30_MAX_BUFFER_SIZE_IN_BYTES,
DataBuffer
);
if (EFI_ERROR (Status)) {
goto EXIT;
}
break;
}
}
}
// Finally, finish off any remaining words that are less than the maximum size of the buffer
RemainingWords = BlockSizeInWords % P30_MAX_BUFFER_SIZE_IN_WORDS;
if (RemainingWords != 0) {
Status = NorFlashWriteBuffer (Instance, WordAddress, (RemainingWords * 4), DataBuffer);
if (EFI_ERROR (Status)) {
goto EXIT;
}
}
} else {
// For now, use the single word programming algorithm
// It is unlikely that the NOR Flash will exist in an address which falls within a 32 word boundary range,
// i.e. which ends in the range 0x......01 - 0x......7F.
for (WordIndex = 0; WordIndex < BlockSizeInWords; WordIndex++, DataBuffer++, WordAddress = WordAddress + 4) {
Status = NorFlashWriteSingleWord (Instance, WordAddress, *DataBuffer);
if (EFI_ERROR (Status)) {
goto EXIT;
}
}
}
EXIT:
if (!EfiAtRuntime ()) {
// Interruptions can resume.
gBS->RestoreTPL (OriginalTPL);
}
if (EFI_ERROR (Status)) {
DEBUG ((DEBUG_ERROR, "NOR FLASH Programming [WriteSingleBlock] failed at address 0x%08x. Exit Status = \"%r\".\n", WordAddress, Status));
}
return Status;
}
EFI_STATUS
EFIAPI
NorFlashInitialise (
IN EFI_HANDLE ImageHandle,
IN EFI_SYSTEM_TABLE *SystemTable
)
{
EFI_STATUS Status;
UINT32 Index;
NOR_FLASH_DESCRIPTION *NorFlashDevices;
BOOLEAN ContainVariableStorage;
Status = NorFlashPlatformInitialization ();
if (EFI_ERROR (Status)) {
DEBUG ((DEBUG_ERROR, "NorFlashInitialise: Fail to initialize Nor Flash devices\n"));
return Status;
}
Status = NorFlashPlatformGetDevices (&NorFlashDevices, &mNorFlashDeviceCount);
if (EFI_ERROR (Status)) {
DEBUG ((DEBUG_ERROR, "NorFlashInitialise: Fail to get Nor Flash devices\n"));
return Status;
}
mNorFlashInstances = AllocateRuntimePool (sizeof (NOR_FLASH_INSTANCE *) * mNorFlashDeviceCount);
for (Index = 0; Index < mNorFlashDeviceCount; Index++) {
// Check if this NOR Flash device contain the variable storage region
if (PcdGet64 (PcdFlashNvStorageVariableBase64) != 0) {
ContainVariableStorage =
(NorFlashDevices[Index].RegionBaseAddress <= PcdGet64 (PcdFlashNvStorageVariableBase64)) &&
(PcdGet64 (PcdFlashNvStorageVariableBase64) + PcdGet32 (PcdFlashNvStorageVariableSize) <=
NorFlashDevices[Index].RegionBaseAddress + NorFlashDevices[Index].Size);
} else {
ContainVariableStorage =
(NorFlashDevices[Index].RegionBaseAddress <= PcdGet32 (PcdFlashNvStorageVariableBase)) &&
(PcdGet32 (PcdFlashNvStorageVariableBase) + PcdGet32 (PcdFlashNvStorageVariableSize) <=
NorFlashDevices[Index].RegionBaseAddress + NorFlashDevices[Index].Size);
}
Status = NorFlashCreateInstance (
NorFlashDevices[Index].DeviceBaseAddress,
NorFlashDevices[Index].RegionBaseAddress,
NorFlashDevices[Index].Size,
Index,
NorFlashDevices[Index].BlockSize,
ContainVariableStorage,
&mNorFlashInstances[Index]
);
if (EFI_ERROR (Status)) {
DEBUG ((DEBUG_ERROR, "NorFlashInitialise: Fail to create instance for NorFlash[%d]\n", Index));
}
}
//
// Register for the virtual address change event
//
Status = gBS->CreateEventEx (
EVT_NOTIFY_SIGNAL,
TPL_NOTIFY,
NorFlashVirtualNotifyEvent,
NULL,
&gEfiEventVirtualAddressChangeGuid,
&mNorFlashVirtualAddrChangeEvent
);
ASSERT_EFI_ERROR (Status);
return Status;
}
EFI_STATUS
EFIAPI
NorFlashFvbInitialize (
IN NOR_FLASH_INSTANCE *Instance
)
{
EFI_STATUS Status;
UINT32 FvbNumLba;
EFI_BOOT_MODE BootMode;
UINTN RuntimeMmioRegionSize;
DEBUG ((DEBUG_BLKIO, "NorFlashFvbInitialize\n"));
ASSERT ((Instance != NULL));
//
// Declare the Non-Volatile storage as EFI_MEMORY_RUNTIME
//
// Note: all the NOR Flash region needs to be reserved into the UEFI Runtime memory;
// even if we only use the small block region at the top of the NOR Flash.
// The reason is when the NOR Flash memory is set into program mode, the command
// is written as the base of the flash region (ie: Instance->DeviceBaseAddress)
RuntimeMmioRegionSize = (Instance->RegionBaseAddress - Instance->DeviceBaseAddress) + Instance->Size;
Status = gDS->AddMemorySpace (
EfiGcdMemoryTypeMemoryMappedIo,
Instance->DeviceBaseAddress,
RuntimeMmioRegionSize,
EFI_MEMORY_UC | EFI_MEMORY_RUNTIME
);
ASSERT_EFI_ERROR (Status);
Status = gDS->SetMemorySpaceAttributes (
Instance->DeviceBaseAddress,
RuntimeMmioRegionSize,
EFI_MEMORY_UC | EFI_MEMORY_RUNTIME
);
ASSERT_EFI_ERROR (Status);
mFlashNvStorageVariableBase = (PcdGet64 (PcdFlashNvStorageVariableBase64) != 0) ?
PcdGet64 (PcdFlashNvStorageVariableBase64) : PcdGet32 (PcdFlashNvStorageVariableBase);
// Set the index of the first LBA for the FVB
Instance->StartLba = (mFlashNvStorageVariableBase - Instance->RegionBaseAddress) / Instance->Media.BlockSize;
BootMode = GetBootModeHob ();
if (BootMode == BOOT_WITH_DEFAULT_SETTINGS) {
Status = EFI_INVALID_PARAMETER;
} else {
// Determine if there is a valid header at the beginning of the NorFlash
Status = ValidateFvHeader (Instance);
}
// Install the Default FVB header if required
if (EFI_ERROR (Status)) {
// There is no valid header, so time to install one.
DEBUG ((DEBUG_INFO, "%a: The FVB Header is not valid.\n", __FUNCTION__));
DEBUG ((
DEBUG_INFO,
"%a: Installing a correct one for this volume.\n",
__FUNCTION__
));
// Erase all the NorFlash that is reserved for variable storage
FvbNumLba = (PcdGet32 (PcdFlashNvStorageVariableSize) + PcdGet32 (PcdFlashNvStorageFtwWorkingSize) + PcdGet32 (PcdFlashNvStorageFtwSpareSize)) / Instance->Media.BlockSize;
Status = FvbEraseBlocks (&Instance->FvbProtocol, (EFI_LBA)0, FvbNumLba, EFI_LBA_LIST_TERMINATOR);
if (EFI_ERROR (Status)) {
return Status;
}
// Install all appropriate headers
Status = InitializeFvAndVariableStoreHeaders (Instance);
if (EFI_ERROR (Status)) {
return Status;
}
}
//
// The driver implementing the variable read service can now be dispatched;
// the varstore headers are in place.
//
Status = gBS->InstallProtocolInterface (
&gImageHandle,
&gEdkiiNvVarStoreFormattedGuid,
EFI_NATIVE_INTERFACE,
NULL
);
ASSERT_EFI_ERROR (Status);
//
// Register for the virtual address change event
//
Status = gBS->CreateEventEx (
EVT_NOTIFY_SIGNAL,
TPL_NOTIFY,
FvbVirtualNotifyEvent,
NULL,
&gEfiEventVirtualAddressChangeGuid,
&mFvbVirtualAddrChangeEvent
);
ASSERT_EFI_ERROR (Status);
return Status;
}

View File

@ -1,71 +0,0 @@
#/** @file
#
# Component description file for NorFlashDxe module
#
# Copyright (c) 2011 - 2021, Arm Limited. All rights reserved.<BR>
#
# SPDX-License-Identifier: BSD-2-Clause-Patent
#
#**/
[Defines]
INF_VERSION = 0x00010005
BASE_NAME = ArmVeNorFlashDxe
FILE_GUID = 93E34C7E-B50E-11DF-9223-2443DFD72085
MODULE_TYPE = DXE_RUNTIME_DRIVER
VERSION_STRING = 1.0
ENTRY_POINT = NorFlashInitialise
[Sources.common]
NorFlash.c
NorFlash.h
NorFlashDxe.c
NorFlashFvb.c
NorFlashBlockIoDxe.c
[Packages]
MdePkg/MdePkg.dec
MdeModulePkg/MdeModulePkg.dec
ArmPlatformPkg/ArmPlatformPkg.dec
EmbeddedPkg/EmbeddedPkg.dec
[LibraryClasses]
IoLib
BaseLib
DebugLib
HobLib
NorFlashPlatformLib
UefiLib
UefiDriverEntryPoint
UefiBootServicesTableLib
UefiRuntimeLib
DxeServicesTableLib
[Guids]
gEfiSystemNvDataFvGuid
gEfiVariableGuid
gEfiAuthenticatedVariableGuid
gEfiEventVirtualAddressChangeGuid
gEdkiiNvVarStoreFormattedGuid ## PRODUCES ## PROTOCOL
[Protocols]
gEfiBlockIoProtocolGuid
gEfiDevicePathProtocolGuid
gEfiFirmwareVolumeBlockProtocolGuid
gEfiDiskIoProtocolGuid
[Pcd.common]
gEfiMdeModulePkgTokenSpaceGuid.PcdFlashNvStorageVariableBase64
gEfiMdeModulePkgTokenSpaceGuid.PcdFlashNvStorageVariableBase
gEfiMdeModulePkgTokenSpaceGuid.PcdFlashNvStorageVariableSize
gEfiMdeModulePkgTokenSpaceGuid.PcdFlashNvStorageFtwWorkingBase64
gEfiMdeModulePkgTokenSpaceGuid.PcdFlashNvStorageFtwWorkingBase
gEfiMdeModulePkgTokenSpaceGuid.PcdFlashNvStorageFtwWorkingSize
gEfiMdeModulePkgTokenSpaceGuid.PcdFlashNvStorageFtwSpareBase64
gEfiMdeModulePkgTokenSpaceGuid.PcdFlashNvStorageFtwSpareBase
gEfiMdeModulePkgTokenSpaceGuid.PcdFlashNvStorageFtwSpareSize
gArmPlatformTokenSpaceGuid.PcdNorFlashCheckBlockLocked
[Depex]
gEfiCpuArchProtocolGuid

View File

@ -1,777 +0,0 @@
/*++ @file NorFlashFvbDxe.c
Copyright (c) 2011 - 2021, Arm Limited. All rights reserved.<BR>
SPDX-License-Identifier: BSD-2-Clause-Patent
--*/
#include <PiDxe.h>
#include <Library/PcdLib.h>
#include <Library/BaseLib.h>
#include <Library/UefiLib.h>
#include <Library/BaseMemoryLib.h>
#include <Library/MemoryAllocationLib.h>
#include <Guid/VariableFormat.h>
#include <Guid/SystemNvDataGuid.h>
#include <Guid/NvVarStoreFormatted.h>
#include "NorFlash.h"
extern UINTN mFlashNvStorageVariableBase;
///
/// The Firmware Volume Block Protocol is the low-level interface
/// to a firmware volume. File-level access to a firmware volume
/// should not be done using the Firmware Volume Block Protocol.
/// Normal access to a firmware volume must use the Firmware
/// Volume Protocol. Typically, only the file system driver that
/// produces the Firmware Volume Protocol will bind to the
/// Firmware Volume Block Protocol.
///
/**
Initialises the FV Header and Variable Store Header
to support variable operations.
@param[in] Ptr - Location to initialise the headers
**/
EFI_STATUS
InitializeFvAndVariableStoreHeaders (
IN NOR_FLASH_INSTANCE *Instance
)
{
EFI_STATUS Status;
VOID *Headers;
UINTN HeadersLength;
EFI_FIRMWARE_VOLUME_HEADER *FirmwareVolumeHeader;
VARIABLE_STORE_HEADER *VariableStoreHeader;
UINT32 NvStorageFtwSpareSize;
UINT32 NvStorageFtwWorkingSize;
UINT32 NvStorageVariableSize;
UINT64 NvStorageFtwSpareBase;
UINT64 NvStorageFtwWorkingBase;
UINT64 NvStorageVariableBase;
HeadersLength = sizeof (EFI_FIRMWARE_VOLUME_HEADER) + sizeof (EFI_FV_BLOCK_MAP_ENTRY) + sizeof (VARIABLE_STORE_HEADER);
Headers = AllocateZeroPool (HeadersLength);
NvStorageFtwWorkingSize = PcdGet32 (PcdFlashNvStorageFtwWorkingSize);
NvStorageFtwSpareSize = PcdGet32 (PcdFlashNvStorageFtwSpareSize);
NvStorageVariableSize = PcdGet32 (PcdFlashNvStorageVariableSize);
NvStorageFtwSpareBase = (PcdGet64 (PcdFlashNvStorageFtwSpareBase64) != 0) ?
PcdGet64 (PcdFlashNvStorageFtwSpareBase64) : PcdGet32 (PcdFlashNvStorageFtwSpareBase);
NvStorageFtwWorkingBase = (PcdGet64 (PcdFlashNvStorageFtwWorkingBase64) != 0) ?
PcdGet64 (PcdFlashNvStorageFtwWorkingBase64) : PcdGet32 (PcdFlashNvStorageFtwWorkingBase);
NvStorageVariableBase = (PcdGet64 (PcdFlashNvStorageVariableBase64) != 0) ?
PcdGet64 (PcdFlashNvStorageVariableBase64) : PcdGet32 (PcdFlashNvStorageVariableBase);
// FirmwareVolumeHeader->FvLength is declared to have the Variable area AND the FTW working area AND the FTW Spare contiguous.
if ((NvStorageVariableBase + NvStorageVariableSize) != NvStorageFtwWorkingBase) {
DEBUG ((
DEBUG_ERROR,
"%a: NvStorageFtwWorkingBase is not contiguous with NvStorageVariableBase region\n",
__FUNCTION__
));
return EFI_INVALID_PARAMETER;
}
if ((NvStorageFtwWorkingBase + NvStorageFtwWorkingSize) != NvStorageFtwSpareBase) {
DEBUG ((
DEBUG_ERROR,
"%a: NvStorageFtwSpareBase is not contiguous with NvStorageFtwWorkingBase region\n",
__FUNCTION__
));
return EFI_INVALID_PARAMETER;
}
// Check if the size of the area is at least one block size
if ((NvStorageVariableSize <= 0) || (NvStorageVariableSize / Instance->Media.BlockSize <= 0)) {
DEBUG ((
DEBUG_ERROR,
"%a: NvStorageVariableSize is 0x%x, should be atleast one block size\n",
__FUNCTION__,
NvStorageVariableSize
));
return EFI_INVALID_PARAMETER;
}
if ((NvStorageFtwWorkingSize <= 0) || (NvStorageFtwWorkingSize / Instance->Media.BlockSize <= 0)) {
DEBUG ((
DEBUG_ERROR,
"%a: NvStorageFtwWorkingSize is 0x%x, should be atleast one block size\n",
__FUNCTION__,
NvStorageFtwWorkingSize
));
return EFI_INVALID_PARAMETER;
}
if ((NvStorageFtwSpareSize <= 0) || (NvStorageFtwSpareSize / Instance->Media.BlockSize <= 0)) {
DEBUG ((
DEBUG_ERROR,
"%a: NvStorageFtwSpareSize is 0x%x, should be atleast one block size\n",
__FUNCTION__,
NvStorageFtwSpareSize
));
return EFI_INVALID_PARAMETER;
}
// Ensure the Variable area Base Addresses are aligned on a block size boundaries
if ((NvStorageVariableBase % Instance->Media.BlockSize != 0) ||
(NvStorageFtwWorkingBase % Instance->Media.BlockSize != 0) ||
(NvStorageFtwSpareBase % Instance->Media.BlockSize != 0))
{
DEBUG ((DEBUG_ERROR, "%a: NvStorage Base addresses must be aligned to block size boundaries", __FUNCTION__));
return EFI_INVALID_PARAMETER;
}
//
// EFI_FIRMWARE_VOLUME_HEADER
//
FirmwareVolumeHeader = (EFI_FIRMWARE_VOLUME_HEADER *)Headers;
CopyGuid (&FirmwareVolumeHeader->FileSystemGuid, &gEfiSystemNvDataFvGuid);
FirmwareVolumeHeader->FvLength =
PcdGet32 (PcdFlashNvStorageVariableSize) +
PcdGet32 (PcdFlashNvStorageFtwWorkingSize) +
PcdGet32 (PcdFlashNvStorageFtwSpareSize);
FirmwareVolumeHeader->Signature = EFI_FVH_SIGNATURE;
FirmwareVolumeHeader->Attributes = (EFI_FVB_ATTRIBUTES_2)(
EFI_FVB2_READ_ENABLED_CAP | // Reads may be enabled
EFI_FVB2_READ_STATUS | // Reads are currently enabled
EFI_FVB2_STICKY_WRITE | // A block erase is required to flip bits into EFI_FVB2_ERASE_POLARITY
EFI_FVB2_MEMORY_MAPPED | // It is memory mapped
EFI_FVB2_ERASE_POLARITY | // After erasure all bits take this value (i.e. '1')
EFI_FVB2_WRITE_STATUS | // Writes are currently enabled
EFI_FVB2_WRITE_ENABLED_CAP // Writes may be enabled
);
FirmwareVolumeHeader->HeaderLength = sizeof (EFI_FIRMWARE_VOLUME_HEADER) + sizeof (EFI_FV_BLOCK_MAP_ENTRY);
FirmwareVolumeHeader->Revision = EFI_FVH_REVISION;
FirmwareVolumeHeader->BlockMap[0].NumBlocks = Instance->Media.LastBlock + 1;
FirmwareVolumeHeader->BlockMap[0].Length = Instance->Media.BlockSize;
FirmwareVolumeHeader->BlockMap[1].NumBlocks = 0;
FirmwareVolumeHeader->BlockMap[1].Length = 0;
FirmwareVolumeHeader->Checksum = CalculateCheckSum16 ((UINT16 *)FirmwareVolumeHeader, FirmwareVolumeHeader->HeaderLength);
//
// VARIABLE_STORE_HEADER
//
VariableStoreHeader = (VARIABLE_STORE_HEADER *)((UINTN)Headers + FirmwareVolumeHeader->HeaderLength);
CopyGuid (&VariableStoreHeader->Signature, &gEfiAuthenticatedVariableGuid);
VariableStoreHeader->Size = PcdGet32 (PcdFlashNvStorageVariableSize) - FirmwareVolumeHeader->HeaderLength;
VariableStoreHeader->Format = VARIABLE_STORE_FORMATTED;
VariableStoreHeader->State = VARIABLE_STORE_HEALTHY;
// Install the combined super-header in the NorFlash
Status = FvbWrite (&Instance->FvbProtocol, 0, 0, &HeadersLength, Headers);
FreePool (Headers);
return Status;
}
/**
Check the integrity of firmware volume header.
@param[in] FwVolHeader - A pointer to a firmware volume header
@retval EFI_SUCCESS - The firmware volume is consistent
@retval EFI_NOT_FOUND - The firmware volume has been corrupted.
**/
EFI_STATUS
ValidateFvHeader (
IN NOR_FLASH_INSTANCE *Instance
)
{
UINT16 Checksum;
EFI_FIRMWARE_VOLUME_HEADER *FwVolHeader;
VARIABLE_STORE_HEADER *VariableStoreHeader;
UINTN VariableStoreLength;
UINTN FvLength;
FwVolHeader = (EFI_FIRMWARE_VOLUME_HEADER *)Instance->RegionBaseAddress;
FvLength = PcdGet32 (PcdFlashNvStorageVariableSize) + PcdGet32 (PcdFlashNvStorageFtwWorkingSize) +
PcdGet32 (PcdFlashNvStorageFtwSpareSize);
//
// Verify the header revision, header signature, length
// Length of FvBlock cannot be 2**64-1
// HeaderLength cannot be an odd number
//
if ( (FwVolHeader->Revision != EFI_FVH_REVISION)
|| (FwVolHeader->Signature != EFI_FVH_SIGNATURE)
|| (FwVolHeader->FvLength != FvLength)
)
{
DEBUG ((
DEBUG_INFO,
"%a: No Firmware Volume header present\n",
__FUNCTION__
));
return EFI_NOT_FOUND;
}
// Check the Firmware Volume Guid
if ( CompareGuid (&FwVolHeader->FileSystemGuid, &gEfiSystemNvDataFvGuid) == FALSE ) {
DEBUG ((
DEBUG_INFO,
"%a: Firmware Volume Guid non-compatible\n",
__FUNCTION__
));
return EFI_NOT_FOUND;
}
// Verify the header checksum
Checksum = CalculateSum16 ((UINT16 *)FwVolHeader, FwVolHeader->HeaderLength);
if (Checksum != 0) {
DEBUG ((
DEBUG_INFO,
"%a: FV checksum is invalid (Checksum:0x%X)\n",
__FUNCTION__,
Checksum
));
return EFI_NOT_FOUND;
}
VariableStoreHeader = (VARIABLE_STORE_HEADER *)((UINTN)FwVolHeader + FwVolHeader->HeaderLength);
// Check the Variable Store Guid
if (!CompareGuid (&VariableStoreHeader->Signature, &gEfiVariableGuid) &&
!CompareGuid (&VariableStoreHeader->Signature, &gEfiAuthenticatedVariableGuid))
{
DEBUG ((
DEBUG_INFO,
"%a: Variable Store Guid non-compatible\n",
__FUNCTION__
));
return EFI_NOT_FOUND;
}
VariableStoreLength = PcdGet32 (PcdFlashNvStorageVariableSize) - FwVolHeader->HeaderLength;
if (VariableStoreHeader->Size != VariableStoreLength) {
DEBUG ((
DEBUG_INFO,
"%a: Variable Store Length does not match\n",
__FUNCTION__
));
return EFI_NOT_FOUND;
}
return EFI_SUCCESS;
}
/**
The GetAttributes() function retrieves the attributes and
current settings of the block.
@param This Indicates the EFI_FIRMWARE_VOLUME_BLOCK2_PROTOCOL instance.
@param Attributes Pointer to EFI_FVB_ATTRIBUTES_2 in which the attributes and
current settings are returned.
Type EFI_FVB_ATTRIBUTES_2 is defined in EFI_FIRMWARE_VOLUME_HEADER.
@retval EFI_SUCCESS The firmware volume attributes were returned.
**/
EFI_STATUS
EFIAPI
FvbGetAttributes (
IN CONST EFI_FIRMWARE_VOLUME_BLOCK2_PROTOCOL *This,
OUT EFI_FVB_ATTRIBUTES_2 *Attributes
)
{
EFI_FVB_ATTRIBUTES_2 FlashFvbAttributes;
NOR_FLASH_INSTANCE *Instance;
Instance = INSTANCE_FROM_FVB_THIS (This);
FlashFvbAttributes = (EFI_FVB_ATTRIBUTES_2)(
EFI_FVB2_READ_ENABLED_CAP | // Reads may be enabled
EFI_FVB2_READ_STATUS | // Reads are currently enabled
EFI_FVB2_STICKY_WRITE | // A block erase is required to flip bits into EFI_FVB2_ERASE_POLARITY
EFI_FVB2_MEMORY_MAPPED | // It is memory mapped
EFI_FVB2_ERASE_POLARITY // After erasure all bits take this value (i.e. '1')
);
// Check if it is write protected
if (Instance->Media.ReadOnly != TRUE) {
FlashFvbAttributes = FlashFvbAttributes |
EFI_FVB2_WRITE_STATUS | // Writes are currently enabled
EFI_FVB2_WRITE_ENABLED_CAP; // Writes may be enabled
}
*Attributes = FlashFvbAttributes;
DEBUG ((DEBUG_BLKIO, "FvbGetAttributes(0x%X)\n", *Attributes));
return EFI_SUCCESS;
}
/**
The SetAttributes() function sets configurable firmware volume attributes
and returns the new settings of the firmware volume.
@param This Indicates the EFI_FIRMWARE_VOLUME_BLOCK2_PROTOCOL instance.
@param Attributes On input, Attributes is a pointer to EFI_FVB_ATTRIBUTES_2
that contains the desired firmware volume settings.
On successful return, it contains the new settings of
the firmware volume.
Type EFI_FVB_ATTRIBUTES_2 is defined in EFI_FIRMWARE_VOLUME_HEADER.
@retval EFI_SUCCESS The firmware volume attributes were returned.
@retval EFI_INVALID_PARAMETER The attributes requested are in conflict with the capabilities
as declared in the firmware volume header.
**/
EFI_STATUS
EFIAPI
FvbSetAttributes (
IN CONST EFI_FIRMWARE_VOLUME_BLOCK2_PROTOCOL *This,
IN OUT EFI_FVB_ATTRIBUTES_2 *Attributes
)
{
DEBUG ((DEBUG_BLKIO, "FvbSetAttributes(0x%X) is not supported\n", *Attributes));
return EFI_UNSUPPORTED;
}
/**
The GetPhysicalAddress() function retrieves the base address of
a memory-mapped firmware volume. This function should be called
only for memory-mapped firmware volumes.
@param This Indicates the EFI_FIRMWARE_VOLUME_BLOCK2_PROTOCOL instance.
@param Address Pointer to a caller-allocated
EFI_PHYSICAL_ADDRESS that, on successful
return from GetPhysicalAddress(), contains the
base address of the firmware volume.
@retval EFI_SUCCESS The firmware volume base address was returned.
@retval EFI_NOT_SUPPORTED The firmware volume is not memory mapped.
**/
EFI_STATUS
EFIAPI
FvbGetPhysicalAddress (
IN CONST EFI_FIRMWARE_VOLUME_BLOCK2_PROTOCOL *This,
OUT EFI_PHYSICAL_ADDRESS *Address
)
{
NOR_FLASH_INSTANCE *Instance;
Instance = INSTANCE_FROM_FVB_THIS (This);
DEBUG ((DEBUG_BLKIO, "FvbGetPhysicalAddress(BaseAddress=0x%08x)\n", Instance->RegionBaseAddress));
ASSERT (Address != NULL);
*Address = mFlashNvStorageVariableBase;
return EFI_SUCCESS;
}
/**
The GetBlockSize() function retrieves the size of the requested
block. It also returns the number of additional blocks with
the identical size. The GetBlockSize() function is used to
retrieve the block map (see EFI_FIRMWARE_VOLUME_HEADER).
@param This Indicates the EFI_FIRMWARE_VOLUME_BLOCK2_PROTOCOL instance.
@param Lba Indicates the block for which to return the size.
@param BlockSize Pointer to a caller-allocated UINTN in which
the size of the block is returned.
@param NumberOfBlocks Pointer to a caller-allocated UINTN in
which the number of consecutive blocks,
starting with Lba, is returned. All
blocks in this range have a size of
BlockSize.
@retval EFI_SUCCESS The firmware volume base address was returned.
@retval EFI_INVALID_PARAMETER The requested LBA is out of range.
**/
EFI_STATUS
EFIAPI
FvbGetBlockSize (
IN CONST EFI_FIRMWARE_VOLUME_BLOCK2_PROTOCOL *This,
IN EFI_LBA Lba,
OUT UINTN *BlockSize,
OUT UINTN *NumberOfBlocks
)
{
EFI_STATUS Status;
NOR_FLASH_INSTANCE *Instance;
Instance = INSTANCE_FROM_FVB_THIS (This);
DEBUG ((DEBUG_BLKIO, "FvbGetBlockSize(Lba=%ld, BlockSize=0x%x, LastBlock=%ld)\n", Lba, Instance->Media.BlockSize, Instance->Media.LastBlock));
if (Lba > Instance->Media.LastBlock) {
DEBUG ((DEBUG_ERROR, "FvbGetBlockSize: ERROR - Parameter LBA %ld is beyond the last Lba (%ld).\n", Lba, Instance->Media.LastBlock));
Status = EFI_INVALID_PARAMETER;
} else {
// This is easy because in this platform each NorFlash device has equal sized blocks.
*BlockSize = (UINTN)Instance->Media.BlockSize;
*NumberOfBlocks = (UINTN)(Instance->Media.LastBlock - Lba + 1);
DEBUG ((DEBUG_BLKIO, "FvbGetBlockSize: *BlockSize=0x%x, *NumberOfBlocks=0x%x.\n", *BlockSize, *NumberOfBlocks));
Status = EFI_SUCCESS;
}
return Status;
}
/**
Reads the specified number of bytes into a buffer from the specified block.
The Read() function reads the requested number of bytes from the
requested block and stores them in the provided buffer.
Implementations should be mindful that the firmware volume
might be in the ReadDisabled state. If it is in this state,
the Read() function must return the status code
EFI_ACCESS_DENIED without modifying the contents of the
buffer. The Read() function must also prevent spanning block
boundaries. If a read is requested that would span a block
boundary, the read must read up to the boundary but not
beyond. The output parameter NumBytes must be set to correctly
indicate the number of bytes actually read. The caller must be
aware that a read may be partially completed.
@param This Indicates the EFI_FIRMWARE_VOLUME_BLOCK2_PROTOCOL instance.
@param Lba The starting logical block index from which to read.
@param Offset Offset into the block at which to begin reading.
@param NumBytes Pointer to a UINTN.
At entry, *NumBytes contains the total size of the buffer.
At exit, *NumBytes contains the total number of bytes read.
@param Buffer Pointer to a caller-allocated buffer that will be used
to hold the data that is read.
@retval EFI_SUCCESS The firmware volume was read successfully, and contents are
in Buffer.
@retval EFI_BAD_BUFFER_SIZE Read attempted across an LBA boundary.
On output, NumBytes contains the total number of bytes
returned in Buffer.
@retval EFI_ACCESS_DENIED The firmware volume is in the ReadDisabled state.
@retval EFI_DEVICE_ERROR The block device is not functioning correctly and could not be read.
**/
EFI_STATUS
EFIAPI
FvbRead (
IN CONST EFI_FIRMWARE_VOLUME_BLOCK2_PROTOCOL *This,
IN EFI_LBA Lba,
IN UINTN Offset,
IN OUT UINTN *NumBytes,
IN OUT UINT8 *Buffer
)
{
EFI_STATUS TempStatus;
UINTN BlockSize;
NOR_FLASH_INSTANCE *Instance;
Instance = INSTANCE_FROM_FVB_THIS (This);
DEBUG ((DEBUG_BLKIO, "FvbRead(Parameters: Lba=%ld, Offset=0x%x, *NumBytes=0x%x, Buffer @ 0x%08x)\n", Instance->StartLba + Lba, Offset, *NumBytes, Buffer));
TempStatus = EFI_SUCCESS;
// Cache the block size to avoid de-referencing pointers all the time
BlockSize = Instance->Media.BlockSize;
DEBUG ((DEBUG_BLKIO, "FvbRead: Check if (Offset=0x%x + NumBytes=0x%x) <= BlockSize=0x%x\n", Offset, *NumBytes, BlockSize));
// The read must not span block boundaries.
// We need to check each variable individually because adding two large values together overflows.
if ((Offset >= BlockSize) ||
(*NumBytes > BlockSize) ||
((Offset + *NumBytes) > BlockSize))
{
DEBUG ((DEBUG_ERROR, "FvbRead: ERROR - EFI_BAD_BUFFER_SIZE: (Offset=0x%x + NumBytes=0x%x) > BlockSize=0x%x\n", Offset, *NumBytes, BlockSize));
return EFI_BAD_BUFFER_SIZE;
}
// We must have some bytes to read
if (*NumBytes == 0) {
return EFI_BAD_BUFFER_SIZE;
}
// Decide if we are doing full block reads or not.
if (*NumBytes % BlockSize != 0) {
TempStatus = NorFlashRead (Instance, Instance->StartLba + Lba, Offset, *NumBytes, Buffer);
if (EFI_ERROR (TempStatus)) {
return EFI_DEVICE_ERROR;
}
} else {
// Read NOR Flash data into shadow buffer
TempStatus = NorFlashReadBlocks (Instance, Instance->StartLba + Lba, BlockSize, Buffer);
if (EFI_ERROR (TempStatus)) {
// Return one of the pre-approved error statuses
return EFI_DEVICE_ERROR;
}
}
return EFI_SUCCESS;
}
/**
Writes the specified number of bytes from the input buffer to the block.
The Write() function writes the specified number of bytes from
the provided buffer to the specified block and offset. If the
firmware volume is sticky write, the caller must ensure that
all the bits of the specified range to write are in the
EFI_FVB_ERASE_POLARITY state before calling the Write()
function, or else the result will be unpredictable. This
unpredictability arises because, for a sticky-write firmware
volume, a write may negate a bit in the EFI_FVB_ERASE_POLARITY
state but cannot flip it back again. Before calling the
Write() function, it is recommended for the caller to first call
the EraseBlocks() function to erase the specified block to
write. A block erase cycle will transition bits from the
(NOT)EFI_FVB_ERASE_POLARITY state back to the
EFI_FVB_ERASE_POLARITY state. Implementations should be
mindful that the firmware volume might be in the WriteDisabled
state. If it is in this state, the Write() function must
return the status code EFI_ACCESS_DENIED without modifying the
contents of the firmware volume. The Write() function must
also prevent spanning block boundaries. If a write is
requested that spans a block boundary, the write must store up
to the boundary but not beyond. The output parameter NumBytes
must be set to correctly indicate the number of bytes actually
written. The caller must be aware that a write may be
partially completed. All writes, partial or otherwise, must be
fully flushed to the hardware before the Write() service
returns.
@param This Indicates the EFI_FIRMWARE_VOLUME_BLOCK2_PROTOCOL instance.
@param Lba The starting logical block index to write to.
@param Offset Offset into the block at which to begin writing.
@param NumBytes The pointer to a UINTN.
At entry, *NumBytes contains the total size of the buffer.
At exit, *NumBytes contains the total number of bytes actually written.
@param Buffer The pointer to a caller-allocated buffer that contains the source for the write.
@retval EFI_SUCCESS The firmware volume was written successfully.
@retval EFI_BAD_BUFFER_SIZE The write was attempted across an LBA boundary.
On output, NumBytes contains the total number of bytes
actually written.
@retval EFI_ACCESS_DENIED The firmware volume is in the WriteDisabled state.
@retval EFI_DEVICE_ERROR The block device is malfunctioning and could not be written.
**/
EFI_STATUS
EFIAPI
FvbWrite (
IN CONST EFI_FIRMWARE_VOLUME_BLOCK2_PROTOCOL *This,
IN EFI_LBA Lba,
IN UINTN Offset,
IN OUT UINTN *NumBytes,
IN UINT8 *Buffer
)
{
NOR_FLASH_INSTANCE *Instance;
Instance = INSTANCE_FROM_FVB_THIS (This);
return NorFlashWriteSingleBlock (Instance, Instance->StartLba + Lba, Offset, NumBytes, Buffer);
}
/**
Erases and initialises a firmware volume block.
The EraseBlocks() function erases one or more blocks as denoted
by the variable argument list. The entire parameter list of
blocks must be verified before erasing any blocks. If a block is
requested that does not exist within the associated firmware
volume (it has a larger index than the last block of the
firmware volume), the EraseBlocks() function must return the
status code EFI_INVALID_PARAMETER without modifying the contents
of the firmware volume. Implementations should be mindful that
the firmware volume might be in the WriteDisabled state. If it
is in this state, the EraseBlocks() function must return the
status code EFI_ACCESS_DENIED without modifying the contents of
the firmware volume. All calls to EraseBlocks() must be fully
flushed to the hardware before the EraseBlocks() service
returns.
@param This Indicates the EFI_FIRMWARE_VOLUME_BLOCK2_PROTOCOL
instance.
@param ... The variable argument list is a list of tuples.
Each tuple describes a range of LBAs to erase
and consists of the following:
- An EFI_LBA that indicates the starting LBA
- A UINTN that indicates the number of blocks to erase.
The list is terminated with an EFI_LBA_LIST_TERMINATOR.
For example, the following indicates that two ranges of blocks
(5-7 and 10-11) are to be erased:
EraseBlocks (This, 5, 3, 10, 2, EFI_LBA_LIST_TERMINATOR);
@retval EFI_SUCCESS The erase request successfully completed.
@retval EFI_ACCESS_DENIED The firmware volume is in the WriteDisabled state.
@retval EFI_DEVICE_ERROR The block device is not functioning correctly and could not be written.
The firmware device may have been partially erased.
@retval EFI_INVALID_PARAMETER One or more of the LBAs listed in the variable argument list do
not exist in the firmware volume.
**/
EFI_STATUS
EFIAPI
FvbEraseBlocks (
IN CONST EFI_FIRMWARE_VOLUME_BLOCK2_PROTOCOL *This,
...
)
{
EFI_STATUS Status;
VA_LIST Args;
UINTN BlockAddress; // Physical address of Lba to erase
EFI_LBA StartingLba; // Lba from which we start erasing
UINTN NumOfLba; // Number of Lba blocks to erase
NOR_FLASH_INSTANCE *Instance;
Instance = INSTANCE_FROM_FVB_THIS (This);
DEBUG ((DEBUG_BLKIO, "FvbEraseBlocks()\n"));
Status = EFI_SUCCESS;
// Detect WriteDisabled state
if (Instance->Media.ReadOnly == TRUE) {
// Firmware volume is in WriteDisabled state
DEBUG ((DEBUG_ERROR, "FvbEraseBlocks: ERROR - Device is in WriteDisabled state.\n"));
return EFI_ACCESS_DENIED;
}
// Before erasing, check the entire list of parameters to ensure all specified blocks are valid
VA_START (Args, This);
do {
// Get the Lba from which we start erasing
StartingLba = VA_ARG (Args, EFI_LBA);
// Have we reached the end of the list?
if (StartingLba == EFI_LBA_LIST_TERMINATOR) {
// Exit the while loop
break;
}
// How many Lba blocks are we requested to erase?
NumOfLba = VA_ARG (Args, UINTN);
// All blocks must be within range
DEBUG ((
DEBUG_BLKIO,
"FvbEraseBlocks: Check if: ( StartingLba=%ld + NumOfLba=%Lu - 1 ) > LastBlock=%ld.\n",
Instance->StartLba + StartingLba,
(UINT64)NumOfLba,
Instance->Media.LastBlock
));
if ((NumOfLba == 0) || ((Instance->StartLba + StartingLba + NumOfLba - 1) > Instance->Media.LastBlock)) {
VA_END (Args);
DEBUG ((DEBUG_ERROR, "FvbEraseBlocks: ERROR - Lba range goes past the last Lba.\n"));
Status = EFI_INVALID_PARAMETER;
goto EXIT;
}
} while (TRUE);
VA_END (Args);
//
// To get here, all must be ok, so start erasing
//
VA_START (Args, This);
do {
// Get the Lba from which we start erasing
StartingLba = VA_ARG (Args, EFI_LBA);
// Have we reached the end of the list?
if (StartingLba == EFI_LBA_LIST_TERMINATOR) {
// Exit the while loop
break;
}
// How many Lba blocks are we requested to erase?
NumOfLba = VA_ARG (Args, UINTN);
// Go through each one and erase it
while (NumOfLba > 0) {
// Get the physical address of Lba to erase
BlockAddress = GET_NOR_BLOCK_ADDRESS (
Instance->RegionBaseAddress,
Instance->StartLba + StartingLba,
Instance->Media.BlockSize
);
// Erase it
DEBUG ((DEBUG_BLKIO, "FvbEraseBlocks: Erasing Lba=%ld @ 0x%08x.\n", Instance->StartLba + StartingLba, BlockAddress));
Status = NorFlashUnlockAndEraseSingleBlock (Instance, BlockAddress);
if (EFI_ERROR (Status)) {
VA_END (Args);
Status = EFI_DEVICE_ERROR;
goto EXIT;
}
// Move to the next Lba
StartingLba++;
NumOfLba--;
}
} while (TRUE);
VA_END (Args);
EXIT:
return Status;
}
/**
Fixup internal data so that EFI can be call in virtual mode.
Call the passed in Child Notify event and convert any pointers in
lib to virtual mode.
@param[in] Event The Event that is being processed
@param[in] Context Event Context
**/
VOID
EFIAPI
FvbVirtualNotifyEvent (
IN EFI_EVENT Event,
IN VOID *Context
)
{
EfiConvertPointer (0x0, (VOID **)&mFlashNvStorageVariableBase);
return;
}

View File

@ -1,383 +0,0 @@
/** @file NorFlashStandaloneMm.c
Copyright (c) 2011 - 2021, Arm Limited. All rights reserved.<BR>
Copyright (c) 2020, Linaro, Ltd. All rights reserved.<BR>
SPDX-License-Identifier: BSD-2-Clause-Patent
**/
#include <Library/BaseMemoryLib.h>
#include <Library/MemoryAllocationLib.h>
#include <Library/MmServicesTableLib.h>
#include "NorFlash.h"
//
// Global variable declarations
//
NOR_FLASH_INSTANCE **mNorFlashInstances;
UINT32 mNorFlashDeviceCount;
UINTN mFlashNvStorageVariableBase;
NOR_FLASH_INSTANCE mNorFlashInstanceTemplate = {
NOR_FLASH_SIGNATURE, // Signature
NULL, // Handle ... NEED TO BE FILLED
0, // DeviceBaseAddress ... NEED TO BE FILLED
0, // RegionBaseAddress ... NEED TO BE FILLED
0, // Size ... NEED TO BE FILLED
0, // StartLba
{
EFI_BLOCK_IO_PROTOCOL_REVISION2, // Revision
NULL, // Media ... NEED TO BE FILLED
NULL, // Reset;
NULL, // ReadBlocks
NULL, // WriteBlocks
NULL // FlushBlocks
}, // BlockIoProtocol
{
0, // MediaId ... NEED TO BE FILLED
FALSE, // RemovableMedia
TRUE, // MediaPresent
FALSE, // LogicalPartition
FALSE, // ReadOnly
FALSE, // WriteCaching;
0, // BlockSize ... NEED TO BE FILLED
4, // IoAlign
0, // LastBlock ... NEED TO BE FILLED
0, // LowestAlignedLba
1, // LogicalBlocksPerPhysicalBlock
}, // Media;
{
EFI_DISK_IO_PROTOCOL_REVISION, // Revision
NULL, // ReadDisk
NULL // WriteDisk
},
{
FvbGetAttributes, // GetAttributes
FvbSetAttributes, // SetAttributes
FvbGetPhysicalAddress, // GetPhysicalAddress
FvbGetBlockSize, // GetBlockSize
FvbRead, // Read
FvbWrite, // Write
FvbEraseBlocks, // EraseBlocks
NULL, // ParentHandle
}, // FvbProtoccol;
NULL, // ShadowBuffer
{
{
{
HARDWARE_DEVICE_PATH,
HW_VENDOR_DP,
{
(UINT8)(OFFSET_OF (NOR_FLASH_DEVICE_PATH, End)),
(UINT8)(OFFSET_OF (NOR_FLASH_DEVICE_PATH, End) >> 8)
}
},
{ 0x0, 0x0, 0x0, { 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0 }
}, // GUID ... NEED TO BE FILLED
},
0, // Index
{
END_DEVICE_PATH_TYPE,
END_ENTIRE_DEVICE_PATH_SUBTYPE,
{ sizeof (EFI_DEVICE_PATH_PROTOCOL), 0 }
}
} // DevicePath
};
EFI_STATUS
NorFlashCreateInstance (
IN UINTN NorFlashDeviceBase,
IN UINTN NorFlashRegionBase,
IN UINTN NorFlashSize,
IN UINT32 Index,
IN UINT32 BlockSize,
IN BOOLEAN SupportFvb,
OUT NOR_FLASH_INSTANCE **NorFlashInstance
)
{
EFI_STATUS Status;
NOR_FLASH_INSTANCE *Instance;
ASSERT (NorFlashInstance != NULL);
Instance = AllocateRuntimeCopyPool (sizeof (NOR_FLASH_INSTANCE), &mNorFlashInstanceTemplate);
if (Instance == NULL) {
return EFI_OUT_OF_RESOURCES;
}
Instance->DeviceBaseAddress = NorFlashDeviceBase;
Instance->RegionBaseAddress = NorFlashRegionBase;
Instance->Size = NorFlashSize;
Instance->BlockIoProtocol.Media = &Instance->Media;
Instance->Media.MediaId = Index;
Instance->Media.BlockSize = BlockSize;
Instance->Media.LastBlock = (NorFlashSize / BlockSize)-1;
CopyGuid (&Instance->DevicePath.Vendor.Guid, &gEfiCallerIdGuid);
Instance->DevicePath.Index = (UINT8)Index;
Instance->ShadowBuffer = AllocateRuntimePool (BlockSize);
if (Instance->ShadowBuffer == NULL) {
return EFI_OUT_OF_RESOURCES;
}
if (SupportFvb) {
NorFlashFvbInitialize (Instance);
Status = gMmst->MmInstallProtocolInterface (
&Instance->Handle,
&gEfiSmmFirmwareVolumeBlockProtocolGuid,
EFI_NATIVE_INTERFACE,
&Instance->FvbProtocol
);
if (EFI_ERROR (Status)) {
FreePool (Instance);
return Status;
}
} else {
DEBUG ((DEBUG_ERROR, "standalone MM NOR Flash driver only support FVB.\n"));
FreePool (Instance);
return EFI_UNSUPPORTED;
}
*NorFlashInstance = Instance;
return Status;
}
/**
* This function unlock and erase an entire NOR Flash block.
**/
EFI_STATUS
NorFlashUnlockAndEraseSingleBlock (
IN NOR_FLASH_INSTANCE *Instance,
IN UINTN BlockAddress
)
{
EFI_STATUS Status;
UINTN Index;
Index = 0;
// The block erase might fail a first time (SW bug ?). Retry it ...
do {
// Unlock the block if we have to
Status = NorFlashUnlockSingleBlockIfNecessary (Instance, BlockAddress);
if (EFI_ERROR (Status)) {
break;
}
Status = NorFlashEraseSingleBlock (Instance, BlockAddress);
Index++;
} while ((Index < NOR_FLASH_ERASE_RETRY) && (Status == EFI_WRITE_PROTECTED));
if (Index == NOR_FLASH_ERASE_RETRY) {
DEBUG ((DEBUG_ERROR, "EraseSingleBlock(BlockAddress=0x%08x: Block Locked Error (try to erase %d times)\n", BlockAddress, Index));
}
return Status;
}
EFI_STATUS
NorFlashWriteFullBlock (
IN NOR_FLASH_INSTANCE *Instance,
IN EFI_LBA Lba,
IN UINT32 *DataBuffer,
IN UINT32 BlockSizeInWords
)
{
EFI_STATUS Status;
UINTN WordAddress;
UINT32 WordIndex;
UINTN BufferIndex;
UINTN BlockAddress;
UINTN BuffersInBlock;
UINTN RemainingWords;
UINTN Cnt;
Status = EFI_SUCCESS;
// Get the physical address of the block
BlockAddress = GET_NOR_BLOCK_ADDRESS (Instance->RegionBaseAddress, Lba, BlockSizeInWords * 4);
// Start writing from the first address at the start of the block
WordAddress = BlockAddress;
Status = NorFlashUnlockAndEraseSingleBlock (Instance, BlockAddress);
if (EFI_ERROR (Status)) {
DEBUG ((DEBUG_ERROR, "WriteSingleBlock: ERROR - Failed to Unlock and Erase the single block at 0x%X\n", BlockAddress));
goto EXIT;
}
// To speed up the programming operation, NOR Flash is programmed using the Buffered Programming method.
// Check that the address starts at a 32-word boundary, i.e. last 7 bits must be zero
if ((WordAddress & BOUNDARY_OF_32_WORDS) == 0x00) {
// First, break the entire block into buffer-sized chunks.
BuffersInBlock = (UINTN)(BlockSizeInWords * 4) / P30_MAX_BUFFER_SIZE_IN_BYTES;
// Then feed each buffer chunk to the NOR Flash
// If a buffer does not contain any data, don't write it.
for (BufferIndex = 0;
BufferIndex < BuffersInBlock;
BufferIndex++, WordAddress += P30_MAX_BUFFER_SIZE_IN_BYTES, DataBuffer += P30_MAX_BUFFER_SIZE_IN_WORDS
)
{
// Check the buffer to see if it contains any data (not set all 1s).
for (Cnt = 0; Cnt < P30_MAX_BUFFER_SIZE_IN_WORDS; Cnt++) {
if (~DataBuffer[Cnt] != 0 ) {
// Some data found, write the buffer.
Status = NorFlashWriteBuffer (
Instance,
WordAddress,
P30_MAX_BUFFER_SIZE_IN_BYTES,
DataBuffer
);
if (EFI_ERROR (Status)) {
goto EXIT;
}
break;
}
}
}
// Finally, finish off any remaining words that are less than the maximum size of the buffer
RemainingWords = BlockSizeInWords % P30_MAX_BUFFER_SIZE_IN_WORDS;
if (RemainingWords != 0) {
Status = NorFlashWriteBuffer (Instance, WordAddress, (RemainingWords * 4), DataBuffer);
if (EFI_ERROR (Status)) {
goto EXIT;
}
}
} else {
// For now, use the single word programming algorithm
// It is unlikely that the NOR Flash will exist in an address which falls within a 32 word boundary range,
// i.e. which ends in the range 0x......01 - 0x......7F.
for (WordIndex = 0; WordIndex < BlockSizeInWords; WordIndex++, DataBuffer++, WordAddress = WordAddress + 4) {
Status = NorFlashWriteSingleWord (Instance, WordAddress, *DataBuffer);
if (EFI_ERROR (Status)) {
goto EXIT;
}
}
}
EXIT:
if (EFI_ERROR (Status)) {
DEBUG ((DEBUG_ERROR, "NOR FLASH Programming [WriteSingleBlock] failed at address 0x%08x. Exit Status = \"%r\".\n", WordAddress, Status));
}
return Status;
}
EFI_STATUS
EFIAPI
NorFlashInitialise (
IN EFI_HANDLE ImageHandle,
IN EFI_MM_SYSTEM_TABLE *MmSystemTable
)
{
EFI_STATUS Status;
UINT32 Index;
NOR_FLASH_DESCRIPTION *NorFlashDevices;
BOOLEAN ContainVariableStorage;
Status = NorFlashPlatformInitialization ();
if (EFI_ERROR (Status)) {
DEBUG ((DEBUG_ERROR, "NorFlashInitialise: Fail to initialize Nor Flash devices\n"));
return Status;
}
Status = NorFlashPlatformGetDevices (&NorFlashDevices, &mNorFlashDeviceCount);
if (EFI_ERROR (Status)) {
DEBUG ((DEBUG_ERROR, "NorFlashInitialise: Fail to get Nor Flash devices\n"));
return Status;
}
mNorFlashInstances = AllocatePool (sizeof (NOR_FLASH_INSTANCE *) * mNorFlashDeviceCount);
for (Index = 0; Index < mNorFlashDeviceCount; Index++) {
// Check if this NOR Flash device contain the variable storage region
if (FixedPcdGet64 (PcdFlashNvStorageVariableBase64) != 0) {
ContainVariableStorage =
(NorFlashDevices[Index].RegionBaseAddress <= FixedPcdGet64 (PcdFlashNvStorageVariableBase64)) &&
(FixedPcdGet64 (PcdFlashNvStorageVariableBase64) + FixedPcdGet32 (PcdFlashNvStorageVariableSize) <=
NorFlashDevices[Index].RegionBaseAddress + NorFlashDevices[Index].Size);
} else {
ContainVariableStorage =
(NorFlashDevices[Index].RegionBaseAddress <= FixedPcdGet32 (PcdFlashNvStorageVariableBase)) &&
(FixedPcdGet32 (PcdFlashNvStorageVariableBase) + FixedPcdGet32 (PcdFlashNvStorageVariableSize) <=
NorFlashDevices[Index].RegionBaseAddress + NorFlashDevices[Index].Size);
}
Status = NorFlashCreateInstance (
NorFlashDevices[Index].DeviceBaseAddress,
NorFlashDevices[Index].RegionBaseAddress,
NorFlashDevices[Index].Size,
Index,
NorFlashDevices[Index].BlockSize,
ContainVariableStorage,
&mNorFlashInstances[Index]
);
if (EFI_ERROR (Status)) {
DEBUG ((DEBUG_ERROR, "NorFlashInitialise: Fail to create instance for NorFlash[%d]\n", Index));
}
}
return Status;
}
EFI_STATUS
EFIAPI
NorFlashFvbInitialize (
IN NOR_FLASH_INSTANCE *Instance
)
{
EFI_STATUS Status;
UINT32 FvbNumLba;
ASSERT ((Instance != NULL));
mFlashNvStorageVariableBase = (FixedPcdGet64 (PcdFlashNvStorageVariableBase64) != 0) ?
FixedPcdGet64 (PcdFlashNvStorageVariableBase64) : FixedPcdGet32 (PcdFlashNvStorageVariableBase);
// Set the index of the first LBA for the FVB
Instance->StartLba = (mFlashNvStorageVariableBase - Instance->RegionBaseAddress) / Instance->Media.BlockSize;
// Determine if there is a valid header at the beginning of the NorFlash
Status = ValidateFvHeader (Instance);
// Install the Default FVB header if required
if (EFI_ERROR (Status)) {
// There is no valid header, so time to install one.
DEBUG ((DEBUG_INFO, "%a: The FVB Header is not valid.\n", __FUNCTION__));
DEBUG ((
DEBUG_INFO,
"%a: Installing a correct one for this volume.\n",
__FUNCTION__
));
// Erase all the NorFlash that is reserved for variable storage
FvbNumLba = (PcdGet32 (PcdFlashNvStorageVariableSize) + PcdGet32 (PcdFlashNvStorageFtwWorkingSize) + PcdGet32 (PcdFlashNvStorageFtwSpareSize)) / Instance->Media.BlockSize;
Status = FvbEraseBlocks (&Instance->FvbProtocol, (EFI_LBA)0, FvbNumLba, EFI_LBA_LIST_TERMINATOR);
if (EFI_ERROR (Status)) {
return Status;
}
// Install all appropriate headers
Status = InitializeFvAndVariableStoreHeaders (Instance);
if (EFI_ERROR (Status)) {
return Status;
}
}
return Status;
}

View File

@ -1,66 +0,0 @@
#/** @file
#
# Component description file for NorFlashStandaloneMm module
#
# Copyright (c) 2011 - 2021, Arm Limited. All rights reserved.<BR>
# Copyright (c) 2020, Linaro, Ltd. All rights reserved.<BR>
#
# SPDX-License-Identifier: BSD-2-Clause-Patent
#
#**/
[Defines]
INF_VERSION = 0x00010005
BASE_NAME = ArmVeNorFlashStandaloneMm
FILE_GUID = e67d82ad-cd56-4071-9151-95ee44990bb0
MODULE_TYPE = MM_STANDALONE
VERSION_STRING = 1.0
PI_SPECIFICATION_VERSION = 0x00010032
ENTRY_POINT = NorFlashInitialise
[Sources.common]
NorFlash.h
NorFlash.c
NorFlashStandaloneMm.c
NorFlashFvb.c
[Packages]
MdePkg/MdePkg.dec
MdeModulePkg/MdeModulePkg.dec
ArmPlatformPkg/ArmPlatformPkg.dec
EmbeddedPkg/EmbeddedPkg.dec
[LibraryClasses]
BaseLib
BaseMemoryLib
DebugLib
IoLib
MemoryAllocationLib
MmServicesTableLib
NorFlashPlatformLib
StandaloneMmDriverEntryPoint
[Guids]
gEfiSystemNvDataFvGuid
gEfiVariableGuid
gEfiAuthenticatedVariableGuid
[Protocols]
gEfiSmmFirmwareVolumeBlockProtocolGuid
[FixedPcd]
gEfiMdeModulePkgTokenSpaceGuid.PcdFlashNvStorageVariableBase64
gEfiMdeModulePkgTokenSpaceGuid.PcdFlashNvStorageVariableBase
gEfiMdeModulePkgTokenSpaceGuid.PcdFlashNvStorageVariableSize
gEfiMdeModulePkgTokenSpaceGuid.PcdFlashNvStorageFtwWorkingBase64
gEfiMdeModulePkgTokenSpaceGuid.PcdFlashNvStorageFtwWorkingBase
gEfiMdeModulePkgTokenSpaceGuid.PcdFlashNvStorageFtwWorkingSize
gEfiMdeModulePkgTokenSpaceGuid.PcdFlashNvStorageFtwSpareBase64
gEfiMdeModulePkgTokenSpaceGuid.PcdFlashNvStorageFtwSpareBase
gEfiMdeModulePkgTokenSpaceGuid.PcdFlashNvStorageFtwSpareSize
[FeaturePcd]
gArmPlatformTokenSpaceGuid.PcdNorFlashCheckBlockLocked
[Depex]
TRUE

View File

@ -1,30 +0,0 @@
/** @file
Copyright (c) 2011-2012, ARM Ltd. All rights reserved.<BR>
SPDX-License-Identifier: BSD-2-Clause-Patent
**/
#ifndef _NORFLASHPLATFORMLIB_H_
#define _NORFLASHPLATFORMLIB_H_
typedef struct {
UINTN DeviceBaseAddress; // Start address of the Device Base Address (DBA)
UINTN RegionBaseAddress; // Start address of one single region
UINTN Size;
UINTN BlockSize;
} NOR_FLASH_DESCRIPTION;
EFI_STATUS
NorFlashPlatformInitialization (
VOID
);
EFI_STATUS
NorFlashPlatformGetDevices (
OUT NOR_FLASH_DESCRIPTION **NorFlashDescriptions,
OUT UINT32 *Count
);
#endif /* _NORFLASHPLATFORMLIB_H_ */

View File

@ -1,28 +0,0 @@
/** @file
Copyright (c) 2014, Linaro Ltd. All rights reserved.<BR>
SPDX-License-Identifier: BSD-2-Clause-Patent
**/
#include <Library/NorFlashPlatformLib.h>
EFI_STATUS
NorFlashPlatformInitialization (
VOID
)
{
return EFI_SUCCESS;
}
EFI_STATUS
NorFlashPlatformGetDevices (
OUT NOR_FLASH_DESCRIPTION **NorFlashDescriptions,
OUT UINT32 *Count
)
{
*NorFlashDescriptions = NULL;
*Count = 0;
return EFI_SUCCESS;
}

View File

@ -1,24 +0,0 @@
#/** @file
#
# Component description file for NorFlashPlatformNullLib module
#
# Copyright (c) 2017, Linaro Ltd. All rights reserved.<BR>
#
# SPDX-License-Identifier: BSD-2-Clause-Patent
#
#**/
[Defines]
INF_VERSION = 0x00010005
BASE_NAME = NorFlashPlatformNullLib
FILE_GUID = 29b733ad-d066-4df6-8a89-b9df1beb818a
MODULE_TYPE = DXE_DRIVER
VERSION_STRING = 1.0
LIBRARY_CLASS = NorFlashPlatformLib
[Sources.common]
NorFlashPlatformNullLib.c
[Packages]
MdePkg/MdePkg.dec
ArmPlatformPkg/ArmPlatformPkg.dec