BaseTools: Update ARM/AArch64 GenFv vector processing for encapsulated FVs

Instead of only handling SEC Core or PEI Core instances in the outer FV,
the GenFv tool will now recurse into FV image FFS files to look for instances
in encapsulated FVs so the vector area can be updated appropriately.

Contributed-under: TianoCore Contribution Agreement 1.0
Signed-off-by: Eugene Cohen <eugene@hp.com>
Reviewed-by: Liming Gao <liming.gao@intel.com>
This commit is contained in:
Cohen, Eugene 2016-03-01 23:39:36 +00:00 committed by Ard Biesheuvel
parent 815ada26cb
commit eca22f362c
1 changed files with 412 additions and 196 deletions

View File

@ -3,6 +3,7 @@ This file contains the internal functions required to generate a Firmware Volume
Copyright (c) 2004 - 2014, Intel Corporation. All rights reserved.<BR> Copyright (c) 2004 - 2014, Intel Corporation. All rights reserved.<BR>
Portions Copyright (c) 2011 - 2013, ARM Ltd. All rights reserved.<BR> Portions Copyright (c) 2011 - 2013, ARM Ltd. All rights reserved.<BR>
Portions Copyright (c) 2016 HP Development Company, L.P.<BR>
This program and the accompanying materials This program and the accompanying materials
are licensed and made available under the terms and conditions of the BSD License are licensed and made available under the terms and conditions of the BSD License
which accompanies this distribution. The full text of the license may be found at which accompanies this distribution. The full text of the license may be found at
@ -38,6 +39,9 @@ WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED.
#include "PeCoffLib.h" #include "PeCoffLib.h"
#include "WinNtInclude.h" #include "WinNtInclude.h"
#define ARMT_UNCONDITIONAL_JUMP_INSTRUCTION 0xEB000000
#define ARM64_UNCONDITIONAL_JUMP_INSTRUCTION 0x14000000
BOOLEAN mArm = FALSE; BOOLEAN mArm = FALSE;
STATIC UINT32 MaxFfsAlignment = 0; STATIC UINT32 MaxFfsAlignment = 0;
@ -1803,6 +1807,244 @@ Returns:
return EFI_SUCCESS; return EFI_SUCCESS;
} }
EFI_STATUS
FindCorePeSection(
IN VOID *FvImageBuffer,
IN UINT64 FvSize,
IN EFI_FV_FILETYPE FileType,
OUT EFI_FILE_SECTION_POINTER *Pe32Section
)
/*++
Routine Description:
Recursively searches the FV for the FFS file of specified type (typically
SEC or PEI core) and extracts the PE32 section for further processing.
Arguments:
FvImageBuffer Buffer containing FV data
FvSize Size of the FV
FileType Type of FFS file to search for
Pe32Section PE32 section pointer when FFS file is found.
Returns:
EFI_SUCCESS Function Completed successfully.
EFI_ABORTED Error encountered.
EFI_INVALID_PARAMETER A required parameter was NULL.
EFI_NOT_FOUND Core file not found.
--*/
{
EFI_STATUS Status;
EFI_FIRMWARE_VOLUME_HEADER *OrigFvHeader;
UINT32 OrigFvLength;
EFI_FFS_FILE_HEADER *CoreFfsFile;
UINTN FvImageFileCount;
EFI_FFS_FILE_HEADER *FvImageFile;
UINTN EncapFvSectionCount;
EFI_FILE_SECTION_POINTER EncapFvSection;
EFI_FIRMWARE_VOLUME_HEADER *EncapsulatedFvHeader;
if (Pe32Section == NULL) {
return EFI_INVALID_PARAMETER;
}
//
// Initialize FV library, saving previous values
//
OrigFvHeader = (EFI_FIRMWARE_VOLUME_HEADER *)NULL;
GetFvHeader (&OrigFvHeader, &OrigFvLength);
InitializeFvLib(FvImageBuffer, (UINT32)FvSize);
//
// First see if we can obtain the file directly in outer FV
//
Status = GetFileByType(FileType, 1, &CoreFfsFile);
if (!EFI_ERROR(Status) && (CoreFfsFile != NULL) ) {
//
// Core found, now find PE32 or TE section
//
Status = GetSectionByType(CoreFfsFile, EFI_SECTION_PE32, 1, Pe32Section);
if (EFI_ERROR(Status)) {
Status = GetSectionByType(CoreFfsFile, EFI_SECTION_TE, 1, Pe32Section);
}
if (EFI_ERROR(Status)) {
Error(NULL, 0, 3000, "Invalid", "could not find a PE32 section in the core file.");
return EFI_ABORTED;
}
//
// Core PE/TE section, found, return
//
Status = EFI_SUCCESS;
goto EarlyExit;
}
//
// File was not found, look for FV Image file
//
// iterate through all FV image files in outer FV
for (FvImageFileCount = 1;; FvImageFileCount++) {
Status = GetFileByType(EFI_FV_FILETYPE_FIRMWARE_VOLUME_IMAGE, FvImageFileCount, &FvImageFile);
if (EFI_ERROR(Status) || (FvImageFile == NULL) ) {
// exit FV image file loop, no more found
break;
}
// Found an fv image file, look for an FV image section. The PI spec does not
// preclude multiple FV image sections so we loop accordingly.
for (EncapFvSectionCount = 1;; EncapFvSectionCount++) {
// Look for the next FV image section. The section search code will
// iterate into encapsulation sections. For example, it will iterate
// into an EFI_SECTION_GUID_DEFINED encapsulation section to find the
// EFI_SECTION_FIRMWARE_VOLUME_IMAGE sections contained therein.
Status = GetSectionByType(FvImageFile, EFI_SECTION_FIRMWARE_VOLUME_IMAGE, EncapFvSectionCount, &EncapFvSection);
if (EFI_ERROR(Status)) {
// exit section inner loop, no more found
break;
}
EncapsulatedFvHeader = (EFI_FIRMWARE_VOLUME_HEADER *)((UINT8 *)EncapFvSection.FVImageSection + GetSectionHeaderLength(EncapFvSection.FVImageSection));
// recurse to search the encapsulated FV for this core file type
Status = FindCorePeSection(EncapsulatedFvHeader, EncapsulatedFvHeader->FvLength, FileType, Pe32Section);
if (!EFI_ERROR(Status)) {
// we found the core in the capsulated image, success
goto EarlyExit;
}
} // end encapsulated fv image section loop
} // end fv image file loop
// core was not found
Status = EFI_NOT_FOUND;
EarlyExit:
// restore FV lib values
if(OrigFvHeader != NULL) {
InitializeFvLib(OrigFvHeader, OrigFvLength);
}
return Status;
}
EFI_STATUS
GetCoreMachineType(
IN EFI_FILE_SECTION_POINTER Pe32Section,
OUT UINT16 *CoreMachineType
)
/*++
Routine Description:
Returns the machine type of a P32 image, typically SEC or PEI core.
Arguments:
Pe32Section PE32 section data
CoreMachineType The extracted machine type
Returns:
EFI_SUCCESS Function Completed successfully.
EFI_ABORTED Error encountered.
EFI_INVALID_PARAMETER A required parameter was NULL.
--*/
{
EFI_STATUS Status;
UINT32 EntryPoint;
UINT32 BaseOfCode;
if (CoreMachineType == NULL) {
return EFI_INVALID_PARAMETER;
}
Status = GetPe32Info(
(VOID *)((UINTN)Pe32Section.Pe32Section + GetSectionHeaderLength(Pe32Section.CommonHeader)),
&EntryPoint,
&BaseOfCode,
CoreMachineType
);
if (EFI_ERROR(Status)) {
Error(NULL, 0, 3000, "Invalid", "could not get the PE32 machine type for the core.");
return EFI_ABORTED;
}
return EFI_SUCCESS;
}
EFI_STATUS
GetCoreEntryPointAddress(
IN VOID *FvImageBuffer,
IN FV_INFO *FvInfo,
IN EFI_FILE_SECTION_POINTER Pe32Section,
OUT EFI_PHYSICAL_ADDRESS *CoreEntryAddress
)
/*++
Routine Description:
Returns the physical address of the core (SEC or PEI) entry point.
Arguments:
FvImageBuffer Pointer to buffer containing FV data
FvInfo Info for the parent FV
Pe32Section PE32 section data
CoreEntryAddress The extracted core entry physical address
Returns:
EFI_SUCCESS Function Completed successfully.
EFI_ABORTED Error encountered.
EFI_INVALID_PARAMETER A required parameter was NULL.
--*/
{
EFI_STATUS Status;
UINT32 EntryPoint;
UINT32 BaseOfCode;
UINT16 MachineType;
EFI_PHYSICAL_ADDRESS EntryPhysicalAddress;
if (CoreEntryAddress == NULL) {
return EFI_INVALID_PARAMETER;
}
Status = GetPe32Info(
(VOID *)((UINTN)Pe32Section.Pe32Section + GetSectionHeaderLength(Pe32Section.CommonHeader)),
&EntryPoint,
&BaseOfCode,
&MachineType
);
if (EFI_ERROR(Status)) {
Error(NULL, 0, 3000, "Invalid", "could not get the PE32 entry point for the core.");
return EFI_ABORTED;
}
//
// Physical address is FV base + offset of PE32 + offset of the entry point
//
EntryPhysicalAddress = FvInfo->BaseAddress;
EntryPhysicalAddress += (UINTN)Pe32Section.Pe32Section + GetSectionHeaderLength(Pe32Section.CommonHeader) - (UINTN)FvImageBuffer;
EntryPhysicalAddress += EntryPoint;
*CoreEntryAddress = EntryPhysicalAddress;
return EFI_SUCCESS;
}
EFI_STATUS EFI_STATUS
UpdateArmResetVectorIfNeeded ( UpdateArmResetVectorIfNeeded (
@ -1854,23 +2096,15 @@ Returns:
--*/ --*/
{ {
EFI_FFS_FILE_HEADER *PeiCoreFile;
EFI_FFS_FILE_HEADER *SecCoreFile;
EFI_STATUS Status; EFI_STATUS Status;
EFI_FILE_SECTION_POINTER Pe32Section; EFI_FILE_SECTION_POINTER SecPe32;
UINT32 EntryPoint; EFI_FILE_SECTION_POINTER PeiPe32;
UINT32 BaseOfCode; BOOLEAN UpdateVectorSec = FALSE;
UINT16 MachineType; BOOLEAN UpdateVectorPei = FALSE;
EFI_PHYSICAL_ADDRESS PeiCorePhysicalAddress; UINT16 MachineType = 0;
EFI_PHYSICAL_ADDRESS SecCorePhysicalAddress; EFI_PHYSICAL_ADDRESS SecCoreEntryAddress = 0;
INT32 ResetVector[4]; // ARM32: UINT16 PeiMachineType = 0;
// 0 - is branch relative to SEC entry point EFI_PHYSICAL_ADDRESS PeiCoreEntryAddress = 0;
// 1 - PEI Entry Point
// 2 - movs pc,lr for a SWI handler
// 3 - Place holder for Common Exception Handler
// AArch64: Used as UINT64 ResetVector[2]
// 0 - is branch relative to SEC entry point
// 1 - PEI Entry Point
// //
// Verify input parameters // Verify input parameters
@ -1878,168 +2112,92 @@ Returns:
if (FvImage == NULL || FvInfo == NULL) { if (FvImage == NULL || FvInfo == NULL) {
return EFI_INVALID_PARAMETER; return EFI_INVALID_PARAMETER;
} }
//
// Initialize FV library
//
InitializeFvLib (FvImage->FileImage, FvInfo->Size);
// //
// Find the Sec Core // Locate an SEC Core instance and if found extract the machine type and entry point address
//
Status = GetFileByType (EFI_FV_FILETYPE_SECURITY_CORE, 1, &SecCoreFile);
if (EFI_ERROR (Status) || SecCoreFile == NULL) {
//
// Maybe hardware does SEC job and we only have PEI Core?
// //
Status = FindCorePeSection(FvImage->FileImage, FvInfo->Size, EFI_FV_FILETYPE_SECURITY_CORE, &SecPe32);
if (!EFI_ERROR(Status)) {
// Status = GetCoreMachineType(SecPe32, &MachineType);
// Find the PEI Core. It may not exist if SEC loads DXE core directly
//
PeiCorePhysicalAddress = 0;
Status = GetFileByType (EFI_FV_FILETYPE_PEI_CORE, 1, &PeiCoreFile);
if (!EFI_ERROR (Status) && PeiCoreFile != NULL) {
//
// PEI Core found, now find PE32 or TE section
//
Status = GetSectionByType (PeiCoreFile, EFI_SECTION_PE32, 1, &Pe32Section);
if (Status == EFI_NOT_FOUND) {
Status = GetSectionByType (PeiCoreFile, EFI_SECTION_TE, 1, &Pe32Section);
}
if (EFI_ERROR(Status)) { if (EFI_ERROR(Status)) {
Error (NULL, 0, 3000, "Invalid", "could not find either a PE32 or a TE section in PEI core file!"); Error(NULL, 0, 3000, "Invalid", "Could not get the PE32 machine type for SEC Core.");
return EFI_ABORTED; return EFI_ABORTED;
} }
Status = GetPe32Info ( Status = GetCoreEntryPointAddress(FvImage->FileImage, FvInfo, SecPe32, &SecCoreEntryAddress);
(VOID *) ((UINTN) Pe32Section.Pe32Section + GetSectionHeaderLength(Pe32Section.CommonHeader)),
&EntryPoint,
&BaseOfCode,
&MachineType
);
if (EFI_ERROR(Status)) { if (EFI_ERROR(Status)) {
Error (NULL, 0, 3000, "Invalid", "could not get the PE32 entry point for the PEI core!"); Error(NULL, 0, 3000, "Invalid", "Could not get the PE32 entry point address for SEC Core.");
return EFI_ABORTED; return EFI_ABORTED;
} }
//
// Physical address is FV base + offset of PE32 + offset of the entry point
//
PeiCorePhysicalAddress = FvInfo->BaseAddress;
PeiCorePhysicalAddress += (UINTN) Pe32Section.Pe32Section + GetSectionHeaderLength(Pe32Section.CommonHeader) - (UINTN) FvImage->FileImage;
PeiCorePhysicalAddress += EntryPoint;
DebugMsg (NULL, 0, 9, "PeiCore physical entry point address", "Address = 0x%llX", (unsigned long long) PeiCorePhysicalAddress);
if (MachineType == EFI_IMAGE_MACHINE_ARMT || MachineType == EFI_IMAGE_MACHINE_AARCH64) { VerboseMsg("UpdateArmResetVectorIfNeeded found SEC core entry at 0x%llx", (unsigned long long)SecCoreEntryAddress);
memset (ResetVector, 0, sizeof (ResetVector)); UpdateVectorSec = TRUE;
// Address of PEI Core, if we have one
ResetVector[1] = (UINT32)PeiCorePhysicalAddress;
} }
// //
// Copy to the beginning of the FV // Locate a PEI Core instance and if found extract the machine type and entry point address
// //
memcpy ((UINT8 *) ((UINTN) FvImage->FileImage), ResetVector, sizeof (ResetVector)); Status = FindCorePeSection(FvImage->FileImage, FvInfo->Size, EFI_FV_FILETYPE_PEI_CORE, &PeiPe32);
if (!EFI_ERROR(Status)) {
Status = GetCoreMachineType(PeiPe32, &PeiMachineType);
if (EFI_ERROR(Status)) {
Error(NULL, 0, 3000, "Invalid", "Could not get the PE32 machine type for PEI Core.");
return EFI_ABORTED;
} }
Status = GetCoreEntryPointAddress(FvImage->FileImage, FvInfo, PeiPe32, &PeiCoreEntryAddress);
if (EFI_ERROR(Status)) {
Error(NULL, 0, 3000, "Invalid", "Could not get the PE32 entry point address for PEI Core.");
return EFI_ABORTED;
}
VerboseMsg("UpdateArmResetVectorIfNeeded found PEI core entry at 0x%llx", (unsigned long long)PeiCoreEntryAddress);
// if we previously found an SEC Core make sure machine types match
if (UpdateVectorSec && (MachineType != PeiMachineType)) {
Error(NULL, 0, 3000, "Invalid", "SEC and PEI machine types do not match, can't update reset vector");
return EFI_ABORTED;
}
else {
MachineType = PeiMachineType;
}
UpdateVectorPei = TRUE;
}
if (!UpdateVectorSec && !UpdateVectorPei) {
return EFI_SUCCESS; return EFI_SUCCESS;
} }
//
// Sec Core found, now find PE32 section
//
Status = GetSectionByType (SecCoreFile, EFI_SECTION_PE32, 1, &Pe32Section);
if (Status == EFI_NOT_FOUND) {
Status = GetSectionByType (SecCoreFile, EFI_SECTION_TE, 1, &Pe32Section);
}
if (EFI_ERROR (Status)) {
Error (NULL, 0, 3000, "Invalid", "could not find a PE32 section in the SEC core file.");
return EFI_ABORTED;
}
Status = GetPe32Info (
(VOID *) ((UINTN) Pe32Section.Pe32Section + GetSectionHeaderLength(Pe32Section.CommonHeader)),
&EntryPoint,
&BaseOfCode,
&MachineType
);
if (EFI_ERROR (Status)) {
Error (NULL, 0, 3000, "Invalid", "could not get the PE32 entry point for the SEC core.");
return EFI_ABORTED;
}
if ((MachineType != EFI_IMAGE_MACHINE_ARMT) && (MachineType != EFI_IMAGE_MACHINE_AARCH64)) {
//
// If SEC is not ARM we have nothing to do
//
return EFI_SUCCESS;
}
//
// Physical address is FV base + offset of PE32 + offset of the entry point
//
SecCorePhysicalAddress = FvInfo->BaseAddress;
SecCorePhysicalAddress += (UINTN) Pe32Section.Pe32Section + GetSectionHeaderLength(Pe32Section.CommonHeader) - (UINTN) FvImage->FileImage;
SecCorePhysicalAddress += EntryPoint;
DebugMsg (NULL, 0, 9, "SecCore physical entry point address", "Address = 0x%llX", (unsigned long long) SecCorePhysicalAddress);
//
// Find the PEI Core. It may not exist if SEC loads DXE core directly
//
PeiCorePhysicalAddress = 0;
Status = GetFileByType (EFI_FV_FILETYPE_PEI_CORE, 1, &PeiCoreFile);
if (!EFI_ERROR (Status) && PeiCoreFile != NULL) {
//
// PEI Core found, now find PE32 or TE section
//
Status = GetSectionByType (PeiCoreFile, EFI_SECTION_PE32, 1, &Pe32Section);
if (Status == EFI_NOT_FOUND) {
Status = GetSectionByType (PeiCoreFile, EFI_SECTION_TE, 1, &Pe32Section);
}
if (EFI_ERROR (Status)) {
Error (NULL, 0, 3000, "Invalid", "could not find either a PE32 or a TE section in PEI core file!");
return EFI_ABORTED;
}
Status = GetPe32Info (
(VOID *) ((UINTN) Pe32Section.Pe32Section + GetSectionHeaderLength(Pe32Section.CommonHeader)),
&EntryPoint,
&BaseOfCode,
&MachineType
);
if (EFI_ERROR (Status)) {
Error (NULL, 0, 3000, "Invalid", "could not get the PE32 entry point for the PEI core!");
return EFI_ABORTED;
}
//
// Physical address is FV base + offset of PE32 + offset of the entry point
//
PeiCorePhysicalAddress = FvInfo->BaseAddress;
PeiCorePhysicalAddress += (UINTN) Pe32Section.Pe32Section + GetSectionHeaderLength(Pe32Section.CommonHeader) - (UINTN) FvImage->FileImage;
PeiCorePhysicalAddress += EntryPoint;
DebugMsg (NULL, 0, 9, "PeiCore physical entry point address", "Address = 0x%llX", (unsigned long long) PeiCorePhysicalAddress);
}
if (MachineType == EFI_IMAGE_MACHINE_ARMT) { if (MachineType == EFI_IMAGE_MACHINE_ARMT) {
// ARM: Array of 4 UINT32s:
// 0 - is branch relative to SEC entry point
// 1 - PEI Entry Point
// 2 - movs pc,lr for a SWI handler
// 3 - Place holder for Common Exception Handler
UINT32 ResetVector[4];
memset(ResetVector, 0, sizeof (ResetVector));
// if we found an SEC core entry point then generate a branch instruction
// to it and populate a debugger SWI entry as well
if (UpdateVectorSec) {
VerboseMsg("UpdateArmResetVectorIfNeeded updating ARM SEC vector");
// B SecEntryPoint - signed_immed_24 part +/-32MB offset // B SecEntryPoint - signed_immed_24 part +/-32MB offset
// on ARM, the PC is always 8 ahead, so we're not really jumping from the base address, but from base address + 8 // on ARM, the PC is always 8 ahead, so we're not really jumping from the base address, but from base address + 8
ResetVector[0] = (INT32)(SecCorePhysicalAddress - FvInfo->BaseAddress - 8) >> 2; ResetVector[0] = (INT32)(SecCoreEntryAddress - FvInfo->BaseAddress - 8) >> 2;
if (ResetVector[0] > 0x00FFFFFF) { if (ResetVector[0] > 0x00FFFFFF) {
Error(NULL, 0, 3000, "Invalid", "SEC Entry point must be within 32MB of the start of the FV"); Error(NULL, 0, 3000, "Invalid", "SEC Entry point must be within 32MB of the start of the FV");
return EFI_ABORTED; return EFI_ABORTED;
} }
// Add opcode for an uncondional branch with no link. AKA B SecEntryPoint // Add opcode for an uncondional branch with no link. i.e.: " B SecEntryPoint"
ResetVector[0] |= 0xEB000000; ResetVector[0] |= ARMT_UNCONDITIONAL_JUMP_INSTRUCTION;
// Address of PEI Core, if we have one
ResetVector[1] = (UINT32)PeiCorePhysicalAddress;
// SWI handler movs pc,lr. Just in case a debugger uses SWI // SWI handler movs pc,lr. Just in case a debugger uses SWI
ResetVector[2] = 0xE1B0F07E; ResetVector[2] = 0xE1B0F07E;
@ -2049,7 +2207,29 @@ Returns:
// and the exception vectors would be hard coded in the ROM and just through this address // and the exception vectors would be hard coded in the ROM and just through this address
// to find a common handler in the a module in the FV. // to find a common handler in the a module in the FV.
ResetVector[3] = 0; ResetVector[3] = 0;
}
// if a PEI core entry was found place its address in the vector area
if (UpdateVectorPei) {
VerboseMsg("UpdateArmResetVectorIfNeeded updating ARM PEI address");
// Address of PEI Core, if we have one
ResetVector[1] = (UINT32)PeiCoreEntryAddress;
}
//
// Copy to the beginning of the FV
//
memcpy(FvImage->FileImage, ResetVector, sizeof (ResetVector));
} else if (MachineType == EFI_IMAGE_MACHINE_AARCH64) { } else if (MachineType == EFI_IMAGE_MACHINE_AARCH64) {
// AArch64: Used as UINT64 ResetVector[2]
// 0 - is branch relative to SEC entry point
// 1 - PEI Entry Point
UINT64 ResetVector[2];
memset(ResetVector, 0, sizeof (ResetVector));
/* NOTE: /* NOTE:
ARMT above has an entry in ResetVector[2] for SWI. The way we are using the ResetVector ARMT above has an entry in ResetVector[2] for SWI. The way we are using the ResetVector
@ -2061,30 +2241,40 @@ Returns:
base. base.
*/ */
((UINT64*)ResetVector)[0] = (UINT64)(SecCorePhysicalAddress - FvInfo->BaseAddress) >> 2; // if we found an SEC core entry point then generate a branch instruction to it
if (UpdateVectorSec) {
VerboseMsg("UpdateArmResetVectorIfNeeded updating AArch64 SEC vector");
ResetVector[0] = (UINT64)(SecCoreEntryAddress - FvInfo->BaseAddress) >> 2;
// B SecEntryPoint - signed_immed_26 part +/-128MB offset // B SecEntryPoint - signed_immed_26 part +/-128MB offset
if ( ((UINT64*)ResetVector)[0] > 0x03FFFFFF) { if (ResetVector[0] > 0x03FFFFFF) {
Error(NULL, 0, 3000, "Invalid", "SEC Entry point must be within 128MB of the start of the FV"); Error(NULL, 0, 3000, "Invalid", "SEC Entry point must be within 128MB of the start of the FV");
return EFI_ABORTED; return EFI_ABORTED;
} }
// Add opcode for an uncondional branch with no link. AKA B SecEntryPoint // Add opcode for an uncondional branch with no link. i.e.: " B SecEntryPoint"
((UINT64*)ResetVector)[0] |= 0x14000000; ResetVector[0] |= ARM64_UNCONDITIONAL_JUMP_INSTRUCTION;
}
// if a PEI core entry was found place its address in the vector area
if (UpdateVectorPei) {
VerboseMsg("UpdateArmResetVectorIfNeeded updating AArch64 PEI address");
// Address of PEI Core, if we have one // Address of PEI Core, if we have one
((UINT64*)ResetVector)[1] = (UINT64)PeiCorePhysicalAddress; ResetVector[1] = (UINT64)PeiCoreEntryAddress;
} else {
Error (NULL, 0, 3000, "Invalid", "Unknown ARM machine type");
return EFI_ABORTED;
} }
// //
// Copy to the beginning of the FV // Copy to the beginning of the FV
// //
memcpy ((UINT8 *) ((UINTN) FvImage->FileImage), ResetVector, sizeof (ResetVector)); memcpy(FvImage->FileImage, ResetVector, sizeof (ResetVector));
DebugMsg (NULL, 0, 9, "Update Reset vector in FV Header", NULL); } else {
Error(NULL, 0, 3000, "Invalid", "Unknown machine type");
return EFI_ABORTED;
}
return EFI_SUCCESS; return EFI_SUCCESS;
} }
@ -3002,6 +3192,8 @@ Returns:
EFI_FILE_SECTION_POINTER SubFvSection; EFI_FILE_SECTION_POINTER SubFvSection;
EFI_FIRMWARE_VOLUME_HEADER *SubFvImageHeader; EFI_FIRMWARE_VOLUME_HEADER *SubFvImageHeader;
EFI_PHYSICAL_ADDRESS SubFvBaseAddress; EFI_PHYSICAL_ADDRESS SubFvBaseAddress;
EFI_FILE_SECTION_POINTER CorePe32;
UINT16 MachineType;
for (Index = 1;; Index++) { for (Index = 1;; Index++) {
// //
@ -3012,6 +3204,30 @@ Returns:
break; break;
} }
SubFvImageHeader = (EFI_FIRMWARE_VOLUME_HEADER *) ((UINT8 *) SubFvSection.FVImageSection + GetSectionHeaderLength(SubFvSection.FVImageSection)); SubFvImageHeader = (EFI_FIRMWARE_VOLUME_HEADER *) ((UINT8 *) SubFvSection.FVImageSection + GetSectionHeaderLength(SubFvSection.FVImageSection));
//
// See if there's an SEC core in the child FV
Status = FindCorePeSection(SubFvImageHeader, SubFvImageHeader->FvLength, EFI_FV_FILETYPE_SECURITY_CORE, &CorePe32);
// if we couldn't find the SEC core, look for a PEI core
if (EFI_ERROR(Status)) {
Status = FindCorePeSection(SubFvImageHeader, SubFvImageHeader->FvLength, EFI_FV_FILETYPE_PEI_CORE, &CorePe32);
}
if (!EFI_ERROR(Status)) {
Status = GetCoreMachineType(CorePe32, &MachineType);
if (EFI_ERROR(Status)) {
Error(NULL, 0, 3000, "Invalid", "Could not get the PE32 machine type for SEC/PEI Core.");
return EFI_ABORTED;
}
// machine type is ARM, set a flag so ARM reset vector procesing occurs
if ((MachineType == EFI_IMAGE_MACHINE_ARMT) || (MachineType == EFI_IMAGE_MACHINE_AARCH64)) {
VerboseMsg("Located ARM/AArch64 SEC/PEI core in child FV");
mArm = TRUE;
}
}
// //
// Rebase on Flash // Rebase on Flash
// //