1, Synchronize CSM related structure definition's comments with Intel framework specification.

2, To following specification, correct following member's name:
   a) change the member name of EFI_COMPATIBILITY16_TABLE.OemintSegement to EFI_COMPATIBILITY16_TABLE.OemInt15Segment. 
   b) change the member name of EFI_COMPATIBILITY16_TABLE.OemIntOffset to EFI_COMPATIBILITY16_TABLE. OemInt15Offset. 
   c) change the member name of EFI_DISPATCH_OPROM_TABLE. BbsTablePointer to EFI_DISPATCH_OPROM_TABLE. BbsTable.

git-svn-id: https://edk2.svn.sourceforge.net/svnroot/edk2/trunk/edk2@8733 6f19259b-4bc3-4df7-8a09-765794883524
This commit is contained in:
klu2 2009-07-03 06:25:35 +00:00
parent b36e48144b
commit e3e7f36a58
1 changed files with 631 additions and 169 deletions

View File

@ -1,9 +1,12 @@
/** @file
API between 16-bit Legacy BIOS and EFI
We need to figure out what the 16-bit code is going to use to
represent these data structures. Is a pointer SEG:OFF or 32-bit...
/** @file
The header file provides interface definitions exposed by CSM (Compatible Support Module).
The CSM provides compatibility support between the Framework and traditional, legacy BIOS code
and allows booting a traditional OS or booting an EFI OS off a device that requires a traditional
option ROM (OpROM).
These definitions are from Compatibility Support Module Spec Version 0.97.
Copyright (c) 2007-2009, Intel Corporation
All rights reserved. This program and the accompanying materials
are licensed and made available under the terms and conditions of the BSD License
@ -13,10 +16,6 @@
THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS,
WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED.
@par Revision Reference:
These definitions are from Compatibility Support Module Spec
Version 0.97.
**/
#ifndef _FRAMEWORK_LEGACY_16_H_
@ -31,58 +30,273 @@ typedef UINT8 PARALLEL_MODE;
#define EFI_COMPATIBILITY16_TABLE_SIGNATURE SIGNATURE_32 ('I', 'F', 'E', '$')
///
/// There is a table located within the traditional BIOS in either the 0xF000:xxxx or 0xE000:xxxx
/// physical address range. It is located on a 16-byte boundary and provides the physical address of the
/// entry point for the Compatibility16 functions. These functions provide the platform-specific
/// information that is required by the generic EfiCompatibility code. The functions are invoked via
/// thunking by using EFI_LEGACY_BIOS_PROTOCOL.FarCall86() with the 32-bit physical
/// entry point.
///
/// EFI_COMPATIBILITY16_TABLE is located at a 16-byte boundary starting with the
/// signature "$EFI"
///
typedef struct {
UINT32 Signature;
UINT8 TableChecksum;
UINT8 TableLength;
UINT8 EfiMajorRevision;
UINT8 EfiMinorRevision;
UINT8 TableMajorRevision;
UINT8 TableMinorRevision;
UINT16 Reserved;
UINT16 Compatibility16CallSegment;
UINT16 Compatibility16CallOffset;
UINT16 PnPInstallationCheckSegment;
UINT16 PnPInstallationCheckOffset;
UINT32 EfiSystemTable; ///< The physical address of EFI_SYSTEM_TABLE
UINT32 OemIdStringPointer;
UINT32 AcpiRsdPtrPointer;
UINT16 OemRevision;
UINT32 E820Pointer;
UINT32 E820Length;
UINT32 IrqRoutingTablePointer;
UINT32 IrqRoutingTableLength;
UINT32 MpTablePtr;
UINT32 MpTableLength;
UINT16 OemIntSegment;
UINT16 OemIntOffset;
UINT16 Oem32Segment;
typedef struct {
///
/// The string "$EFI" denotes the start of the EfiCompatibility table. Byte 0 is "I," byte
/// 1 is "F," byte 2 is "E," and byte 3 is "$" and is normally accessed as a DWORD or UINT32.
///
UINT32 Signature;
///
/// The value required such that byte checksum of TableLength equals zero.
///
UINT8 TableChecksum;
///
/// The length of this table.
///
UINT8 TableLength;
///
/// The major EFI revision for which this table was generated.
///
UINT8 EfiMajorRevision;
///
/// The minor EFI revision for which this table was generated.
///
UINT8 EfiMinorRevision;
///
/// The major revision of this table.
///
UINT8 TableMajorRevision;
///
/// The minor revision of this table.
///
UINT8 TableMinorRevision;
///
/// Reserved for future usage.
///
UINT16 Reserved;
///
/// The segment of the entry point within the traditional BIOS for Compatibility16 functions.
///
UINT16 Compatibility16CallSegment;
///
/// The offset of the entry point within the traditional BIOS for Compatibility16 functions.
///
UINT16 Compatibility16CallOffset;
///
/// The segment of the entry point within the traditional BIOS for EfiCompatibility to invoke the PnP installation check.
///
UINT16 PnPInstallationCheckSegment;
///
/// The Offset of the entry point within the traditional BIOS for EfiCompatibility to invoke the PnP installation check.
///
UINT16 PnPInstallationCheckOffset;
///
/// EFI system resources table. Type EFI_SYSTEM_TABLE is defined in the IntelPlatform Innovation Framework for EFI
/// Driver Execution Environment Core Interface Specification (DXE CIS).
///
UINT32 EfiSystemTable;
///
/// The address of an OEM-provided identifier string. The string is null terminated.
///
UINT32 OemIdStringPointer;
///
/// The 32-bit physical address where ACPI RSD PTR is stored within the traditional
/// BIOS. The remained of the ACPI tables are located at their EFI addresses. The size
/// reserved is the maximum for ACPI 2.0. The EfiCompatibility will fill in the ACPI
/// RSD PTR with either the ACPI 1.0b or 2.0 values.
///
UINT32 AcpiRsdPtrPointer;
///
/// The OEM revision number. Usage is undefined but provided for OEM module usage.
///
UINT16 OemRevision;
///
/// The 32-bit physical address where INT15 E820 data is stored within the traditional
/// BIOS. The EfiCompatibility code will fill in the E820Pointer value and copy the
/// data to the indicated area.
///
UINT32 E820Pointer;
///
/// The length of the E820 data and is filled in by the EfiCompatibility code.
///
UINT32 E820Length;
///
/// The 32-bit physical address where the $PIR table is stored in the traditional BIOS.
/// The EfiCompatibility code will fill in the IrqRoutingTablePointer value and
/// copy the data to the indicated area.
///
UINT32 IrqRoutingTablePointer;
///
/// The length of the $PIR table and is filled in by the EfiCompatibility code.
///
UINT32 IrqRoutingTableLength;
///
/// The 32-bit physical address where the MP table is stored in the traditional BIOS.
/// The EfiCompatibility code will fill in the MpTablePtr value and copy the data to the indicated area.
///
UINT32 MpTablePtr;
///
/// The length of the MP table and is filled in by the EfiCompatibility code.
///
UINT32 MpTableLength;
///
/// The segment of the OEM-specific INT 15 table/code.
///
UINT16 OemInt15Segment;
///
/// The offset of the OEM-specific INT 15 table/code.
///
UINT16 OemInt15Offset;
///
/// The segment of the OEM-specific 32-bit table/code.
///
UINT16 Oem32Segment;
///
/// The offset of the OEM-specific 32-bit table/code.
///
UINT16 Oem32Offset;
UINT16 Oem16Segment;
UINT16 Oem16Offset;
UINT16 TpmSegment;
UINT16 TpmOffset;
UINT16 TpmOffset;
///
/// A pointer to a string identifying the independent BIOS vendor.
///
UINT32 IbvPointer;
UINT32 PciExpressBase;
UINT8 LastPciBus;
} EFI_COMPATIBILITY16_TABLE;
///
/// Functions provided by the CSM binary
/// Functions provided by the CSM binary which communicate between the EfiCompatibility
/// and Compatability16 code.
///
typedef enum {
Compatibility16InitializeYourself = 0x0000,
Compatibility16UpdateBbs = 0x0001,
Compatibility16PrepareToBoot = 0x0002,
Compatibility16Boot = 0x0003,
Compatibility16RetrieveLastBootDevice= 0x0004,
Compatibility16DispatchOprom = 0x0005,
Compatibility16GetTableAddress = 0x0006,
Compatibility16SetKeyboardLeds = 0x0007,
typedef enum {
///
/// Causes the Compatibility16 code to do any internal initialization required.
/// Input:
/// AX = Compatibility16InitializeYourself
/// ES:BX = Pointer to EFI_TO_COMPATIBILITY16_INIT_TABLE
/// Return:
/// AX = Return Status codes
///
Compatibility16InitializeYourself = 0x0000,
///
/// Causes the Compatibility16 BIOS to perform any drive number translations to match the boot sequence.
/// Input:
/// AX = Compatibility16UpdateBbs
/// ES:BX = Pointer to EFI_TO_COMPATIBILITY16_BOOT_TABLE
/// Return:
/// AX = Returned status codes
///
Compatibility16UpdateBbs = 0x0001,
///
/// Allows the Compatibility16 code to perform any final actions before booting. The Compatibility16
/// code is read/write.
/// Input:
/// AX = Compatibility16PrepareToBoot
/// ES:BX = Pointer to EFI_TO_COMPATIBILITY16_BOOT_TABLE structure
/// Return:
/// AX = Returned status codes
///
Compatibility16PrepareToBoot = 0x0002,
///
/// Causes the Compatibility16 BIOS to boot. The Compatibility16 code is Read/Only.
/// Input:
/// AX = Compatibility16Boot
/// Output:
/// AX = Returned status codes
///
Compatibility16Boot = 0x0003,
///
/// Allows the Compatibility16 code to get the last device from which a boot was attempted. This is
/// stored in CMOS and is the priority number of the last attempted boot device.
/// Input:
/// AX = Compatibility16RetrieveLastBootDevice
/// Output:
/// AX = Returned status codes
/// BX = Priority number of the boot device.
///
Compatibility16RetrieveLastBootDevice= 0x0004,
///
/// Allows the Compatibility16 code rehook INT13, INT18, and/or INT19 after dispatching a legacy OpROM.
/// Input:
/// AX = Compatibility16DispatchOprom
/// ES:BX = Pointer to EFI_DISPATCH_OPROM_TABLE
/// Output:
/// AX = Returned status codes
/// BX = Number of non-BBS-compliant devices found. Equals 0 if BBS compliant.
///
Compatibility16DispatchOprom = 0x0005,
///
/// Finds a free area in the 0xFxxxx or 0xExxxx region of the specified length and returns the address
/// of that region.
/// Input:
/// AX = Compatibility16GetTableAddress
/// BX = Allocation region
/// 00 = Allocate from either 0xE0000 or 0xF0000 64 KB blocks.
/// Bit 0 = 1 Allocate from 0xF0000 64 KB block
/// Bit 1 = 1 Allocate from 0xE0000 64 KB block
/// CX = Requested length in bytes.
/// DX = Required address alignment. Bit mapped. First non-zero bit from the right is the alignment.
/// Output:
/// AX = Returned status codes
/// DS:BX = Address of the region
///
Compatibility16GetTableAddress = 0x0006,
///
/// Enables the EfiCompatibility module to do any nonstandard processing of keyboard LEDs or state.
/// Input:
/// AX = Compatibility16SetKeyboardLeds
/// CL = LED status.
/// Bit 0 Scroll Lock 0 = Off
/// Bit 1 NumLock
/// Bit 2 Caps Lock
/// Output:
/// AX = Returned status codes
///
Compatibility16SetKeyboardLeds = 0x0007,
///
/// Enables the EfiCompatibility module to install an interrupt handler for PCI mass media devices that
/// do not have an OpROM associated with them. An example is SATA.
/// Input:
/// AX = Compatibility16InstallPciHandler
/// ES:BX = Pointer to EFI_LEGACY_INSTALL_PCI_HANDLER structure
/// Output:
/// AX = Returned status codes
///
Compatibility16InstallPciHandler = 0x0008
} EFI_COMPATIBILITY_FUNCTIONS;
@ -91,28 +305,65 @@ typedef enum {
/// EFI_DISPATCH_OPROM_TABLE
///
typedef struct {
UINT16 PnPInstallationCheckSegment;
UINT16 PnPInstallationCheckOffset;
UINT16 OpromSegment;
UINT8 PciBus;
UINT8 PciDeviceFunction;
UINT8 NumberBbsEntries;
VOID *BbsTablePointer; ///< @bug: variable size on 32/64-bit systems.
UINT16 PnPInstallationCheckSegment; ///< Pointer to the PnpInstallationCheck data structure.
UINT16 PnPInstallationCheckOffset; ///< Pointer to the PnpInstallationCheck data structure.
UINT16 OpromSegment; ///< The segment where the OpROM was placed. Offset is assumed to be 3.
UINT8 PciBus; ///< The PCI bus.
UINT8 PciDeviceFunction; ///< The PCI device * 0x08 | PCI function.
UINT8 NumberBbsEntries; ///< The number of valid BBS table entries upon entry and exit. The IBV code may
///< increase this number, if BBS-compliant devices also hook INTs in order to force the
///< OpROM BIOS Setup to be executed.
VOID *BbsTable; ///< Pointer to the BBS table.
UINT16 RuntimeSegment;
} EFI_DISPATCH_OPROM_TABLE;
///
/// EFI_TO_COMPATIBILITY16_INIT_TABLE
///
typedef struct {
UINT32 BiosLessThan1MB;
UINT32 HiPmmMemory;
UINT32 HiPmmMemorySizeInBytes;
UINT16 ReverseThunkCallSegment;
UINT16 ReverseThunkCallOffset;
UINT32 NumberE820Entries;
UINT32 OsMemoryAbove1Mb;
UINT32 ThunkStart;
typedef struct {
///
/// Starting address of memory under 1 MB. The ending address is assumed to be 640 KB or 0x9FFFF.
///
UINT32 BiosLessThan1MB;
///
/// Starting address of the high memory block.
///
UINT32 HiPmmMemory;
///
/// Length of high memory block.
///
UINT32 HiPmmMemorySizeInBytes;
///
/// The segment of the reverse thunk call code.
///
UINT16 ReverseThunkCallSegment;
///
/// The offset of the reverse thunk call code.
///
UINT16 ReverseThunkCallOffset;
///
/// The number of E820 entries copied to the Compatibility16 BIOS.
///
UINT32 NumberE820Entries;
///
/// The amount of usable memory above 1 MB, e.g., E820 type 1 memory.
///
UINT32 OsMemoryAbove1Mb;
///
/// The start of thunk code in main memory. Memory cannot be used by BIOS or PMM.
///
UINT32 ThunkStart;
///
/// The size of the thunk code.
///
UINT32 ThunkSizeInBytes;
UINT32 LowPmmMemory;
UINT32 LowPmmMemorySizeInBytes;
@ -122,9 +373,9 @@ typedef struct {
/// DEVICE_PRODUCER_SERIAL & its modes
///
typedef struct {
UINT16 Address;
UINT8 Irq;
SERIAL_MODE Mode;
UINT16 Address; ///< I/O address assigned to the serial port
UINT8 Irq; ///< IRQ assigned to the serial port.
SERIAL_MODE Mode; ///< Mode of serial port. Values are defined below.
} DEVICE_PRODUCER_SERIAL;
#define DEVICE_SERIAL_MODE_NORMAL 0x00
@ -137,10 +388,10 @@ typedef struct {
/// DEVICE_PRODUCER_PARALLEL & its modes
///
typedef struct {
UINT16 Address;
UINT8 Irq;
UINT8 Dma;
PARALLEL_MODE Mode;
UINT16 Address; ///< I/O address assigned to the parallel port
UINT8 Irq; ///< IRQ assigned to the parallel port.
UINT8 Dma; ///< DMA assigned to the parallel port.
PARALLEL_MODE Mode; ///< Mode of the parallel port. Values are defined below.
} DEVICE_PRODUCER_PARALLEL;
#define DEVICE_PARALLEL_MODE_MODE_OUTPUT_ONLY 0x00
@ -152,51 +403,85 @@ typedef struct {
/// DEVICE_PRODUCER_FLOPPY
///
typedef struct {
UINT16 Address;
UINT8 Irq;
UINT8 Dma;
UINT8 NumberOfFloppy;
UINT16 Address; ///< I/O address assigned to the floppy
UINT8 Irq; ///< IRQ assigned to the floppy.
UINT8 Dma; ///< DMA assigned to the floppy.
UINT8 NumberOfFloppy; ///< Number of floppies in the system.
} DEVICE_PRODUCER_FLOPPY;
///
/// LEGACY_DEVICE_FLAGS
///
typedef struct {
UINT32 A20Kybd : 1;
UINT32 A20Port90 : 1;
UINT32 Reserved : 30;
UINT32 A20Kybd : 1; ///< A20 controller by keyboard controller.
UINT32 A20Port90 : 1; ///< A20 controlled by port 0x92.
UINT32 Reserved : 30; ///< Reserved for future usage.
} LEGACY_DEVICE_FLAGS;
///
/// DEVICE_PRODUCER_DATA_HEADER
///
typedef struct {
DEVICE_PRODUCER_SERIAL Serial[4];
DEVICE_PRODUCER_PARALLEL Parallel[3];
DEVICE_PRODUCER_FLOPPY Floppy;
UINT8 MousePresent;
LEGACY_DEVICE_FLAGS Flags;
DEVICE_PRODUCER_SERIAL Serial[4]; ///< Data for serial port x. Type DEVICE_PRODUCER_SERIAL is defined below.
DEVICE_PRODUCER_PARALLEL Parallel[3]; ///< Data for parallel port x. Type DEVICE_PRODUCER_PARALLEL is defined below.
DEVICE_PRODUCER_FLOPPY Floppy; ///< Data for floppy. Type DEVICE_PRODUCER_FLOPPY is defined below.
UINT8 MousePresent; ///< Flag to indicate if mouse is present.
LEGACY_DEVICE_FLAGS Flags; ///< Miscellaneous Boolean state information passed to CSM.
} DEVICE_PRODUCER_DATA_HEADER;
///
/// ATAPI_IDENTIFY
///
typedef struct {
UINT16 Raw[256];
UINT16 Raw[256]; ///< Raw data from the IDE IdentifyDrive command.
} ATAPI_IDENTIFY;
///
/// HDD_INFO & its status
///
typedef struct {
UINT16 Status;
UINT32 Bus;
UINT32 Device;
UINT32 Function;
UINT16 CommandBaseAddress;
UINT16 ControlBaseAddress;
UINT16 BusMasterAddress;
UINT8 HddIrq;
typedef struct {
///
/// Status of IDE device. Values are defined below. There is one HDD_INFO structure
/// per IDE controller. The IdentifyDrive is per drive. Index 0 is master and index
/// 1 is slave.
///
UINT16 Status;
///
/// PCI bus of IDE controller.
///
UINT32 Bus;
///
/// PCI device of IDE controller.
///
UINT32 Device;
///
/// PCI function of IDE controller.
///
UINT32 Function;
///
/// Command ports base address.
///
UINT16 CommandBaseAddress;
///
/// Control ports base address.
///
UINT16 ControlBaseAddress;
///
/// Bus master address
///
UINT16 BusMasterAddress;
UINT8 HddIrq;
///
/// Data that identifies the drive data, one per possible attached drive
///
ATAPI_IDENTIFY IdentifyDrive[2];
} HDD_INFO;
@ -213,36 +498,130 @@ typedef struct {
/// BBS_STATUS_FLAGS
///
typedef struct {
UINT16 OldPosition : 4;
UINT16 Reserved1 : 4;
UINT16 Enabled : 1;
UINT16 Failed : 1;
UINT16 OldPosition : 4; ///< Prior priority.
UINT16 Reserved1 : 4; ///< Reserved for future use.
UINT16 Enabled : 1; ///< If 0, ignore this entry.
UINT16 Failed : 1; ///< 0 = Not known if boot failure occurred.
///< 1 = Boot attempted failed.
///
/// State of media present.
/// 00 = No bootable media is present in the device.
/// 01 = Unknown if a bootable media present.
/// 10 = Media is present and appears bootable.
/// 11 = Reserved.
///
UINT16 MediaPresent : 2;
UINT16 Reserved2 : 4;
UINT16 Reserved2 : 4; ///< Reserved for future use.
} BBS_STATUS_FLAGS;
///
/// BBS_TABLE, device type values & boot priority values
///
typedef struct {
UINT16 BootPriority;
UINT32 Bus;
UINT32 Device;
UINT32 Function;
UINT8 Class;
UINT8 SubClass;
UINT16 MfgStringOffset;
UINT16 MfgStringSegment;
UINT16 DeviceType;
BBS_STATUS_FLAGS StatusFlags;
UINT16 BootHandlerOffset;
UINT16 BootHandlerSegment;
typedef struct {
///
/// The boot priority for this boot device. Values are defined below.
///
UINT16 BootPriority;
///
/// The PCI bus for this boot device.
///
UINT32 Bus;
///
/// The PCI device for this boot device.
///
UINT32 Device;
///
/// The PCI function for the boot device.
///
UINT32 Function;
///
/// The PCI class for this boot device.
///
UINT8 Class;
///
/// The PCI Subclass for this boot device.
///
UINT8 SubClass;
///
/// Segment:offset address of an ASCIIZ description string describing the manufacturer.
///
UINT16 MfgStringOffset;
///
/// Segment:offset address of an ASCIIZ description string describing the manufacturer.
///
UINT16 MfgStringSegment;
///
/// BBS device type. BBS device types are defined below.
///
UINT16 DeviceType;
///
/// Status of this boot device. Type BBS_STATUS_FLAGS is defined below.
///
BBS_STATUS_FLAGS StatusFlags;
///
/// Segment:Offset address of boot loader for IPL devices or install INT13 handler for
/// BCV devices.
///
UINT16 BootHandlerOffset;
///
/// Segment:Offset address of boot loader for IPL devices or install INT13 handler for
/// BCV devices.
///
UINT16 BootHandlerSegment;
///
/// Segment:offset address of an ASCIIZ description string describing this device.
///
UINT16 DescStringOffset;
UINT16 DescStringSegment;
UINT32 InitPerReserved;
UINT32 AdditionalIrq13Handler;
UINT32 AdditionalIrq18Handler;
UINT32 AdditionalIrq19Handler;
///
/// Segment:offset address of an ASCIIZ description string describing this device.
///
UINT16 DescStringSegment;
///
/// Reserved.
///
UINT32 InitPerReserved;
///
/// The use of these fields is IBV dependent. They can be used to flag that an OpROM
/// has hooked the specified IRQ. The OpROM may be BBS compliant as some SCSI
/// BBS-compliant OpROMs also hook IRQ vectors in order to run their BIOS Setup
///
UINT32 AdditionalIrq13Handler;
///
/// The use of these fields is IBV dependent. They can be used to flag that an OpROM
/// has hooked the specified IRQ. The OpROM may be BBS compliant as some SCSI
/// BBS-compliant OpROMs also hook IRQ vectors in order to run their BIOS Setup
///
UINT32 AdditionalIrq18Handler;
///
/// The use of these fields is IBV dependent. They can be used to flag that an OpROM
/// has hooked the specified IRQ. The OpROM may be BBS compliant as some SCSI
/// BBS-compliant OpROMs also hook IRQ vectors in order to run their BIOS Setup
///
UINT32 AdditionalIrq19Handler;
///
/// The use of these fields is IBV dependent. They can be used to flag that an OpROM
/// has hooked the specified IRQ. The OpROM may be BBS compliant as some SCSI
/// BBS-compliant OpROMs also hook IRQ vectors in order to run their BIOS Setup
///
UINT32 AdditionalIrq40Handler;
UINT8 AssignedDriveNumber;
UINT32 AdditionalIrq41Handler;
@ -268,10 +647,26 @@ typedef struct {
///
/// SMM_ATTRIBUTES & relating type, port and data size constants
///
typedef struct {
UINT16 Type : 3;
UINT16 PortGranularity : 3;
UINT16 DataGranularity : 3;
typedef struct {
///
/// Access mechanism used to generate the soft SMI. Defined types are below. The other
/// values are reserved for future usage.
///
UINT16 Type : 3;
///
/// Size of "port" in bits. Defined values are below.
///
UINT16 PortGranularity : 3;
///
/// Size of data in bits. Defined values are below.
///
UINT16 DataGranularity : 3;
///
/// Reserved for future use.
///
UINT16 Reserved : 7;
} SMM_ATTRIBUTES;
@ -309,10 +704,26 @@ typedef struct {
* This structure assumes both port and data sizes are 1. SmmAttribute must be
* properly to reflect that assumption.
**/
typedef struct {
SMM_ATTRIBUTES SmmAttributes;
SMM_FUNCTION SmmFunction;
UINT8 SmmPort;
typedef struct {
///
/// Describes the access mechanism, SmmPort, and SmmData sizes. Type
/// SMM_ATTRIBUTES is defined below.
///
SMM_ATTRIBUTES SmmAttributes;
///
/// Function Soft SMI is to perform. Type SMM_FUNCTION is defined below.
///
SMM_FUNCTION SmmFunction;
///
/// SmmPort size depends upon SmmAttributes and ranges from2 bytes to 16 bytes
///
UINT8 SmmPort;
///
/// SmmData size depends upon SmmAttributes and ranges from2 bytes to 16 bytes
///
UINT8 SmmData;
} SMM_ENTRY;
@ -320,30 +731,77 @@ typedef struct {
/// SMM_TABLE
///
typedef struct {
UINT16 NumSmmEntries;
SMM_ENTRY SmmEntry;
UINT16 NumSmmEntries; ///< Number of entries represented by SmmEntry.
SMM_ENTRY SmmEntry; ///< One entry per function. Type SMM_ENTRY is defined below.
} SMM_TABLE;
///
/// UDC_ATTRIBUTES
///
typedef struct {
UINT8 DirectoryServiceValidity : 1;
UINT8 RabcaUsedFlag : 1;
UINT8 ExecuteHddDiagnosticsFlag : 1;
typedef struct {
///
/// This bit set indicates that the ServiceAreaData is valid.
///
UINT8 DirectoryServiceValidity : 1;
///
/// This bit set indicates to use the Reserve Area Boot Code Address (RACBA) only if
/// DirectoryServiceValidity is 0.
///
UINT8 RabcaUsedFlag : 1;
///
/// This bit set indicates to execute hard disk diagnostics.
///
UINT8 ExecuteHddDiagnosticsFlag : 1;
///
/// Reserved for future use. Set to 0.
///
UINT8 Reserved : 5;
} UDC_ATTRIBUTES;
///
/// UD_TABLE
///
typedef struct {
UDC_ATTRIBUTES Attributes;
UINT8 DeviceNumber;
UINT8 BbsTableEntryNumberForParentDevice;
UINT8 BbsTableEntryNumberForBoot;
UINT8 BbsTableEntryNumberForHddDiag;
UINT8 BeerData[128];
typedef struct {
///
/// This field contains the bit-mapped attributes of the PARTIES information. Type
/// UDC_ATTRIBUTES is defined below.
///
UDC_ATTRIBUTES Attributes;
///
/// This field contains the zero-based device on which the selected
/// ServiceDataArea is present. It is 0 for master and 1 for the slave device.
///
UINT8 DeviceNumber;
///
/// This field contains the zero-based index into the BbsTable for the parent device.
/// This index allows the user to reference the parent device information such as PCI
/// bus, device function.
///
UINT8 BbsTableEntryNumberForParentDevice;
///
/// This field contains the zero-based index into the BbsTable for the boot entry.
///
UINT8 BbsTableEntryNumberForBoot;
///
/// This field contains the zero-based index into the BbsTable for the HDD diagnostics entry.
///
UINT8 BbsTableEntryNumberForHddDiag;
///
/// The raw Beer data.
///
UINT8 BeerData[128];
///
/// The raw data of selected service area.
///
UINT8 ServiceAreaData[64];
} UD_TABLE;
@ -355,55 +813,59 @@ typedef struct {
/// EFI_TO_COMPATIBILITY16_BOOT_TABLE
///
typedef struct {
UINT16 MajorVersion;
UINT16 MinorVersion;
UINT32 AcpiTable; ///< 4 GB range
UINT32 SmbiosTable; ///< 4 GB range
UINT16 MajorVersion; ///< The EfiCompatibility major version number.
UINT16 MinorVersion; ///< The EfiCompatibility minor version number.
UINT32 AcpiTable; ///< Location of the RSDT ACPI table. < 4G range
UINT32 SmbiosTable; ///< Location of the SMBIOS table in EFI memory. < 4G range
UINT32 SmbiosTableLength;
//
// Legacy SIO state
//
DEVICE_PRODUCER_DATA_HEADER SioData;
UINT16 DevicePathType;
UINT16 PciIrqMask;
UINT32 NumberE820Entries;
DEVICE_PRODUCER_DATA_HEADER SioData; ///< Standard traditional device information.
UINT16 DevicePathType; ///< The default boot type.
UINT16 PciIrqMask; ///< Mask of which IRQs have been assigned to PCI.
UINT32 NumberE820Entries; ///< Number of E820 entries. The number can change from the
///< Compatibility16InitializeYourself() function.
//
// Controller & Drive Identify[2] per controller information
//
HDD_INFO HddInfo[MAX_IDE_CONTROLLER];
UINT32 NumberBbsEntries;
UINT32 BbsTable;
UINT32 SmmTable;
UINT32 OsMemoryAbove1Mb;
UINT32 UnconventionalDeviceTable;
HDD_INFO HddInfo[MAX_IDE_CONTROLLER]; ///< Hard disk drive information, including raw Identify Drive data.
UINT32 NumberBbsEntries; ///< Number of entries in the BBS table
UINT32 BbsTable; ///< Pointer to the BBS table. Type BBS_TABLE is defined below.
UINT32 SmmTable; ///< Pointer to the SMM table. Type SMM_TABLE is defined below.
UINT32 OsMemoryAbove1Mb; ///< The amount of usable memory above 1 MB, i.e. E820 type 1 memory. This value can
///< differ from the value in EFI_TO_COMPATIBILITY16_INIT_TABLE as more
///< memory may have been discovered.
UINT32 UnconventionalDeviceTable; ///< Information to boot off an unconventional device like a PARTIES partition. Type
///< UD_TABLE is defined below.
} EFI_TO_COMPATIBILITY16_BOOT_TABLE;
///
/// EFI_LEGACY_INSTALL_PCI_HANDLER
///
typedef struct {
UINT8 PciBus;
UINT8 PciDeviceFun;
UINT8 PciSegment;
UINT8 PciClass;
UINT8 PciSubclass;
UINT8 PciInterface;
UINT8 PciBus; ///< The PCI bus of the device.
UINT8 PciDeviceFun; ///< The PCI device in bits 7:3 and function in bits 2:0.
UINT8 PciSegment; ///< The PCI segment of the device.
UINT8 PciClass; ///< The PCI class code of the device.
UINT8 PciSubclass; ///< The PCI subclass code of the device.
UINT8 PciInterface; ///< The PCI interface code of the device.
//
// Primary section
//
UINT8 PrimaryIrq;
UINT8 PrimaryReserved;
UINT16 PrimaryControl;
UINT16 PrimaryBase;
UINT16 PrimaryBusMaster;
UINT8 PrimaryIrq; ///< The primary device IRQ.
UINT8 PrimaryReserved; ///< Reserved.
UINT16 PrimaryControl; ///< The primary device control I/O base.
UINT16 PrimaryBase; ///< The primary device I/O base.
UINT16 PrimaryBusMaster; ///< The primary device bus master I/O base.
//
// Secondary Section
//
UINT8 SecondaryIrq;
UINT8 SecondaryReserved;
UINT16 SecondaryControl;
UINT16 SecondaryBase;
UINT16 SecondaryBusMaster;
UINT8 SecondaryIrq; ///< The secondary device IRQ.
UINT8 SecondaryReserved; ///< Reserved.
UINT16 SecondaryControl; ///< The secondary device control I/O base.
UINT16 SecondaryBase; ///< The secondary device I/O base.
UINT16 SecondaryBusMaster; ///< The secondary device bus master I/O base.
} EFI_LEGACY_INSTALL_PCI_HANDLER;
//