OvmfPkg/CcExitLib: Refactor TDX MmioExit

BZ: https://bugzilla.tianocore.org/show_bug.cgi?id=4169

The previous TDX MmioExit doesn't handle the Mmio instructions correctly
in some scenarios. This patch refactors the implementation to fix the
issues.

Cc: Erdem Aktas <erdemaktas@google.com>
Cc: James Bottomley <jejb@linux.ibm.com>
Cc: Jiewen Yao <jiewen.yao@intel.com>
Cc: Gerd Hoffmann <kraxel@redhat.com>
Cc: Tom Lendacky <thomas.lendacky@amd.com>
Cc: Ryan Afranji <afranji@google.com>
Reported-by: Ryan Afranji <afranji@google.com>
Signed-off-by: Min Xu <min.m.xu@intel.com>
Reviewed-by: Jiewen Yao <jiewen.yao@intel.com>
Acked-by: Gerd Hoffmann <kraxel@redhat.com>
This commit is contained in:
Min M Xu 2023-01-17 15:43:30 +08:00 committed by mergify[bot]
parent c01622057c
commit e05132aaa0
1 changed files with 390 additions and 172 deletions

View File

@ -13,6 +13,10 @@
#include <Library/BaseMemoryLib.h> #include <Library/BaseMemoryLib.h>
#include <IndustryStandard/Tdx.h> #include <IndustryStandard/Tdx.h>
#include <IndustryStandard/InstructionParsing.h> #include <IndustryStandard/InstructionParsing.h>
#include "CcInstruction.h"
#define TDX_MMIO_READ 0
#define TDX_MMIO_WRITE 1
typedef union { typedef union {
struct { struct {
@ -216,14 +220,15 @@ STATIC
VOID VOID
EFIAPI EFIAPI
TdxDecodeInstruction ( TdxDecodeInstruction (
IN UINT8 *Rip IN UINT8 *Rip,
IN UINT32 Length
) )
{ {
UINTN i; UINTN i;
DEBUG ((DEBUG_INFO, "TDX: #TD[EPT] instruction (%p):", Rip)); DEBUG ((DEBUG_INFO, "TDX: #TD[EPT] instruction (%p):", Rip));
for (i = 0; i < 15; i++) { for (i = 0; i < MIN (15, Length); i++) {
DEBUG ((DEBUG_INFO, "%02x:", Rip[i])); DEBUG ((DEBUG_INFO, "%02x ", Rip[i]));
} }
DEBUG ((DEBUG_INFO, "\n")); DEBUG ((DEBUG_INFO, "\n"));
@ -233,52 +238,339 @@ TdxDecodeInstruction (
if ((x)) { \ if ((x)) { \
TdxDecodeInstruction(Rip); \ TdxDecodeInstruction(Rip); \
TdVmCall(TDVMCALL_HALT, 0, 0, 0, 0, 0); \ TdVmCall(TDVMCALL_HALT, 0, 0, 0, 0, 0); \
CpuDeadLoop (); \
} }
/**
* Tdx MMIO access via TdVmcall.
*
* @param MmioSize Size of the MMIO access
* @param ReadOrWrite Read or write operation
* @param GuestPA Guest physical address
* @param Val Pointer to the value which is read or written
* @retval EFI_SUCCESS Successfully access the mmio
* @retval Others Other errors as indicated
*/
STATIC STATIC
UINT64 * EFI_STATUS
EFIAPI TdxMmioReadWrite (
GetRegFromContext ( IN UINT32 MmioSize,
IN EFI_SYSTEM_CONTEXT_X64 *Regs, IN UINT32 ReadOrWrite,
IN UINTN RegIndex IN UINT64 GuestPA,
IN UINT64 *Val
) )
{ {
switch (RegIndex) { UINT64 TdStatus;
case 0: return &Regs->Rax;
break; if ((MmioSize != 1) && (MmioSize != 2) && (MmioSize != 4) && (MmioSize != 8)) {
case 1: return &Regs->Rcx; DEBUG ((DEBUG_ERROR, "%a: Invalid MmioSize - %d\n", __FUNCTION__, MmioSize));
break; return EFI_INVALID_PARAMETER;
case 2: return &Regs->Rdx;
break;
case 3: return &Regs->Rbx;
break;
case 4: return &Regs->Rsp;
break;
case 5: return &Regs->Rbp;
break;
case 6: return &Regs->Rsi;
break;
case 7: return &Regs->Rdi;
break;
case 8: return &Regs->R8;
break;
case 9: return &Regs->R9;
break;
case 10: return &Regs->R10;
break;
case 11: return &Regs->R11;
break;
case 12: return &Regs->R12;
break;
case 13: return &Regs->R13;
break;
case 14: return &Regs->R14;
break;
case 15: return &Regs->R15;
break;
} }
return NULL; if (Val == NULL) {
return EFI_INVALID_PARAMETER;
}
TdStatus = 0;
if (ReadOrWrite == TDX_MMIO_READ) {
TdStatus = TdVmCall (TDVMCALL_MMIO, MmioSize, TDX_MMIO_READ, GuestPA, 0, Val);
} else if (ReadOrWrite == TDX_MMIO_WRITE) {
TdStatus = TdVmCall (TDVMCALL_MMIO, MmioSize, TDX_MMIO_WRITE, GuestPA, *Val, 0);
} else {
return EFI_INVALID_PARAMETER;
}
if (TdStatus != 0) {
DEBUG ((DEBUG_ERROR, "%a: TdVmcall failed with %llx\n", __FUNCTION__, TdStatus));
return EFI_ABORTED;
}
return EFI_SUCCESS;
}
typedef struct {
UINT8 OpCode;
UINT32 Bytes;
EFI_PHYSICAL_ADDRESS Address;
UINT64 Val;
UINT64 *Register;
UINT32 ReadOrWrite;
} MMIO_EXIT_PARSED_INSTRUCTION;
/**
* Parse the MMIO instructions.
*
* @param Regs Pointer to the EFI_SYSTEM_CONTEXT_X64 which includes the instructions
* @param InstructionData Pointer to the CC_INSTRUCTION_DATA
* @param ParsedInstruction Pointer to the parsed instruction data
*
* @retval EFI_SUCCESS Successfully parsed the instructions
* @retval Others Other error as indicated
*/
STATIC
EFI_STATUS
ParseMmioExitInstructions (
IN OUT EFI_SYSTEM_CONTEXT_X64 *Regs,
IN OUT CC_INSTRUCTION_DATA *InstructionData,
OUT MMIO_EXIT_PARSED_INSTRUCTION *ParsedInstruction
)
{
EFI_STATUS Status;
UINT8 OpCode;
UINT8 SignByte;
UINT32 Bytes;
EFI_PHYSICAL_ADDRESS Address;
UINT64 Val;
UINT64 *Register;
UINT32 ReadOrWrite;
Address = 0;
Bytes = 0;
Register = NULL;
Status = EFI_SUCCESS;
Val = 0;
Status = CcInitInstructionData (InstructionData, NULL, Regs);
if (EFI_ERROR (Status)) {
DEBUG ((DEBUG_ERROR, "%a: Initialize InstructionData failed! (%r)\n", __FUNCTION__, Status));
return Status;
}
OpCode = *(InstructionData->OpCodes);
if (OpCode == TWO_BYTE_OPCODE_ESCAPE) {
OpCode = *(InstructionData->OpCodes + 1);
}
switch (OpCode) {
//
// MMIO write (MOV reg/memX, regX)
//
case 0x88:
Bytes = 1;
//
// fall through
//
case 0x89:
CcDecodeModRm (Regs, InstructionData);
Bytes = ((Bytes != 0) ? Bytes :
(InstructionData->DataSize == Size16Bits) ? 2 :
(InstructionData->DataSize == Size32Bits) ? 4 :
(InstructionData->DataSize == Size64Bits) ? 8 :
0);
if (InstructionData->Ext.ModRm.Mod == 3) {
DEBUG ((DEBUG_ERROR, "%a: Parse Ext.ModRm.Mod error! (OpCode: 0x%x)\n", __FUNCTION__, OpCode));
return EFI_UNSUPPORTED;
}
Address = InstructionData->Ext.RmData;
Val = InstructionData->Ext.RegData;
ReadOrWrite = TDX_MMIO_WRITE;
break;
//
// MMIO write (MOV moffsetX, aX)
//
case 0xA2:
Bytes = 1;
//
// fall through
//
case 0xA3:
Bytes = ((Bytes != 0) ? Bytes :
(InstructionData->DataSize == Size16Bits) ? 2 :
(InstructionData->DataSize == Size32Bits) ? 4 :
(InstructionData->DataSize == Size64Bits) ? 8 :
0);
InstructionData->ImmediateSize = (UINTN)(1 << InstructionData->AddrSize);
InstructionData->End += InstructionData->ImmediateSize;
CopyMem (&Address, InstructionData->Immediate, InstructionData->ImmediateSize);
Val = Regs->Rax;
ReadOrWrite = TDX_MMIO_WRITE;
break;
//
// MMIO write (MOV reg/memX, immX)
//
case 0xC6:
Bytes = 1;
//
// fall through
//
case 0xC7:
CcDecodeModRm (Regs, InstructionData);
Bytes = ((Bytes != 0) ? Bytes :
(InstructionData->DataSize == Size16Bits) ? 2 :
(InstructionData->DataSize == Size32Bits) ? 4 :
(InstructionData->DataSize == Size64Bits) ? 8 :
0);
InstructionData->ImmediateSize = Bytes;
InstructionData->End += Bytes;
Val = 0;
CopyMem (&Val, InstructionData->Immediate, InstructionData->ImmediateSize);
Address = InstructionData->Ext.RmData;
ReadOrWrite = TDX_MMIO_WRITE;
break;
//
// MMIO read (MOV regX, reg/memX)
//
case 0x8A:
Bytes = 1;
//
// fall through
//
case 0x8B:
CcDecodeModRm (Regs, InstructionData);
Bytes = ((Bytes != 0) ? Bytes :
(InstructionData->DataSize == Size16Bits) ? 2 :
(InstructionData->DataSize == Size32Bits) ? 4 :
(InstructionData->DataSize == Size64Bits) ? 8 :
0);
if (InstructionData->Ext.ModRm.Mod == 3) {
//
// NPF on two register operands???
//
DEBUG ((DEBUG_ERROR, "%a: Parse Ext.ModRm.Mod error! (OpCode: 0x%x)\n", __FUNCTION__, OpCode));
return EFI_UNSUPPORTED;
}
Address = InstructionData->Ext.RmData;
ReadOrWrite = TDX_MMIO_READ;
Register = CcGetRegisterPointer (Regs, InstructionData->Ext.ModRm.Reg);
if (Register == NULL) {
return EFI_ABORTED;
}
if (Bytes == 4) {
//
// Zero-extend for 32-bit operation
//
*Register = 0;
}
break;
//
// MMIO read (MOV aX, moffsetX)
//
case 0xA0:
Bytes = 1;
//
// fall through
//
case 0xA1:
Bytes = ((Bytes != 0) ? Bytes :
(InstructionData->DataSize == Size16Bits) ? 2 :
(InstructionData->DataSize == Size32Bits) ? 4 :
(InstructionData->DataSize == Size64Bits) ? 8 :
0);
InstructionData->ImmediateSize = (UINTN)(1 << InstructionData->AddrSize);
InstructionData->End += InstructionData->ImmediateSize;
Address = 0;
CopyMem (
&Address,
InstructionData->Immediate,
InstructionData->ImmediateSize
);
if (Bytes == 4) {
//
// Zero-extend for 32-bit operation
//
Regs->Rax = 0;
}
Register = &Regs->Rax;
ReadOrWrite = TDX_MMIO_READ;
break;
//
// MMIO read w/ zero-extension ((MOVZX regX, reg/memX)
//
case 0xB6:
Bytes = 1;
//
// fall through
//
case 0xB7:
CcDecodeModRm (Regs, InstructionData);
Bytes = (Bytes != 0) ? Bytes : 2;
Address = InstructionData->Ext.RmData;
Register = CcGetRegisterPointer (Regs, InstructionData->Ext.ModRm.Reg);
if (Register == NULL) {
return EFI_ABORTED;
}
SetMem (Register, (UINTN)(1 << InstructionData->DataSize), 0);
ReadOrWrite = TDX_MMIO_READ;
break;
//
// MMIO read w/ sign-extension (MOVSX regX, reg/memX)
//
case 0xBE:
Bytes = 1;
//
// fall through
//
case 0xBF:
CcDecodeModRm (Regs, InstructionData);
Bytes = (Bytes != 0) ? Bytes : 2;
Address = InstructionData->Ext.RmData;
if (Bytes == 1) {
UINT8 *Data;
Data = (UINT8 *)&Val;
SignByte = ((*Data & BIT7) != 0) ? 0xFF : 0x00;
} else {
UINT16 *Data;
Data = (UINT16 *)&Val;
SignByte = ((*Data & BIT15) != 0) ? 0xFF : 0x00;
}
Register = CcGetRegisterPointer (Regs, InstructionData->Ext.ModRm.Reg);
if (Register == NULL) {
return EFI_ABORTED;
}
SetMem (Register, (UINTN)(1 << InstructionData->DataSize), SignByte);
ReadOrWrite = TDX_MMIO_READ;
break;
default:
DEBUG ((DEBUG_ERROR, "%a: Invalid MMIO opcode (%x)\n", __FUNCTION__, OpCode));
Status = EFI_UNSUPPORTED;
}
if (!EFI_ERROR (Status)) {
ParsedInstruction->OpCode = OpCode;
ParsedInstruction->Address = Address;
ParsedInstruction->Bytes = Bytes;
ParsedInstruction->Register = Register;
ParsedInstruction->Val = Val;
ParsedInstruction->ReadOrWrite = ReadOrWrite;
}
return Status;
} }
/** /**
@ -290,160 +582,84 @@ GetRegFromContext (
@param[in] Veinfo VE Info @param[in] Veinfo VE Info
@retval 0 Event handled successfully @retval 0 Event handled successfully
@return New exception value to propagate
**/ **/
STATIC STATIC
INTN UINT64
EFIAPI EFIAPI
MmioExit ( MmioExit (
IN OUT EFI_SYSTEM_CONTEXT_X64 *Regs, IN OUT EFI_SYSTEM_CONTEXT_X64 *Regs,
IN TDCALL_VEINFO_RETURN_DATA *Veinfo IN TDCALL_VEINFO_RETURN_DATA *Veinfo
) )
{ {
UINT64 Status; UINT64 TdStatus;
UINT32 MmioSize; EFI_STATUS Status;
UINT32 RegSize; TD_RETURN_DATA TdReturnData;
UINT8 OpCode; UINT8 Gpaw;
BOOLEAN SeenRex; UINT64 Val;
UINT64 *Reg; UINT64 TdSharedPageMask;
UINT8 *Rip; CC_INSTRUCTION_DATA InstructionData;
UINT64 Val; MMIO_EXIT_PARSED_INSTRUCTION ParsedInstruction;
UINT32 OpSize;
MODRM ModRm;
REX Rex;
TD_RETURN_DATA TdReturnData;
UINT8 Gpaw;
UINT64 TdSharedPageMask;
Rip = (UINT8 *)Regs->Rip; TdStatus = TdCall (TDCALL_TDINFO, 0, 0, 0, &TdReturnData);
Val = 0; if (TdStatus == TDX_EXIT_REASON_SUCCESS) {
Rex.Val = 0;
SeenRex = FALSE;
Status = TdCall (TDCALL_TDINFO, 0, 0, 0, &TdReturnData);
if (Status == TDX_EXIT_REASON_SUCCESS) {
Gpaw = (UINT8)(TdReturnData.TdInfo.Gpaw & 0x3f); Gpaw = (UINT8)(TdReturnData.TdInfo.Gpaw & 0x3f);
TdSharedPageMask = 1ULL << (Gpaw - 1); TdSharedPageMask = 1ULL << (Gpaw - 1);
} else { } else {
DEBUG ((DEBUG_ERROR, "TDCALL failed with status=%llx\n", Status)); DEBUG ((DEBUG_ERROR, "%a: TDCALL failed with status=%llx\n", __FUNCTION__, TdStatus));
return Status; goto FatalError;
} }
if ((Veinfo->GuestPA & TdSharedPageMask) == 0) { if ((Veinfo->GuestPA & TdSharedPageMask) == 0) {
DEBUG ((DEBUG_ERROR, "EPT-violation #VE on private memory is not allowed!")); DEBUG ((DEBUG_ERROR, "%a: EPT-violation #VE on private memory is not allowed!", __FUNCTION__));
TdVmCall (TDVMCALL_HALT, 0, 0, 0, 0, 0); goto FatalError;
CpuDeadLoop ();
} }
// Status = ParseMmioExitInstructions (Regs, &InstructionData, &ParsedInstruction);
// Default to 32bit transfer if (EFI_ERROR (Status)) {
// goto FatalError;
OpSize = 4; }
do { if (Veinfo->GuestPA != (ParsedInstruction.Address | TdSharedPageMask)) {
OpCode = *Rip++; DEBUG ((
if (OpCode == 0x66) { DEBUG_ERROR,
OpSize = 2; "%a: Address is not correct! (%d: 0x%llx != 0x%llx)\n",
} else if ((OpCode == 0x64) || (OpCode == 0x65) || (OpCode == 0x67)) { __FUNCTION__,
continue; ParsedInstruction.OpCode,
} else if ((OpCode >= 0x40) && (OpCode <= 0x4f)) { Veinfo->GuestPA,
SeenRex = TRUE; ParsedInstruction.Address
Rex.Val = OpCode; ));
} else { goto FatalError;
break; }
if (ParsedInstruction.ReadOrWrite == TDX_MMIO_WRITE ) {
Status = TdxMmioReadWrite (ParsedInstruction.Bytes, TDX_MMIO_WRITE, Veinfo->GuestPA, &ParsedInstruction.Val);
} else if (ParsedInstruction.ReadOrWrite == TDX_MMIO_READ) {
Val = 0;
Status = TdxMmioReadWrite (ParsedInstruction.Bytes, TDX_MMIO_READ, Veinfo->GuestPA, &Val);
if (!EFI_ERROR (Status)) {
CopyMem (ParsedInstruction.Register, &Val, ParsedInstruction.Bytes);
} }
} while (TRUE); } else {
goto FatalError;
}
if (EFI_ERROR (Status)) {
goto FatalError;
}
// //
// We need to have at least 2 more bytes for this instruction // We change instruction length to reflect true size so handler can
// bump rip
// //
TDX_DECODER_BUG_ON (((UINT64)Rip - Regs->Rip) > 13); Veinfo->ExitInstructionLength = (UINT32)(CcInstructionLength (&InstructionData));
TdxDecodeInstruction ((UINT8 *)Regs->Rip, Veinfo->ExitInstructionLength);
OpCode = *Rip++; return 0;
//
// Two-byte opecode, get next byte
//
if (OpCode == 0x0F) {
OpCode = *Rip++;
}
switch (OpCode) { FatalError:
case 0x88: TdVmCall (TDVMCALL_HALT, 0, 0, 0, 0, 0);
case 0x8A: CpuDeadLoop ();
case 0xB6: return 0;
MmioSize = 1;
break;
case 0xB7:
MmioSize = 2;
break;
default:
MmioSize = Rex.Bits.W ? 8 : OpSize;
break;
}
/* Punt on AH/BH/CH/DH unless it shows up. */
ModRm.Val = *Rip++;
TDX_DECODER_BUG_ON (MmioSize == 1 && ModRm.Bits.Reg > 4 && !SeenRex && OpCode != 0xB6);
Reg = GetRegFromContext (Regs, ModRm.Bits.Reg | ((int)Rex.Bits.R << 3));
TDX_DECODER_BUG_ON (!Reg);
if (ModRm.Bits.Rm == 4) {
++Rip; /* SIB byte */
}
if ((ModRm.Bits.Mod == 2) || ((ModRm.Bits.Mod == 0) && (ModRm.Bits.Rm == 5))) {
Rip += 4; /* DISP32 */
} else if (ModRm.Bits.Mod == 1) {
++Rip; /* DISP8 */
}
switch (OpCode) {
case 0x88:
case 0x89:
CopyMem ((void *)&Val, Reg, MmioSize);
Status = TdVmCall (TDVMCALL_MMIO, MmioSize, 1, Veinfo->GuestPA, Val, 0);
break;
case 0xC7:
CopyMem ((void *)&Val, Rip, OpSize);
Status = TdVmCall (TDVMCALL_MMIO, MmioSize, 1, Veinfo->GuestPA, Val, 0);
Rip += OpSize;
default:
//
// 32-bit write registers are zero extended to the full register
// Hence 'MOVZX r[32/64], r/m16' is
// hardcoded to reg size 8, and the straight MOV case has a reg
// size of 8 in the 32-bit read case.
//
switch (OpCode) {
case 0xB6:
RegSize = Rex.Bits.W ? 8 : OpSize;
break;
case 0xB7:
RegSize = 8;
break;
default:
RegSize = MmioSize == 4 ? 8 : MmioSize;
break;
}
Status = TdVmCall (TDVMCALL_MMIO, MmioSize, 0, Veinfo->GuestPA, 0, &Val);
if (Status == 0) {
ZeroMem (Reg, RegSize);
CopyMem (Reg, (void *)&Val, MmioSize);
}
}
if (Status == 0) {
TDX_DECODER_BUG_ON (((UINT64)Rip - Regs->Rip) > 15);
//
// We change instruction length to reflect true size so handler can
// bump rip
//
Veinfo->ExitInstructionLength = (UINT32)((UINT64)Rip - Regs->Rip);
}
return Status;
} }
/** /**
@ -479,6 +695,7 @@ CcExitHandleVe (
if (Status != 0) { if (Status != 0) {
DEBUG ((DEBUG_ERROR, "#VE happened. TDGETVEINFO failed with Status = 0x%llx\n", Status)); DEBUG ((DEBUG_ERROR, "#VE happened. TDGETVEINFO failed with Status = 0x%llx\n", Status));
TdVmCall (TDVMCALL_HALT, 0, 0, 0, 0, 0); TdVmCall (TDVMCALL_HALT, 0, 0, 0, 0, 0);
CpuDeadLoop ();
} }
switch (ReturnData.VeInfo.ExitReason) { switch (ReturnData.VeInfo.ExitReason) {
@ -571,6 +788,7 @@ CcExitHandleVe (
)); ));
TdVmCall (TDVMCALL_HALT, 0, 0, 0, 0, 0); TdVmCall (TDVMCALL_HALT, 0, 0, 0, 0, 0);
CpuDeadLoop ();
} }
SystemContext.SystemContextX64->Rip += ReturnData.VeInfo.ExitInstructionLength; SystemContext.SystemContextX64->Rip += ReturnData.VeInfo.ExitInstructionLength;