mirror of https://github.com/acidanthera/audk.git
DynamicTablesPkg: Dynamic Tables Framework
The dynamic tables framework is designed to generate standardised firmware tables that describe the hardware information at run-time. A goal of standardised firmware is to have a common firmware for a platform capable of booting both Windows and Linux operating systems. Traditionally the firmware tables are handcrafted using ACPI Source Language (ASL), Table Definition Language (TDL) and C-code. This approach can be error prone and involves time consuming debugging. In addition, it may be desirable to configure platform hardware at runtime such as: configuring the number of cores available for use by the OS, or turning SoC features ON or OFF. This patch introduces Dynamic Tables Framework which also provides mechanisms to reduce the amount of effort required in porting firmware to new platforms. A more detailed description is in the Readme.md file. Contributed-under: TianoCore Contribution Agreement 1.1 Signed-off-by: Sami Mujawar <sami.mujawar@arm.com> Reviewed-by: Alexei Fedorov <alexei.fedorov@arm.com>
This commit is contained in:
parent
4a7aa8d34a
commit
dacba2b271
|
@ -0,0 +1,139 @@
|
||||||
|
Dynamic Tables Framework
|
||||||
|
------------------------
|
||||||
|
|
||||||
|
Dynamic Tables Framework provides mechanisms to reduce the amount
|
||||||
|
of effort required in porting firmware to new platforms. The aim is
|
||||||
|
to provide an implementation capable of generating the firmware
|
||||||
|
tables from an external source. This is potentially a management
|
||||||
|
node, either local or remote, or, where suitable, a file that might
|
||||||
|
be generated from the system construction. This initial release
|
||||||
|
does not fully implement that - the configuration is held in local
|
||||||
|
UEFI modules.
|
||||||
|
|
||||||
|
Feature Summary
|
||||||
|
---------------
|
||||||
|
The dynamic tables framework is designed to generate standardised
|
||||||
|
firmware tables that describe the hardware information at
|
||||||
|
run-time. A goal of standardised firmware is to have a common
|
||||||
|
firmware for a platform capable of booting both Windows and Linux
|
||||||
|
operating systems.
|
||||||
|
|
||||||
|
Traditionally the firmware tables are handcrafted using ACPI
|
||||||
|
Source Language (ASL), Table Definition Language (TDL) and
|
||||||
|
C-code. This approach can be error prone and involves time
|
||||||
|
consuming debugging. In addition, it may be desirable to configure
|
||||||
|
platform hardware at runtime such as: configuring the number of
|
||||||
|
cores available for use by the OS, or turning SoC features ON or
|
||||||
|
OFF.
|
||||||
|
|
||||||
|
The dynamic tables framework simplifies this by providing a set
|
||||||
|
of standard table generators, that are implemented as libraries.
|
||||||
|
These generators query a platform specific component, the
|
||||||
|
'Configuration Manager', to collate the information required
|
||||||
|
for generating the tables at run-time.
|
||||||
|
|
||||||
|
The framework also provides the ability to implement custom/OEM
|
||||||
|
generators; thereby facilitating support for custom tables. The
|
||||||
|
custom generators can also utilize the existing standard generators
|
||||||
|
and override any functionality if needed.
|
||||||
|
|
||||||
|
The framework currently implements a set of standard ACPI table
|
||||||
|
generators for ARM architecture, that can generate Server Base Boot
|
||||||
|
Requirement (SBBR) compliant tables. Although, the set of standard
|
||||||
|
generators implement the functionality required for ARM architecture;
|
||||||
|
the framework is extensible, and support for other architectures can
|
||||||
|
be added easily.
|
||||||
|
|
||||||
|
The framework currently supports the following table generators for ARM:
|
||||||
|
* DBG2 - Debug Port Table 2
|
||||||
|
* DSDT - Differentiated system description table. This is essentially
|
||||||
|
a RAW table generator.
|
||||||
|
* FADT - Fixed ACPI Description Table
|
||||||
|
* GTDT - Generic Timer Description Table
|
||||||
|
* IORT - IO Remapping Table
|
||||||
|
* MADT - Multiple APIC Description Table
|
||||||
|
* MCFG - PCI Express memory mapped configuration space base address
|
||||||
|
Description Table
|
||||||
|
* SPCR - Serial Port Console Redirection Table
|
||||||
|
* SSDT - Secondary System Description Table. This is essentially
|
||||||
|
a RAW table generator.
|
||||||
|
|
||||||
|
Roadmap
|
||||||
|
-------
|
||||||
|
The current implementation of the Configuration Manager populates the
|
||||||
|
platform information statically as a C structure. Further enhancements
|
||||||
|
to introduce runtime loading of platform information from a platform
|
||||||
|
information file is planned.
|
||||||
|
|
||||||
|
Also support for generating SMBIOS tables is planned and will be added
|
||||||
|
subsequently.
|
||||||
|
|
||||||
|
Related Modules
|
||||||
|
---------------
|
||||||
|
|
||||||
|
### ACPICA iASL compiler
|
||||||
|
The RAW table generator, used to process the DSDT/SSDT files depends on
|
||||||
|
the iASL compiler to convert the DSDT/SSDT ASL files to a C array containing
|
||||||
|
the hex AML code. The "-tc" option of the iASL compiler has been enhanced to
|
||||||
|
support generation of an AML hex file (C header) with a unique symbol name
|
||||||
|
so that it is suitable for inclusion from a C source file.
|
||||||
|
|
||||||
|
Related Links
|
||||||
|
--------------
|
||||||
|
|
||||||
|
<https://github.com/acpica/acpica.git>
|
||||||
|
|
||||||
|
|
||||||
|
Supported Platforms
|
||||||
|
-------------------
|
||||||
|
1. Juno
|
||||||
|
2. FVP Models
|
||||||
|
|
||||||
|
Build Instructions
|
||||||
|
------------------
|
||||||
|
1. Set path for the iASL compiler with support for generating a C header
|
||||||
|
file as output.
|
||||||
|
|
||||||
|
2. Set PACKAGES_PATH to point to the locations of the following repositories:
|
||||||
|
|
||||||
|
Example:
|
||||||
|
|
||||||
|
> set PACKAGES_PATH=%CD%\edk2;%CD%\edk2-platforms;
|
||||||
|
|
||||||
|
or
|
||||||
|
|
||||||
|
> export PACKAGES_PATH=$PWD/edk2:$PWD/edk2-platforms
|
||||||
|
|
||||||
|
3. To enable Dynamic tables framework the *'DYNAMIC_TABLES_FRAMEWORK'*
|
||||||
|
option must be defined. This can be passed as a command line
|
||||||
|
parameter to the edk2 build system.
|
||||||
|
|
||||||
|
Example:
|
||||||
|
|
||||||
|
>build -a AARCH64 -p Platform\ARM\JunoPkg\ArmJuno.dsc
|
||||||
|
-t GCC5 **-D DYNAMIC_TABLES_FRAMEWORK**
|
||||||
|
|
||||||
|
or
|
||||||
|
|
||||||
|
>build -a AARCH64 -p Platform\ARM\VExpressPkg\ArmVExpress-FVP-AArch64.dsc
|
||||||
|
-t GCC5 **-D DYNAMIC_TABLES_FRAMEWORK**
|
||||||
|
|
||||||
|
Prerequisites
|
||||||
|
-------------
|
||||||
|
ACPICA iASL compiler with the enhanced "-tc" option to support generation of
|
||||||
|
AML hex (C header) files with unique symbol names.
|
||||||
|
|
||||||
|
A patch *'[iASL: Enhance the -tc option (create AML hex file in C)](https://github.com/acpica/acpica/commit/f9a88a4c1cd020b6a5475d63b29626852a0b5f37)'*, dated 16 March 2018 (2018-03-16),
|
||||||
|
to enable this support has been integrated to the ACPICA source repository.
|
||||||
|
|
||||||
|
Ensure that the iASL compiler used for building *Dynamic Tables Framework* has this feature enabled.
|
||||||
|
|
||||||
|
This feature was made available in the *ACPICA Compiler update
|
||||||
|
[Version 20180508](https://www.acpica.org/node/156)*, dated 8 May 2018 (2018-05-08).
|
||||||
|
|
||||||
|
Documentation
|
||||||
|
-------------
|
||||||
|
|
||||||
|
Refer to the following presentation from *UEFI Plugfest Seattle 2018*:
|
||||||
|
|
||||||
|
[Dynamic Tables Framework: A Step Towards Automatic Generation of Advanced Configuration and Power Interface (ACPI) & System Management BIOS (SMBIOS) Tables – Sami Mujawar (Arm).](http://www.uefi.org/sites/default/files/resources/Arm_Dynamic%20Tables%20Framework%20A%20Step%20Towards%20Automatic%20Generation%20of%20Advanced%20Configuration%20and%20Power%20Interface%20%28ACPI%29%20%26%20System%20Management%20BIOS%20%28SMBIOS%29%20Tables%20_0.pdf)
|
Loading…
Reference in New Issue