Optimize the algorithm of creating page table to enhance boot performance and save code size.

git-svn-id: https://edk2.svn.sourceforge.net/svnroot/edk2/trunk/edk2@1628 6f19259b-4bc3-4df7-8a09-765794883524
This commit is contained in:
qhuang8 2006-09-26 07:22:33 +00:00
parent fd16b4dddd
commit e4e7fed9be
2 changed files with 59 additions and 486 deletions

View File

@ -34,282 +34,16 @@ Abstract:
#include "VirtualMemory.h"
x64_MTRR_VARIABLE_RANGE *mMTRRVariableRange;
x64_MTRR_FIXED_RANGE mMTRRFixedRange;
//
// Physial memory limit values for each of the 11 fixed MTRRs
//
UINTN mFixedRangeLimit[] = {
0x7FFFF, // Fixed MTRR #0 describes 0x00000..0x7FFFF
0x9FFFF, // Fixed MTRR #1 describes 0x80000..0x9FFFF
0xBFFFF, // Fixed MTRR #2 describes 0xA0000..0xBFFFF
0xC7FFF, // Fixed MTRR #3 describes 0xC0000..0xC7FFF
0xCFFFF, // Fixed MTRR #4 describes 0xC8000..0xCFFFF
0xD7FFF, // Fixed MTRR #5 describes 0xD0000..0xD7FFF
0xDFFFF, // Fixed MTRR #6 describes 0xD8000..0xDFFFF
0xE7FFF, // Fixed MTRR #7 describes 0xE0000..0xE7FFF
0xEFFFF, // Fixed MTRR #8 describes 0xE8000..0xEFFFF
0xF7FFF, // Fixed MTRR #9 describes 0xF0000..0xF7FFF
0xFFFFF // Fixed MTRR #10 describes 0xF8000..0xFFFFF
};
//
// The size, in bits, of each of the 11 fixed MTRR.
//
UINTN mFixedRangeShift[] = {
16, // Fixed MTRR #0 describes 8, 64 KB ranges
14, // Fixed MTRR #1 describes 8, 16 KB ranges
14, // Fixed MTRR #2 describes 8, 16 KB ranges
12, // Fixed MTRR #3 describes 8, 4 KB ranges
12, // Fixed MTRR #4 describes 8, 4 KB ranges
12, // Fixed MTRR #5 describes 8, 4 KB ranges
12, // Fixed MTRR #6 describes 8, 4 KB ranges
12, // Fixed MTRR #7 describes 8, 4 KB ranges
12, // Fixed MTRR #8 describes 8, 4 KB ranges
12, // Fixed MTRR #9 describes 8, 4 KB ranges
12 // Fixed MTRR #10 describes 8, 4 KB ranges
};
UINTN mPowerOf2[] = {
1,
2,
4,
8,
16,
32,
64,
128,
256,
512
};
x64_MTRR_MEMORY_TYPE
EfiGetMTRRMemoryType (
IN EFI_PHYSICAL_ADDRESS Address
)
/*++
Routine Description:
Retrieves the memory type from the MTRR that describes a physical address.
Arguments:
VariableRange - Set of Variable MTRRs
FixedRange - Set of Fixed MTRRs
Address - The physical address for which the MTRR memory type is being retrieved
Returns:
The MTRR Memory Type for the physical memory specified by Address.
--*/
{
UINTN Index;
UINTN TypeIndex;
BOOLEAN Found;
x64_MTRR_MEMORY_TYPE VariableType;
EFI_PHYSICAL_ADDRESS MaskBase;
EFI_PHYSICAL_ADDRESS PhysMask;
//
// If the MTRRs are disabled, then return the Uncached Memory Type
//
if (mMTRRFixedRange.DefaultType.Bits.E == 0) {
return Uncached;
}
//
// If the CPU supports Fixed MTRRs and the Fixed MTRRs are enabled, then
// see if Address falls into one of the Fixed MTRRs
//
if (mMTRRFixedRange.Capabilities.Bits.FIX && mMTRRFixedRange.DefaultType.Bits.FE) {
//
// Loop though 11 fixed MTRRs
//
for (Index = 0; Index < 11; Index++) {
//
// Check for a matching range
//
if (Address <= mFixedRangeLimit[Index]) {
//
// Compute the offset address into the MTRR bu subtrating the base address of the MTRR
//
if (Index > 0) {
Address = Address - (mFixedRangeLimit[Index-1] + 1);
}
//
// Retrieve the index into the MTRR to extract the memory type. The range is 0..7
//
TypeIndex = (UINTN)RShiftU64 (Address, mFixedRangeShift[Index]);
//
// Retrieve and return the memory type for the matching range
//
return mMTRRFixedRange.Fixed[Index].Type[TypeIndex];
}
}
}
//
// If Address was not found in a Fixed MTRR, then search the Variable MTRRs
//
for (Index = 0, Found = FALSE, VariableType = WriteBack; Index < mMTRRFixedRange.Capabilities.Bits.VCNT; Index++) {
//
// BugBug: __aullshr complier error
//
if ((mMTRRVariableRange[Index].PhysMask.Uint64 & 0x800) == 0x800) {
//if (mMTRRVariableRange[Index].PhysMask.Bits.Valid == 1) {
PhysMask = mMTRRVariableRange[Index].PhysMask.Uint64 & ~0xfff;
MaskBase = PhysMask & (mMTRRVariableRange[Index].PhysBase.Uint64 & ~0xfff);
if (MaskBase == (PhysMask & Address)) {
//
// Check to see how many matches we find
//
Found = TRUE;
if ((mMTRRVariableRange[Index].PhysBase.Bits.Type == Uncached) || (VariableType == Uncached)) {
//
// If any matching region uses UC, the memory region is UC
//
VariableType = Uncached;
} else if ((mMTRRVariableRange[Index].PhysBase.Bits.Type == WriteThrough) || (VariableType == WriteThrough)){
//
// If it's WT and WB then set it to WT. If it's WT and other type it's undefined
//
VariableType = WriteThrough;
} else {
VariableType = mMTRRVariableRange[Index].PhysBase.Bits.Type;
}
}
}
}
if (Found) {
return VariableType;
}
//
// Address was not found in the Fixed or Variable MTRRs, so return the default memory type
//
return mMTRRFixedRange.DefaultType.Bits.Type;
}
BOOLEAN
CanNotUse2MBPage (
IN EFI_PHYSICAL_ADDRESS BaseAddress
)
/*++
Routine Description:
Test to see if a 2MB aligned page has all the same attributes. If a 2MB page
has more than one attibute type it needs to be split into multiple 4K pages.
Arguments:
BaseAddress - 2MB aligned address to check out
Returns:
TRUE - This 2MB address range (BaseAddress) can NOT be mapped by a 2MB page
FALSE - This 2MB address range can be mapped by a 2MB page
--*/
{
UINTN Index;
x64_MTRR_MEMORY_TYPE MemoryType;
x64_MTRR_MEMORY_TYPE PreviousMemoryType;
//
// Address needs to be 2MB aligned
//
ASSERT ((BaseAddress & 0x1fffff) == 0);
PreviousMemoryType = -1;
for (Index = 0; Index < 512; Index++, BaseAddress += 0x1000) {
MemoryType = EfiGetMTRRMemoryType (BaseAddress);
if ((Index != 0) && (MemoryType != PreviousMemoryType)) {
return TRUE;
}
PreviousMemoryType = MemoryType;
}
//
// All the pages had the same type
//
return FALSE;
}
VOID
Convert2MBPageTo4KPages (
IN x64_PAGE_TABLE_ENTRY_2M *PageDirectoryEntry2MB,
IN EFI_PHYSICAL_ADDRESS PageAddress
)
/*++
Routine Description:
Convert a single 2MB page entry to 512 4K page entries. The attributes for
the 4K pages are read from the MTRR registers.
Arguments:
PageDirectoryEntry2MB - Page directory entry for PageAddress
PageAddress - 2MB algined address of region to convert
Returns:
None
--*/
{
EFI_PHYSICAL_ADDRESS Address;
x64_PAGE_DIRECTORY_ENTRY_4K *PageDirectoryEntry4k;
x64_PAGE_TABLE_ENTRY_4K *PageTableEntry;
UINTN Index1;
//
// Allocate the page table entry for the 4K pages
//
PageTableEntry = (x64_PAGE_TABLE_ENTRY_4K *) AllocatePages (1);
ASSERT (PageTableEntry != NULL);
//
// Convert PageDirectoryEntry2MB into a 4K Page Directory
//
PageDirectoryEntry4k = (x64_PAGE_DIRECTORY_ENTRY_4K *)PageDirectoryEntry2MB;
PageDirectoryEntry2MB->Uint64 = (UINT64)PageTableEntry;
PageDirectoryEntry2MB->Bits.ReadWrite = 1;
PageDirectoryEntry2MB->Bits.Present = 1;
//
// Fill in the 4K page entries with the attributes from the MTRRs
//
for (Index1 = 0, Address = PageAddress; Index1 < 512; Index1++, PageTableEntry++, Address += 0x1000) {
PageTableEntry->Uint64 = (UINT64)Address;
PageTableEntry->Bits.ReadWrite = 1;
PageTableEntry->Bits.Present = 1;
}
}
EFI_PHYSICAL_ADDRESS
CreateIdentityMappingPageTables (
IN UINT32 NumberOfProcessorPhysicalAddressBits
VOID
)
/*++
Routine Description:
Allocates and fills in the Page Directory and Page Table Entries to
establish a 1:1 Virtual to Physical mapping for physical memory from
0 to 4GB. Memory above 4GB is not mapped. The MTRRs are used to
determine the cachability of the physical memory regions
establish a 1:1 Virtual to Physical mapping.
Arguments:
@ -318,61 +52,60 @@ Arguments:
to the physical address space.
Returns:
EFI_OUT_OF_RESOURCES There are not enough resources to allocate the Page Tables
EFI_SUCCESS The 1:1 Virtual to Physical identity mapping was created
--*/
{
UINT32 RegEax;
UINT8 PhysicalAddressBits;
EFI_PHYSICAL_ADDRESS PageAddress;
UINTN Index;
UINTN MaxBitsSupported;
UINTN Index1;
UINTN Index2;
x64_PAGE_MAP_AND_DIRECTORY_POINTER_2MB_4K *PageMapLevel4Entry;
x64_PAGE_MAP_AND_DIRECTORY_POINTER_2MB_4K *PageMap;
x64_PAGE_MAP_AND_DIRECTORY_POINTER_2MB_4K *PageDirectoryPointerEntry;
x64_PAGE_TABLE_ENTRY_2M *PageDirectoryEntry2MB;
UINTN IndexOfPml4Entries;
UINTN IndexOfPdpEntries;
UINTN IndexOfPageDirectoryEntries;
UINTN NumberOfPml4EntriesNeeded;
UINTN NumberOfPdpEntriesNeeded;
PAGE_MAP_AND_DIRECTORY_POINTER *PageMapLevel4Entry;
PAGE_MAP_AND_DIRECTORY_POINTER *PageMap;
PAGE_MAP_AND_DIRECTORY_POINTER *PageDirectoryPointerEntry;
PAGE_TABLE_ENTRY *PageDirectoryEntry;
//
// Page Table structure 4 level 4K, 3 level 2MB.
// By architecture only one PageMapLevel4 exists - so lets allocate storage for it.
//
// PageMapLevel4Entry : bits 47-39
// PageDirectoryPointerEntry : bits 38-30
// Page Table 2MB : PageDirectoryEntry2M : bits 29-21
// Page Table 4K : PageDirectoryEntry4K : bits 29 - 21
// PageTableEntry : bits 20 - 12
//
// Strategy is to map every thing in the processor address space using
// 2MB pages. If more granularity is required the 2MB page will get
// converted to set of 4K pages.
//
//
// By architecture only one PageMapLevel4 exists - so lets allocate storgage for it.
//
PageMap = PageMapLevel4Entry = (x64_PAGE_MAP_AND_DIRECTORY_POINTER_2MB_4K *) AllocatePages (1);
PageMap = AllocatePages (1);
ASSERT (PageMap != NULL);
PageAddress = 0;
//
// The number of page-map Level-4 Offset entries is based on the number of
// physical address bits. Less than equal to 38 bits only takes one entry.
// 512 entries represents 48 address bits.
// Get physical address bits supported.
//
if (NumberOfProcessorPhysicalAddressBits <= 38) {
MaxBitsSupported = 1;
AsmCpuid (0x80000000, &RegEax, NULL, NULL, NULL);
if (RegEax >= 0x80000008) {
AsmCpuid (0x80000008, &RegEax, NULL, NULL, NULL);
PhysicalAddressBits = (UINT8) RegEax;
} else {
MaxBitsSupported = mPowerOf2[NumberOfProcessorPhysicalAddressBits - 39];
PhysicalAddressBits = 36;
}
for (Index = 0; Index < MaxBitsSupported; Index++, PageMapLevel4Entry++) {
//
// Calculate the table entries needed.
//
if (PhysicalAddressBits <= 39 ) {
NumberOfPml4EntriesNeeded = 1;
NumberOfPdpEntriesNeeded = 1 << (PhysicalAddressBits - 30);
} else {
NumberOfPml4EntriesNeeded = 1 << (PhysicalAddressBits - 39);
NumberOfPdpEntriesNeeded = 512;
}
PageMapLevel4Entry = PageMap;
PageAddress = 0;
for (IndexOfPml4Entries = 0; IndexOfPml4Entries < NumberOfPml4EntriesNeeded; IndexOfPml4Entries++, PageMapLevel4Entry++) {
//
// Each PML4 entry points to a page of Page Directory Pointer entires.
// So lets allocate space for them and fill them in in the Index1 loop.
//
PageDirectoryPointerEntry = (x64_PAGE_MAP_AND_DIRECTORY_POINTER_2MB_4K *) AllocatePages (1);
// So lets allocate space for them and fill them in in the IndexOfPdpEntries loop.
//
PageDirectoryPointerEntry = AllocatePages (1);
ASSERT (PageDirectoryPointerEntry != NULL);
//
@ -382,53 +115,46 @@ Returns:
PageMapLevel4Entry->Bits.ReadWrite = 1;
PageMapLevel4Entry->Bits.Present = 1;
for (Index1 = 0; Index1 < 512; Index1++, PageDirectoryPointerEntry++) {
for (IndexOfPdpEntries = 0; IndexOfPdpEntries < NumberOfPdpEntriesNeeded; IndexOfPdpEntries++, PageDirectoryPointerEntry++) {
//
// Each Directory Pointer entries points to a page of Page Directory entires.
// So lets allocate space for them and fill them in in the Index2 loop.
// So allocate space for them and fill them in in the IndexOfPageDirectoryEntries loop.
//
PageDirectoryEntry2MB = (x64_PAGE_TABLE_ENTRY_2M *) AllocatePages (1);
ASSERT (PageDirectoryEntry2MB != NULL);
PageDirectoryEntry = AllocatePages (1);
ASSERT (PageDirectoryEntry != NULL);
//
// Fill in a Page Directory Pointer Entries
//
PageDirectoryPointerEntry->Uint64 = (UINT64)(UINTN)PageDirectoryEntry2MB;
PageDirectoryPointerEntry->Uint64 = (UINT64)(UINTN)PageDirectoryEntry;
PageDirectoryPointerEntry->Bits.ReadWrite = 1;
PageDirectoryPointerEntry->Bits.Present = 1;
for (Index2 = 0; Index2 < 512; Index2++, PageDirectoryEntry2MB++, PageAddress += 0x200000) {
for (IndexOfPageDirectoryEntries = 0; IndexOfPageDirectoryEntries < 512; IndexOfPageDirectoryEntries++, PageDirectoryEntry++, PageAddress += 0x200000) {
//
// Fill in the Page Directory entries
//
PageDirectoryEntry2MB->Uint64 = (UINT64)PageAddress;
PageDirectoryEntry2MB->Bits.ReadWrite = 1;
PageDirectoryEntry2MB->Bits.Present = 1;
PageDirectoryEntry2MB->Bits.MustBe1 = 1;
PageDirectoryEntry->Uint64 = (UINT64)PageAddress;
PageDirectoryEntry->Bits.ReadWrite = 1;
PageDirectoryEntry->Bits.Present = 1;
PageDirectoryEntry->Bits.MustBe1 = 1;
if (CanNotUse2MBPage (PageAddress)) {
//
// Check to see if all 2MB has the same mapping. If not convert
// to 4K pages by adding the 4th level of page table entries
//
Convert2MBPageTo4KPages (PageDirectoryEntry2MB, PageAddress);
}
}
}
}
//
// For the PML4 entries we are not using fill in a null entry.
// for now we just copy the first entry.
// For now we just copy the first entry.
//
for (; Index < 512; Index++, PageMapLevel4Entry++) {
// EfiCopyMem (PageMapLevel4Entry, PageMap, sizeof (x64_PAGE_MAP_AND_DIRECTORY_POINTER_2MB_4K));
CopyMem (PageMapLevel4Entry,
PageMap,
sizeof (x64_PAGE_MAP_AND_DIRECTORY_POINTER_2MB_4K)
);
for (; IndexOfPml4Entries < 512; IndexOfPml4Entries++, PageMapLevel4Entry++) {
CopyMem (
PageMapLevel4Entry,
PageMap,
sizeof (PAGE_MAP_AND_DIRECTORY_POINTER)
);
}
return (EFI_PHYSICAL_ADDRESS)PageMap;
return (EFI_PHYSICAL_ADDRESS) PageMap;
}

View File

@ -49,52 +49,7 @@ typedef union {
UINT64 Nx:1; // No Execute bit
} Bits;
UINT64 Uint64;
} x64_PAGE_MAP_AND_DIRECTORY_POINTER_2MB_4K;
//
// Page-Directory Offset 4K
//
typedef union {
struct {
UINT64 Present:1; // 0 = Not present in memory, 1 = Present in memory
UINT64 ReadWrite:1; // 0 = Read-Only, 1= Read/Write
UINT64 UserSupervisor:1; // 0 = Supervisor, 1=User
UINT64 WriteThrough:1; // 0 = Write-Back caching, 1=Write-Through caching
UINT64 CacheDisabled:1; // 0 = Cached, 1=Non-Cached
UINT64 Accessed:1; // 0 = Not accessed, 1 = Accessed (set by CPU)
UINT64 Reserved:1; // Reserved
UINT64 MustBeZero:1; // Must Be Zero
UINT64 Reserved2:1; // Reserved
UINT64 Available:3; // Available for use by system software
UINT64 PageTableBaseAddress:40; // Page Table Base Address
UINT64 AvabilableHigh:11; // Available for use by system software
UINT64 Nx:1; // No Execute bit
} Bits;
UINT64 Uint64;
} x64_PAGE_DIRECTORY_ENTRY_4K;
//
// Page Table Entry 4K
//
typedef union {
struct {
UINT64 Present:1; // 0 = Not present in memory, 1 = Present in memory
UINT64 ReadWrite:1; // 0 = Read-Only, 1= Read/Write
UINT64 UserSupervisor:1; // 0 = Supervisor, 1=User
UINT64 WriteThrough:1; // 0 = Write-Back caching, 1=Write-Through caching
UINT64 CacheDisabled:1; // 0 = Cached, 1=Non-Cached
UINT64 Accessed:1; // 0 = Not accessed, 1 = Accessed (set by CPU)
UINT64 Dirty:1; // 0 = Not Dirty, 1 = written by processor on access to page
UINT64 PAT:1; // 0 = Ignore Page Attribute Table
UINT64 Global:1; // 0 = Not global page, 1 = global page TLB not cleared on CR3 write
UINT64 Available:3; // Available for use by system software
UINT64 PageTableBaseAddress:40; // Page Table Base Address
UINT64 AvabilableHigh:11; // Available for use by system software
UINT64 Nx:1; // 0 = Execute Code, 1 = No Code Execution
} Bits;
UINT64 Uint64;
} x64_PAGE_TABLE_ENTRY_4K;
} PAGE_MAP_AND_DIRECTORY_POINTER;
//
// Page Table Entry 2MB
@ -118,121 +73,13 @@ typedef union {
UINT64 Nx:1; // 0 = Execute Code, 1 = No Code Execution
} Bits;
UINT64 Uint64;
} x64_PAGE_TABLE_ENTRY_2M;
typedef union {
UINT64 Present:1; // 0 = Not present in memory, 1 = Present in memory
UINT64 ReadWrite:1; // 0 = Read-Only, 1= Read/Write
UINT64 UserSupervisor:1; // 0 = Supervisor, 1=User
UINT64 WriteThrough:1; // 0 = Write-Back caching, 1=Write-Through caching
UINT64 CacheDisabled:1; // 0 = Cached, 1=Non-Cached
UINT64 Accessed:1; // 0 = Not accessed, 1 = Accessed (set by CPU)
UINT64 Dirty:1; // 0 = Not Dirty, 1 = written by processor on access to page
UINT64 Reserved:57;
} x64_PAGE_TABLE_ENTRY_COMMON;
typedef union {
x64_PAGE_TABLE_ENTRY_4K Page4k;
x64_PAGE_TABLE_ENTRY_2M Page2Mb;
x64_PAGE_TABLE_ENTRY_COMMON Common;
} x64_PAGE_TABLE_ENTRY;
//
// MTRR Definitions
//
typedef enum {
Uncached = 0,
WriteCombining = 1,
WriteThrough = 4,
WriteProtected = 5,
WriteBack = 6
} x64_MTRR_MEMORY_TYPE;
typedef union {
struct {
UINT32 VCNT:8; // The number of Variable Range MTRRs
UINT32 FIX:1; // 1=Fixed Range MTRRs supported. 0=Fixed Range MTRRs not supported
UINT32 Reserved_0; // Reserved
UINT32 WC:1; // Write combining memory type supported
UINT32 Reserved_1:21; // Reserved
UINT32 Reserved_2:32; // Reserved
} Bits;
UINT64 Uint64;
} x64_MTRRCAP_MSR;
typedef union {
struct {
UINT32 Type:8; // Default Memory Type
UINT32 Reserved_0:2; // Reserved
UINT32 FE:1; // 1=Fixed Range MTRRs enabled. 0=Fixed Range MTRRs disabled
UINT32 E:1; // 1=MTRRs enabled, 0=MTRRs disabled
UINT32 Reserved_1:20; // Reserved
UINT32 Reserved_2:32; // Reserved
} Bits;
UINT64 Uint64;
} x64_MTRR_DEF_TYPE_MSR;
typedef union {
UINT8 Type[8]; // The 8 Memory Type values in the 64-bit MTRR
UINT64 Uint64; // The full 64-bit MSR
} x64_MTRR_FIXED_RANGE_MSR;
typedef struct {
x64_MTRRCAP_MSR Capabilities; // MTRR Capabilities MSR value
x64_MTRR_DEF_TYPE_MSR DefaultType; // Default Memory Type MSR Value
x64_MTRR_FIXED_RANGE_MSR Fixed[11]; // The 11 Fixed MTRR MSR Values
} x64_MTRR_FIXED_RANGE;
typedef union {
struct {
UINT64 Type:8; // Memory Type
UINT64 Reserved0:4; // Reserved
UINT64 PhysBase:40; // The physical base address(bits 35..12) of the MTRR
UINT64 Reserved1:12 ; // Reserved
} Bits;
UINT64 Uint64;
} x64_MTRR_PHYSBASE_MSR;
typedef union {
struct {
UINT64 Reserved0:11; // Reserved
UINT64 Valid:1; // 1=MTRR is valid, 0=MTRR is not valid
UINT64 PhysMask:40; // The physical address mask (bits 35..12) of the MTRR
UINT64 Reserved1:12; // Reserved
} Bits;
UINT64 Uint64;
} x64_MTRR_PHYSMASK_MSR;
typedef struct {
x64_MTRR_PHYSBASE_MSR PhysBase; // Variable MTRR Physical Base MSR
x64_MTRR_PHYSMASK_MSR PhysMask; // Variable MTRR Physical Mask MSR
} x64_MTRR_VARIABLE_RANGE;
} PAGE_TABLE_ENTRY;
#pragma pack()
x64_MTRR_MEMORY_TYPE
EfiGetMTRRMemoryType (
IN EFI_PHYSICAL_ADDRESS Address
)
;
BOOLEAN
CanNotUse2MBPage (
IN EFI_PHYSICAL_ADDRESS BaseAddress
)
;
VOID
Convert2MBPageTo4KPages (
IN x64_PAGE_TABLE_ENTRY_2M *PageDirectoryEntry2MB,
IN EFI_PHYSICAL_ADDRESS PageAddress
)
;
EFI_PHYSICAL_ADDRESS
CreateIdentityMappingPageTables (
IN UINT32 NumberOfProcessorPhysicalAddressBits
VOID
)
;