ArmPlatformPkg: remove PL180 SD controller driver

The PL180 SD host controller driver is only used on emulated ARM
platforms, uses an obsolete version of the MMC host protocol and
does not adhere to the UEFI driver model.

It has been moved into edk2-platforms alongside the only platforms
that use it, so we can drop it from the EDK2 core repository.

Signed-off-by: Ard Biesheuvel <ard.biesheuvel@arm.com>
Reviewed-by: Leif Lindholm <leif@nuviainc.com>
This commit is contained in:
Ard Biesheuvel 2020-04-29 20:51:27 +02:00 committed by mergify[bot]
parent 2a8fc911b9
commit de15e7c265
5 changed files with 0 additions and 776 deletions

View File

@ -94,10 +94,6 @@
gArmPlatformTokenSpaceGuid.PcdArmMaliDpBase|0x0|UINT64|0x00000050 gArmPlatformTokenSpaceGuid.PcdArmMaliDpBase|0x0|UINT64|0x00000050
gArmPlatformTokenSpaceGuid.PcdArmMaliDpMemoryRegionLength|0x0|UINT32|0x00000051 gArmPlatformTokenSpaceGuid.PcdArmMaliDpMemoryRegionLength|0x0|UINT32|0x00000051
## PL180 MCI
gArmPlatformTokenSpaceGuid.PcdPL180SysMciRegAddress|0x00000000|UINT32|0x00000028
gArmPlatformTokenSpaceGuid.PcdPL180MciBaseAddress|0x00000000|UINT32|0x00000029
# Graphics Output Pixel format # Graphics Output Pixel format
# 0 : PixelRedGreenBlueReserved8BitPerColor # 0 : PixelRedGreenBlueReserved8BitPerColor
# 1 : PixelBlueGreenRedReserved8BitPerColor # 1 : PixelBlueGreenRedReserved8BitPerColor

View File

@ -91,7 +91,6 @@
ArmPlatformPkg/Drivers/LcdGraphicsOutputDxe/LcdGraphicsOutputDxe.inf ArmPlatformPkg/Drivers/LcdGraphicsOutputDxe/LcdGraphicsOutputDxe.inf
ArmPlatformPkg/Drivers/NorFlashDxe/NorFlashDxe.inf ArmPlatformPkg/Drivers/NorFlashDxe/NorFlashDxe.inf
ArmPlatformPkg/Drivers/PL061GpioDxe/PL061GpioDxe.inf ArmPlatformPkg/Drivers/PL061GpioDxe/PL061GpioDxe.inf
ArmPlatformPkg/Drivers/PL180MciDxe/PL180MciDxe.inf
ArmPlatformPkg/Drivers/SP805WatchdogDxe/SP805WatchdogDxe.inf ArmPlatformPkg/Drivers/SP805WatchdogDxe/SP805WatchdogDxe.inf
ArmPlatformPkg/Library/ArmPlatformLibNull/ArmPlatformLibNull.inf ArmPlatformPkg/Library/ArmPlatformLibNull/ArmPlatformLibNull.inf

View File

@ -1,563 +0,0 @@
/** @file
This file implement the MMC Host Protocol for the ARM PrimeCell PL180.
Copyright (c) 2011-2012, ARM Limited. All rights reserved.
SPDX-License-Identifier: BSD-2-Clause-Patent
**/
#include "PL180Mci.h"
#include <Library/DevicePathLib.h>
#include <Library/BaseMemoryLib.h>
EFI_MMC_HOST_PROTOCOL *gpMmcHost;
// Untested ...
//#define USE_STREAM
#define MMCI0_BLOCKLEN 512
#define MMCI0_POW2_BLOCKLEN 9
#define MMCI0_TIMEOUT 1000
#define SYS_MCI_CARDIN BIT0
#define SYS_MCI_WPROT BIT1
BOOLEAN
MciIsPowerOn (
VOID
)
{
return ((MmioRead32 (MCI_POWER_CONTROL_REG) & MCI_POWER_ON) == MCI_POWER_ON);
}
EFI_STATUS
MciInitialize (
VOID
)
{
MCI_TRACE ("MciInitialize()");
return EFI_SUCCESS;
}
BOOLEAN
MciIsCardPresent (
IN EFI_MMC_HOST_PROTOCOL *This
)
{
return (MmioRead32 (FixedPcdGet32 (PcdPL180SysMciRegAddress)) & SYS_MCI_CARDIN);
}
BOOLEAN
MciIsReadOnly (
IN EFI_MMC_HOST_PROTOCOL *This
)
{
return (MmioRead32 (FixedPcdGet32 (PcdPL180SysMciRegAddress)) & SYS_MCI_WPROT);
}
// Convert block size to 2^n
STATIC
UINT32
GetPow2BlockLen (
IN UINT32 BlockLen
)
{
UINTN Loop;
UINTN Pow2BlockLen;
Loop = 0x8000;
Pow2BlockLen = 15;
do {
Loop = (Loop >> 1) & 0xFFFF;
Pow2BlockLen--;
} while (Pow2BlockLen && (!(Loop & BlockLen)));
return Pow2BlockLen;
}
VOID
MciPrepareDataPath (
IN UINTN TransferDirection
)
{
// Set Data Length & Data Timer
MmioWrite32 (MCI_DATA_TIMER_REG, 0xFFFFFFF);
MmioWrite32 (MCI_DATA_LENGTH_REG, MMCI0_BLOCKLEN);
#ifndef USE_STREAM
//Note: we are using a hardcoded BlockLen (==512). If we decide to use a variable size, we could
// compute the pow2 of BlockLen with the above function GetPow2BlockLen ()
MmioWrite32 (MCI_DATA_CTL_REG, MCI_DATACTL_ENABLE | MCI_DATACTL_DMA_ENABLE | TransferDirection | (MMCI0_POW2_BLOCKLEN << 4));
#else
MmioWrite32 (MCI_DATA_CTL_REG, MCI_DATACTL_ENABLE | MCI_DATACTL_DMA_ENABLE | TransferDirection | MCI_DATACTL_STREAM_TRANS);
#endif
}
EFI_STATUS
MciSendCommand (
IN EFI_MMC_HOST_PROTOCOL *This,
IN MMC_CMD MmcCmd,
IN UINT32 Argument
)
{
UINT32 Status;
UINT32 Cmd;
UINTN RetVal;
UINTN CmdCtrlReg;
UINT32 DoneMask;
RetVal = EFI_SUCCESS;
if ((MmcCmd == MMC_CMD17) || (MmcCmd == MMC_CMD11)) {
MciPrepareDataPath (MCI_DATACTL_CARD_TO_CONT);
} else if ((MmcCmd == MMC_CMD24) || (MmcCmd == MMC_CMD20)) {
MciPrepareDataPath (MCI_DATACTL_CONT_TO_CARD);
} else if (MmcCmd == MMC_CMD6) {
MmioWrite32 (MCI_DATA_TIMER_REG, 0xFFFFFFF);
MmioWrite32 (MCI_DATA_LENGTH_REG, 64);
#ifndef USE_STREAM
MmioWrite32 (MCI_DATA_CTL_REG, MCI_DATACTL_ENABLE | MCI_DATACTL_CARD_TO_CONT | GetPow2BlockLen (64));
#else
MmioWrite32 (MCI_DATA_CTL_REG, MCI_DATACTL_ENABLE | MCI_DATACTL_CARD_TO_CONT | MCI_DATACTL_STREAM_TRANS);
#endif
} else if (MmcCmd == MMC_ACMD51) {
MmioWrite32 (MCI_DATA_TIMER_REG, 0xFFFFFFF);
/* SCR register is 8 bytes long. */
MmioWrite32 (MCI_DATA_LENGTH_REG, 8);
#ifndef USE_STREAM
MmioWrite32 (MCI_DATA_CTL_REG, MCI_DATACTL_ENABLE | MCI_DATACTL_CARD_TO_CONT | GetPow2BlockLen (8));
#else
MmioWrite32 (MCI_DATA_CTL_REG, MCI_DATACTL_ENABLE | MCI_DATACTL_CARD_TO_CONT | MCI_DATACTL_STREAM_TRANS);
#endif
}
// Create Command for PL180
Cmd = (MMC_GET_INDX (MmcCmd) & INDX_MASK) | MCI_CPSM_ENABLE;
if (MmcCmd & MMC_CMD_WAIT_RESPONSE) {
Cmd |= MCI_CPSM_WAIT_RESPONSE;
}
if (MmcCmd & MMC_CMD_LONG_RESPONSE) {
Cmd |= MCI_CPSM_LONG_RESPONSE;
}
// Clear Status register static flags
MmioWrite32 (MCI_CLEAR_STATUS_REG, MCI_CLR_ALL_STATUS);
// Write to command argument register
MmioWrite32 (MCI_ARGUMENT_REG, Argument);
// Write to command register
MmioWrite32 (MCI_COMMAND_REG, Cmd);
DoneMask = (Cmd & MCI_CPSM_WAIT_RESPONSE)
? (MCI_STATUS_CMD_RESPEND | MCI_STATUS_CMD_ERROR)
: (MCI_STATUS_CMD_SENT | MCI_STATUS_CMD_ERROR);
do {
Status = MmioRead32 (MCI_STATUS_REG);
} while (! (Status & DoneMask));
if ((Status & MCI_STATUS_CMD_ERROR)) {
// Clear Status register error flags
MmioWrite32 (MCI_CLEAR_STATUS_REG, MCI_STATUS_CMD_ERROR);
if ((Status & MCI_STATUS_CMD_START_BIT_ERROR)) {
DEBUG ((EFI_D_ERROR, "MciSendCommand(CmdIndex:%d) Start bit Error! Response:0x%X Status:0x%x\n", (Cmd & 0x3F), MmioRead32 (MCI_RESPONSE0_REG), Status));
RetVal = EFI_NO_RESPONSE;
} else if ((Status & MCI_STATUS_CMD_CMDTIMEOUT)) {
//DEBUG ((EFI_D_ERROR, "MciSendCommand(CmdIndex:%d) TIMEOUT! Response:0x%X Status:0x%x\n", (Cmd & 0x3F), MmioRead32 (MCI_RESPONSE0_REG), Status));
RetVal = EFI_TIMEOUT;
} else if ((!(MmcCmd & MMC_CMD_NO_CRC_RESPONSE)) && (Status & MCI_STATUS_CMD_CMDCRCFAIL)) {
// The CMD1 and response type R3 do not contain CRC. We should ignore the CRC failed Status.
RetVal = EFI_CRC_ERROR;
}
}
// Disable Command Path
CmdCtrlReg = MmioRead32 (MCI_COMMAND_REG);
MmioWrite32 (MCI_COMMAND_REG, (CmdCtrlReg & ~MCI_CPSM_ENABLE));
return RetVal;
}
EFI_STATUS
MciReceiveResponse (
IN EFI_MMC_HOST_PROTOCOL *This,
IN MMC_RESPONSE_TYPE Type,
IN UINT32* Buffer
)
{
if (Buffer == NULL) {
return EFI_INVALID_PARAMETER;
}
if ( (Type == MMC_RESPONSE_TYPE_R1)
|| (Type == MMC_RESPONSE_TYPE_R1b)
|| (Type == MMC_RESPONSE_TYPE_R3)
|| (Type == MMC_RESPONSE_TYPE_R6)
|| (Type == MMC_RESPONSE_TYPE_R7))
{
Buffer[0] = MmioRead32 (MCI_RESPONSE3_REG);
} else if (Type == MMC_RESPONSE_TYPE_R2) {
Buffer[0] = MmioRead32 (MCI_RESPONSE0_REG);
Buffer[1] = MmioRead32 (MCI_RESPONSE1_REG);
Buffer[2] = MmioRead32 (MCI_RESPONSE2_REG);
Buffer[3] = MmioRead32 (MCI_RESPONSE3_REG);
}
return EFI_SUCCESS;
}
EFI_STATUS
MciReadBlockData (
IN EFI_MMC_HOST_PROTOCOL *This,
IN EFI_LBA Lba,
IN UINTN Length,
IN UINT32* Buffer
)
{
UINTN Loop;
UINTN Finish;
UINTN Status;
EFI_STATUS RetVal;
UINTN DataCtrlReg;
EFI_TPL Tpl;
RetVal = EFI_SUCCESS;
// Read data from the RX FIFO
Loop = 0;
if (Length < MMCI0_BLOCKLEN) {
Finish = Length / 4;
} else {
Finish = MMCI0_BLOCKLEN / 4;
}
// Raise the TPL at the highest level to disable Interrupts.
Tpl = gBS->RaiseTPL (TPL_HIGH_LEVEL);
do {
// Read the Status flags
Status = MmioRead32 (MCI_STATUS_REG);
// Do eight reads if possible else a single read
if (Status & MCI_STATUS_CMD_RXFIFOHALFFULL) {
Buffer[Loop] = MmioRead32(MCI_FIFO_REG);
Loop++;
Buffer[Loop] = MmioRead32(MCI_FIFO_REG);
Loop++;
Buffer[Loop] = MmioRead32(MCI_FIFO_REG);
Loop++;
Buffer[Loop] = MmioRead32(MCI_FIFO_REG);
Loop++;
Buffer[Loop] = MmioRead32(MCI_FIFO_REG);
Loop++;
Buffer[Loop] = MmioRead32(MCI_FIFO_REG);
Loop++;
Buffer[Loop] = MmioRead32(MCI_FIFO_REG);
Loop++;
Buffer[Loop] = MmioRead32(MCI_FIFO_REG);
Loop++;
} else if (Status & MCI_STATUS_CMD_RXDATAAVAILBL) {
Buffer[Loop] = MmioRead32(MCI_FIFO_REG);
Loop++;
} else {
//Check for error conditions and timeouts
if (Status & MCI_STATUS_CMD_DATATIMEOUT) {
DEBUG ((EFI_D_ERROR, "MciReadBlockData(): TIMEOUT! Response:0x%X Status:0x%x\n", MmioRead32 (MCI_RESPONSE0_REG), Status));
RetVal = EFI_TIMEOUT;
break;
} else if (Status & MCI_STATUS_CMD_DATACRCFAIL) {
DEBUG ((EFI_D_ERROR, "MciReadBlockData(): CRC Error! Response:0x%X Status:0x%x\n", MmioRead32 (MCI_RESPONSE0_REG), Status));
RetVal = EFI_CRC_ERROR;
break;
} else if (Status & MCI_STATUS_CMD_START_BIT_ERROR) {
DEBUG ((EFI_D_ERROR, "MciReadBlockData(): Start-bit Error! Response:0x%X Status:0x%x\n", MmioRead32 (MCI_RESPONSE0_REG), Status));
RetVal = EFI_NO_RESPONSE;
break;
}
}
//clear RX over run flag
if(Status & MCI_STATUS_CMD_RXOVERRUN) {
MmioWrite32(MCI_CLEAR_STATUS_REG, MCI_STATUS_CMD_RXOVERRUN);
}
} while ((Loop < Finish));
// Restore Tpl
gBS->RestoreTPL (Tpl);
// Clear Status flags
MmioWrite32 (MCI_CLEAR_STATUS_REG, MCI_CLR_ALL_STATUS);
//Disable Data path
DataCtrlReg = MmioRead32 (MCI_DATA_CTL_REG);
MmioWrite32 (MCI_DATA_CTL_REG, (DataCtrlReg & MCI_DATACTL_DISABLE_MASK));
return RetVal;
}
EFI_STATUS
MciWriteBlockData (
IN EFI_MMC_HOST_PROTOCOL *This,
IN EFI_LBA Lba,
IN UINTN Length,
IN UINT32* Buffer
)
{
UINTN Loop;
UINTN Finish;
UINTN Timer;
UINTN Status;
EFI_STATUS RetVal;
UINTN DataCtrlReg;
EFI_TPL Tpl;
RetVal = EFI_SUCCESS;
// Write the data to the TX FIFO
Loop = 0;
Finish = MMCI0_BLOCKLEN / 4;
Timer = MMCI0_TIMEOUT * 100;
// Raise the TPL at the highest level to disable Interrupts.
Tpl = gBS->RaiseTPL (TPL_HIGH_LEVEL);
do {
// Read the Status flags
Status = MmioRead32 (MCI_STATUS_REG);
// Do eight writes if possible else a single write
if (Status & MCI_STATUS_CMD_TXFIFOHALFEMPTY) {
MmioWrite32(MCI_FIFO_REG, Buffer[Loop]);
Loop++;
MmioWrite32(MCI_FIFO_REG, Buffer[Loop]);
Loop++;
MmioWrite32(MCI_FIFO_REG, Buffer[Loop]);
Loop++;
MmioWrite32(MCI_FIFO_REG, Buffer[Loop]);
Loop++;
MmioWrite32(MCI_FIFO_REG, Buffer[Loop]);
Loop++;
MmioWrite32(MCI_FIFO_REG, Buffer[Loop]);
Loop++;
MmioWrite32(MCI_FIFO_REG, Buffer[Loop]);
Loop++;
MmioWrite32(MCI_FIFO_REG, Buffer[Loop]);
Loop++;
} else if (!(Status & MCI_STATUS_CMD_TXFIFOFULL)) {
MmioWrite32(MCI_FIFO_REG, Buffer[Loop]);
Loop++;
} else {
// Check for error conditions and timeouts
if (Status & MCI_STATUS_CMD_DATATIMEOUT) {
DEBUG ((EFI_D_ERROR, "MciWriteBlockData(): TIMEOUT! Response:0x%X Status:0x%x\n", MmioRead32 (MCI_RESPONSE0_REG), Status));
RetVal = EFI_TIMEOUT;
goto Exit;
} else if (Status & MCI_STATUS_CMD_DATACRCFAIL) {
DEBUG ((EFI_D_ERROR, "MciWriteBlockData(): CRC Error! Response:0x%X Status:0x%x\n", MmioRead32 (MCI_RESPONSE0_REG), Status));
RetVal = EFI_CRC_ERROR;
goto Exit;
} else if (Status & MCI_STATUS_CMD_TX_UNDERRUN) {
DEBUG ((EFI_D_ERROR, "MciWriteBlockData(): TX buffer Underrun! Response:0x%X Status:0x%x, Number of bytes written 0x%x\n",MmioRead32(MCI_RESPONSE0_REG),Status, Loop));
RetVal = EFI_BUFFER_TOO_SMALL;
ASSERT(0);
goto Exit;
}
}
} while (Loop < Finish);
// Restore Tpl
gBS->RestoreTPL (Tpl);
// Wait for FIFO to drain
Timer = MMCI0_TIMEOUT * 60;
Status = MmioRead32 (MCI_STATUS_REG);
#ifndef USE_STREAM
// Single block
while (((Status & MCI_STATUS_TXDONE) != MCI_STATUS_TXDONE) && Timer) {
#else
// Stream
while (((Status & MCI_STATUS_CMD_DATAEND) != MCI_STATUS_CMD_DATAEND) && Timer) {
#endif
NanoSecondDelay(10);
Status = MmioRead32 (MCI_STATUS_REG);
Timer--;
}
// Clear Status flags
MmioWrite32 (MCI_CLEAR_STATUS_REG, MCI_CLR_ALL_STATUS);
if (Timer == 0) {
DEBUG ((EFI_D_ERROR, "MciWriteBlockData(): Data End timeout Number of words written 0x%x\n", Loop));
RetVal = EFI_TIMEOUT;
}
Exit:
// Disable Data path
DataCtrlReg = MmioRead32 (MCI_DATA_CTL_REG);
MmioWrite32 (MCI_DATA_CTL_REG, (DataCtrlReg & MCI_DATACTL_DISABLE_MASK));
return RetVal;
}
EFI_STATUS
MciNotifyState (
IN EFI_MMC_HOST_PROTOCOL *This,
IN MMC_STATE State
)
{
UINT32 Data32;
switch (State) {
case MmcInvalidState:
ASSERT (0);
break;
case MmcHwInitializationState:
// If device already turn on then restart it
Data32 = MmioRead32 (MCI_POWER_CONTROL_REG);
if ((Data32 & 0x2) == MCI_POWER_UP) {
MCI_TRACE ("MciNotifyState(MmcHwInitializationState): TurnOff MCI");
// Turn off
MmioWrite32 (MCI_CLOCK_CONTROL_REG, 0);
MmioWrite32 (MCI_POWER_CONTROL_REG, 0);
MicroSecondDelay (100);
}
MCI_TRACE ("MciNotifyState(MmcHwInitializationState): TurnOn MCI");
// Setup clock
// - 0x1D = 29 => should be the clock divider to be less than 400kHz at MCLK = 24Mhz
MmioWrite32 (MCI_CLOCK_CONTROL_REG, 0x1D | MCI_CLOCK_ENABLE | MCI_CLOCK_POWERSAVE);
// Set the voltage
MmioWrite32 (MCI_POWER_CONTROL_REG, MCI_POWER_OPENDRAIN | (15<<2));
MmioWrite32 (MCI_POWER_CONTROL_REG, MCI_POWER_ROD | MCI_POWER_OPENDRAIN | (15<<2) | MCI_POWER_UP);
MicroSecondDelay (10);
MmioWrite32 (MCI_POWER_CONTROL_REG, MCI_POWER_ROD | MCI_POWER_OPENDRAIN | (15<<2) | MCI_POWER_ON);
MicroSecondDelay (100);
// Set Data Length & Data Timer
MmioWrite32 (MCI_DATA_TIMER_REG, 0xFFFFF);
MmioWrite32 (MCI_DATA_LENGTH_REG, 8);
ASSERT ((MmioRead32 (MCI_POWER_CONTROL_REG) & 0x3) == MCI_POWER_ON);
break;
case MmcIdleState:
MCI_TRACE ("MciNotifyState(MmcIdleState)");
break;
case MmcReadyState:
MCI_TRACE ("MciNotifyState(MmcReadyState)");
break;
case MmcIdentificationState:
MCI_TRACE ("MciNotifyState (MmcIdentificationState)");
break;
case MmcStandByState:{
volatile UINT32 PwrCtrlReg;
MCI_TRACE ("MciNotifyState (MmcStandByState)");
// Enable MCICMD push-pull drive
PwrCtrlReg = MmioRead32 (MCI_POWER_CONTROL_REG);
//Disable Open Drain output
PwrCtrlReg &= ~ (MCI_POWER_OPENDRAIN);
MmioWrite32 (MCI_POWER_CONTROL_REG, PwrCtrlReg);
// Set MMCI0 clock to 4MHz (24MHz may be possible with cache enabled)
//
// Note: Increasing clock speed causes TX FIFO under-run errors.
// So careful when optimising this driver for higher performance.
//
MmioWrite32(MCI_CLOCK_CONTROL_REG,0x02 | MCI_CLOCK_ENABLE | MCI_CLOCK_POWERSAVE);
// Set MMCI0 clock to 24MHz (by bypassing the divider)
//MmioWrite32(MCI_CLOCK_CONTROL_REG,MCI_CLOCK_BYPASS | MCI_CLOCK_ENABLE);
break;
}
case MmcTransferState:
//MCI_TRACE ("MciNotifyState(MmcTransferState)");
break;
case MmcSendingDataState:
MCI_TRACE ("MciNotifyState(MmcSendingDataState)");
break;
case MmcReceiveDataState:
MCI_TRACE ("MciNotifyState(MmcReceiveDataState)");
break;
case MmcProgrammingState:
MCI_TRACE ("MciNotifyState(MmcProgrammingState)");
break;
case MmcDisconnectState:
MCI_TRACE ("MciNotifyState(MmcDisconnectState)");
break;
default:
ASSERT (0);
}
return EFI_SUCCESS;
}
EFI_GUID mPL180MciDevicePathGuid = EFI_CALLER_ID_GUID;
EFI_STATUS
MciBuildDevicePath (
IN EFI_MMC_HOST_PROTOCOL *This,
IN EFI_DEVICE_PATH_PROTOCOL **DevicePath
)
{
EFI_DEVICE_PATH_PROTOCOL *NewDevicePathNode;
NewDevicePathNode = CreateDeviceNode (HARDWARE_DEVICE_PATH, HW_VENDOR_DP, sizeof (VENDOR_DEVICE_PATH));
CopyGuid (& ((VENDOR_DEVICE_PATH*)NewDevicePathNode)->Guid, &mPL180MciDevicePathGuid);
*DevicePath = NewDevicePathNode;
return EFI_SUCCESS;
}
EFI_MMC_HOST_PROTOCOL gMciHost = {
MMC_HOST_PROTOCOL_REVISION,
MciIsCardPresent,
MciIsReadOnly,
MciBuildDevicePath,
MciNotifyState,
MciSendCommand,
MciReceiveResponse,
MciReadBlockData,
MciWriteBlockData
};
EFI_STATUS
PL180MciDxeInitialize (
IN EFI_HANDLE ImageHandle,
IN EFI_SYSTEM_TABLE *SystemTable
)
{
EFI_STATUS Status;
EFI_HANDLE Handle;
DEBUG ((EFI_D_WARN, "Probing ID registers at 0x%lx for a PL180\n",
MCI_PERIPH_ID_REG0));
// Check if this is a PL180
if (MmioRead8 (MCI_PERIPH_ID_REG0) != MCI_PERIPH_ID0 ||
MmioRead8 (MCI_PERIPH_ID_REG1) != MCI_PERIPH_ID1 ||
MmioRead8 (MCI_PERIPH_ID_REG2) != MCI_PERIPH_ID2 ||
MmioRead8 (MCI_PCELL_ID_REG0) != MCI_PCELL_ID0 ||
MmioRead8 (MCI_PCELL_ID_REG1) != MCI_PCELL_ID1 ||
MmioRead8 (MCI_PCELL_ID_REG2) != MCI_PCELL_ID2 ||
MmioRead8 (MCI_PCELL_ID_REG3) != MCI_PCELL_ID3) {
DEBUG ((EFI_D_WARN, "Probing ID registers at 0x%lx for a PL180"
" failed\n", MCI_PERIPH_ID_REG0));
return EFI_NOT_FOUND;
}
Handle = NULL;
MCI_TRACE ("PL180MciDxeInitialize()");
//Publish Component Name, BlockIO protocol interfaces
Status = gBS->InstallMultipleProtocolInterfaces (
&Handle,
&gEmbeddedMmcHostProtocolGuid, &gMciHost,
NULL
);
ASSERT_EFI_ERROR (Status);
return EFI_SUCCESS;
}

View File

@ -1,162 +0,0 @@
/** @file
Header for the MMC Host Protocol implementation for the ARM PrimeCell PL180.
Copyright (c) 2011-2012, ARM Limited. All rights reserved.
SPDX-License-Identifier: BSD-2-Clause-Patent
**/
#ifndef __PL180_MCI_H
#define __PL180_MCI_H
#include <Uefi.h>
#include <Protocol/MmcHost.h>
#include <Library/UefiLib.h>
#include <Library/DebugLib.h>
#include <Library/UefiBootServicesTableLib.h>
#include <Library/IoLib.h>
#include <Library/TimerLib.h>
#include <Library/PcdLib.h>
#define PL180_MCI_DXE_VERSION 0x10
#define MCI_SYSCTL FixedPcdGet32 (PcdPL180MciBaseAddress)
#define MCI_POWER_CONTROL_REG (MCI_SYSCTL + 0x000)
#define MCI_CLOCK_CONTROL_REG (MCI_SYSCTL + 0x004)
#define MCI_ARGUMENT_REG (MCI_SYSCTL + 0x008)
#define MCI_COMMAND_REG (MCI_SYSCTL + 0x00C)
#define MCI_RESPCMD_REG (MCI_SYSCTL + 0x010)
#define MCI_RESPONSE3_REG (MCI_SYSCTL + 0x014)
#define MCI_RESPONSE2_REG (MCI_SYSCTL + 0x018)
#define MCI_RESPONSE1_REG (MCI_SYSCTL + 0x01C)
#define MCI_RESPONSE0_REG (MCI_SYSCTL + 0x020)
#define MCI_DATA_TIMER_REG (MCI_SYSCTL + 0x024)
#define MCI_DATA_LENGTH_REG (MCI_SYSCTL + 0x028)
#define MCI_DATA_CTL_REG (MCI_SYSCTL + 0x02C)
#define MCI_DATA_COUNTER (MCI_SYSCTL + 0x030)
#define MCI_STATUS_REG (MCI_SYSCTL + 0x034)
#define MCI_CLEAR_STATUS_REG (MCI_SYSCTL + 0x038)
#define MCI_INT0_MASK_REG (MCI_SYSCTL + 0x03C)
#define MCI_INT1_MASK_REG (MCI_SYSCTL + 0x040)
#define MCI_SELECT_REG (MCI_SYSCTL + 0x044)
#define MCI_FIFOCOUNT_REG (MCI_SYSCTL + 0x048)
#define MCI_FIFO_REG (MCI_SYSCTL + 0x080)
#define MCI_PERIPH_ID_REG0 (MCI_SYSCTL + 0xFE0)
#define MCI_PERIPH_ID_REG1 (MCI_SYSCTL + 0xFE4)
#define MCI_PERIPH_ID_REG2 (MCI_SYSCTL + 0xFE8)
#define MCI_PERIPH_ID_REG3 (MCI_SYSCTL + 0xFEC)
#define MCI_PCELL_ID_REG0 (MCI_SYSCTL + 0xFF0)
#define MCI_PCELL_ID_REG1 (MCI_SYSCTL + 0xFF4)
#define MCI_PCELL_ID_REG2 (MCI_SYSCTL + 0xFF8)
#define MCI_PCELL_ID_REG3 (MCI_SYSCTL + 0xFFC)
#define MCI_PERIPH_ID0 0x80
#define MCI_PERIPH_ID1 0x11
#define MCI_PERIPH_ID2 0x04
#define MCI_PERIPH_ID3 0x00
#define MCI_PCELL_ID0 0x0D
#define MCI_PCELL_ID1 0xF0
#define MCI_PCELL_ID2 0x05
#define MCI_PCELL_ID3 0xB1
#define MCI_POWER_OFF 0
#define MCI_POWER_UP BIT1
#define MCI_POWER_ON (BIT1 | BIT0)
#define MCI_POWER_OPENDRAIN BIT6
#define MCI_POWER_ROD BIT7
#define MCI_CLOCK_ENABLE BIT8
#define MCI_CLOCK_POWERSAVE BIT9
#define MCI_CLOCK_BYPASS BIT10
#define MCI_CLOCK_WIDEBUS BIT11
#define MCI_STATUS_CMD_CMDCRCFAIL BIT0
#define MCI_STATUS_CMD_DATACRCFAIL BIT1
#define MCI_STATUS_CMD_CMDTIMEOUT BIT2
#define MCI_STATUS_CMD_DATATIMEOUT BIT3
#define MCI_STATUS_CMD_TX_UNDERRUN BIT4
#define MCI_STATUS_CMD_RXOVERRUN BIT5
#define MCI_STATUS_CMD_RESPEND BIT6
#define MCI_STATUS_CMD_SENT BIT7
#define MCI_STATUS_CMD_DATAEND BIT8
#define MCI_STATUS_CMD_START_BIT_ERROR BIT9
#define MCI_STATUS_CMD_DATABLOCKEND BIT10
#define MCI_STATUS_CMD_ACTIVE BIT11
#define MCI_STATUS_CMD_TXACTIVE BIT12
#define MCI_STATUS_CMD_RXACTIVE BIT13
#define MCI_STATUS_CMD_TXFIFOHALFEMPTY BIT14
#define MCI_STATUS_CMD_RXFIFOHALFFULL BIT15
#define MCI_STATUS_CMD_TXFIFOFULL BIT16
#define MCI_STATUS_CMD_RXFIFOFULL BIT17
#define MCI_STATUS_CMD_TXFIFOEMPTY BIT18
#define MCI_STATUS_CMD_RXFIFOEMPTY BIT19
#define MCI_STATUS_CMD_TXDATAAVAILBL BIT20
#define MCI_STATUS_CMD_RXDATAAVAILBL BIT21
#define MCI_STATUS_TXDONE (MCI_STATUS_CMD_DATAEND | MCI_STATUS_CMD_DATABLOCKEND)
#define MCI_STATUS_RXDONE (MCI_STATUS_CMD_DATAEND | MCI_STATUS_CMD_DATABLOCKEND)
#define MCI_STATUS_READ_ERROR ( MCI_STATUS_CMD_DATACRCFAIL \
| MCI_STATUS_CMD_DATATIMEOUT \
| MCI_STATUS_CMD_RXOVERRUN \
| MCI_STATUS_CMD_START_BIT_ERROR )
#define MCI_STATUS_WRITE_ERROR ( MCI_STATUS_CMD_DATACRCFAIL \
| MCI_STATUS_CMD_DATATIMEOUT \
| MCI_STATUS_CMD_TX_UNDERRUN )
#define MCI_STATUS_CMD_ERROR ( MCI_STATUS_CMD_CMDCRCFAIL \
| MCI_STATUS_CMD_CMDTIMEOUT \
| MCI_STATUS_CMD_START_BIT_ERROR )
#define MCI_CLR_CMD_STATUS ( MCI_STATUS_CMD_RESPEND \
| MCI_STATUS_CMD_SENT \
| MCI_STATUS_CMD_ERROR )
#define MCI_CLR_READ_STATUS ( MCI_STATUS_RXDONE \
| MCI_STATUS_READ_ERROR )
#define MCI_CLR_WRITE_STATUS ( MCI_STATUS_TXDONE \
| MCI_STATUS_WRITE_ERROR )
#define MCI_CLR_ALL_STATUS (BIT11 - 1)
#define MCI_DATACTL_DISABLE_MASK 0xFE
#define MCI_DATACTL_ENABLE BIT0
#define MCI_DATACTL_CONT_TO_CARD 0
#define MCI_DATACTL_CARD_TO_CONT BIT1
#define MCI_DATACTL_BLOCK_TRANS 0
#define MCI_DATACTL_STREAM_TRANS BIT2
#define MCI_DATACTL_DMA_DISABLED 0
#define MCI_DATACTL_DMA_ENABLE BIT3
#define INDX_MASK 0x3F
#define MCI_CPSM_WAIT_RESPONSE BIT6
#define MCI_CPSM_LONG_RESPONSE BIT7
#define MCI_CPSM_LONG_INTERRUPT BIT8
#define MCI_CPSM_LONG_PENDING BIT9
#define MCI_CPSM_ENABLE BIT10
#define MCI_TRACE(txt) DEBUG ((EFI_D_BLKIO, "ARM_MCI: " txt "\n"))
EFI_STATUS
EFIAPI
MciGetDriverName (
IN EFI_COMPONENT_NAME_PROTOCOL *This,
IN CHAR8 *Language,
OUT CHAR16 **DriverName
);
EFI_STATUS
EFIAPI
MciGetControllerName (
IN EFI_COMPONENT_NAME_PROTOCOL *This,
IN EFI_HANDLE ControllerHandle,
IN EFI_HANDLE ChildHandle OPTIONAL,
IN CHAR8 *Language,
OUT CHAR16 **ControllerName
);
#endif

View File

@ -1,46 +0,0 @@
#/** @file
# INF file for the MMC Host Protocol implementation for the ARM PrimeCell PL180.
#
# Copyright (c) 2011, ARM Limited. All rights reserved.
#
# SPDX-License-Identifier: BSD-2-Clause-Patent
#
#**/
[Defines]
INF_VERSION = 0x00010005
BASE_NAME = PL180MciDxe
FILE_GUID = 09831032-6fa3-4484-af4f-0a000a8d3a82
MODULE_TYPE = DXE_DRIVER
VERSION_STRING = 1.0
ENTRY_POINT = PL180MciDxeInitialize
[Sources.common]
PL180Mci.c
[Packages]
ArmPlatformPkg/ArmPlatformPkg.dec
EmbeddedPkg/EmbeddedPkg.dec
MdePkg/MdePkg.dec
[LibraryClasses]
BaseLib
UefiLib
UefiDriverEntryPoint
BaseMemoryLib
ArmLib
IoLib
TimerLib
[Protocols]
gEfiCpuArchProtocolGuid
gEfiDevicePathProtocolGuid
gEmbeddedMmcHostProtocolGuid
[Pcd]
gArmPlatformTokenSpaceGuid.PcdPL180SysMciRegAddress
gArmPlatformTokenSpaceGuid.PcdPL180MciBaseAddress
[Depex]
gEfiCpuArchProtocolGuid