diff --git a/BaseTools/Source/C/GenFw/Elf64Convert.c b/BaseTools/Source/C/GenFw/Elf64Convert.c index 3d6319c821..d574300ac4 100644 --- a/BaseTools/Source/C/GenFw/Elf64Convert.c +++ b/BaseTools/Source/C/GenFw/Elf64Convert.c @@ -1017,6 +1017,31 @@ WriteSections64 ( } else if (mEhdr->e_machine == EM_AARCH64) { switch (ELF_R_TYPE(Rel->r_info)) { + INT64 Offset; + + case R_AARCH64_LD64_GOT_LO12_NC: + // + // Convert into an ADD instruction - see R_AARCH64_ADR_GOT_PAGE below. + // + *(UINT32 *)Targ &= 0x3ff; + *(UINT32 *)Targ |= 0x91000000 | ((Sym->st_value & 0xfff) << 10); + break; + + case R_AARCH64_ADR_GOT_PAGE: + // + // This relocation points to the GOT entry that contains the absolute + // address of the symbol we are referring to. Since EDK2 only uses + // fully linked binaries, we can avoid the indirection, and simply + // refer to the symbol directly. This implies having to patch the + // subsequent LDR instruction (covered by a R_AARCH64_LD64_GOT_LO12_NC + // relocation) into an ADD instruction - this is handled above. + // + Offset = (Sym->st_value - (Rel->r_offset & ~0xfff)) >> 12; + + *(UINT32 *)Targ &= 0x9000001f; + *(UINT32 *)Targ |= ((Offset & 0x1ffffc) << (5 - 2)) | ((Offset & 0x3) << 29); + + /* fall through */ case R_AARCH64_ADR_PREL_PG_HI21: // @@ -1037,7 +1062,6 @@ WriteSections64 ( // Attempt to convert the ADRP into an ADR instruction. // This is only possible if the symbol is within +/- 1 MB. // - INT64 Offset; // Decode the ADRP instruction Offset = (INT32)((*(UINT32 *)Targ & 0xffffe0) << 8); @@ -1212,6 +1236,8 @@ WriteRelocations64 ( case R_AARCH64_LDST32_ABS_LO12_NC: case R_AARCH64_LDST64_ABS_LO12_NC: case R_AARCH64_LDST128_ABS_LO12_NC: + case R_AARCH64_ADR_GOT_PAGE: + case R_AARCH64_LD64_GOT_LO12_NC: // // No fixups are required for relative relocations, provided that // the relative offsets between sections have been preserved in